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Abstract 
Landmark detection is a frequent step during medical data analysis. More and more often, 
these data are represented in the form of 3D models - an example is a 3D intraoral scan 
of dentition. Deep neural networks are an appropriate way of detecting landmarks in 
images. In terms of 3D data, the processing comes with high memory requirements and 
computational time, which does not meet the needs of medical applications. In this work, 
I propose a method that eliminates this problem and detects landmarks on the surface of 
polygonal models of jaws. Different architectures of neural networks, all of which are based 
on the U-Net architecture, are used in this work. The multi-view approach transforms 
the task into a 2D domain, where the suggested networks detect landmarks by heatmap 
regression from several viewpoints. Using a consensus method, final estimates from multiple 
views are predicted in 3D space. This work introduces experiments with two consensus 
methods - a centroid of predictions and a geometric approach based on the R A N S A C 
algorithm and least-squares fit. Experiments have shown that a combination of Attention 
U-Net, 100 viewpoints, and R A N S A C consensus method, is able to detect landmarks with 
an error of 1.20 ± 1.81 mm, while 94.01% of landmarks is predicted with an error of less 
than 2 mm. 

Abstrakt 
Detekcia významných bodov je častým krokom pri analýze medicínskych dát. Čoraz bežne­
jšie sú tieto dáta reprezentované vo forme 3D modelov, príkladom sú povrchové skeny zub­
ného oblúka pacienta. Hlboké neurónové siete sú vhodný spôsob, ako detekovať významné 
body v obraze. V prípade 3D dát je však toto spracovanie časovo i pamäťovo náročné, 
čo nevyhovuje požiadavkám kladeným medicínskymi aplikáciami. V tejto práci navrhujem 
metódu, ktorá tento problém eliminuje a detekuje významné body na povchu polygonál­
nych modelov čeľustí. V metóde sú použité rôzne architektúry neurónových sietí, založené 
na architektúre U-Net. Viacpohľadový prístup presúva spracovanie do 2D, kde navrhnuté 
architektúry detekujú body regresiou tepelných máp z niekoľkých pohľadov. Pomocou kon­
senzus metódy je následne z týchto pohľadov určená konečná pozícia bodov v 3D priestore. 
V práci sú predstavené experimenty s dvoma konsenzus metódami - stredná hodnota predik­
cií a geometrický prístup založený na algoritme R A N S A C a metóde najmenších štvorcov. 
Experimenty ukázali, že varianta kombinujúca Attention U-Net, 100 pohľadov a geomet­
rickú konsenzus metódu je schopná detekovať významné body s chybou 1.20 ± 1.81 mm, 
pričom 94.01% predikcií dosahuje chybu menšiu ako 2 mm. 
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Rozšírený abstrakt 

Ú v o d 

Detekcia významných bodov je častým krokom pri analýze medicínskych dát. So stále 
zväčšujúcou sa dostupnosťou 3D zariadení sú medicínske dáta čoraz častejšie reprezentované 
vo forme 3D modelov. Táto reprezentácia je vhodná napríklad v digitálnej ortodoncii, keďže 
zubný oblúk pacienta naskenovaný vo forme povrchového modelu umožňuje jednoduchšiu 
tvorbu ukážky chrupu po dokončení liečby. Pr i spracovaní 3D modelov neurónovými sieťami 
je však nutné počítať so zvýšením pamäťových nárokov a času potrebného na výpočet. 
Príkladom je operácia konvolúcie, pri ktorej sa časová zložitosť pre 3D vstup zvýši na 
O (n6) zo zložitosti O (n4) pri 2D konvolúcii. 

Cieľom tejto práce je detekovat významné body na povrchu 3D modelov ľudských čeľustí, 
ako je možné vidieť na Obrázku 1. Ide o 32 bodov - dva pre každý zub na danej čeľusti. 
Motiváciou je zautomatizovať prácu ortodontistov, keďže v súčasnej dobe musia v procese 
tvorby modelu vyliečeného chrupu tieto body anotovať manuálne. 

(a) Vstup metódy (b) Príslušný výstup 

Obrázok 1: Ukážka vstupu a príslušného výstupu metódy. Metóda načíta poly­
gonálny model ľudského chrupu, na ktorý automaticky nadetekuje významné body. Farba 
jednotlivých bodov v obrázku (b) popisuje radiálnu chybu, s akou metóda daný bod nade-
tekovala. 

Popis riešenia 

Keďže navrhovaná metóda je založená na neurónových sieťach, jej kľúčovým prvkom je 
dataset. V práci je použitý dataset ľudských čeľustí vo forme polygonálnych modelov. Tento 
dataset bol poskytnutý bez skutočných pozícií bodov ("ground truths"), preto súčasťou tejto 
práce je aj anotačný nástroj, ktorým je možné tieto hodnoty získať. Častým problémom 
medicínskych dát je ich nedostatok. Podobne je to aj v tomto prípade, keďže na natréno-
vanie, validáciu a vyhodnotenie systému je k dispozícii 269 povrchových modelov zubných 
oblúkov. 

Navrhovaná metóda berie v úvahu oba aspekty, a to síce nedostatok dát a taktiež ich 
formu (3D polygonálne modely), ktorá značne zvyšuje pamäťovú a časovú náročnosť. Preto 
je zložená z troch primárnych častí: 



• použitie viacpohľadových neurónových sietí [43], 

• použitie architektúr neurónových sietí vychádzajúcich zo siete U-Net [35], 

• nájdenie výsledného odhadu pozície z viacerých pohľadov vhodnou konsenzus metó­
dou. 

Viacpohľadový prístup je jedným zo spôsobov spracovania 3D modelov neurónovými 
sieťami. Model v scéne je vyhodnocovaný z niekoľkých pohľadov, vždy na 2D renderi scény. 
Metóda nepracuje s renderom geometrie, ale v každom pohľade je model renderovaný vo 
forme hĺbkovej mapy. Podľa použitého počtu pohľadov má metóda k dispozícii príslušný 
počet predikcií každého významného bodu vo forme obrazových súradníc. 

V práci porovnávam dve konsenzus metódy, ktoré z niekoľkých predikcií vypočítajú 
jednu, finálnu pozíciu. 

Prvá konsenzus metóda je založená na výpočte strednej hodnoty z daných predikcií. 
Tento konsenzus vyžaduje prvotnú konverziu obrazových súradníc do svetových súradníc, 
a to v každom z pohľadov. Pre dosiahnutie akceptovateľných presností bol stanovený pred­
poklad, ktorý očakáva predikcie zo všetkých pohľadov nasledujúce podobný vzor, čo zna­
mená, že neurónová sieť nebude produkovať veľké množstvo nepresných predikcií. Inak by 
bola konečná predikcia ovplyvnená týmito chybnými predikciami. 

Druhá konsenzus metóda je geometrická a využíva algoritmus R A N S A C [11] v kom­
binácii s metódou najmenších štvorcov. Geometrická metóda v každom pohľade nevyžaduje 
konvertovanie predikcie do svetových koordinátov. Predikcia je interpretovaná ako polpri­
amka smerujúca z aktuálnej pozície kamery, pretínajúca pohľadovú rovinu v predikovanom 
bode. Táto skutočnosť výrazne urýchľuje detekciu významných bodov a zároveň prináša 
zvýšenú presnosť, keďže táto konsenzus metóda pri výpočte finálnej predikcie zanedbáva 
predikcie klasifikované ako extrémne prípady (tzv. "outliers"). 

Ako bolo spomenuté vyššie, použité architektúry vychádzajú z architektúry U-Net. 
V práci sú použité tri modifikácie. Prvá z nich, BatchNorm U-Net, je podobná pôvodnej 
architektúre U-Net, no obsahuje navyše batch (dávkovú) normalizáciu medzi konvolučnou 
a R e L U vrstvou. Ďalšie použité architektúry sú Attention U-Net [28] a Nested U-Net [50]. 

Všetky architektúry sú trénované na regresnej úlohe, kde sú obrazové koordináty výz­
namných bodov reprezentované ako 2D Gaussovské rozloženia so stredom v danom bode. 
Ide teda o metódu regresie tepelných máp, ktorá sa pre tento typ úlohy ukázala ako najlepšia 
a používa sa často [10, 29, 30, 31, 49]. 

Experimenty 

Súčasťou práce je sada experimentov, ktorá vyhodnocuje presnosť detekcie. Vrámci exper­
imentov sú porovnané rôzne kombinácie navrhnutých architektúr a konsenzus metód. Tak­
tiež sú vykonané experimenty s rôznym počtom pohľadov potrebných pre viacpohľadový 
prístup. Konkrétne ide o 9, 25 a 100 pohľadov, pričom bola stanovená hypotéza, že použitím 
väčšieho počtu pohľadov bude dosiahnutých lepších výsledkov. 

Z experimentov vyplynulo, že z navrhnutých architektúr dosahuje najlepšie výsledky At­
tention U-Net. V každej z kombinácií konsezus metód a počtu pohľadov zaznemanala táto 
architektúra najmenšiu priemernú radiálnu chybu, ako aj mieru úspešnosti pri povolenej 
chybe 2 mm. Následne som analyzoval rozdiely pri použitých konsenzus metódach. Ukázalo 
sa, geometrický prístup dosahuje oveľa lepšie presnosti v porovnaní s priemerovaním predik­
cií. Spolu so skutočnosťou, že jeho vyhodnotenie spotrebuje menej výpočetného času som 



prišiel k záveru, že táto konsenzus metóda je jednoznačne lepšia pre danú úlohu. Zvyšujúci 
sa počet pohľadov zvyšuje presnosť predikcií, avšak iba pri použití geometrickej konsen­
zus metódy, čím sa čiastočne potvrdila hypotéza. So zvyšujúcim sa počtom pohľadov sa 
generuje viac extrémnych prípadov, čo zhoršuje výsledky pri priemerovaní. 

Najlepšiu celkovú presnosť teda dosahuje kombinácia Attention U-Net architektúry a ge­
ometrickej konsenzus metódy za použitia 100 pohľadov. Táto kombinácia dosahuje chyby 
1.20 ± 1.81 mm, pričom miera úspešnosti predikcie významných bodov pri povolenej chybe 
2 mm je 94.01%. 

Súčasťou experimentov bolo taktiež pozorovanie, či je možné analýzou predikovaných 
tepelných máp určiť prítomnosť významného bodu na povrchu polygonálneho modelu. Hy­
potézou bolo, že tepelná mapa bodu neležiaceho na povrchu 3D modelu bude obsahovať 
veľmi nízku maximálnu hodnotu (blízku k nule). Naopak, ak je bod predikovaný s veľkou 
istotou, príslušná tepelná mapa bude obsahovať maximálnu hodnotu blízku k hodnote 1, 
keďže neurónové siete boli trénované regresiou tepelných máp s amplitúdou 1. Experi-
mantami bolo zistené, že čisto analýzou tepelných máp je možné klasifikovať prítomnosť 
významných bodov s presnosťou 94.33%. 

Zhrnutie výsledkov p r á c e 

V práci som navrhol spôsob, akým je možné detekovat významné body na povrchu 3D 
modelov, ktoré majú charakter medicínskych dát a pochádzajú z obmedzeného datasetu. 

Za týmto účelom som vyhodnotil rôzne varianty architektúry U-Net, zistil som, aký má 
vplyv počet pohľadov pri viacpohľadovom prístupe na celkové výsledky a taktiež som ukázal 
chovanie dvoch konsenzus metód - priemerovania predikcií a geometrickej metódy založenej 
na algoritme R A N S A C a metóde najmenších štvorcov. Navyše som vykonal analýzu max­
imálnych hodnôt tepelných máp, ktorej účelom bolo zistiť, či je táto informácia dostačujúca 
na tvrdenie, že daný významný bod sa na povrchu modelu naozaj nachádza alebo nie. 

Ďalšie kroky tejto práce môžu smerovať k zníženiu chyby detekcie. V tomto ohľade by 
najviac pomohlo získať viac dát z menšinových tried. Ide konkrétne o povrchové modely 
chrupov, ktoré obsahujú tretie stoličky, keďže v trénovacej sade bolo takýchto modelov málo 
a tak je znížená celková presnosť metódy. Rovnako je možné vykonať dôkladnejšiu analýzu 
tepelných máp za účelom detekcie prítomnosti významného bodu na povrchu modelu. Táto 
analýza by mohla brať v úvahu počet predikcií, ktoré sú klasifikované ako extrémne, či fakt, 
že významné body sa na povrchu modelu vyskytujú vždy v dvojiciach. 
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Chapter 1 

Introduction 

Localization of landmarks plays a crucial role in many tasks related to image analysis 
in medicine. Deep learning has demonstrated great success in this field, outperforming 
conventional machine learning methods. Wi th the widespread availability of accurate 3D 
scanning devices, this task has moved into a 3D domain. This brings the possibility of 
automation of clinical application tasks that operate on 3D models, such as in digital 
orthodontics. 

Taking into account the enormous increase in an input feature vector, a noticeable 
challenge has emerged. The time of computation of such deep neural networks is not 
suitable for a clinical application. 3D medical data analysis reckons with another challenge. 
The limited amount of medical data is a common struggle in medical image processing. 

This work aims to develop solution for a fully automated orthodontics landmark de­
tection on 3D jaw scans, which are represented as polygon meshes. The proposed method 
considers the limitation of the dataset and the need for low computational time, which 
is not standard in 3D deep learning. The method uses architecture designs that respect 
the dataset limitation, all of which are based on the U-Net architecture. Additionally, the 
task is trasfered into a 2D domain as it uses the multi-view C N N approach, where pro­
posed networks detect landmark by heatmap regression from several viewpoints. Finally, 
the predictions from multiple views are used in a consensus method, where the final posi­
tions of landmarks in 3D space are detected. A comparison of two consensus methods is 
presented in this work - a method that calculates the mean value of multiple predictions 
and a geometric method based on the R A N S A C algorithm and least-squares fit. 

Conducted experiments have shown that the proposed method can detect orthodontics 
landmarks on surface models with an error of 1.20 ± 1.81 mm while 94.01% of detected 
landmarks achieve an error less than 2 mm. These results are obtained using the U-Net 
with integrated attention gates, 100 viewpoints, and R A N S A C consensus method. 

Firstly, this work introduces the base knowledge of dental anatomy and orthodontics 
in Chapter 2. The possible application of deep learning in digital orthodontics is then 
presented. Chapter 3 then explores current approaches to landmark detection. The U -
Net architecture, its application in landmarking, and some significant modifications are 
discussed in this chapter as well. Lastly, an overview of C N N methods that process 3D 
data is depicted, focusing on the multi-view approach. The proposed solution for landmark 
detection is explored in detail in Chapter 4. This chapter outlines the overall method and 
closely describes its parts. The technologies used to implement this work are defined in 
Chapter 5. The custom annotation tool is introduced in this chapter too. Lastly, the 
evaluation of the proposed method can be found in Chapter 6. 
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Chapter 2 

Landmark Detection in 
Orthodontics 

To present the potential application of landmark detection in orthodontics, some basic 
terminology used in teeth morphology and orthodontics must be acquainted. This chapter 
firstly presents adequate vocabulary. Afterward, the malocclusion treatment process is 
described with a focus on automatic landmark detection applications. 

2.1 Bas ic D e n t a l A n a t o m y of a H u m a n 

The teeth in the human mouth form an arranged set called dentition. People have two 
dentition throughout life - the primary dentition during childhood and the secondary (also 
called permanent) dentition throughout adulthood. Teeth located on the upper jaw (also 
known as maxilla) form an arch called the maxillary arch. Analogically, teeth on the 
lower jaw (called the mandible) form an arch called the mandibular arch. Furthermore, 
each arch is divided into two halves resulting in the four-quadrant division of human den­
tition [33]. For the rest of this work, the secondary dentition only will be taken 
into account. 

2.1.1 Tooth Identification Systems 

Figure 2.1 illustrates the division and naming of teeth. Such naming is unnecessarily com­
plex for routine clinic tasks and for storing in computer memory. To utilize a more sophis­
ticated and practical way of tooth identification, unified notations were stated. Dentists 
use three main notation systems throughout the world. 

The Universal Numbering System assigns numbers for teeth sequentially. Numbers 
from range 1 to 32 are used to distinguish the teeth, starting from the 3rd right molar on 
maxillary arch. The sequential pattern is followed until the 3rd left molar on maxillary arch, 
which is assigned by number 16. A similar pattern can be observed on the mandibular arch, 
starting from the 3rd left molar (number 17) until the 3rd right molar (number 32) [36]. 

Other notation systems are the World Dental Federation Notation and the Palmer 
Notation System. The notation of each of these systems is summarized in Table 2.1. The 
Universal Numbering System is used throughout the rest of this work to ensure 
consistency. 

4 



PERMANENT TEETH 

MAXILLARY 

Incisors 

RIGHT 

^fiterior teeVn 

MANDIBULAR 

Figure 2.1: Scheme of maxillary and mandibular permanent dentition. It shows 
a complete dentition of a human adult. A complete secondary dentition contains 32 teeth, 
sub-divided into four quadrants. Furthermore, the quadrants are divided into different 
sub-groups. Adapted from [33]. 

2.1.2 Surfaces of the Teeth 

Besides the tooth designation presented in Section 2.1.1, a reference to a more specific area 
of a tooth is often inevitable. For this purpose, there exist five types of surface per tooth: 

• Occlusal/incisal surface is the chewing surface of a tooth, 

• Mesial surface is the surface towards the midline of the dentition, 

• Distal surface is the surface further from the midline, 

5 



• Buccal/vestibular/facial surface is the surface facing the cheek of the oral cavity, 

• Lingual/palatal surface is the surface facing the inside of the oral cavity. 

Tooth World Dental Palmer Universal Tooth 
Right Left Right Left Right Left 

Central incisor 11 21 1J Li 8 9 
Lateral incisor 12 22 2J L2 7 10 

u 
CO 

Canine 13 23 3J L3 6 11 
S-i First premolar 14 24 4J L4 5 12 
CO Second premolar 15 25 5J L5 4 13 
X 
cS First molar 16 26 6j L6 3 14 

Second molar 17 27 7J 2 15 
Third molar 18 28 8j L8 1 16 
Central incisor 41 31 11 [1 25 24 

O Lateral incisor 42 32 21 [2 26 23 
CO Canine 43 33 31 [3 27 22 
i-t First premolar 44 34 41 [4 28 21 
£ Second premolar 45 35 51 [5 29 20 

M
an

d First molar 46 36 61 [6 30 19 

M
an

d 

Second molar 47 37 71 [7 31 18 
Third molar 48 38 81 [8 32 17 

Table 2.1: Summary table of most used tooth notations. The World Dental Fed­
eration Notation, the Palmer Notation System, and the Universal Numbering System are 
summarized. 

Figure 2.2: Example of occlusal and incisal surface (surfaces colored by purple). 
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Figure 2.3: Left picture shows mesial surface - areas with high green intensity. Right 
picture shows distal surface - areas with high orange intensity. 

Figure 2.4: Example of tongue facing surfaces (left) and cheek facing surfaces (right). 

In Figures 2.2, 2.3, and 2.4, detailed images for each surface group on the left mandibular 
quadrant are presented. The first mentioned figure shows two chewing surfaces - occlusal 
surface on teeth 18-20 and incisal surface on teeth 21-24. Teeth 19 and 21 in Figure 2.3 
are used to demonstrate the mesial and distal surface. 

2.2 Orthodont ics 

A n ideal occlusion is defined as an anatomically perfect arrangement of the teeth [40]. In 
the wake of genetic predispositions and environmental factors, different types of anomalies 
are observed in human dentition. A branch of dentistry called orthodontics concerns the 
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diagnosis, interception, and treatment of such anomalies. A n example of these anomalies 
is malocclusion. It is deviance from an ideal occlusion. As this deviance is common [34], 
there is a substantial desire for a modern and reliable treatment method. 

2.2.1 Orthodontic Treatment 

Malocclusion causes concerns related to health and quality of life, including speech quality, 
appearance, and psychological well-being. Malocclusion treatment (Figure 2.5) brings the 
benefits of aesthetics, speech, and dental health improvement. 

The treatment process usually starts with the diagnosis during a routine dental ex­
amination. According to the type and severity, the malocclusion class is determined, and 
a proper treatment process is chosen. When a patient had been diagnosed with malocclu­
sion, a model of his future ideal occlusion is created, which is how the treatment result is 
communicated [6]. 

Figure 2.5: Malocclusion treatment in process. The top image presents the dentition 
of a 12-year-old with a malocclusion. The bottom left image shows the treatment with the 
focus on maxillary arch alignment. The bottom right image presents the results of the 
malocclusion treatment on both dentition. Adapted from [40], edited. 

2.2.2 Digital Orthodontics 

Digitization has a significant impact on a variety of aspects of people's lives, including 
orthodontics. Digital orthodontics simplifies the malocclusion treatment and brings a new, 
faster communication with the patient [14]. 

Wi th the rise of digital intraoral devices allowing 3D model capture, the orthodontic 
office workflow has simplified. As Taneva et al. present in their work [46]: "In-office 
chairside or send to the lab, the digital models give the flexible options for designing and 
manufacturing a large range of dental restorations, implants, study models, and orthodontic 
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appliances such as customized indirect brackets, archwires, expanders, aligners, retainers, 
etc." 

As described in [32], the main advantages of digital models in orthodontics are reduced 
storage, effortless transfer and access, and simple integration into a patient's digital health 
record. Another remarkable advantage is the automation of routine tasks where machine 
learning comes forward. Machine learning systems provide good decision support that helps 
orthodontists work more efficiently with eliminated subjectivity and reduced variability [19]. 

2.3 L a n d m a r k s i n D i g i t a l Orthodont ics 

Besides the aforementioned decision support, machine learning provides techniques for ac­
curate landmark detection, more in Chapter 3. As shown in Figure 2.6, the digital workflow 
of an appliance creation is composed of four steps: 

1. Patient's maxillary or mandibular arch is scanned into a 3D model. 

2. The appliance is designed. This step requires manual annotation of two 
landmarks on each tooth. It is the most time-consuming step of digital workflow, 
thus offers tasks to be automatized. 

3. 3D printing of designed appliance. 

4. Delivery of appliance to patient. 

Alginate 
or PVS Plaster Digital 

impression model s c a n 

Figure 2.6: Traditional versus digital workflow in the orthodontic office. The 
digital workflow consists of a lower number of steps as the appliance design is modeled using 
an orthodontics software. The digital appliance saves a lot of time and space. Adapted 
from [46], edited. 

Let's elaborate on the design process. In the existing orthodontics planning software, 
each tooth must be first annotated with two landmarks to form a model of ideal occlusion. 
These landmarks define the mesial and distal location of each tooth and are 
placed on the occlusal surface on molars and premolars and the incisal surface 
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on canines and incisors, as close to the cheek-facing surfaces as possible. In other 
words, 32 landmarks must be placed on one arch in case of full dentition. Figure 2.7 shows 
an example of a professionally annotated model of the mandibular arch. 

This annotation must be done precisely as its quality reflects in further automatic 
teeth segmentation. It is a time-consuming task, which must be done manually by the or­
thodontist. This substep of the digital workflow could be automatized by the deep learning 
methods for accurate landmark detection. 

After the annotation is done, individual teeth are segmented. Manual post-processing 
is usually necessary due to segmentation errors. Each tooth's position in the scene can be 
individually changed, so the model of ideal occlusion is created [37]. 

(a) Annotation by an orthodontist (b) Resulting teeth segmentation 

Figure 2.7: Depiction of a professionally annotated model and its further pro­
cessing. Picture (a) shows a 3D model annotated by an orthodontist during the design 
process, and the post-processed teeth segmentation is depicted in the picture (b). Each 
tooth has two landmarks placed on the incisal and occlusal surfaces. They define the mesial 
and distal tooth location. This information is subsequently used in the aforementioned seg­
mentation. Note that the resulting segmentation is here just for illustration of further 
landmark placement usage. It is not a point of interest of this work. Adapted from [37], 
edited. 
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Chapter 3 

Overview of the Current State 

Image landmark detection has been a fundamental step in many computer vision tasks for 
years. One of these tasks is the detection of anatomical landmarks, for example, the de­
tection of cephalometric landmarks in the cephalometric analysis [21, 49] or the detection 
of landmarks in X-Rays of the pelvis [3] or cardiac C T A scans [27]. The usage of accurate 
automatic landmark prediction in the medical field is simply wide-ranging, which moti­
vated people to solve these problems years before the widespread popularity of deep neural 
networks in 2015 [22]. 

Early studies in this area focused primarly on the classification of bounding boxes con­
taining landmarks [18] or voxels' classification [8, 25]. These tasks typically exploit only 
the local image information and used conventional machine learning approaches. 

Rather than focusing on a single voxel of interest, the classification and determination 
of the volume of interest were combined to reduce computational costs [23]. Furthermore, 
classification was not the only way of detecting landmarks. Regression was used to predict 
landmark points [12, 15] as well. 

Hough forests were used for landmark detection as they combined regression and classifi­
cation. It was shown [9] that this combination leads to better results compared to regression 
only. 

As convolutional neural networks (CNNs) gained in popularity, more and more scientific 
papers concerning their usage in landmark detection emerged. Some of these methods 
detected the landmark position directly from its coordinates, regressing its x and y values. 
For example, Sun et al. [45] adopted cascaded convolutional neural networks for facial 
point detection. Lv et al. [24] proposed a regression in a two-stage manner, still locating 
landmarks directly. 

This chapter describes proven methods that use convolutional networks to detect land­
marks and keypoints. The most significant one is the regression of heatmaps. Afterward, 
the U-Net network is presented together with its usage in landmarking and possible modifi­
cations. Lastly, a summary of the approaches of 3D data processing by CNNs is presented, 
with the focus on the multi-view approach. 

3.1 Heatmaps i n L a n d m a r k i n g 

Pfister et al. [31] worked on a model that regresses human joint positions. Instead of directly 
regressing the (x, y) joint position, they regressed a joint position's heatmap. During the 
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training, the ground truth labels are transformed into heatmaps by placing a Gaussian with 
fixed variance at each of the joint coordinates. This can be seen in Figure 3.1. 

Figure 3.1: Landmarks representation by heatmaps. The network learns on 
a heatmap with a synthesized Gaussian with a fixed variance centered at the ground truth 
joint position for each of k joints. Adapted from [31]. 

They denoted the training example as a tuple (X, y), where X is the input image and 
y stands for the coordinates of k joints located in image X. Furthermore, the training data 
were denoted as N = {X, y} and the network regressor as <f>. Then, the training objective 
is the estimation of the network weights A: 

argmin ^ ^ \\Gijtk(yk) ~ 4>i,j,k(X, A)||2 (3.1) 
(X,y)eNi,j,k 

where Gij^iVi) = e~^yk~l)2+(yk~ti2y2a2 is a Gaussian centered at joint yk with fixed a. 
Using this approach, the last convolutional layer's output is a heatmap represented as 
a fixed-size i x j x fc-dimensional matrix. 

On top of the appliance of spatial fusion layers and optical flow, they discussed the 
benefits of regressing a heatmap rather than (x, y) coordinates directly. They concluded 
that the benefits are twofold: (i) the process of network training can be visualized in such 
a way that one can understand the network learning failures, and (ii) the network output can 
acquire confidence at multiple spatial locations. The incorrect ones are slowly suppressed 
later in the training process. In contrast, regressing the (x, y) coordinates directly, the 
network would have a lower loss only if it predicts the coordinate correctly, even if it was 
"growing confidence" in the correct position. 

This approach seemed alluring for people in the medical image processing community. 
Inspired by this method, Payer et al. [30] presented multiple architectures that detect 
keypoints in X-Ray images of hands and 3D hand M R scans. They affirmed that it is 
possible to achieve state-of-the-art localization performance in both 2D and 3D domains 
while dealing with medical data shortage by regressing heatmaps. Outline of thier method 
is depicted in Figure 3.2. 
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OPTIMIZATION 

Input V, Prediction Ta rget J Landmarks 

Figure 3.2: Overall framework for hand keypoints detection. In this work, the 
heatmap regression was used to predict landmarks on hands. In the optimization step, 
the local appearance of a landmark is combined with the spatial configuration of all other 
landmarks. This minimizes ambiguities caused by similarly-looking landmarks, e.g., finger­
prints. Adapted from [30]. 

U-Net network [35] was initially presented as an architecture for biomedical image segmen­
tation. Yielding a u-shaped design, it can output a class label assigned to each pixel of the 
input image. 

3.2.1 Network Architecture 

The main idea of this architecture is its division into two parts, as shown in Figure 3.3: (i) the 
contracting path (left side), also called the encoder or the analysis path with the typical 
architecture of a convolutional network and (ii) the expansive path (right side), also called 
the decoder or the synthesis path. The contracting path consists of repeated blocks of 
two 3x3 unpadded convolutions, each followed by a rectified linear unit activation func­
tion (ReLU) [26] and a 2x2 max pooling for downsampling. Each downsampling step 
doubles the number of feature channels. On the contrary, the expansive path performs the 
upsampling and a 2x2 "up-convolution", that halves the number of feature channels. A cor­
respondingly cropped feature map from the left part is concatenated at each level, followed 
by two 3x3 convolutions and a R e L U . Finally, a l x l convolution maps 64 feature channels 
into the desired number of classes. This original U-Net architecture with an almost sym­
metrical u-like style demonstrated excellent segmentation results on multiple segmentation 
tasks. 

The original U-Net, however, is not the only architecture of its type. The immense 
growth of U-Net papers since 2017 has brought many modifications such as the Nested U -
Net [50], Attention U-Net [28], or Residual U-Net [1]. The most important modifications, 
along with hundreds of examples of U-Net usages, are summarized in [39]. 

3.2.2 U - N e t for Landmark Detection 

In the wake of the success in segmentation tasks, the U-Net with different modifications 
found its usage in landmark detection. As presented in [30], this model design performed 
very well in combination with the heatmap regression approach. The main idea is to use 
the encoder-decoder approach to get a heatmap for each landmark of the exact resolution 
as the input image. 

3.2 U - N e t N e t w o r k 
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Figure 3.3: U-Net architecture. The U-Net is an encoder-decoder architecture initially 
presented for biomedical image segmentation. The number on top of the boxes indicates 
corresponding feature channels. The x, y size is provided at the bottom-left corner. A n in­
put image of size 572 x 572 is downsampled to 32 x 32 image. The decoder part enlarges the 
image to produce a segmentation map of size 388 x 388. Introduced by Ronneberger et al. 
in [35]. 

Patch Input/100 x 100 x 1 Patch Output H'P/100 x 100 x 20 

Figure 3.4: Overall structure of global and regional stage approach using U -
Net. (a) Global stage. During the global stage, coarse attention is created and later used 
as a guidance in the local stage, (b) Local stage with attention-guide. This stage uses 
a patch-based U-Net model. Guided by the coarse attention from the Global stage, local 
stage searches in the proposal regions, regressing the heatmap patches in a high resolution, 
(c) Modified U-Net structure for both global and local stages. Adapted from [49]. 
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To design a fully symmetric architecture, they used fixed linear upsampling kernels 
in the decoder part. Zhong et al. [49] used U-Net in a two-staged framework to detect 
2D cephalometric landmarks. The first, "global stage" regresses the global heatmaps. Con­
sequently, the information from the global stage is used in the patch-based local model. See 
Figure 3.4 for the illustration of the overall structure of their system. 

3.2.3 Attention U-Net 

One of the U-Net modifications is the Attention U-Net proposed in [28]. This architecture 
extends the original U-Net by the usage of Attention gates (AGs). The motivation for the 
AGs integration is an increase in accuracy. AGs progressively suppress feature responses 
in irrelevant regions without any additional supervision. In the U-Net model, they are 
incorporated to highlight salient features passed through the skip connections. Information 
from coarse-scale is then used in gating to disambiguate noisy responses in skip connec­
tions. Figure 3.5 shows the Attention U-Net model in a block diagram. It also depicts the 
schematic of the attention gate. 
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Figure 3.5: (a) A block diagram of the Attention U-Net model. The input image 
is downsampled by a factor of 2 on each level of the encoder part. Attention gates filter the 
skip connection features, (b) Attention gate. Input features xl are scaled with attention 
coefficients a. a identify salient image regions and prune feature responses to preserve the 
relevant activations only. Gating signal g is collected from the coarser scale. The output of 
an A G is the product of input feature maps and attention coefficients. Originally presented 
in [28]. 
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3.2.4 Nested U-Net 

Zhou et al. [50] presented a U-Net modification called Nested U-Net, where they redesigned 
the skip pathways. The encoder and decoder parts of the network are connected through 
a series of nested, dense skip pathways. The aim is to reduce the semantic gap between 
the feature maps of the encoder and the sub-networks. Authors argue that to capture 
the fine-grained details of the foreground objects more effectively, the gradual enrichment 
of high-resolution feature maps from the encoder prior to fusion with the corresponding 
semantically rich feature maps from the decoder part should be ensured. Additionally, they 
state that the optimizer would deal with an easier learning task, as the concatenated feature 
maps are semantically similar. Figure 3.6 shows the architecture design and how it extends 
the original U-Net. 

\ Down-sampling 

/ / Up-sampling 

Skip connection 

Skip connection (original) 

x'-J Convolution 

(a) 

x ° . 2 = H[x°.°, x 0 ' 1 , Ufr 1 - 1)] 
x 0 , l = H [ x 0 , 0 U ( x l , 0 , ] 

x ° . 3 = H[x°.°, x O ' i . x ^ . U l x 1 ' 2 ) ] 

°. 4 = H[x°.°, x 0 ' 1 , x 0 ' 2 , x 0 ' 3 , Ulx 1 ' 3)] 

Figure 3.6: (a) A diagram of the Nested U-Net architecture. Purple indicates the 
Original U-Net structure. Green and blue components distinguish the Nested U-Net from 
the Original U-Net. The semantic gap between the encoder and decoder is bridged before 
the fusion. This can be seen, for instance, at the semantic gap between (x°'°, x 1 , 3 ) , which is 
bridged by a dense convolution block with three convolution layers, (b) Detailed analysis 
of the first skip pathway. Operation H represents the concatenation. Presented initially 
in [50]. 
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Moreover, they propose to use deep supervision [20] in Nested U-Nets. It enables model 
pruning [4] that brings speed gain as it reduces network parameters. Thanks to the nested 
skip pathways, the full resolution feature maps are generated at multiple semantic levels: 
x 0 j , j G {1,2,3,4}. They are amenable to deep supervision. The model pruning process 
and the resulting performance after applying different pruning levels are in detail described 
in the paper [50]. 

3.3 Process ing of 3 D D a t a by Deep N e u r a l N e t w o r k s 

Although the extension of deep neural network operations such as convolution from 2D to 
3D domain seems natural, the additional computational complexity introduces notable 
challenges. Having volumetric data (for example, voxel models) or 3D surface data (for 
example, represented as polygon meshes) as an input to deep neural networks has a consid­
erable drawback in computational time and memory requirements. Wi th the advances in 
low-cost 3D acquisition devices, analyzing 3D shapes for tasks like classification, segmenta­
tion, or landmark detection became critical in many fields. A key technique is image feature 
extraction, where CNNs demonstrate their advantages. Several approaches were presented 
to address the non-trivial task of the appliance of C N N techniques on 3D models. 

3.3.1 Voxel-based Approach 

Voxel-based approaches model the input 3D data as a function sampled on voxels. Addi­
tionally, they define a 3D C N N over voxels for shape analysis. Wu et al. [48] introduce 3D 
ShapeNets - a C N N for object recognition and shape completion. This approach is limited 
to low resolutions due to the high memory and computational cost. A 3D voxel volume 
in this work is limited to resolution of 30 3, which has almost the same dimension as a 2D 
image of a resolution of 165 x 165. This method is full-voxel-based. 

Rather than applying the C N N operations on the whole voxel volume, Graham et al. [13] 
propose the 3D sparse CNNs. These CNNs apply operations on active voxels only. This 
approach is efficient for architectures with a low number of convolution layers but becomes 
less efficient for deeper networks. 

Built upon the octree representation of 3D shapes, Wang et al. [47] present Octree-
based Convolutional Neural Networks (O-CNNs). The motivation behind their work is to 
decrease the computational time and memory requirements of 3D voxel volumes processing. 
The key idea is to present the 3D shapes with octrees and perform 3D C N N operations only 
on the sparse octants occupied by the boundary surfaces. They also design a novel octree 
structure that stores the features and associated octant information into the G P U memory 
to support all 3D C N N operations on G P U . Compared to the full-voxel-based approach, 
O - C N N can process voxel volumes of size 2563 with significantly less memory occupation 
in much less time. 

3.3.2 Manifold-based Approach 

Manifold-based methods perform C N N operations over the features extracted from the 
geometry of a 3D mesh. Some of these methods convert the 3D surfaces into a geometry 
image so that standard CNNs can be directly used to learn 3D shapes [41]. Furthermore, 
a group of techniques called Geometric deep learning was introduced to generalize deep 
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learning to non-Euclidean domains such as graphs and manifolds. The concept of Geometric 
deep learning is explained in [5]. 

3.3.3 Multi -view Approach 

A n alternative way of 3D data processing by neural networks is a multi-view approach. 
Obtaining state-of-the-art results on 3D classification, Su et al. [43] presented the multi-
view C N N idea. It is relatively straightforward and consists of three main steps: 

1. Render a 3D shape into several images using varying camera extrinsics. 

2. Extract features from each acquired view. 

3. Process features from different viewpoints in a way suitable for a given task. In [43], 
a pooling layer followed by fully connected layers was used to get class predictions, 
as shown in Figure 3.7. 

rendered with 2D rendered our multi-view CNN architecture output class 
different virtual cameras images predictions 

Figure 3.7: Outline of the method of multi-view 3D shape recognition. 3D shape 
is rendered from 12 different views and passed to C N N i modules. Outputs are pooled and 
passed through C N N 2 to obtain output class predictions. Adapted from [43]. 

Multi-view-based methods can process high-resolution 2D inputs, which can be rendered 
either from volumetric or surface 3D data. This study, however, leaves many questions unan­
swered. It is still unclear how to properly choose the viewpoint number and distribution, 
so it is always necessary to verify their fit for the given new task. 

3.3.4 A p p l y i n g a Multi -view Approach for Landmarking 

Paulsen et al. [29] proposed a multi-view approach to identify feature points on facial 
surfaces. They have decided to use more views for image rendering, specifically 100. As 
the dataset is not purely medical, they chose a modified stacked hourglass architecture (see 
Figure 3.8) rather than the U-Net. They created several types of rendered images from 
each of the camera's positions to run their experiments. Besides the geometry rendering 
and texture surface rendering (RGB), OpenGL z-buffer was used to compute the depth 
map. Authors discussed the popularity of depth maps in machine learning, as it is often 
used as the input to the system, for example, when depth sensors are used to obtain data. 
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Additionally, the curvature was rendered and eventually combined with a depth map to 
scale down the localization error. 

This paper's main contribution is the demonstration of the rendering pipeline, which 
offers an alternative way to handle complicated landmark placement on 3D surfaces. They 
discussed multiple geometry derivatives and experimented with their combinations to bring 
state-of-the-art results in feature point detection on facial 3D scans while decreasing the 
prohibitive G P U memory requirements needed for true 3D processing. 

Figure 3.8: Network design for facial landmark localization presented in [29]. No­
tice that the input channels vary as the model works with different rendering configurations 
(RGB surface, curvature, geometry, or depth map). Adapted from [29]. 

Additionally, they proposed a consensus method to find the final estimate, which com­
bines least squares fit and RANdom SAmple Consensus ( R A N S A C ) [11]. For each land­
mark, N rays in 3-space are the outputs of the proposed method. To robustly estimate 
a 3D point from several potentially noisy rays, they defined each ray by its origin and 
a unit direction vector rtj. Then, the sum of squared distances from a point p is calculated 
as follows: 

= Z > - a^T(p -a*) - [(p - ° i ) T " i ] 2 ] - (3-2) 
i i 

It is necessary to differentiate this equation with respect to p. It brings the solution 
p = S+C, where S+ denotes the pseudo-inverse of S. In this case, S = X ^ ( n « n f ~~ -0 
and C = J2i(ninJ ~ I)ai- R A N S A C procedure initially estimates the value of p by three 
randomly chosen rays. The residual is computed as the sum of squared distances (see Equa­
tion 3.2) from p to the included rays, and the iterative R A N S A C algorithm then performs 
/ iterations. In each of these iterations, the number of inliers and outliers is calculated, 
respecting a predefined threshold r. For further reading about the R A N S A C algorithm, 
Section 4.5.2 describes its usage in this work. Even more details can be found in [11, 16]. 
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Chapter 4 

Proposed Solution for 
Orthodontics Landmark Detection 
on 3D Models 

This chapter introduces the proposed solution for the detection of landmarks on the surface 
of polygonal models. At first, the task definition is presented. Afterward, the dataset of 
dentition used in this work is described. Later in this chapter, the overall method outline 
is introduced. The most essential concepts of the method are described in detail: the 
multi-view rendering pipeline, the design of proposed CNNs, and consensus methods. 

4.1 Task D e f i n i t i o n and Dataset 

The main objective of this task is to automate the landmark placement in digital orthodon­
tics. The goal is to detect points on specific surfaces of teeth (the desired positions of 
landmarks were discussed in Section 2.3). Figure 4.1 illustrates an example of an input 
surface model with corresponding annotated landmarks. 

This task has two noteworthy and — in some way — contrary elements: (i) it is intended 
to be used as a part of a clinical application, thus, the computational time and memory 
requirements should be as low as possible, and (ii) the input data are represented in the 
form of 3D polygonal models. This representation yields significantly more information than 
a 2D image but has some drawbacks when processed in convolutional neural networks, as 
discussed in Section 3.3. Additionally, neural networks usually benefit from a large number 
of observed data. Limitations of the dataset of medical data must be taken into account. 

I find it important to stress the difference between keypoint1 and landmark detection, 
as their meanings are sometimes interchanged. Keypoint is an unlabeled point without any 
further meaning. It is described by its position in the world space2 only. Landmarks have 
additional semantics. Each detected landmark is associated with a label. It always depends 
on the task that is solved, whether to use keypoint or landmark detection. See Figure 4.3 
for an illustration of the distinction. 

1also called interest points or feature points 
2the world space position is a keypoint descriptor specific for the 3D scene, it might be expressed differ­

ently in other setups 
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(a) Example of an input polygonal model (b) Result of the landmark detection 

Figure 4.1: Illustration of an input and corresponding output. The method loads 
a surface model and finds the positions of the orthodontics landmarks, as suggested in 
Section 2.3. 

4.1.1 Proposed Multi -view Landmark Detection Approach 

To accomplish the goal of this task, a method that combines multiple state-of-the-art ap­
proaches is presented. This method works out the high computational time of 3D data 
C N N processing and data shortage on several levels: 

1. Simplification of the task of 3D landmark detection by moving to 2D space 

2D images are rendered and used per consequens as inputs to neural networks to 
decrease the computational time. Networks are trained and evaluated on depth maps 
rather than on model geometry. 

2. Regressing heatmaps rather than (x, y) coordinates directly 

This approach is widely used in both medical and non-medical fields. Its benefits are 
elaborated in Section 3.1. 

3. Usage of model designs that respect dataset limitation 

The U-Net architecture (see Section 3.2) was designed to bring satisfying results even 
on small medical datasets. Its offshoots are used to regress heatmaps with a Gaussian 
placed on ground truth landmark positions. 

4. Making use of 3D information by applying the multi-view approach 

Dropping the third dimension data completely might be highly disadvantageous. The 
model is observed in the scene from multiple views. In comparison to a single view, 
this method should bring more accurate predictions. A similar approach to the one 
discussed in Section 3.3.3 is presented. 

5. Finding a consensus method that predicts the positions with the highest 
accuracy 

Multi-view approach comes with an additional task. If the model is observed from 
./V views, there are logically N predicted positions. It is necessary to find a final 
estimate by applying a consensus on acquired predictions. 
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4.1.2 Dataset 

In this work, 491 polygonal models of human dentition in S T L 3 format were provided. 1 

Both maxillary and mandibular dentition occur within the dataset. These dentition scans 
were obtained from different patients, bringing significant variation among the models, 
primarily due to the frequent teeth missing. Neither public datasets of similar 3D models 
of dentition nor the landmark ground truths are available. The ground truth annotation 
was done by myself with a custom annotation tool, which will be presented in Section 5.3. 
The process of landmarking was done without any professional orthodontist supervision, 
but it was shown to me by the thesis supervisor. 

Figure 4.2: Typical cases of discarded models. Discarded polygons are typically 
castings of teeth or contain significant noise from the scanning process. Such deflexions 
would confuse the network as they have no teeth surfaces for proper landmark placement. 

Some of the provided models were discarded as the dentition was partially or entirely 
missing (see Figure 4.2 for examples), resulting in 269 polygonal models suitable for 
training, evaluation, and testing. 

Those models, however, are not in a feasible format to serve as an input to the proposed 
method. The method is designed to process 2D data, as discussed in Section 4.1. Wi th 

3

https: //docs.fileformat.com/cad/stl/ 
4The dataset used in this work was provided by T E S C A N 3DIM, s.r.o. 
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the custom annotation tool, a dataset of depth maps with corresponding ground truths is 
created. In terms of dataset preparation, the multi-view rendering pipeline serves as an 
additional augmentation tool that significantly increases the dataset. Wi th the number of 
views set to 100 and with 269 polygonal models, 26 900 depth maps are available to train 
and evaluate the system. 

Figure 4.3: Difference between keypoint and landmark detection. The landmark-
ing process can be sub-split into keypoint detection and labeling. In this work, landmarks 
are detected, as their label is vital for further processing. 

4.2 M e t h o d Out l ine 

The detailed outline of the proposed method is depicted in Figure 4.4. The rendering 
pipeline (Section 4.3) is used to obtain ./V depth maps from N different views. The num­
ber of views is chosen experimentally and serves as a possible hyperparameter for exper­
imenting with the system. To illustrate — as discussed in Section 3.3 — in the work of 
Su et al. [43], 12 views were used. Furthermore, in [29], multiple experiments with multiple 
(25, 50, 75, and 100) N values were conducted. 

The predictions from the network are 32 heatmaps representing the coordinate estimates 
for each landmark. It is necessary to calculate a display coordinate (x, y) in HI 2 from each 
of the heatmaps. Assuming the highest confidence in the point where the maximum value 
occurs, the Non-Maximum Suppression (NMS) algorithm is used to find that position. The 
aforementioned (x, y) values are the landmark's display coordinates, as the network is 
trained to regress the converted world coordinates to display coordinates (Section 5.3). 

The (x, y) display coordinates of one view are not the final outcome. It is indispensable 
to propagate the information into a world coordinate system IR3 and find a final estimate 
by combining outputs from several camera views. 

The information propagation to IR3 is done by coordinate conversion. Wi th the known 
position of the center of projection, the prediction for a single view of one landmark can be 
interpreted as (i) a ray defined by the origin in the corresponding center of projection and 
the point on the view plane at detected display coordinates or (ii) simply a point in the 
3D scene, i.e., the converted display coordinate into 3-space. 

However, this still does not cover the multi-view approach. Two consensus methods are 
used and presented in Section 4.5, one for each of the aforementioned interpretations. These 
methods find the estimation among multiple predictions. The last necessary step is to find 
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Method outline 
Polygon in .stl fo rmat 

Multi-view rendering pipeline 

View 1 ••• View 1 < n < N ... View N 

Consensus method 
+ 

Predictions: points/rays Octree based space-division search 

Figure 4.4: Overall method outline. The evaluated 3D model serves as an input 
to the multi-view rendering pipeline. According to the number of views, a corresponding 
number of depth maps is evaluated by C N N modules. The extracted display coordinates 
of landmarks in each view are used in the consensus method to get a single estimate. 

the closest point on the surface of the polygonal model, as the consensus output does not 
guarantee the placement on the model surface. A n octree data structure contains a recur­
sively sub-divided target polygonal model. Each node stores an explicit 3D point, which 
is the center of a given subdivision. In the leaf nodes, individual surfaces of the polygonal 
model are stored. Wi th such representation, the octree-based space-division search algo­
rithm can be used to estimate the final output. The closest point on the surface of the 
polygonal model to the consensus output is considered to be the final estimate. 

4.3 M u l t i - v i e w R e n d e r i n g P i p e l i n e 

I defined the task as a 2D regression of heatmaps (see Section 3.1) that respects the multi-
view approach. To accomplish that, it is necessary to render the 3D object into a suitable 
format. I have decided not to render the object geometry directly but to use the given 
object's depth maps instead. From the view of a human, object geometry contains more 
information about the rendered model - it is more obvious where to place a landmark. This 
is not necessarily the case of neural networks - they are able to obtain more information 
from the depth value in each pixel. The type of rendering might vary according to the task 
that is solved. A similar approach was chosen in the work described in Section 3.3.4, but 
they used other geometry derivatives as well. 

To meet the goal of multiple depth map rendering, a multi-view rendering pipeline was 
designed. It is depicted in Figure 4.5. The rendering pipeline is used in the annotation tool 
as well as during the evaluation of unseen polygons. 
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The model is loaded into the scene and must be placed within the viewing frustum 
in a position that meets the needs of the solved task. Afterward, the model is observed 
from several views. Different observations are obtained by moving the camera in the scene. 
Finally, the scene is rendered in each of the views. The number of observations should 
always be cross-validated for the given task. The same applies for the camera positions. 

Rendering pipeline 

Initial model translation and rotation 

Output: N rendered depth maps ••••••• ••••••• ••••••• ••••••• ••••••• ••••••• ••••••• 

Various camera positions 

Figure 4.5: Outline of the multi-view rendering pipeline. After the initial appli­
cation of affine transformations, the z-buffer is used to calculate the depth value of each 
pixel of the observed scene to form a depth map. Furthermore, this depth map rendering 
is done with multiple (TV) camera extrinsics to follow the multi-view approach. Therefore, 
the output of the rendering pipeline is iV depth maps from N different views. 

4.4 P r o p o s e d Designs of C N N M o d e l s 

To get the landmark predictions, three neural network architectures were trained. Each of 
these networks is trained on the depth maps generated by the proposed annotation tool. 
The network does not distinguish between mandibular and maxillary dentition. In the 
latter case, the model is rotated to be in the requisite position. The first proposed network 
is a BatchNorm U-Net. This network has a similar design as the original U-Net, which 
was discussed in Section 3.2. I applied additional batch normalization layers between the 
convolutional and R e L U activation layer. Additionally, the input size to the network is 
128 x 128, as I was limited by the computational power. I used padding to prevent the loss 
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of border pixels. Thus, the exact dimensions (not the size of features) as the input image 
are produced. The number of output features is changed, so it corresponds to the number 
of detected landmarks. Figure 4.6 shows the modifications applied to the original U-Net. 

nput 
depth 

map 

"1/ 128 128 256 128 

512 256 

i l l 
n I I I m • en • t 1024 512 

col I col-

OUtpUt 
32 
heatmaps 

*- conv 3x3, BN, ReLU 

—*"- copy and crop 

conv l x l 

1 max pool 2x2 

4 up-conv 2x2 

Figure 4.6: BatchNorm U-Net used in this work. Comparing with the original U -
Net [35], the dimensions of the input image are changed. Padding is used to produce feature 
maps of the exact dimensions as the input image. Batch normalization is inserted between 
the convolution and activation layers to speed up the training and reduce generalization 
error. 

The second trained network is the Attention U-Net, which integrates the Atten­
tion gates into the original U-Net. Detailed descriptions, as well as the architecture design, 
can be found in Section 3.2.3. The input image size is 128 x 128, and the number of output 
feature channels is 32. 

The third trained network is the Nested U-Net. This network design is described 
in Section 3.2.4. The input size is again set to 128 x 128, and the number of output 
channels is 32. I assume that reducing the semantic gap between the encoder and the 
sub-networks brings more accurate predictions, even on the heatmap regression task. No 
network pruning was integrated. The architecture of the Attention U-Net and the Nested 
U-Net was desgined according to the original papers [28, 50], and the implementation is 
also inspired by [2], where authors shared their source files online.'' 

4.5 Consensus M e t h o d s 

One of the critical steps in a multi-view approach is to find a final estimate from all cal­
culated predictions. In this work, the prediction can be interpreted either as a point in 
the world coordinate system or as a ray passing through the center of projection and the 

5

https: //github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets 
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predicted display coordinate. As Figure 4.7 indicates, point L represents the point in­
terpretation, and CL' represents the ray interpretation in the world coordinate system. 
To compere these two representations and how they are used in consensus methods, see 
Figure 4.9. 

Figure 4.7: The depiction of a polygonal model in a scene. The model is placed 
within the viewing frustum. L stands for a point representing a randomly selected keypoint 
on a polygonal model, located at xw, yw, zw within the world coordinate system JR3. When 
the depth map is rendered, point L' is calculated. It represents the corresponding point 
position within the display coordinates x^, yd in IR2- Point C represents the center of 
projection. 

4.5.1 Centroid of Points in 3D space 

Let's consider N as the number of views used in the multi-view approach. Let's also 
interpret the single-view evaluation output as a point on the target polygonal model. Wi th 
N views, the consensus output P is a single point in Euclidean 3-space IR3 and is calculated 
from N points in IR3 as follows: 

where Xi, yi and Zi are the (x, y, z) coordinates of i t h output. Note that this point is 
not the final estimate because it is not automatically located on the surface of the target 
polygonal model. 

4.5.2 Random Sample Consensus 

To suppress the potential accuracy loss brought by the presence of outliers, the RAN-
dom SAmple Consensus ( R A N S A C ) comes forward. The algorithm was initially proposed 
by Fischler and Bolles [11], and it is a general parameter estimation approach designed 

P = [ (4.1) 
N ' N ' N 
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Figure 4.8: Depiction of the Centroid value without and with outliers. The red 
point represents point P from Equation 4.1, blue and orange points represent the input 
points. The left picture shows the ideal situation, where all points follow one distribution. 
In the right picture, two different distributions were used to generate the points. Orange 
points present potential outliers produced by some of the predictions. The result is highly 
affected by them. 

to cope with a large proportion of outliers in the input data. The final estimate of each 
landmark could be found as an intersection of corresponding rays in IR 3. 

As the rays are (post-processed) estimates from a neural network, it is necessary to 
consider that it predicts the outputs with uncertainty. Then, the benefits of R A N S A C in 
this task can be twofold: (i) The consensus estimate of one point out of N predictions and 
(ii) the division of predictions into inliers and outliers. 

As for the consensus estimate, the R A N S A C algorithm is combined with least-squares 
fit (LSQ) in a similar way as in [29]. Their approach is summarized in Section 3.3.4. The 
algorithm is as follows: 

Algorithm 1: R A N S A C and LSQ to find the landmark estimate from iV rays in 
IR 3  

Result: A point estimate in 3-space 
1 Select randomly n rays, where n < N: 

2 Find the initial estimate of point P by finding the intersection point of selected 
rays in 3-space, in the least-squares sense: 

3 Compute the sums of squared distances from all rays and point P: 

4 Determine how many rays from the set of all rays fit with the predefined 
tolerance e, i.e., determine the number of inliers: 

5 If the fraction of the number of inliers over iV exceeds a predefined threshold r , 
re-estimate the point P using all the identified inliers. Compute the sum of squared 
distances from all rays and re-estimated point P. If the sum is lower than the best 
sum, this sum is now the best one and P is considered as the best estimate: 

6 Repeat steps 1 through 5, a maximum of / times. 
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The number of views iV in this work is various, namely 9, 25, and 100. Number n is 
chosen to be 3. The tolerance e is 5 mm - if the distance from a ray to point P is less than 
5 mm, such a ray is classified as an inlier. Threshold r is set to be one-quarter of N. The 
algorithm stops after 50 iterations, i.e., / = 50. 

(a) 100 point predictions (b) Corresponding Centroid output 

(c) 100 ray predictions (d) Corresponding R A N S A C output 

Figure 4.9: Centroid and R A N S A C as consensus methods. Picture (a) shows 
100 predicted point positions for the mesial landmark of tooth 25. (b) shows the re­
sult of the calculation of Centroid. (c) shows the 100 predictions interpreted as rays. 
Finally, (d) depicts the output of the R A N S A C consensus method. Speaking of both out­
puts, it is not located on the polygon surface directly as the last step of the pipeline has 
not been applied yet. 
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Chapter 5 

Implementation 

This chapter introduces the technologies used for the implementation of the proposed 
method. Later in this chapter, the details about the implementation of the rendering 
pipeline and the annotation tool are described. 

5.1 Technologies 

I have chosen Python as a programming language. The main reason for choosing Python is 
its simplicity, which allows me to focus on the application logic. Another reason is the avail­
ability of packages and frameworks for machine learning tasks. Two major Python libraries 
were used to implement this work. The Visualisation Toolkit 1 is essential for the depth map 
rendering, multi-view rendering pipeline, coordinate propagation, and landmark placement 
on the surface of the target model. PyTorch 2 is used for the training and evaluation of the 
proposed neural networks. 

The Visualisation Toolkit 

The Visualisation Toolkit ( V T K ) is open-source software for scientific data manipulation 
and visualization, 3D graphics, image rendering, and more. V T K is implemented in C++, 
but as it allows binding to other languages, for example, Python, the performance of C++ 
is acquired while writing a simple syntax Python code. 

PyTorch 

PyTorch is a Python deep learning framework. It provides two key features: 

• Replacement of N u m P y 3 operations with operations accelerated by G P U , 

• A P I for deep neural networks construction. 

This framework is leaning towards Python in the words of simplicity and used con­
cepts. Its ease of use surfaces from dynamic computation and straightforward syntax. 
Dynamic computation brings immense flexibility, especially when complex architectures 
are constructed. Concepts like classes and structures are used extensively, similar to those 

x

https: //vtk.org/ 
2

https: //pytorch.org/  
3

https: //numpy.org/ 

30 

http://ch.org/


in Python. Unlike other deep learning frameworks, PyTorch allows the building of deep 
neural networks in a pure object-oriented paradigm without bringing its own programming 
techniques [44]. 

5.2 R e n d e r i n g P i p e l i n e Conf igura t ion 

The first step of the rendering pipeline (Section 4.3) is the object loading into the scene. 
At first, its center of mass is calculated, and the model is translated as close to the origin 
of the world coordinate system as possible. Furthermore, the method expects to have two 
prior information about the rendered model: (i) the dentition type (maxillary or mandibu­
lar) and (ii) the transformation matrix provided in corresponding X M L 1 file. These two 
pieces of information are used to create a composed affine transformation applied to the 
rendered polygonal model. However, after some observations of the dataset, there are some 
exceptions when the meshes are not always rotated correctly. For that reason, some manual 
manipulation of the camera is allowed, such as zooming, rotating, and panning, to ensure 
the model and camera are suitable for depth map rendering. The possibility of manual 
camera settings actually makes the aforementioned prior information unnecessary, making 
the pipeline general and not specific for the dataset used in this work. However, the trans­
formations are applied in this work anyway, just to eliminate the time needed for manual 
interaction. The requisite position of the polygonal model is described and depicted in 
Figure 5.1. 

(a) Maxillary dentition (b) Mandibular dentition 

Figure 5.1: Requisite position of both dentition types. Pictures (a) and (b) show 
the ideal position of the polygonal model in the 3D scene. The goal is to face the occlusal 
and incisal surfaces towards the camera. Additionally, the maxillary dentition is rotated 
to be in the same position as the mandibular dentition. This i.a. means that from the 
perspective of network training and evaluation, the dentition type is not distinguished. 

The near and far planes are set so the model is in the viewing frustum. Afterward, the 
camera is set to ./V different positions. The camera positions are not set randomly, but they 

4
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follow a particular pattern. The first rendered image is obtained with the camera's azimuth 
and elevation, both set to —30°. The camera's azimuth and elevation are then iteratively 
modified, ending with the azimuth's values and elevation, both set to +30° concerning the 
initial value. I find it unnecessary to set the camera to positions where the side or the 
model's back would be observed. This approach is appropriate for tasks like classification 
or shape synthesis, where the features acquired from such views are valuable [42, 43]. The 
rays representing each of the views form geometry similar to pyramid. A similar approach 
was chosen in [29], with the difference of variant camera position settings. Finally, at each 
of the camera's positions, the depth map is rendered. The OpenGL z-buffer is used to 
compute this distance map. 

5.3 A n n o t a t i o n T o o l 

As I described in Section 4.1.2, the polygonal models were provided unannotated. The 
precision of annotations is essential for the overall results of the system. It is a highly 
time-consuming and repetitive task. A custom annotation tool that suits the particular 
needs of the task was designed and developed, its outline is depicted in Figure 5.2. 

Annotation process 

Modified rendering pipeline 

Initial model translation and rotation 

Output: N rendered depth maps with 
corresponding landmarks display 

coordinates ••••••• ••••••• ••••••• ••••••• ••••••• ••••••• ••••••• 
For each of the view 

Figure 5.2: Annotation process. It starts with the first step of a rendering pipeline -
the initial model transformation. Afterward, the manual camera manipulation is available, 
and the annotator creates the landmarks annotations in two steps - keypoint placement 
and labeling. The camera is set to the initial position, and the steps from the rendering 
pipeline then continue, enriched by the calculation of all landmarks' display coordinates. 
In the last step, for each of the views, ground truth heatmaps are created by applying a 2D 
Gaussian filter with the peak in each of the landmarks' positions. 
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The core of the annotation tool is the multi-view rendering pipeline. It contains an 
additional stage, during which the annotator is allowed to add keypoints on the surface of 
the dentition model and eventually label them with appurtenant tooth notation. The whole 
annotation process takes place in the 3D scene before the multi-view depth map rendering. 
This brings high annotation accuracy, as the camera operations like zooming, rotating, and 
panning allow the annotator to observe the model surface at close quarters. The process 
is designed to annotate keypoints first and label them in a separate step. This separation 
of landmarking process makes the tool more general, as the keypoint placement part is the 
same among all tasks. If additional keypoint semantics is demanded, the labeling part is 
easily modifiable. The annotated positions are exported in a form of csv files. 

Figure 5.3: Teeth and landmarks notation. This figure shows the difference between 
a tooth and a landmark notation. The left parts of the pictures show the notation of 
the teeth on maxillary and mandibular dentition, respectively. The maxillary dentition is 
rotated, so it is in a requisite position. The landmark notations are the same for both the 
maxilla and the mandible. This means that the network does not distinguish between these 
two. The landmark notation is composed of three characters: the first one represents the 
Left or Right part, the second describes the tooth number within the quadrant, and the 
third one says whether the given landmark is on the Mesial or Distal surface. 

Keypoints and landmarks in the scene are represented in the form of geometric primitives 
(spheres). Keypoints are placed in the scene by keyboard interaction. When the key P is 

5
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pressed, a ray is cast in the scene through the display coordinate at the mouse position. 
Keypoint is placed on the coordinate of intersection of the ray with the annotated 3D 
model. The labeling is done with the keyboard interaction as well. Landmarks 1 - 8 are 
labeled with the keys 1 to 8, with the need of switching between the left and right side 
of the dentition. Labeling of landmarks follows the notation depicted in Figure 5.3. By 
pressing the key D, a misplaced keypoint or landmark is deleted. 

The annotation prior to the depth maps rendering has a substantial advantage - the 
annotation is done just once for 100 depth maps. This is possible thanks to the conver­
sion of the world coordinates in JR3 of all landmarks into the display coordinates 
IR2 at each of the camera's positions. In other words, at each of the camera's positions, 
a tuple (X, y) is created, where X stands for the calculated depth map and y are the values 
of display coordinates of k landmarks. 

Additionally, the generated tuple (X, y) is modified to a tuple (X, y^), where X is the 
unchanged depth map, and yh is an n x n x 32 volume of heatmaps, where n is the depth 
map and ground truth heatmap dimension. Each of the heatmaps is generated during an 
additional step, where a 2D Gaussian filter with the variance of 10 and the amplitude of 1 is 
used to convolve the original screen landmark coordinates. This ensures that the network 
regresses heatmaps rather than the (x, y) coordinates directly, as defined in Section 4.1. 
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Chapter 6 

Experiments and Results 

The main interest of this chapter is to describe the conducted experiments and present their 
results. To find the best-performing method configuration, the following method parts are 
validated and compared: 

1. Different network architectures 

Experiments test the proposed method with three trained architectures described in 
Section 4.4: BatchNorm U-Net, Attention U-Net, and Nested U-Net. I ex­
pected the integration of attention gates and the dense skip pathways to bring more 
accurate results than BatchNorm U-Net. 

2. Consensus methods 

Besides the landmarking accuracy, the experiments conclude which consensus method 
should be preferred when the multi-view C N N approach is used. I compare the 
performance of the Centroid consensus method (Section 4.5.1) with the performance 
of the geometric approach (Section 4.5.2). 

3. Number of views used for the multi-view approach 

The number of views is still an unclear parameter of the multi-view approach, as 
discussed in Section 3.3.3. I have chosen three numbers of views - 9, 25, and 100. 
I hypothesize that the accuracy should increase with the increasing number of views. 

Results of a set of experiments are presented in this chapter. This set contains the 
comparisons of the performance of the overall method with all possible combinations of the 
aforementioned architectures, consensus methods, and the numbers of views. The goal of 
the experiments is to find the best-performing combination of these configurations. It also 
analyses the comparison of consensus methods and whether the increase in the number of 
views really brings better results. 

A l l metrics are measured in physical units (mm) since the end clinical application is 
related to physical units. In terms of 3D landmark detection, no prior experiments were 
conducted on polygonal models from this dataset. A l l results are measured as an average of 
five evaluations as the model positioning in the requisite position slightly affects the results. 
Only positive patterns that are correctly classified are measured (for example, false positive 
landmark placement is not taken into account in accuracy measurements). Descriptions of 
all metrics used in this chapter can be found in Appendix A . 
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6.1 T r a i n i n g Procedure 

The input to the proposed neural networks is a single channel depth map of size 128 x 128. 
This size was chosen as a compromise between acceptable training times and preserved im­
age information. The training procedure ran on an N V I D I A GeForce R T X 2060 with 6 G B 
of memory. 

6.1.1 Data Split and Augmentation 

The polygonal models were divided into two groups - those used in the training proce­
dure and those used for the evaluation. From the 269 valid polygonal models, 208 mod­
els (20 800 depth maps) were used for the network training, and 61 models were used to 
evaluate the proposed method. Furthermore, the 20 800 depth maps were split in the ra­
tio of 4:1 into a training set and validation set, respectively. 

Although the rendering pipeline brings one form of augmentation (see Section 4.1.2 and 
Section 4.3), some other augmentations were applied on the training and validation depth 
maps and ground truth heatmaps: 

• Scale from the range [0.90, 1.10], 

• Rotation from the range [—11.25, 11.25] degrees, 

• Translation from the range [—lOpx, 10 px] and applied in both vertical and hori­
zontal directions. 

Figure 6.1: Graph describes the teeth presence in polygonal models. Wi th 
the total number of 269 suitable models, the imbalance in terms of the teeth missing is 
significant. Teeth 1 (17) and 16 (32) are present in less than 10% of the polygons used 
for training. On the other hand, canines and incisors are present in the vast majority of 
models. Note that teeth 1 and 17 are considered the same, likewise to the rest of the teeth. 
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6.1.2 Training Parameters and Loss Function 

Networks are trained using the Adam optimizer with the weight decay set to 1 0 - 3 . These 
specifics were chosen to keep the weights small and avoid exploding gradient, leading to 
reduced overfitting. The learning rate is initially set to 1 0 - 3 . Its value is dynamically 
reduced using learning rate scheduler.1 The scheduler is used to get out of a loss 
plateau caused by reaching saddle points or local minima. The learning rate is reduced by 
a factor of 0.5 every time the value of validation loss has not improved for 5 consecutive 
epochs. The validation loss is monitored for the early stopping2 as well. If the validation 
loss value does not improve for more than 30 consecutive epochs, the training is stopped. 
To reduce the memory requirements during training, the automatic mixed precision 
was used. It tries to match each operation with its appropriate data type. Operations 
like linear layers are much faster in float 16. Other operations, on the other hand, like 
reductions, require the dynamic range of f loat32. The autocast3 and GradScaler 1 are used 
to accomplish the mixed precision. The batch size is set to 32. W i t h this size of the batch, 
I was able to train solely the BatchNorm U-Net. To train the Attention U-Net and Nested 
U-Net, I applied gradient accumulation. These models require more memory, which 
caused out of memory issues. The accumulation keeps adding gradients of the parameters 
for 4 number of batches. The batch size is set to 8, and then after 4 batch iterations, the 
updates are applied using the average of all gradients accumulated over 4 iterations. 

To train the models on a regression problem, which is the case of this task, the Root 
Mean Square Error (RMSE) loss was used: 

where n is the batch size, yi is the i th model prediction and jji is the i th actual value. 
R M S E is the same loss function as the Mean Squared Error (MSE) [38] loss but has a re­
duced order, which is ensured by taking the root of the M S E . The R M S E allows direct data 
correlation with the error as they both have the same order. 

A data over-sampling technique was applied to address frequent missing teeth 1, 16, 
17, and 32 (Figure 6.1). It ensures that at least one depth map containing the aforemen­
tioned teeth is present in each batch. Without the over-sampling, the network would ignore 
the teeth during evaluation, as it would almost certainly expect the absence of given teeth. 

To find the most accurate system configuration, all three architectures were evaluated in 
different setups. Firstly, the results of a system that uses a single-view approach were 
measured. Using this approach, no consensus method is needed. I chose the BatchNorm 
U-Net with a single-view approach as the baseline method. After the initial evaluation 
of the baseline method, I noticed that the frequent missing of the 3rd molars causes high 
radial errors of the corresponding landmarks. To decrease the error, over-sampling of the 
data containing these teeth was added. 

x

https: //pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau 
2
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3
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(6.1) 

6.2 O v e r a l l Results 
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Single- v i e w M u l t i - v i e w 
Architecture & 

Single- v i e w 
N = 9 N = 25 N = 100 

consensus method R SD R SD R SD R SD 
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

B N U - N e t Centroid 2.94 4.62 3.00 3.37 2.74 3.33 2.80 2.96 B N U - N e t 
R A N S A C 

2.94 4.62 
2.24 3.86 2.02 3.75 1.61 4.28 

A t t U - N e t Centroid 2.47 4.06 2.45 2.60 2.39 2.43 2.37 2.42 A t t U - N e t 
R A N S A C 

2.47 4.06 
1.80 2.80 1.69 2.42 1.20 1.91 

Nes U - N e t Centroid 2.84 4.16 3.09 3.00 2.82 2.74 2.88 2.75 Nes U - N e t 
R A N S A C 

2.84 4.16 
1.99 3.05 1.72 2.73 1.39 2.23 

Table 6.1: Overall results of the individual networks with different multi-view 
settings. Table compares system performance with different combinations of architec­
tures, consensus methods, and numbers of viewpoints. A combination of Attention U-Net 
architecture, R A N S A C consensus method, and 100 rendered views achieves the best per­
formance. R stands for the mean radial error, and SD stands for standard deviation. A l l 
values are measured on networks with applied over-sampling of minority data. 

Afterward, I started experimenting with the multi-view approach and with other net­
work architectures. I proposed three different numbers of viewpoints - 9, 25, and 100. 
1 expected an inversely proportional trend - the higher the number of viewpoints, the lower 
the radial errors and standard deviations. I also expected the R A N S A C consensus method 
to achieve better results than Centroid as the networks produce outliers. Table 6.1 summa­
rizes the system performance. It shows that with the Attention U-Net, the R A N S A C 
consensus method, and 100 viewpoints, the best results are acquired. 

I also measured the SDRs for different acceptance values. The acceptable distance is 
set to be 2 millimeters, i.e., if the vast majority of predictions have the radial error less 
than 2 mm, the system could be eventually used as a part of the clinical application. The 
SDRs for 2.5 mm and 4 mm are measured as well. I measure them to observe whether the 
predictions with a radial error higher than the acceptable distance (2 mm) are "close" to 
2 mm, or their value is completely unacceptable. 

(a) 1 view (b) 100 views 

Figure 6.2: Comparison of the landmark placement with single view and 100 
views. These results are obtained using the Attention U-Net and geometric consensus 
method. Color of landmark represents the value of its radial error. 
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Figure 6.3: SDRs for BatchNorm U-Net. The best performing configuration with 
this architecture is the R A N S A C as a consensus method with 100 views. This configuration 
achieved an SDR of 89.54% for 2 mm and 93.07% for 4 mm. 

Figure 6.4: SDRs for Attention U-Net. The best performance (94.01% for 2 mm) 
was again achieved with R A N S A C applied on 100 predictions. SDR for acceptance value 
of 4 mm is 95.31%. 
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Figure 6.5: SDRs for Nested U-Net. 100 viewpoints with R A N S A C achieved the best 
results - 91.40% for acceptance value of 2 mm. This configuration achieved 92.99% 
SDR for 4 mm. 

The SDR values for BatchNorm U-Net, Attention U-Net, and Nested U-Net are shown 
in Figures 6.3, 6.4, and 6.5, respectively. These figures confirm that Attention U-Net with 
R A N S A C and 100 viewpoints are the best performing combination. 

It is also evident that R A N S A C as a consensus method outperforms Centroid by a 
large margin. R A N S A C achieves approximately 20-40% better SDR with the acceptance 
value of 2 mm. It also achieves a descent of R, on average by approximately 1 mm, compared 
to Centroid. The difference in results might be explained by the strength of the geometric 
method in terms of outlier detection, whereas the Centroid method is calculated from the 
predictions of all views. Figure 6.10 shows example outputs using both of the consenus 
methods. 

Considering all of these, I recommend the combination of the Attention U-Net 
and R A N S A C consensus method. 

As for the number of viewpoints needed for the multi-view approach, I hypothesized that 
the increase in the number of views brings better results. This hypothesis is confirmed -
it really comes with an increase in the accuracy. However, as for the Centroid consensus 
method, the SDR values of configurations that use 100 viewpoints achieve the worst results. 
The observed decrease in the SDR for such configurations is certainly due to the increase of 
outliers that comes with the increase of viewpoints. In the case of this task, the 100 views 
approach is considered as the best performing, although it must be combined with the 
R A N S A C consensus method. Figure 6.2 shows example outputs of single view and 100 
views combined with the R A N S A C consensus method. 
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6.2.1 Computational Time 

The high number of viewpoints, however, comes with a trade-off. For each of the views, the 
network must produce predictions for a new depth map. It means that it is necessary to 
count with increased computational time. Additionally, the multi-view evaluation consumes 
some computational time during the consensus estimation in contrast to the single-view 
approach. The best performing combination - the Attention U-Net, 100 viewpoints, and 
R A N S A C takes about 4.5 seconds to evaluate. Using fewer camera views, a decrease of 
computational time is ensured while achieving good results (for example, with Attention 
U-Net, R A N S A C , and 25 views, the increase in R is 0.49 mm and the time needed for 
such evaluation is approximately 1 second). The R A N S A C consensus method consumes 
around 1 second to produce the point estimate from multiple views. Table 6.2 shows the 
computational times for the Attention U-Net for different number of views. 

M u l t i - v i e w n u m b e r o f v i e w p o i n t s 

N = 9 N = 25 N = 100 

E v a l u a t i o n 380.44 ms 1074.63 ms 4446.02 ms 

R A N S A C 1178.59 ms 1252.57 ms 1306.31 ms 

T o t a l 1559.03 ms 2327.20 ms 5 752.33 ms 

Table 6.2: Average computational time of the evaluation and consensus method 
outcome calculation of one polygonal mesh with the best-performing network: 
the Attention U-Net. These values were measured on the evaluation dataset - they 
represent the average values measured during the evaluation of 61 testing meshes. 

6.3 A n a l y s i s of I n d i v i d u a l L a n d m a r k Accuracies 

Networks are trained to predict 32 landmarks on 16 teeth. These teeth, however, are not 
always present on the evaluated mesh. The third molars are a good example as the presence 
of polygon meshes that contain these teeth is around 10% (see Figure 6.1). Concerning the 
fact that the models were obtained by scanning human dentition, such imbalance is natural. 
Although I applied over-sampling of interiorly present data, such imbalance on such a small 
dataset produces some deviation in terms of system performance. 

To observe whether the imbalance affects the overall results, prediction accuracies of 
individual landmarks were measured. As Figure 6.6 illustrates, the values of the radial 
errors of third molar landmarks (landmarks L8D, L 8 M , R 8 M , and R8D) are higher, com­
pared to the rest of the landmarks, even with applied over-sampling. This means that 
the high absence of depth maps that contain such landmarks influences the radial error of 
corresponding landmarks during evaluation. In essence, the results of the third molar 
landmarks deviate from the radial errors of the rest of the landmarks. See Figure 6.9 
for example outputs. If the presence of polygonal meshes with dentition that contains the 
third molars in the dataset was higher, the overall performance would be increased. Fig­
ures 6.7 and 6.8 illustrate the matching acceptances graphs of two system configurations. 
In the latter case, it is a system that achieves the best results. Most of the landmarks 

5 M e a s u r e d o n a l a p t o p w i t h I n t e l C o r e i 7 - 8 7 5 0 H C P U @ 2.20 G H z a n d N V I D I A G e F o r c e R T X 2060 
w i t h 6 G B of m e m o r y 
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achieve SDRs between 90 to 100% at the acceptance value of 2 mm. Again, the third molar 
landmarks deviate from this standard and achieve such SDRs at higher acceptance values. 
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Figure 6.6: Box plots of the radial error values for individual landmarks with 
two different example setups. Graph (a) shows the box plots for the following com­
bination - BatchNorm U-Net, 100 views, and Centroid. Graph (b) shows, on the other 
hand, the best combination - Attention U-Net, 100 viewpoints, and R A N S A C . Notice that 
in both cases, the radial errors of landmarks on third molars (L8D, L 8 M , R 8 M , R8D) are 
higher than the rest of the landmarks. 

42 



Figure 6.7: Matching acceptances graph for BatchNorm U-Net, 100 viewpoints 
and Centroid consensus method. Individual landmarks achieve an SDR of 100% around 
10 mm. For instance, landmark L8D was never predicted with a radial error of less than 
2 mm. 

43 



100-

80-

I 60-
a o o — 

w 

-
o o 

4* 40-

20-

Acceptable distance (2 mm) 
L8D 

• • • • L8M 

• • V L7D 
L7M 

- A - L6D 
••V L6M 

-*- L5D 
• •<§>• L5M 

L4D 
— • — L4M 
- A - L3D 
— L3M 

L2D 
L2M 

- A - LID 
— V - L1M 
—•f- R I M 

RID 

-*- R2M 
R2D 
R3M 
R3D 

-®- R4M 
-S>— R4D 

-•- R5M 
R5D 

- A - R6M 
— R6D 

R7M 
R7D 

-«- R8M 
R8D 

10 20 30 
Acceptance value (mm) 

Figure 6.8: Matching acceptances graph for Attention U-Net, 100 viewpoints 
and R A N S A C consensus method. Individual landmarks mostly achieve the SDR be­
tween 90% to 100% for the acceptance value of 2 mm. Landmarks on third molars (L8D, 
L 8 M , R 8 M , and R8D) achieve worse results. This corresponds with the radial errors pre­
sented in Figure 6.6. 
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Figure 6.9: Example of predictions of landmarks on third molars. Image (b) 
illustrates an example of incorrect predictions - the landmarks are incorrectly placed on the 
second molars. This phenomenon is present almost exclusively on the 3rd molar landmarks. 
Image (a) shows a valid prediction on the third right molar. Predictions are acquired using 
Attention U-Net, R A N S A C , and 100 viewpoints. 
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Figure 6.10: Example of detections with different consensus methods. On aver­
age, the geometric method based on the R A N S A C algorithm achieves lower values of radial 
errors. Detected landmarks were obtained using the Attention U-Net and 100 views, in 
both images. 

6.4 Detec t ion of L a n d m a r k s Presence 

Besides the accurate landmark placement, this task has an additional challenge. As already 
discussed in previous sections of this work, the absence of teeth is quite frequent. It is 
relatively rare to find a full secondary dentition within the dataset. For each detected 
landmark, it is necessary to decide whether the corresponding tooth is present on the 
evaluated dentition or not. This decision is a binary classification task as there are two 

45 



possible outcomes - landmark is either placed on the surface of the polygon mesh or not. 
This goes to show that the prediction can be classified as: 

• True positive (TP): C N N predicts that the landmark is present and the ground 
truth corresponds to that decision, 

• False positive (FP): C N N predicts landmark placement, but the appropriate tooth 
is absent, 

• False negative (FN): C N N predicts that the landmark should not be placed on the 
surface of the target polygonal model, but it is a misclassification, 

• True negative (TN): C N N correctly predicts that the landmark should not be placed 
on the evaluated polygonal mesh. 

The classifier should produce as many T P and T N predictions as possible while sup­
pressing F P and F N predictions. 

I wanted to test whether the outputs of neural networks used for the landmark lo­
calization task can be used as the aforementioned classifier without any additional inter­
vention. Even though the problem is formulated as a regression (see Section 4.1), the 
output heatmaps might contain sufficient information for the landmark presence detection. 
Drevicky hypothesized in his work [10], that the peaks of predicted heatmaps may indicate 
the model's uncertainty in its prediction, with higher values indicating higher certainty. 

Peak value: 0.012, GT Presence: False Peak value: 0.7838, GT Presence: True 
0 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Figure 6.11: Examples of predicted heatmaps. The left picture illustrates an example 
of a prediction with an extremely low peak value (0.012). Referencing to corresponding 
ground truth, this landmark is not present on the surface of the polygonal model. The 
right picture, on the other hand, shows the opposite situation. According to the ground 
truth, the peak value is relatively high, and this landmark is really present on evaluated 
polygon mesh. Note that the maximal possible value in a heatmap is 1. 

Networks were trained by regressing heatmaps containing a Gaussian activation with 
the amplitude of 1. The predictions should follow a similar trend. If a landmark was 
missing on the polygonal model during training, there was no Gaussian in the ground truth 
image. This implies that the predictions should be either heatmaps with a peak value close 
to 1 or heatmaps with all values close to 0. Figure 6.11 shows an example for both of 
these situations. It is necessary to find the peak (threshold) value that ensures the best 
performing binary classification. 
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Figure 6.12: R O C curve for proposed classification method. Classification purely 
from the predicted heatmaps achieves an A U C value of 0.958. The best threshold value 
is 0.375. These values were measured on Attention U-Net with the R A N S A C consensus 
method and 100 viewpoints. 

6.4.1 Evaluation of the Landmark Presence Detection 

The performance of the landmark absence detection was measured on the Attention U-Net 
with the R A N S A C consensus method and 100 views. To find a threshold that classifies the 
landmark presence with the best accuracy, the R O C curve was created. I tested 20 different 
threshold values to find the best trade-off between sensitivity and specificity. 

Ground truth landmark 
presence 

Present Missing 

Figure 6.13: Confusion matrix of proposed classifier with threshold set to 0.375. 
The matrix shows the TP, T N , FP , and F N values of the classification according to the 
heatmap peak value. These values were measured on the evaluation dataset (61 polygonal 
models) with 100 viewpoints. The system predicts 32 landmarks. Thus, the total number 
of values is 61 x 100 x 32 = 195 200. 
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Figure 6.12 shows the R O C curve for the classifier. By classifying purely from the 
heatmap predictions, A U C value of 0.958 is achieved. See Equation A . 11 for the formula. 
Threshold value that brings off the best sensitivity and specificity values is 0.375. Note 
that for a different dataset, I recommend verifying the fit of this value. The corresponding 
confusion matrix is shown in Figure 6.13. 

I calculated the accuracy from confusion matrix values. Wi th the best performing 
threshold value (0.375), the accuracy calculated by Equation A.5 is 0.9433. It means that 
purely from the analysis of peak values in predicted heatmaps, the proposed method can 
correctly detect landmark presence with the accuracy of 94.33%. 

6.5 S u m m a r y 

I proposed three neural network architectures, all of which are based on the U-Net network. 
The first one is the BatchNorm U-Net. This network contains additional batch normaliza­
tion layers between the convolutional and activation layers. The second proposed network 
is the Attention U-Net, which integrates attention gates into the original U-Net. The last 
network is the Nested U-Net, which applies dense skip pathways into the original U-Net. 

I started conducting experiments with the point estimates propagated in the 1R3 world 
coordinate system. Wi th a single view, the Attention U-Net achieved the best results with 
the radial error value of 2.47 ± 4.06 mm and with the success detection rate for 2 mm of 
77.08%. The BatchNorm U-Net performed the worst. 

Experiments have demonstrated that this approach does not perform well enough to 
be integrated into a clinical application. I decided to experiment with a multi-view C N N 
approach, which renders the evaluated model from several views and eventually combines 
the predictions by a consensus method. 

I proposed experiments with two consensus methods - Centroid and R A N S A C , and ex­
perimented with several views - 9, 25, and 100. As a result of experimenting with all possible 
combinations of architectures, consensus methods, and numbers of views, I concluded that 
the best performing combination uses Attention U-Net, R A N S A C as a consensus method, 
and 100 viewpoints. This combination achieved the error value of 1.20 ± 1.81 mm, and it 
can predict 94.01% of landmarks with the radial error of less than 2 mm. Another aspect 
that emerged from the analysis is the relevancy of geometric consensus method. It outper­
formed the statistic approach by a large margin and I highly recommend its usage when 
solving similar tasks. 

Besides the accurate landmark placement, the method should be able to decide whether 
a given landmark should indeed be placed on the model's surface or not. I wanted to test 
whether the method can produce such decisions without the need to implement an addi­
tional binary classifier. The decision is made purely from the peak values of the predicted 
heatmaps. Wi th the optimal threshold value, the proposed method can correctly detect 
landmark presence with the accuracy of 94.33%. 

6.6 Future W o r k 

Although the experiments demonstrate that the overall results satisfy the needs of the 
end clinical application, there is still a place for future development. Results of this work 
might be improved and extended in both landmarks position detection and the detection 
of landmarks presence on the 3D model surface. 

18 



As for the landmark placement, a method that does not require the initial model rota­
tion (occlusal and incisal surfaces of the teeth must face the camera) would be convenient. 
This would diminish the time needed for the evaluation, and it would eliminate the human 
intervention required for the landmarking process. Additionally, the re-balancing strategy 
used to address the problems caused by minority classes might be replaced by more ad­
vanced techniques, such as class-balanced loss based on an effective number of samples [7]. 
Extending the dataset — primarily by the dentition with third molars — appears to be 
helpful as well. 

There is also a place for the improvement of the accuracy of the landmark presence 
classifier. One of the improvements might stem from the fact that a pair of landmarks 
is detected on the surface of each tooth. If a tooth is missing, both landmarks should 
be classified as absent. Then, the final decision of landmark presence might take into 
account the information from the pair landmark as well. Another improvement related to 
the classifier might advantage from the multi-view approach. Besides the point estimate, 
the R A N S A C consensus method outputs the information about inliers and outliers. This 
information might be valuable for the decision process. 
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Chapter 7 

Conclusion 

This Bachelor's thesis aimed to estimate the orthodontics landmarks on the surfaces of 
polygonal models from a limited medical dataset. A method based on convolutional neural 
networks was designed for this purpose. 

The proposed method transfers the training and evaluation process into the Euclidean 
2D space. Instead of directly regressing the landmark coordinates, the proposed networks 
are trained to regress heatmaps containing Gaussians centered at landmark positions. 

Suggested approach uses three architecture designs: the BatchNorm U-Net, the Atten­
tion U-Net, and the Nested U-Net. 3D Scans of dentition are evaluated in a multi-view C N N 
matter, so the model is observed from multiple viewpoints, which produces corresponding 
number of predictions for each landmark. These predictions are evaluated in a consensus 
method, which produces the final estimate in 3D space. A consensus method based on the 
R A N S A C algorithm and least-squares fit produces the best results. 

A combination of Attention U-Net, R A N S A C consensus method, and 100 views per­
formed the best and achieved the error value of 1.20 ± 1.81 mm, and it can predict 94.01% 
of landmarks with the radial error of less than 2 mm. According to the competent profes­
sionals from T E S C A N 3DIM, s.r.o., these results are satisfactory for a practical deployment 
in an existing orthodontics planning software. 

To summarize, I proposed a method that can predict orthodontics landmarks on polyg­
onal models with acceptable error values. I compared the performance of different network 
architectures, numbers of viewpoints, and consensus methods. Taken together, these find­
ings suggest that the multi-view approach combined with the R A N S A C consensus method, 
and architectures based on U-Net can provide acceptable accuracies even on a limited med­
ical dataset. A further collaboration involving method enhancement and integration into 
existing orthodontics software is discussed with the thesis supervisor. 
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Appendix A 

Evaluation Metrics 

This appendix contains metrics used for system performance evaluation. It is divided into 
two sections. The first Section introduces metrics for the measurement of accuracy of 
predictions. Then, metrics for a binary classifier are presented. Metrics from the latter 
case are used in this work to evaluate the landmark presence on the surface of 3D models. 

A . l L a n d m a r k Detec t ion A c c u r a c y M e t r i c s 

To measure the landmark detection accuracy, several metrics are used - the radial error, the 
mean radial error, the standard deviation, and matching acceptances graphs, which depict 
the relation between the success detection rate and the corresponding acceptance value. 
In a Euclidean 3-space H i 3 , the radial error R is defined as 

R = y / ( x - x)2 + (y- y)2 + [z - z)2 (A. l ) 

where A(x, y, z) in H i 3 is the ground truth landmark position and B{x, y, z) in H i 3 is 
the predicted value. Two other metrics associated with the radial error are used. The 
mean radial error R is calculated as 

i ? = ^ P (A.2) 
where N is the total number of predictions. The standard deviation (SD) is then computed 
by the following formula: 

S D = y J 2 l l i N ~ R ) 2 ( A - 3 ) 

with N denoting the total number of predictions again. The aforementioned measures are 
used to evaluate the overall performance of the system. 

The success detection rate (SDR) is calculated as follows: 

sdr, = #{i--\m)-A(m<»} x m % ( A 4 ) 

where B in H i 3 is the predicted landmark position, A in H i 3 is the ground truth landmark 
position, v is the corresponding acceptance value and N is the total number of landmarks. 
It can be used to form matching acceptances graphs, which denote the relation between 
several acceptance values and corresponding SDRs. 
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A . 2 B i n a r y Classif ier M e t r i c s 

Four values are typically measured and used for the evaluation of a binary classifier. These 
are: 

• True Positive (TP): number of positive instances that are correctly classified, 

• True Negative (TN): number of negative instances that are correctly classified, 

• False Positive (FP): number of misclassified negative instances, 

• False Negative (FN): number of misclassified positive instances. 

Aforementioned values (TP, T N , FP, and FN) are typically used in threshold metrics 
for classification evaluations [17]. A fundamental way of the evaluation of a classifier is 
confusion matrix. It is a 2 x 2 matrix 1 , where each row represents an actual class, while 
each column represents a predicted class. Items of the matrix are measured TP, T N , FP , 
and F N values. 

Another binary classifier metric is the accuracy. In general, the accuracy metric mea­
sures the ratio of correct predictions over the total number of instances evaluated and is 
calculated as follows: 

TP + TN 
a C C U r a C V = TP + TN + FP + FN ( A - 5 ) 

where TP, T N , FP , and F N refer to the values described above. Error rate (err) measures 
the ratio of incorrect predictions over the total number of evaluated instances: 

FP + FN 
e r T ~ TP + TN + FP + FN ^ 

To measure the fraction of positive patterns that are correctly classified, the sensitivity 
is measured. It is calculated by following formula: 

TP 
sensitivity = T p - - —. (A.7) 

Another metric is the specificity. This metric is used to measure the fraction of negative 
patterns that are correctly classified. It is defined as 

TN 
specificity = T N + p p - (A-8) 

Precision and recall are used to measure the performance of a binary classifier as well. 
Precision is used to measure the positive patterns that are predicted correctly out of all 
predictions from positive class: 

TP , . 
precision = T p + F p - (A-9) 

Recall, on the other hand, measures the fraction of positive patterns that are correctly 
classified, and is calculated as follows: 

TP 
recall = ————. (A.10) 

TP + TN v ' 

1t\as s ize is u s e d for a b i n a r y classif ier a n d i t increases w i t h the n u m b e r of classes 
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Note that there are plenty of different metrics by which the classifier performance might be 
evaluated. A summary of such metrics can be found in [17]. 

A valuable metric is the Receiver Operating Characteristics (ROC) curve, which mea­
sures the performance at various thresholds. The R O C curve is plotted with sensitivity 
against 1 — specificity, where sensitivity is on the y-axis and 1 — specificity is on the 
x-axis. 

R O C curve comes with additional metric - the Area Under the ROC Curve (AUC). 
AUC represents the degree or measure of separability. It tells how much the model is 
capable of distinguishing between classes. The higher the AUC, the better the model is at 
distinguishing between landmark presence/absence. A U C can be calculated as below: 

AUC = S p ~ n p { n n + 1 ) / 2 (A.11) 
rtpnn 

where Sp is the sum of all positive examples ranked, and np and nn define the number 
of positive and negative examples, respectively. 
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Appendix B 

Contents of the Included Storage 
M e d i a 

data/test/ Folder with polygonal models for testin 

data/train/ Folder with data for network training. 2 

saved-models/ Folder with trained networks. 

src/ Folder with source files. 

src-tech-report/ Folder with ETgX source files. 

videos/ Folder with demonstration videos. 

annotate.sh Script to run the annotation tool. 

evaluate.sh Script to run the evaluation. 

LICENCE Project licence. 

poster.pdf Poster summarizing this work. 

README.md Project description. 

requirements.txt List of required Python libraries. 

tech-report.pdf Technical report. 

tech-report-print.pdf Technical report for two-sided printing. 

1 N o t e t h a t the p r o v i d e d d a t a are for d e m o n s t r a t i o n purposes o n l y a n d t h e y are j u s t a s m a l l p o r t i o n of 
the w h o l e dataset . T h e c o m p l e t e dataset of 3 D scans p r o v i d e d b y T E S C A N 3 D I M , s.r .o. as w e l l as the 
generated 2 D d a t a i n th i s w o r k are n o t ava i lab le for p r i v a c y reasons. 

2 S e e f o o t n o t e 1. 
3 C o n t e n t is the same as i n the v e r s i o n for the e lec t ronic s u b m i s s i o n 
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Appendix C 

Poster 
Tibor Kubík 
Michal Španěl upervisor) 

m m 

DEEP NEURAL NETWORKS 
FOR LANDMARK DETECTION 

ON 3D MODELS 

GOAL 
Detecting 

orthodontics landmarks 
on the surface of polygonal 
models of human dentition 

from limited medical dataset 

PROPOSED MULTI-VIEW CNN APPROACH 

View I 

View 2 

View N 

Experimenting with 
different 
numbers of viewpoints 
used for rendering, 
namely I, 9, 25, and 100. 

Three different 
architectures were 

trained: the 
BatchNorm U-Net, the 
Attention U-Net, and 

the Nested U-Net. 

Networks are 
trained to regress 

heatmaps with 
Gaussian placed at 

the center of 
landmark 

coordinates. 

Predictions from multiple viewpoints 
are used in consensus methods to find 

the final estimate. Two consensus 
methods were proposed: the Centroid, 

and a geometric consensus method 
based on the RAN SAC algorithm, and 

least-squares fit. 

RESULTS 
Overall Radial Error 

of 1.20 ± 1.81 mm. 

Success Detection 

Rate of 94.01% for 

an acceptance 

value of 2 mm. 

Best-performing 

configuration: 

Attention U-Net, 

100 viewpoints, 

and RANSAC 

consensus method. 
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