
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

APPLIED AUTOMATION BETWEEN SECURITY NETWORK
COMPONENTS IN OPERATIONAL NETWORKS
APLIKOVANÁ AUTOMATIZACE MEZI BEZPEČNOSTNÍMI SÍŤOVÝMI PRVKY V PROVOZNÍCH SÍTÍCH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Jakub Škoda

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Anna Kubánková, Ph.D.

BRNO 2022

Date of project
specification:

7.2.2022
Deadline for
submission:

 31.5.2022

Supervisor: Ing. Anna Kubánková, Ph.D.
Consultant: Ing. Jan Šimůnek, ALEF NULA, a.s.

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Bachelor's Thesis
Bachelor's study program Information Security

Department of Telecommunications
Student: Jakub Škoda ID: 211813
Year of
study:

 3 Academic year: 2021/22

TITLE OF THESIS:

Applied automation between security network components in operational
networks

INSTRUCTION:

Study possibilities of automatization of security network components from Cisco and other vendors. Identify
obsolete manual procedures associated with threat identification and with transfer of information context between
security technologies in complex networks. Design automated scenarios to solve the shortcomings of manual
procedures. Apply (implement) automated scenarios in a production environment on real devices. Describe the
benefits of automated processes over traditional solutions.

RECOMMENDED LITERATURE:

[1] ALY, Bassem. Hands-On Enterprise Automation with Python.: Automate common administrative and security
task. Packt Publishing, 2018. ISBN-13: 978-1788998512

[2] GOOLEY, Jason a Chris JACKSON. Cisco Certified DevNet Associate DEVASC 200-901 Official Cert Guide.
Pearson Education, 2020. ISBN: 0136642969.

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis deals with studying the possibilities for automation in network security. Iden-
tify a manual workflow and study the possibilities of how to design an automated re-
placement that will make it obsolete. In the new automated workflow, Cisco Umbrella
and its DNS reporting and assessment tools for endpoint devices were used to create a
new security metric, behaviour. The endpoint behaviour is then used on a selected use
case of Remote Access VPN. Instead of using a Compliance check before establishing
the VPN connection, the endpoint’s behaviour is used instead.

KEYWORDS
Automation, Network, Cisco, Umbrella, Compliance, Behaviour, Firewall, VPN, End-
point, Python, PostgreSQL, FreeRADIUS, Ubuntu, API, Git,

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

Extended abstract

Cílem této bakalářské práce bylo sezámit se s možnostmi automatizace bezpečnostní
prvnků výrobce Cisco a třetích stran. Identifikovat možné manuální postupy spojené
s identifikací hrozeb a předáváním kontextu mezi bezpečnostními prvky v provozních
sítích. Následně navrhnout automatizované řešení, které by nahradilo překonaný
manuální postup a poté toto řešení aplikovat na reálné zařízení.

V teoretickém úvodu se čtenář dozvídá základní informace o informační bezpečnosti
a o tom, jak důležitou roli hraje v každodenním životě. Jsou zde také popsány
dopady kybernetických útoků a jejich rapidní vzrůst během pandemie COVID-19.
Dále se čtenář seznamuje s bezpečností koncových bodů a jejich rolí v dnešním
produkčním prostředí.

V kapitole 1.2 se čtenář také dozví, jaké jsou rozdíly mezi Compliace a Behavior.
V další teoretické části se představuje výběr platformy. S každým produktem a

nástrojem čtenáře obecně seznámí. Mezi použité nástroje patří Cisco ASA, Cisco
Umbrella, Ubuntu a další. Vysvětlí jejích možnosti a odůvodní proč byl jednotlivý
produkt a nástroj vybrán.

V první praktické kapitole se čtenáři představí vybraná manuální procedura. Vy-
braná manuální procedura je velmi časově náročná a v zásadě ji není nemožné bez
automatizace vykonávat. Procedura spočívá v přidání další vrstvy ochrany do exis-
tující sítě za pomocí parametru chování samotné koncové stanice a Cisco Umbrella,
která analyzuje DNS requesty koncových stanic. Na základě reputační databáze, AI
a jiných nástrojů Cisco Umbrella může identifikovat škodlivé domény a zablokovat
je. Tato funkce je sama o sobě skvělá, ale má své limity. Abychom tyto limity
vyřešili musíme vytvořit novou vrstvu bezpečnosti, která bude využívat chování
jako indikátor. Po podrobném popisu manuální procedury se čtenář přesouvá k
samotnému řešení práce.

Na základě chování koncového bodu můžeme určit, zda je bezpečné připojení
koncového bodu k interní síti či nikoliv. Pak můžeme použít tuto novou metriku
pro vybraný nový způsob použití. Pro nás to bude VPN se vzdáleným přístupem.
Automatizovaný postup splňuje všechny úkoly, které by administrátor musel dělat
ručně s některými dalšími funkcemi.

Budeme vycházet z předpokladu, že existuje běžící databáze PostgreSQL s již
před vyplněnými uživatelskými jmény, hesly a přidruženými osobními počítači pro
každého uživatele. Koncová zařízení budou generovat provoz DNS, který bude
odeslán a zpracován Cisco Umbrella. Jednou denně bude spuštěna systémová služba
na serveru Ubuntu, vytvořená pro spuštění automatické aplikace. Tato aplikace
načte všechny uživatele a jejich koncová zařízení. Dále bude filtrovat API dotazy

4

podle požadavků DNS z Umbrella podle požadovaných koncových zařízení a vy-
braných kategorií. V našem případě bezpečnostní kategorie a vynechání whitelis-
tovaných uživatelů. Poté budou všechna tato data z rozhraní Umbrella Reporting
API stažena a analyzována. Po provedení výpočtu, pro každý DNS request, bude
prostřednictvím Umbrella Investigate API rozdělen do tří kategorií: Bezpečný, Prob-
lematický a Nebezpečný. Tyto spárované informace budou poslány do databáze.
Následuje používaný postup uživatele. Uživatel, který se chce připojit do firemní
sítě, používá svého VPN klienta. Po vyplnění se inicializuje Compliance kontrola
uživatelského jména a hesla. Cisco ASA, která přijala požadavek na vytvoření VPN
spojení, odešle serveru RADIUS request paket. Server FreeRADIUS pak hledá v
databázi záznamy uživatelů. Server poté odešle odpověď RADIUS reply s dalšími
parametry jako jsou: kategorie oprávnění uživatele a jedna ze tří kategorií definu-
jících chování koncové stanice. ASA se poté podívá do své konfigurace, aby zjistila,
co má dělat s přijatou RADIUS reply zprávou.

Výsledkem celé práce je, že jsme úspěšně překonali manuální postup s automa-
tizací. Celé workflow je funkční. Koncové stanice uživatelů průběžně generují DNS
requesty, které se automaticky zasílají do Umbrella. Periodicky spouštěná aplikace
načte údaje z Umbrelly a vypočítá skore chování koncové stanice. Tento údaj se
následně pošle do databáze. Při pokusu uživatele vytvořit VPN spojení se ASA
zeptá FreeRADIUS server, jestli uživatel existuje a jaké má parametry. FreeRA-
DIUS odpoví s daty z databáze. Pokud je parametr chování „nebezpečný“, tak je
spojení s uživatelem ukončeno a je mu zobrazena zpráva, že má kontaktovat IT odd-
ělení. Pokud je ale parametr chování „bezpečný“, tak je uživateli umožněno navázat
dotazované VPN spojení. Pokud se administrátor po inspekci rozhodne zablokované
uživatele odblokovat, má tuto možnost pomocí white list aplikace, která zařadí uži-
vatele na určitou dobu na white list, který ho bude vyčleňovat z workflow aplikace.

ŠKODA, Jakub. Applied automation between security network components in opera-
tionalnetworks. Brno: Brno University of Technology, Faculty of Electrical Engineering
and Communication, Department of Telecommunications, 2022, 60 p. Bachelor’s Thesis.
Advised by Ing. Anna Kubánková, Ph.D.

Author’s Declaration

Author: Jakub Škoda

Author’s ID: 211813

Paper type: Bachelor’s Thesis

Academic year: 2021/22

Topic: Applied automation between security net-
work components in operationalnetworks

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the advisor of my thesis, Ing. Anna Kubánková, Ph.D., for her
valuable comments, help, support, and professional suggestions. I also thank Ing. Honza
Šimůnek for his leadership in this journey. Lastly, I thank Michal Svačina for his support
and insights into the production environments.

Contents

Introduction 14

1 Endpoint security 16
1.1 Established practice in endpoint security 16

1.1.1 Risks of decentralised operations 16
1.1.2 Future of endpoint security 17

1.2 Behaviour vs Compliance . 17
1.2.1 Compliance . 18
1.2.2 Behaviour . 18

2 Platform selection 20
2.1 Automation and security products . 20

2.1.1 Third party automation and security products 20
2.2 Chosen solutions and tools used . 21

2.2.1 Cisco ASA . 21
2.2.2 Server - VMWARE VM_Ubuntu 21
2.2.3 Programming language . 21
2.2.4 API . 22
2.2.5 Data formats . 23
2.2.6 AAA . 24
2.2.7 Database . 25
2.2.8 Umbrella . 26

2.3 Correlation of information . 27
2.3.1 CVE Mapping . 27
2.3.2 Mapping of know attack vectors 28

3 Manual procedure 29
3.1 Manual procedure, which will be surpassed by automation 29

4 Implementation details 31
4.1 Solution . 31
4.2 Configuration . 33

4.2.1 Environment variables . 33
4.3 Cisco Umbrella . 33
4.4 END Point Device . 34
4.5 CISCO ASA . 35

4.5.1 Group Policies . 36
4.5.2 Dynamic Access Policies . 36

4.5.3 AAA Server Groups . 37
4.6 Server . 37

4.6.1 VM - Ubuntu . 38
4.6.2 FreeRADIUS server . 39
4.6.3 PostgreSQL . 40

4.7 Code implementation . 43
4.7.1 config.json . 44
4.7.2 Main file app.py . 44
4.7.3 Service - config_service.py . 46
4.7.4 Service -umbrella_reporting_service.py 47
4.7.5 Service -database_service.py 48
4.7.6 Service -risk_score_calculation.py 49
4.7.7 whitelist.py . 49

5 Results 51

Conclusion 56

Bibliography 57

A Contents of the electronic attachment 60

List of Figures
3.1 Implementation - Cisco Umbrella Reporting 30
3.2 Implementation - Cisco Umbrella Investigate 30
4.1 Diagram of the solution . 31
4.2 Cisco Umbrella - config . 34
4.3 Cisco AnyConnect - config . 35
4.4 ASA - Group Policies . 36
4.5 ASA - Dynamic Access Policies . 37
4.6 ASA - AAA . 38
4.7 pgAdmin4 -User insert . 41
4.8 Database diagram . 42
5.1 Database - users table . 52
5.2 Database - behaviour table . 52
5.3 ASA - VPN session for bob with - Group Policy assignment 53
5.4 Anyconnect eva - connecting . 53
5.5 Anyconnect eva - terminated . 54
5.6 Anyconnect bob - connecting . 54
5.7 Anyconnect bob - safe . 54
5.8 Database - whitelist . 55

List of Tables
1.1 Compliance attributes . 18
1.2 Behaviour attributes . 18
2.1 Authentication attributes . 24
2.2 Umbrella Investigate - Risk score indicators 26
4.1 Behaviour categories . 32
4.2 Dynamic Access Policies . 37
4.3 Environment variables . 38
4.4 Query security categories . 45
4.5 Exit codes . 46

Listings
2.1 XML Example . 23
2.2 JSON Example . 23
4.1 Database -users identity . 41
4.2 dictionary -FreeRADIUS . 43
4.3 app.py -Main method -obfuscated . 44
4.4 app.py - Main method program with all high-level logic 45
4.5 config_service.py . 47
4.6 umbrella_reporting_service.py -get secrets 47
4.7 umbrella_reporting_service.py -get investigate data 48
4.8 umbrella_reporting_service.py -user identities 49
4.9 risk_score_calculation.py -calculate risk score 49
5.1 API call - user report data . 52
5.2 API call - Investigate data . 52

Introduction
Security is today an indispensable topic for everyone. For the end-user, small busi-
nesses, especially big companies that store sensitive data. We live in a time of
constant security breaches, data leaks and maliciously encrypted files and devices
across all industries. The number of threats is rising every year, and everyone has to
take some security measures to ensure that their data and devices are secure. Com-
panies are investing more and more resources to keep their data and networks secure.
From 2021 Report from IBM on Cost of Data breach [1] We see that breach costs
have been on the rise for several years, despite the fact the Global Cybersecurity
spending is exceeding $1 trillion from 2017-2021[2]. The amount of criminal activity
we see is forcing the industry to spend tremendous amounts of money that analysts
cannot accurately track. The impact of COVID-19 on cybersecurity created new
challenges for businesses as they had to adapt to a different mode of working from
home. This new standard was responsible for a big leap in digital transformation,
and more security concerns as work from home bring its challenges to the security
teams.[3]

Security teams have many tools and policies to manage and keep secure their
assets. Incident response is becoming a very time consuming and repetitive without
automation. The lack of automation and visibility in day to day operations is a
hardship for 57% professionals that were surveyed.[4]

In this paper, We describe the creation of an open-source automation tool de-
veloped for administrators or security engineers that use Cisco platforms. This tool
automates set procedures for checking DNS queries of monitored devices for their
potential harmfulness. With the utilisation of Cisco Umbrella Reporting and Inves-
tigate capabilities for added insight over the DNS queries from monitored endpoints,
this tool is able to bring the behaviour of these endpoints to the security industry.

14

Security is today an indispensable topic for everyone. For the end-user, small
businesses, especially big companies that store sensitive data. We live in a time of
constant security breaches, data leaks and maliciously encrypted files and devices
across all industries. The number of threats is rising every year, and everyone has
to take some security measures to ensure that their data and devices are secure.
Companies are investing more and more resources to keep their data and networks
secure. From 2021 Report from IBM on Cost of Data breach [1] We see that breach
costs have been on the rise for several years, despite the fact the Global Cybersecurity
spending is exceeding $1 trillion from 2017-2021[2]. The amount of criminal activity
we see is forcing the industry to spend tremendous amounts of money that analysts
cannot accurately track. The impact of COVID-19 on cybersecurity created new
challenges for businesses as they had to adapt to a different mode of working from
home. This new standard was responsible for a big leap in digital transformation,
and more security concerns as work from home bring its challenges to the security
teams.[3]

Security teams have many tools and policies to manage and keep secure their
assets. Incident response is becoming a very time consuming and repetitive without
automation. The lack of automation and visibility in day to day operations is a
hardship for 57% professionals that were surveyed.[4]

In this paper, We describe the creation of an open-source automation tool de-
veloped for administrators or security engineers that use Cisco platforms. This tool
automates set procedures for checking DNS queries of monitored devices for their
potential harmfulness. With the utilisation of Cisco Umbrella Reporting and Inves-
tigate capabilities for added insight over the DNS queries from monitored endpoints,
this tool is able to bring the behaviour of these endpoints to the security industry.

15

1 Endpoint security
We have seen a giant leap in endpoint security in the last two years due to the
Covid-19 pandemic. Employees had to work from home, and administrators were
forced to shift their focus domain. Endpoint security protects connections of various
endpoints such as laptops, smartphones, IoT devices and others against attack and
security threats. These endpoints access corporate networks and sensitive data, and
it is crucial that they are secure and meet corporate set policies as well as standards.

In the beginnings of endpoint security, there were simple antivirus programs
that had some predefined set of signatures. Today endpoint security is much more
advanced using next-gen antivirus, threat detection with the investigation and threat
response, device management and much more.[14]

1.1 Established practice in endpoint security
The established practice in endpoint security is to ensure that the company’s assets
are sufficiently protected while user restrictions are kept to a minimum. We can see
this applied, for example, in the scenario when the employee on a home office with
his personal company-issued computer wants to connect to the company’s internal
network. To do this, he will use a VPN tunnel. The VPN client application has pre-
set requirements that the user has to comply with in order to be connected. Some
companies do not have any special compliance requirements. Only a username and
password and user is connected. Today this would be considered a security risk.
That is why as a standard practice minimum, two-factor authentication is required.
Then with the increasing value of the assets, more requirements are added. For
example, in bank institutions, the VPN client has to check many parameters before
the user is authorised to access internal resources: if an antivirus program is present
with a recent malware-free scan of the machine, if valid security profiles are present
and many more. Also, in these types of applications, a full-tunnel VPN is used, so
a potentially malicious home network of the user is made of reach for the endpoint
computer because all of the user’s traffic and IP addresses are forwarded through
the company and it’s firewall and other security appliances.

1.1.1 Risks of decentralised operations

The decentralisation of operations is bringing many risks that need to be addressed.
Work from home brings risks such as insecure home networks, using personal devices
for work, unencrypted file sharing, etc. The problem with decentralisation continues
with the use of hybrid clouds bringing connection risks and Service Level Agreements

16

placing the whole security question on a third party. New security measures are
needed to maintain the risks created by decentralisation. One of the risks is handled
by this thesis endpoint security.

1.1.2 Future of endpoint security

As endpoints constitute an abstract gateway into the IT environments for users,
neglecting their protection will lead to a disaster. Nevertheless, a big question
arises, how will the future of endpoint security unfold. Instead of relying on classic
approaches such as compliance checks, we could use AI and machine learning to
create new monitoring tools and products that will focus on user behaviour, look
out for malicious attempts on security and take action to thwart them. This new
approach could mean a massive leap in endpoint security.

1.2 Behaviour vs Compliance
Today in cybersecurity and IT operations, compliance is an important topic. Every
device, server, or user himself has to meet set requirements by the company to
make the assets of the said company safe. From the psychological point of view,
compliance refers to changing one’s behaviour due to the request or direction of
another person. In the technological space, compliance is more associated with
complying with pre-set rules by the IT security department. While the person has
the option to refuse the request, most of the times, he chooses to comply with per-set
rules required so he can use tools, access a network etc. However, one aspect that is
complying with set rules does not cover the behaviour itself of an employee, which is
so crucial to any organisation’s security. Today security is most often addressed by
some type of compliance rules. For example, when a user wants to use the company
laptop, he has to comply with rules such as: having a strong password, BIOS lock,
encryption on the storage, and restrictions on options to execute, write and read
files. If the user does not want to comply, he cannot have the company laptop. The
reason why user behaviour was not addressed as much as compliance is because it
was not possible to track, process and evaluate the user behaviour of every employee
in the company. Fortunately, thanks to the progress in computation power, machine
learning, and artificial neural networks, the factor of user behaviour is becoming a
parameter that we can process and use in security operations.

17

1.2.1 Compliance

As mentioned before, compliance of users and endpoint devices in a production
environment is handled by checking if said user/endpoint meets set requirements.
Common practice is to authorise the user before giving him access to the network or
resources. In the authorisation process, we check the compliance. Only if the user
and his endpoint device meet all requirements in the compliance check is he autho-
rised. To commonly observed attributes in the production environment include: 1.1

Attributes Checks
Antivirus Signatures

Operating system Last version with knows vulnerability fixes
Personal Firewall Enabled/Disabled
Disk encryption Enabled/Disabled

Tab. 1.1: Compliance attributes

1.2.2 Behaviour

The use of compliance in the real world has its limitations. The workflow of checking
if an endpoint device is compliant with internally set attributes is not always possi-
ble. Let us say that employee of an external company that needs to use the internal
resources wants to connect to the internal network. In an ideal scenario, he would
have to comply with the exact compliance check as an internal employee. This is
not always possible. The internal IT department does not have management access
to the endpoint devices of the external company. Therefore even if the external
endpoint would have some attributes right in the compliance check, definitely not
all due to the different device management. Some of the possible attributes to look
out for when we are talking about behaviour are 1.2:

Attributes Checks
Detected malware Threat score (low/medium/high)
Blocked DNS requests by security tool Threat score (low/medium/high)
IPS incidents on firewall connected to spe-
cific host

Threat score (low/medium/high)

Tab. 1.2: Behaviour attributes

18

Having the external company update, keep signatures and any other attribute is
nearly impossible. That is why we need to find other ways to keep security. One of
the ways is the behaviour of the user and his endpoint device. To make use of the
behaviour, we need to select a platform on which we will be able to demonstrate the
use of behaviour in network security in real life.

19

2 Platform selection
The selection of a platform is essential for creating an effective solution. Today many
devices are being used outside of the internal network. The amount of corporate
data traffic that bypasses the security perimeter has skyrocketed due to the forced
work-from-home strategy with the start of the COVID-19 pandemic. The use of
RDP (Remote Desktop Protocol) and VPN (Virtual Private Network) has seen an
extensive rise of 41% and 33% respectively, in the first month of the outbreak [5].
This is why solutions such as Cisco Umbrella, which is based on DNS protection,
are an essential part of the fight against open vulnerabilities that could be used for
an attack.

In the past, traditional enterprise network architecture used only an on-premise
model. Closed firewalls made access to the internal network from outside impossible.
Today, in the time, of decentralisation, cloud services and RDP, the site perimeter
is not defined. That is why we have to find new ways of protection and security.
One of the many ways is endpoint security.

2.1 Automation and security products
Automation has become an essential part of all industries, including networking
and cyber security. One of the most significant issues for network operation is
the IT cost. The growth of data, devices, and traffic is outpacing the capabilities
of IT departments rendering manual solutions nearly impossible to deploy. Cisco
estimates that up to 95% of network changes are still performed manually, resulting
in much higher operating costs compared to the cost of the network itself. As a
result, companies that do not use centralised and remotely controlled automation
in their operations will not be able to stay relevant to the market [6].

2.1.1 Third party automation and security products

The issue of decentralisation of workflows is taken very seriously in the network
security industry. That is why companies are creating new ways and products to
ensure communication and assets are secure.

There are many security products from a number of vendors such as Cisco,
Fortinet, Check Point, Palo Alto Networks, IBM and many more. Our interest lies
in the so-called Next-gen solutions and products. Among the most known is a next-
gen firewall, which in contrast to traditional firewalls, can block modern threats such
as malware, and application-layer attacks and bring Intrusion Prevention System
(IPS) and VPN concentrators as an essential part of the decentralisation in operation

20

workflows. Then we have products that provide security in cloud services and hybrid
cloud communication, and closest to us regarding this thesis, Automation security
products.

2.2 Chosen solutions and tools used
Based on the chosen hardware platform, we must select a suitable programming
language and application built on it. The core communication with Cisco services
and tools is being done through APIs. Those can be accessed through a wide variety
of tools and programming languages.

2.2.1 Cisco ASA

Adaptive Security Appliance (ASA) is Cisco’s firewall product. ASA offers many fire-
wall capabilities in many form factors - standalone appliances, blades for server ap-
plications, and virtual appliance used in public, private clouds and software-defined
networks. Cisco has a new line of firewalls (Firepower) that is a complete next-get
firewall with an IPS system and other new functions. The ASA code is still widely
used for its low cost and excellent VPN capabilities that are used in this thesis.

2.2.2 Server - VMWARE VM_Ubuntu

As part of the solution is also a virtual server that handles communication with the
Cisco Umbrella, firewall and database. The server runs a Linux distribution Ubuntu
20.4 as its operating system under the hypervisor of VMware ESXi. The configura-
tion of the server and a more in-depth look is discussed in the implementation part
of this thesis 4.6

Cron

To make the service (application) created in this thesis automated. We need to use
some sort of job scheduler. Cron is a time-based job scheduling daemon found in
many Unix systems such as Linux distribution. In our case, Cron handles automated
job scheduling for the created application service 4.7 on a daily basis.

2.2.3 Programming language

The language used plays a vital role in the whole project. To meet the requirements,
our candidate must be able to operate in a remote environment such as a full OS,

21

cloud or in a docker container. Also, it has to be easy to understand for it to be
applied by other admins worldwide.

Python

Python is class-leading programming and scripting language that is used worldwide
for all types of scenarios. Due to the fact that it also meets the above conditions,
Python version 3 will be used to create the app for this automation.

Libraries

Two extra libraries were used in the python program: sqlalchemy, psycopg2-binary
sqlalchemy is a python SQL toolkit and Object Relation Mapper. It provides
high-performing database access with the user-oriented Python language in mind.
psycopg2-binary is the most popular PostgreSQL database adapter for Python.
It was designed to run on multi-threaded workloads. Implementation in C results
in a very efficient and secure adapter.

2.2.4 API

Application Programming Interface is a set of functions, procedures, protocols and
libraries that programmers worldwide use to create applications and other software.
Today API is mostly used in creating mobile and web applications. The main
function of an API is to create an interface for a connection between two devices or
programs. [15]

REST API

All APIs that were used in this paper are REST APIs. The difference between API
and REST API is that API is a set of functions and procedures that allow other
computers or a program to access some feature of another application. REST is an
architectural style developed for network applications. The primary communication
is done in for of sever-client. The most significant advantage of REST is that the
guidelines that define REST help build faster and easy to understand for third-
parties.[16]

oauth2

oauth2 is an open standard security protocol that is very often used as a standard
way of handling third-party access to an application without giving it the access
credentials. Cisco Umbrella Reporting API uses this standard to generate a unique
token that has a 1hour duration and is used to access the API.

22

2.2.5 Data formats

Choosing an appropriate data format is a crucial part of the whole project. APIs
support many data formats. Some are used more frequently, and some are easier to
use.

XML

XML data format was defined in 1996 and is used to this date. XML became very
popular across all programming fields, but most importantly, it affected how the
Internet we know works today. The syntax of XML is more challenging to use for
humans. That is why other data formats emerged.

JSON

JSON (JavaScript Object Notation) is an XML open standard file format that is
readable by humans and computers alike. The main difference between XML is its
much more user-friendly readability and useability, as we can see in these examples:
[17] This is why JSON was chosen as the used data format.

<employees>
<employee>

<firstName>Ema</firstName> <lastName>Rudiger</lastName>
</employee>
<employee>

<firstName>Liam</firstName> <lastName>Smith</lastName>
</employee>
<employee>

<firstName>James</firstName> <lastName>Brown</lastName>
</employee>

</employees>

Source Code 2.1: XML Example

{"employees":[
{ "firstName":"Ema", "lastName":"Rudiger" },
{ "firstName":"Liam", "lastName":"Smith" },
{ "firstName":"James", "lastName":"Brown" }

]}

Source Code 2.2: JSON Example

23

2.2.6 AAA

Authentication, authorisation, and accounting is a security framework of services
and protocols for controlling access to computer resources, auditing usage, enforc-
ing policies, and providing the necessary information to bill for services. To this
day, AAA is an industry-standard for authenticating users or machines to network
services.

Authentication

The core of authentication is proving that the user is who he says he is. This is
handled by the user providing credentials to create an identity. This identity is then
compared by a AAA server with its database of stored information for said user.
The server checks the username, password, and other parameters that are stored in
the database. There are three types of authentication:[7]

Types Examples
Something a person knows Password, PIN

Something a person has Swipe card, keys, USB stick
Something a person is Fingerprint, face identification

Tab. 2.1: Authentication attributes

Authorization

Authorisation involves checking what the identity that has been authenticated has
access to. User can be granted privileges to access certain parts of a network, files
or a system. The permissions that are available to the user are stored in a database
along with the user’s identity. For example, the administrator will have different
authorisation from a user and user from a guest. The administrator will have the
right to create, edit and execute files. User will be able to read them, and guest will
not have access to these files at all.

Accounting

The final part of the AAA framework is accounting, which keeps track of user
activities while the user is logged in to a network. This can include the amount
of time or data that a user used. Then the data is stored in logs for future use in
administration, such as billing, analysis, and much more.

24

RADIUS

Several protocols use the elements of AAA to ensure identity security. One of
which is the RADIUS protocol. Like many others, RADIUS uses a client-server
model. Client NAS (Network Access Server) sends a request to a RADIUS server.
The RADIUS server then processes the request and sends back a response. In the
production networks RADIUS server is combined with a database such as MySQL,
LDAP and more. An example of the RADIUS protocol would-be users who want to
connect to a Wi-Fi AP. The user will perform authorisation, and the Wi-Fi AP (NAS
in the RADIUS protocol) will send a request to the RADIUS server. The server then
checks with the database if he exists. If so server responds to the request by either
accepting it, rejecting it, or challenging it by asking for more information. [8]

FreeRADIUS is one of many RADIUS server products. While many are paid
products such as Microsoft NPS and Cisco ISE. FreeRADIUS is, on the other hand,
open-source. Since the whole project is developed in the C programming language,
the server itself is very fast. In addition, FreeRADIUS has many modules that enable
the integration of vast production environments. This enables easy deployments in
extensive networks with a result of 100 million users per day around the world. [9]

2.2.7 Database

A database is an organised collection of data/information stored and accessed elec-
tronically in a computer system. The database design consists of a suitable data
model, data representation, query languages, security, and privacy depending on its
use. One of the most popular databases is a structured query language (SQL). SQL
is used by most relation databases worldwide thanks to the SQL ANSI standard and
many extensions from renowned companies such as IBM, Microsoft, and Oracle. [10]

PostgreSQL

PostgreSQL is an open-source object-relational database system that uses and ex-
tends SQL language. Runs natively on all major operating systems. It fully meets
the ACID requirements and supports many data types, including JSON, XML,
HSTORE, Geo-spacial and much more. Thanks to our previous experience with
this database system and its use in a wide variety of enterprises across many indus-
tries, it was chosen as the best choice. [11]

pgAdmin4

The primary way of administration on PostgreSQL database is psql command-line
program. It enables to enter SQL queries, write shell-like scripts... However, due to

25

the ability to use a tool with a graphical user interface, such a tool was chosen.
pgAdmin4 is a database administration tool for PostgreSQL with a graphical

user interface. pgAdmin4 has many deployment options, such as a stand-alone
desktop application or just the handler with a WEB interface. [12]

2.2.8 Umbrella

Cisco Umbrella was chosen for its security assessment capabilities, easy implementa-
tion into an existing production environment and workflow. Umbrella provides the
first line of defence outside of the network for users on the go. It enables monitoring
of all users’ activity and blocks threats before they reach the internal network or
other endpoints. Umbrella is an open cloud platform with easy integration to an
already deployed security stack. Umbrellas Investigate module delivers live threat
intelligence by analysing and learning from internet activity patterns and sourcing
information from Cisco Talos, and other 3-rd party web reputation feeds.

The core component of Umbrella is monitoring Domain Name System (DNS)
requests. When Umbrella receives a DNS request, it uses machine learning to resolve
if the request is malicious, risky or safe.[13]

Risk Score

Umbrella Investigate module that is used in this solution, offers the use of a risk score
attribute for a domain address. This attribute is calculated my selected security
indicators such as: 2.2

Indicator Checks
Geo Popularity Score Measures the geographical request pattern in compari-

son to typical domains
Keyword Score Measures the similarity of keywords in this domain to

keywords found in malicious domains
Lexical Measures the lexical similarity of this domain to mali-

cious ones
TLD Rank Score Ranks top level domains based on the amount of mali-

cious activity they receive

Tab. 2.2: Umbrella Investigate - Risk score indicators

26

Machine learning

Machine learning that is used in Cisco Umbrella is a core part of any modern network
security system. It uses statistics to find patterns in a large amount of data. Then
the learning algorithm "learns" between good and bad files and behaviours. Machine
learning in endpoint security helps find unusual patterns and vectors for potential
malware attacks.

Cisco AnyConnect Secure Mobility Client

One of the many solutions available for endpoint security is the Cisco AnyConnect
Secure Mobility Client. This solution is deployed on every endpoint PC in the
company network. It offers to check if the endpoint device is compliant with many
attributes such as BIOS version, antivirus check, up to date signatures and many
more. The attribute used in the solution is from the Roaming Security module that
handles sending DNS requests to Umbrella for future analysing.

2.3 Correlation of information
The correlation of information is a vital part of today’s network security platform.
Systems that maintain network safe like firewalls, IDS, Vulnerability scanning sys-
tems, SASE and other safety systems generate a lot of event information and logs.
This information would not be used to its full potential if it were stored only on the
data storage of its device. Administrators would be flooded with repeated alarm
data that would be impossible to sort and act on them accordingly. This is why
Automation and Correlation of information are so important. In this thesis, we use
the risk score from Cisco Umbrella that is calculated with the help of a correlation
of information about known vulnerabilities across the world. [18]

2.3.1 CVE Mapping

The Common Vulnerabilities and Exposures list is publicly known information-
security vulnerabilities and exposures. Every flaw is assigned its unique CVE num-
ber by which it is identified. Then a short description of the flaw with the affected
systems. Finally, a score that describes how serious the vulnerability is. The most
important criteria for CVE are that the flaw has to be fixable and acknowledged by
the affected vendor or documented. Then CVE entry is created so that everyone
from an attacker to the affected business may respond.[19]

27

2.3.2 Mapping of know attack vectors

The attack vector is the path that attacker uses to gain access to a device or a
network that he has as the target. Attackers choose their attack vectors according
to found vulnerabilities. There is an excellent knowledge of common attack vectors in
the hacking community as well in between security specialists. Mapping these attack
vectors is a crucial task that has to be done to secure the potentially vulnerable
application or network.

28

3 Manual procedure

3.1 Manual procedure, which will be surpassed by au-
tomation

The goal of this thesis is to identify obsolete manual procedures. Design an auto-
mated scenario to solve the shortcomings of said manual procedure and apply this
automated scenario in a production environment on real devices. The manual pro-
cedure chosen to automate is very tedious and would be very labour intensive for
the administrator. The procedure consists of adding another layer of security to
the network through the behaviour of the endpoint device. Based on its reputation
database, AI and other tools, Umbrella can identify malicious domains and block
them. This itself is a very useful layer of added security. However, it has its limi-
tations and therefore, to address these limitations, we need to create a new layer of
security that will use behaviour as its indicator.

The current procedure for an administrator that would like to add DNS-layer
security through the Cisco Umbrella. After deploying Umbrella on the endpoint de-
vice administrator, Umbrella can monitor and block DNS traffic. Nevertheless, this
automated type of blocking has its drawbacks. Umbrella can generate false positives,
and it is up to the administrator to manually check the reported DNS lookups in the
Umbrella reporting module 3.1, copy the domain destination address, then copy this
address to the Investigate module, enter the address and then check all the details
3.2 and verify if it is indeed correctly locked malicious DNS lookup or if it is false
positive. Therefore, manually evaluate the information from Investigate module and
assess potential risk. With the assessment for the endpoint, the administrator then
has to somehow add the endpoint to a list of blocked devices. When he decides that
he wants to unblock the endpoint, he has to unblock him manually.

This is a very tedious procedure with many problems. The administrator has to
check manually for any potentially harmful DNS requests. Then he has to check if
those requests are actually harmful. Assess the behaviour for the endpoint. Manu-
ally block it, keep track of when he blocked the endpoint (if he wants to block the
devices for a set amount of time) and then remember to unblock him. In reality, this
procedure is, without automation, nearly impossible to do on a regular reoccurring
basis.

In the following screenshots, we can see the Umbrella Reporting module output
with individual DNS requests. In a production environment, there would be ten
thousand requests per day. Manually copying the "Destination" addresses of each
DNS request, pasting them to the Investigate module and checking each one is

29

impossible. That is why a solution that will automate this process and solve the
unusability of the Investigate data for this problem was created.

Fig. 3.1: Implementation - Cisco Umbrella Reporting

Fig. 3.2: Implementation - Cisco Umbrella Investigate

30

4 Implementation details

4.1 Solution

Fig. 4.1: Diagram of the solution

31

As we know, the currently used approach of checking the compliance of a device
has its limitation. Nevertheless, with a new automated approach, we can utilize Um-
brella and its DNS lookup assessment to create a new security metric, behaviour.
With the endpoint’s behaviour, we can determine if an endpoint is safe to be con-
nected to the internal network or not. Then we can use this new metric for a new
use case. For us, it will be a Remote Access VPN.

The automated procedure fulfils all tasks that the administrator would have to
do manually with some additional features. Also, all query time frames mentioned
in this paragraph are easily changeable in a configuration file (more on it later).

We will proceed from the assumption that there is a running PostgreSQL database
with usernames, passwords and associated personal computers for each user. End-
point devices will generate DNS traffic that will be sent and logged in Cisco Um-
brella. Once a day, a system service on the Ubuntu server created to run the au-
tomated application will be launched. This application will load all users and their
endpoint devices. Next on, will be filtering the DNS requests from Umbrella by de-
sired endpoint devices and categories. In our case, security categories and omission
of whitelisted users. Then all of this data from the Umbrella reporting API will be
downloaded and parsed. After the calculation for each DNS request is done through
Umbrella Investigate API, each request will be divided into three categories: Safe,
Problematic and Dangerous. Next, this paired information will be updated in the
database. This is the periodic part of the automated procedure.

The procedure in use works as follows. A user who wants to connect to the
company network uses his VPN client. After filling out, the username and password
checking sequence will initialize. Cisco ASA, which received a VPN request, will send
a RADIUS request to the server. FreeRADIUS server then looks in the database for
user entries. The server then sends RADIUS response to Cisco ASA with additional
parameters such as: what privilege category the user is and one of the three security
defining categories. ASA then looks in its configuration to see what should be done
with the RADIUS response:

Categories Outcomes
Safe VPN tunnel is created

Problematic VPN tunnel is created, but the user has limited access to the net-
work

Dangerous Connection with the user is terminated with a notification to con-
tact the IT security department and Syslog message sent to CSIRT
team

Tab. 4.1: Behaviour categories

32

When the "Dangerous" user contacts the IT security department with the issue
of him being unable to create a VPN connection. They can inspect what is wrong
with his device/behaviour. After the fix, they can add him to the whitelist for seven
days so the Risk score can straighten out. After the seven day period, the whitelist
entry will be automatically deleted. Finishing this automated procedure.

4.2 Configuration
Configuration of the application is done in the config.json file, where are settings
for API URIs, Umbrella space identifier, query parameters such as how big the
checking interval should be, risk security categories, database connection details,
whitelist parameters and lastly, VPN behaviour groups.

4.2.1 Environment variables

Secrets are stored inside environment variables. For security reasons, it is a best
practice to create a new user account for the application that will be run. In this sce-
nario, account python_radius was created to handle the periodically run of the ap-
plication, to store environment variables and as a user for the PostgreSQL database.
In UNIX based systems, we use to access the environment variables with this com-
mand, where the string value is returned:

os.environ['auth_secret']

How to set environment variables:

Linux/Unix

export env_name=value

Windows

Powershell: \$env:env_name = 'value'
cmd: setx env_name "value"

Environment variables will be deleted after each reboot of the server. To store
variables permanently, we need to add these variables to the home/bash.d file.

4.3 Cisco Umbrella
The graphical web user interface of Cisco Umbrella is easy to use. The configuration
itself is very straightforward. To make devices forward traffic, the administrator

33

has to download the profile for the "Umbrella Roaming Security" module in the
"Deployments" bookmark. The profile has the id of the Umbrella instance and the
necessary keys for safe communication. After the endpoint is configured with the
profile, the traffic is forwarded to the Umbrella.

Next, we need to generate keys with secrets needed for communication with the
Umbrella APIs. Because the data from the Reporting API is filled with the indi-
vidual endpoint traffic, there has to be added security in the communication. First,
we generate key and secret in the Umbrella UI. Then for the actual communication,
we need to get a token through authentication API 2.2.4 with the key and secret
provided. In the case of the Investigate API, no token is needed because there is
no user data in the API, so a separate key is sufficient. Now Umbrella is ready to
receive the DNS traffic.[22]

Fig. 4.2: Cisco Umbrella - config

4.4 END Point Device
Configuration on the endpoint device is a bit tricky. For the administrator to be
able to use the profile from Umbrella, the endpoint has to have installed Roaming
Client or Cisco AnyConnect with Umbrella Roaming Security Module. Before the
installation itself, it is crucial that the downloaded profile from the Umbrella con-
nection is placed in the appropriate folder before installation. After the installation,
the profile is automatically added and ready to go.

34

Next, we need to change the DNS server IP address in the system. The IP
address for the EU Umbrella server is 88.102.8.183. Without this change, the
request will not be sent to Umbrella for processing.

The most crucial part in the configuration of the endpoint is having a lock on
the "Client Name" parameter. This is the system device name. In this scenario and
in most production environments, the Client Name is matched in the database to
its user. It is custom to have this option locked by the set privileges that come from
centralized user management. Suppose the administrator does not have the option
to manage the device. AnyConnect itself has the option to lock these parameters in
the process of installation.

Fig. 4.3: Cisco AnyConnect - config

4.5 CISCO ASA
ASA software is very similar to the Cisco IOS software on routers. As Cisco ASA
is a fairly old product, it still has the option to use a command-line interface, but
it also has a JAVA application with a graphical interface.

We will be based on the scenario where an internal network is already set up,
and all we need to do is to set up ASA as a RADIUS client and all the necessary
policies and user groups.

35

4.5.1 Group Policies

First Group Policies will be created. In production, networking Group Policies are
used to create different user types, each with a different set of privileges. We have
created three types of users. Guest, User and Administrator. Each user type has
its privileges and access on the network. A guest has access only to the internet,
the user can access the production section of the network, and the administrator
has full access. The Group Policies created are named like this: Group_Guest,
Group_User, Group_Administrator.

Fig. 4.4: ASA - Group Policies

4.5.2 Dynamic Access Policies

Dynamic Access Policies (DAP) are used as another method of controlling to witch
network resource a user is authorized to access. Each policy is evaluated for matching
criteria during VPN session establishment. There are many options on how to limit
access to the user. We can apply ACL filters, disable file browsing, display a message
or terminate the connection before it even forms.

DAP policies are the main control function for the behaviour aspect of end-point
security addressed in this document 4.2:

36

DAP Functions
Safe User is free to use the network
Problematic Restricts the user to only access parts of the network and

blocks connection to production servers
Dangerous Terminates the connection and displays a message to contact

the CSIRT team
DfltAccessPolicy Default DAP with no restrictions

Tab. 4.2: Dynamic Access Policies

Fig. 4.5: ASA - Dynamic Access Policies

4.5.3 AAA Server Groups

To make DP and DAP policies work, we need to set up the connection to the server.
ASA has the ability to work with multiple AAA servers with different protocols.
We chose RADIUS. The setup of the AAA server is very straightforward. The
administrator has to know the IP address of the RADIUS server, on which interface
it is connected, server authentication and accounting ports and finally Secret Key.
After the setup administrator can test the connection with the RADIUS server
through the test window in the ASA interface.

After all this setup and connection testing, the Cisco ASA is ready to be used
and included in the scenario.

4.6 Server
The virtual machine with Ubuntu operating and Cisco Umbrella are the core compo-
nents of this playbook system that handles many tasks in this scenario. The server
runs many services from the core Ubuntu OS running the application, FreeRADIUS

37

Fig. 4.6: ASA - AAA

server and database. The following steps describe the configuration necessary for
our scenario.

4.6.1 VM - Ubuntu

First step on the Ubuntu OS is to create a new user that will be handling the
periodic application launch and connection with the database. After the user
python_radius is created we need to add environment variables that are necessary
for the proper function of the application to the home/bash.d file 4.3:

Environment variable Where to obtain it
umb_reporting_key is obtained from Cisco Umbrella

umb_reporting_secret is obtained from Cisco Umbrellas and used with the
key to get authorization token from Reporting API.

umb_investigate_secret is created in Cisco Umbrella and is used to get infor-
mation from the Investigate API

db_pass is used as a password for the database

Tab. 4.3: Environment variables

Then we need to install the required Python packages (pip) 2.2.3:

pip install -r src/requirements.txt

38

4.6.2 FreeRADIUS server

To install the FreeRADIUS server that will be compatible with we need to proceed
as follows:

sudo apt update && upgrade

Install FreeRADIUS 3.0 and PostgreSQL modules:

sudo apt install freeradius freeradius-utils freeradius-postgresql

Enable SQL connection:

sudo cd /etc/freeradius/3.0/mods-enabled
sudo ln -s ../mods-available/sql sql

Delete -sql and #sql code on sites default and inner-tunnel:

sudo nano /etc/freeradius/3.0/sites-available/default
udo nano /etc/freeradius/3.0/sites-available/inner-tunnel

Edit FreeRADIUS connection:

sudo nano /etc/freeradius/3.0/mods-available/sql

driver = "rlm_sql_postgresql"
dialect = "postgresql"
server = "localhost"
port = 5432
login = "radius"
password = "radpass"
radius_db = "radius"
read_clients = yes
client_table = "nas"

Enable, start and check running FreeRADIUS service:

sudo systemctl start freeradius
sudo systemctl enable freeradius
sudo systemctl status freeradius

To test the freeRADIUS service, we have to configure the database next.

39

4.6.3 PostgreSQL

PostgreSQL is available for many distributions by default, but it does not guarantee
that it will be up to date. The best practice is to install the software from the
PostgreSQL Apt repository itself:

Create the file repository configuration:
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt
$(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'

Import the repository signing key:
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc
| sudo apt-key add -

Update the package lists:
sudo apt-get update

Install the latest version of PostgreSQL.
If you want a specific version, use 'postgresql-12' or similar
instead of 'postgresql':
sudo apt-get -y install postgresql

[20] To check the PostgreSQL service status:

service postgresql status

If the service is running, we can continue in the database configuration with PgAd-
min4.

In a real production environment, some type of database will be already in place
with users, passwords, and all the necessary information filled out. If that were the
case, the administrator would have to amend this procedure.

PgAdmin4

Thanks to the graphical interface of PgAdmin4, the configuration and possible
management is relatively easy to do. To create the database as a first step, we
need to register a new server. After filling out the name, IP address, username
and password, the database server is ready 4.8. To make the database compatible
with freeRADIUS, we need to query the database with a schema for FreeRADIUS.
https://github.com/FreeRADIUS/freeradius-server/blob/master/raddb/
mods-config/sql/main/postgresql/schema.sql then we add a table for users
identity:

40

https://github.com/FreeRADIUS/freeradius-server/blob/master/raddb/mods-config/sql/main/postgresql/schema.sql
https://github.com/FreeRADIUS/freeradius-server/blob/master/raddb/mods-config/sql/main/postgresql/schema.sql

-- Table users_identity
CREATE TABLE public.users_identity
(

id serial NOT NULL,
radcheck_id integer NOT NULL,
umbrella_label character varying(32) NOT NULL,
whitelist_from date,
PRIMARY KEY (id)

);

ALTER TABLE IF EXISTS public.users_identity
OWNER to radius;

ALTER TABLE IF EXISTS public.users_identity
ADD CONSTRAINT radcheck_id FOREIGN KEY (radcheck_id)
REFERENCES public.radcheck (id) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE CASCADE
NOT VALID;

Source Code 4.1: Database - users identity

When all those steps are successful we can proceed to adding the users: Commands

Fig. 4.7: pgAdmin4 - User insert

to test the communication between FreeRADIUS and PostgreSQL database:

41

sudo radtest demo 12345 localhost 10 testing123
sudo radtest test 54321 localhost 10 testing123

Fig. 4.8: Database diagram

The finished database provides for Cisco ASA the group category (guest, user, ad-
min) and DAP policy calculated from the risk score (Safe, Problematic, Dangerous).
Important note: We need to specify a product-specific vocabulary for the commu-
nication with Cisco ASA and FreeRADIUS. This vocabulary provides FreeRADIUS
with the specific way to assemble RADIUS reply packet 4.2. https://github.com
/redBorder/freeradius/blob/master/share/dictionary.cisco.asa

ATTRIBUTE Framed-AppleTalk-Network 38 integer

VENDOR Cisco-ASA 3076

BEGIN-VENDOR Cisco-ASA

ATTRIBUTE ASA-Group-Policy 25 string

ATTRIBUTE ASA-WebVPN-Customization 113 string

ATTRIBUTE ASA-Member-Of 145 string

42

https://github.com/redBorder/freeradius/blob/master/share/dictionary.cisco.asa
https://github.com/redBorder/freeradius/blob/master/share/dictionary.cisco.asa

END-VENDOR Cisco-ASA

Source Code 4.2: dictionary - FreeRADIUS

4.7 Code implementation
The main core of this implementation is the application itself that handles the com-
munication with Cisco Umbrella APIs, a database with stored user data and logic
behind the endpoint security, which provides limits to user access in dependence
to their behaviour. Due to the complexity and extensiveness of the whole applica-
tion, only interesting and core parts of the application will be described. The whole
repository is on GitHub:

https://github.com/jakuSk/umbrella_behaviour-security

Security features

The security features of the code implementation include the use of HTTPS for all
API calls, with an even higher level of security with the use of oauth2 for data that
is personalised. As an industry standard, all keys, secrets and tokens are stored as
system variables. This ensures that even if the code is available, no one can use
these security variables. This also has the advantage that if the code is run on a
server that is managed by other people. They also can not access these security
variables because they are locked under a different user.

Suppose this code would not be open source but a private product. A possible
way to make the deployment even more secure would be to obfuscate the deployed
code. This approach is also very used in production environments, as it is nearly
impossible to reverse engineer the code or logic behind it. Example of obfuscated "def
main" method 4.3. The unobfuscated method that is used in this implementation
and deployed on the server 4.4

def main ():#line:1
""#line:2
O0OO0O0OO00OO0OO0 =time .perf_counter ()#line:4
OO00OOOO0O00OOO0O =ConfigService (config_name ='config.json')#line:5
OO0O000000O0OOO0O =DatabaseService (OO00OOOO0O00OOO0O)#line:6
O00000000OOOO00O0 =UmbrellaReportingService (OO00OOOO0O00OOO0O)#line:7
O0000000O0O0OOO00 =O00000000OOOO00O0 .get_identites ()#line:11
OOO0OO00OOO00OO0O =OO0O000000O0OOO0O .get_users_identities
(O0000000O0O0OOO00)#line:13

43

https://github.com/jakuSk/umbrella_behaviour-security

for O0O000O00OO0O000O in range (len (OOO0OO00OOO00OO0O)):#line:16
process_users_activity (O00000000OOOO00O0 ,OOO0OO00OOO00OO0O
,O0O000O00OO0O000O ,OO0O000000O0OOO0O)#line:18

OO00O0OO0O00O0O0O =time .perf_counter ()#line:20
print (f'Time taken to process {len(OOO0OO00OOO00OO0O)} users is
{OO00O0OO0O00O0O0O-O0OO0O0OO00OO0OO0}')

Source Code 4.3: app.py - Main method - obfuscated

4.7.1 config.json

As mentioned in the 4.2 section. The application has its configuration file with
all variable parameters that the administrator can change. The most useful ones
are organization_id for Umbrella space, query parameters, query categories that
the administrator wants to monitor and the user whitelist length. (More in-depth
4.7.7).

"reports": {
"organization_id": "7966517",
"query_parameters": {

"from": "-30days",
"to": "now",
"limit": "5000",
"offset": "0"

}

Query security categories: 4.4

4.7.2 Main file app.py

An auto-run python application for free deployment on environments with Python
3.0 is open source for everyone on the public GitHub repository. The main file of
the automation playbook app.py stores the Main method of the app with all of the
high-level logic. Added classes and configuration files to store the app’s core from
the load- ing the configuration, communication with the APIs and all the necessary
filtration and parsing of outputs.

Throughout the app is used a standard syntax for handling GET requests. GET
requests are generally assembled of URI (Uniform Resource Identifier) for a specific
resource, headers with some form of authentication and a format in which to accept
the data from the APIs. This approach is applied in every method throughout the
app. [21]

44

ID Label
60 Drive-by Downloads/Exploits
61 Dynamic DNS
62 Mobile Threats
63 High Risk Sites and Locations
64 Command and Control
65 Command and Control
66 Malware
67 Malware
68 Phishing
106 Unauthorized IP Tunnel Access
108 Newly Seen Domains
109 Potentially Harmful
110 DNS Tunneling VPN
150 Cryptomining

Tab. 4.4: Query security categories

def main():
"""Main method of the application."""
Service creation
t1 = time.perf_counter()
config_service = ConfigService(config_name='config.json')
db_service = DatabaseService(config_service)
umbrella_service = UmbrellaReportingService(config_service)

Application logic
First get active identities from umbrella top-identities API
identities_dict = umbrella_service.get_identites()
Then we get the mapping table from db that maps umbrella_label with username
users = db_service.get_users_identities(identities_dict)

Then we get the reports for each user
for users_index in range(len(users)):

process_users_activity(umbrella_service, users,
users_index, db_service)

t2 = time.perf_counter()
print(f'Time taken to process {len(users)} users is {t2-t1}')

45

Source Code 4.4: app.py - Main method program with all high-level logic

After importing all classes needed for the Main method, the app loads the con-
figuration. Then it starts calling methods inside corresponding classes for individual
API calls to get the data needed for determining if the user has harmful behaviour
or not. Then "process_users_activity" method is called that will process the user
activities, get the risk score from the Investigate API and save it to the database
where the FreeRADIUS server reads the data 4.4.

Exit codes: 4.5

Exit code Reason
100 Unknown exceptions
101 Failed to obtain bearer token
102 Non 2XX status code on API call

Tab. 4.5: Exit codes

We have, in total, four services (classes) that support the run of the application:

4.7.3 Service - config_service.py

The config_service.py loads the configuration from the config.json file, returns it
as a dictionary. Then it finds asked elements by the application by key_path af-
ter splitting the key_path for each element. Next it returns the value from the
configuration file.

def __get_config_member(self, key_path: str):
"""Finds given element by key_path in __config after splitting the
key_path for each element"""
split_path = key_path.split(':')
temp_config = self.__config

for key in split_path:
temp_config = temp_config.get(key)

return temp_config

def get_value(self, property_path: str):
"""Returns value from configuration file. Uses remembered path."""
value = self.__get_config_member(property_path)
return value

46

Source Code 4.5: config_service.py

4.7.4 Service - umbrella_reporting_service.py

This class handles the main communication with the Umbrella APIs. First, we need
to get an authorisation token from the authorisation API that will be used with
the Umbrella Reporting API. This method handles loading the secrets necessary for
obtaining token and handles error messages.

def __get_secrets(self, key, secret) -> (str, str):
"""Method to get the secrets from the environment variables."""
try:

key = os.environ[key]
secret = os.environ[secret]
return key, secret

except KeyError as error:
print(f'Environment variable {error} not found... Exiting')
sys.exit(1)

except Exception as error:
print(f'Error: {error}')
sys.exit(100)

Source Code 4.6: umbrella_reporting_service.py - get secrets

Then method add_query_string handles query requests by changing URLs with
the appropriate parameters that are stored in the config.json file. Because the Um-
brella API does not support pre-filtering the query by the label parameter (host-
name of the endpoint), we need to get an internal Umbrella identity id for each end-
point. This task is handled by the get_identities method. Then we load the desired
query categories stored in config.json. In our case, all security categories. Following
report URL is created in get_report_url method, which is used in get_report_user
method that will get the DNS requests data itself for each user and store it in JSON
format for parsing that will be handled by process_dns_queries method. Lastly, the
get_investigate_data method gets data from Investigate API for all DNS requests
pre-filtered by desired categories and returns a dictionary with risk score values that
will be used to determine the behaviour of the endpoint.

def get_investigate_data(self, domain: str) -> dict:
"""Get data from Investigate API. Returns dict with risk_score value"""
return_dict = {}

47

return_dict['domain'] = domain
api_token = os.environ['umb_investigate_token']
url = self.__config.get_value('umbrella:urls:investigate') + domain
api_headers = {}
api_headers['Authorization'] = f'Bearer {api_token}'
api_headers['Accept'] = 'application/json'

response = requests.get(url, headers=api_headers, verify=True)
if response.status_code != 200:

print(
f'Non 200 status code - {response.status_code} on investigate api.')

print(response.json())
sys.exit(1)

Here we add the risk_score for the domain into out return_dict
return_dict['risk_score'] = response.json()['risk_score']

return return_dict

Source Code 4.7: umbrella_reporting_service.py - get investigate data

4.7.5 Service - database_service.py

database_service.py, as the name suggests, manages data from the database. After
the sqlalchemy is imported, we load the configuration through the config_service.py
class. Next, we initialise the database itself. Then the class has many methods. One
handles getting the end-device labels and adding them to the string. Then getting
active endpoints and their identity id necessary for use in getting the report data.
The last method updates the user parameters with the appropriate DAP policy.

def get_users_identities(self, identities_dict) -> list:
"""Method to get users identities"""
labels = self.__get_users_labels_as_string(identities_dict)
query = f'''SELECT rc.username, ui.umbrella_label

FROM radcheck rc
JOIN users_identity ui
ON ui.radcheck_id = rc.id
WHERE ui.umbrella_label IN ({labels})
AND (ui.whitelisted_from IS NULL

OR ui.whitelisted_from <= CURRENT_DATE -{self.__whilist_eff});'''

users_query_result = self.__connection.execute(query).fetchall()
return_list = []
for user in users_query_result:

48

return_list.append((user['username'],
user['umbrella_label'],
identities_dict[user['umbrella_label']]))

return return_list

Source Code 4.8: umbrella_reporting_service.py - user identities

4.7.6 Service - risk_score_calculation.py

The risk_score_calculation class is very straightforward. The class has four meth-
ods. The first method calculates an average risk score from pre-filtered DSN requests
for each endpoint. The paired method will store this risk score and its domain for
later use. The following method checks if there is a DNS request with a risk score
prevailing of 55. The last method calculates the risk score. If an endpoint has
one or more dangerous requests (risk score higher than 55), the method returns the
requests risk score. Else we return the average from all pre-filtered DNS requests.

def calculate_risk_score(domain_list: list) -> int:
"""Calculate risk score"""
if (__is_very_risky(domain_list)):

return __get_highest_risk(domain_list)
else:

return __calculate_risk_score_average(domain_list)

Source Code 4.9: risk_score_calculation.py - calculate risk score

4.7.7 whitelist.py

The whitelist script is essential for the whole playbook. When the user is blocked,
there is no way to clear the logs in the Umbrella. IT security teams have to have this
data logged in case they need to investigate some malicious behaviour when there is
a breach in the network. Without the whitelist scrip, administrators would not be
able to unblock users with bad behaviour statistics rendering this whole playbook
undeployable to the production environment. Then user contacts the proper ad-
ministrator with his connection problem. The administrator will inspect the user’s
behaviour and consult the reason why his endpoint behaves maliciously. When the
problem is sorted administrator, can whitelist the user from the application pro-
cess. Then the entry to the database will be deleted after the previously set time
expiration (days):

49

./whitelist.py -u <username>

50

5 Results
The final results are that we successfully overcame the manual procedure with au-
tomation. After everything from the chosen solution is configured, we can start the
created workflow. As a first step, we are using API calls on the Cisco Umbrella
Reporting module to load all DNS requests from the endpoint that fall into security
categories 5.1. After parsing all of this data, we take all hostname addresses and
run them through the Umbrella Investigate module. Investigate will provide a lot
of useful information. We are interested in the Risk score attribute for each host-
name address 5.2. With this new information, we pair the DNS requests from the
user’s endpoint device and their risk score. Then by set thresholds, we determine
if the endpoint has dangerous, problematic, or safe behaviour. After we know the
final behaviour status of each endpoint, we send this information to the database
5.1, 5.2. If the user wants to initialise remote access VPN connection, Cisco ASA
sends a RADIUS request to the FreeRADIUS server, which then checks with the
database if said user exists, has his password right, his privileges and finally, his
behaviour category. Cisco ASA then checks the behaviour category. If user is in the
dangerous category, terminates the connection 5.4, 5.5. If his behaviour category is
safe, assigns him appropriate authorization category and connects him 5.6, 5.7, 5.3.
If the administrator wants to whitelist this user after investigating the reasons for
his bad behaviour, he can easily add him for a specified time to the whitelist, where
he will be excluded from the workflow 5.8.

"data": [
{"returncode": 0, "externalip": "88.102.8.183", "allapplications": [],

"date": "2022-05-19", "internalip": "190.1.1.129", "time": "17: 37: 48"
"querytype": "A", "policycategories": [

{"id": 67, "type": "security", "label": "Malware", "integration":
False, "deprecated": False
}

], "type": "dns", "categories": [
{"id": 67, "type": "security", "label": "Malware", "integration":
False, "deprecated": False
},
{"id": 113, "type": "content", "label": "Computer Security",
"integration": False, "deprecated": False
}

], "verdict": "blocked", "domain": "examplemalwaredomain.com",
"timestamp": 1652981868000, "blockedapplications": [],
"allowedapplications": [], "identities": [

{"id": 585728824, "type": {"id": 34, "type": "anyconnect", "label":
"Anyconnect Roaming Client"

}, "label": "VM_WIN11", "deleted": False

51

}
], "threats": []

}
]

Source Code 5.1: API call - user report data

{'domain': 'examplemalwaredomain.com', 'risk_score': 100}

Source Code 5.2: API call - Investigate data

Fig. 5.1: Database - users table

Fig. 5.2: Database - behaviour table

52

Fig. 5.3: ASA - VPN session for bob with - Group Policy assignment

Fig. 5.4: Anyconnect eva - connecting

53

Fig. 5.5: Anyconnect eva - terminated

Fig. 5.6: Anyconnect bob - connecting

Fig. 5.7: Anyconnect bob - safe

54

Fig. 5.8: Database - whitelist

55

Conclusion
The goal of this bachelor thesis was to study the possibilities of automation of se-
curity network components, identify obsolete manual procedures associated with
threat identification with transfer of information context between security technolo-
gies in complex operational networks. Design an automated scenario that will solve
the shortcoming of manual procedures and apply this scenario on real devices. The
goal was successfully fulfilled. The thesis described the pitfalls in network security,
end-point security and their developing trends for the future. Importance for se-
curity against new threats and protection of assets due to the increasing risks in
dependence to the global shift in connectivity to cloud services, remote work from
home caused by the COVID-19 pandemic and many other factors has grown. Real-
ity that attacks are getting more complex resulting in higher resilience to convention
defences, with the outcome that businesses can no longer solely rely on turnkey solu-
tion like firewalls, antivirus software lead to the development of new products from
business leaders in cyber security focusing on user behavior, information correlation
and automation.

Then after selecting obsolete manual procedure, solution was created using Cisco
Umbrella and its capabilities in DNS security, on which an automation workflow
was designed. This workflow is acquiring information from Cisco Umbrella from
which it is able to determine the behaviour of an users end-point device. This
gained knowledge is then utilized when end-point device is initializing connection
with remote access VPN to connect the the company’s internal network. If the
users behavior is found dangerous, connection is terminated. If his behavior is
safe, proceeds with establishing VPN tunnel connection. Then giving an option to
the administrator to whitelist the user, after investigating the reasons for the bad
behavior.

The future of this scenario is to implement it to the main security orchestration
product from Cisco SecureX. This will make the solution even easier to deploy
resulting in much grater and broader use. This could render this scenario in to a
standard security product deployed in production networks. But before this happens
the whole code implementation is available under the open source MIT licence on
Github: https://github.com/jakuSk/umbrella_behaviour-security.

56

https://github.com/jakuSk/umbrella_behaviour-security

Bibliography
[1] IBM. 2020. Cost of a Data Breach Report 2020. Cost of a Data Breach Re-

port 2020 [online]. New Orchard Road Armonk, NY 10504: IBM Corporation.
Available at: https://www.ibm.com/downloads/cas/RZAX14GX

[2] MORGAN, Steve. 2019. Global Cybersecurity Spend-
ing Predicted To Exceed 1𝑇𝑟𝑖𝑙𝑙𝑖𝑜𝑛𝐹𝑟𝑜𝑚2017 −
2021.𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑦𝑏𝑒𝑟𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑆𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝑜𝐸𝑥𝑐𝑒𝑒𝑑1 Trillion From
2017-2021 [online]. 1 Harbor Drive, Sausalito CA 94965: Cybersecurity
Ventures. Available at: https://cybersecurityventures.com/cybersecur
ity-market-report/

[3] Coronavirus update: In the cyber world, the graph has yet to flatten. 2020.
Check Point Software Tehcnologies LTD [online]. San Carlos 959 Skyway Road
Suite 300 San Carlos, CA 94070: Check Point. Available at: https://blog.c
heckpoint.com/2020/04/02/coronavirus-update-in-the-cyber-world-t
he-graph-has-yet-to-flatten/

[4] Automation, Visibility Remain Biggest Issues For Cybersecurity Teams, From
New Fidelis Report. 2019. Fidelis Cybersecurity [online]. Bethesda, MD: Fidelis
Cybersecurity. Available at: https://fidelissecurity.com/newsroom/sta
te-threat-detection-2019/

[5] RDP and VPN use skyrocketed since coronavirus onset. 2020. ZDNet [online].
www.zdnet.com: Catalin Cimpanu. Available at: https://www.zdnet.com/ar
ticle/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/

[6] Network automation [online]. 2022. Corporate Headquarters 170 West Tasman
Dr. San Jose, CA 95134 USA: Cisco Systems. Available at: https://www.ci
sco.com/c/en/us/solutions/automation/network-automation.html

[7] AAA Security: What is Authentication, Authorization, and Accounting
(AAA)?. © 2022. AAA Security [online]. 899 Kifer Road Sunnyvale, CA 94086
US: Fortinet. Available at: https://www.fortinet.com/resources/cybergl
ossary/aaa-security

[8] RADIUS System Components. ©2021. The RADIUS protocol [online]. 100 Cen-
trepointe Dr, Suite 200 Ottawa, ON K2G 6B1 Canada: NetworkRADIUS.
Available at: https://networkradius.com/doc/3.0.10/concepts/intr
oduction/components.html

57

https://www.ibm.com/downloads/cas/RZAX14GX
https://cybersecurityventures.com/cybersecurity-market-report/
https://cybersecurityventures.com/cybersecurity-market-report/
https://blog.checkpoint.com/2020/04/02/coronavirus-update-in-the-cyber-world-the-graph-has-yet-to-flatten/
https://blog.checkpoint.com/2020/04/02/coronavirus-update-in-the-cyber-world-the-graph-has-yet-to-flatten/
https://blog.checkpoint.com/2020/04/02/coronavirus-update-in-the-cyber-world-the-graph-has-yet-to-flatten/
https://fidelissecurity.com/newsroom/state-threat-detection-2019/
https://fidelissecurity.com/newsroom/state-threat-detection-2019/
https://www.zdnet.com/article/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/
https://www.zdnet.com/article/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/
https://www.cisco.com/c/en/us/solutions/automation/network-automation.html
https://www.cisco.com/c/en/us/solutions/automation/network-automation.html
https://www.fortinet.com/resources/cyberglossary/aaa-security
https://www.fortinet.com/resources/cyberglossary/aaa-security
https://networkradius.com/doc/3.0.10/concepts/introduction/components.html
https://networkradius.com/doc/3.0.10/concepts/introduction/components.html

[9] FreeRADIUS [online]. © 2018. The FreeRADIUS Server Project and Contribu-
tors. Available at: https://freeradius.org/about/#project

[10] What Is a Database?. © 2022. ORACLE [online]. 500 Oracle Parkway, M/S
5op7 Redwood Shores, CA 94065 Attention: Trademark and Copyright Legal
Department: Oracle Corporation. Available at: https://www.oracle.com/d
atabase/what-is-database/

[11] What is PostgreSQL?. © 2022. PostgreSQL [online]. he PostgreSQL Global
Development Group. Available at: https://www.postgresql.org/about/

[12] PgAdmin [online]. © 2021. PostgreSQL Community Association of Canada.
Available at: https://www.pgadmin.org/docs/pgadmin4/latest/index.htm
l

[13] Cisco Umbrella at a glance. 2017. Cisco Umbrella [online]. Cisco Systems, Inc.
170 West Tasman Dr. San Jose, CA 95134 USA: Cisco. Available at: https:
//www.insight.com/content/dam/insight-web/Canada/PDF/partner/cis
co/cisco-umbrella-at-a-glance.pdf

[14] Endpoint Security. 2021. CheckPoint [online]. San Carlos 959 Skyway Road
Suite 300 San Carlos, CA 94070: Check Point. Available at: https://www.ch
eckpoint.com/solutions/endpoint-security/

[15] What is an API? 2017. RedHat [online]. 100 E. Davie St. Raleigh, NC 27601:
RedHat. Available at: https://www.redhat.com/en/topics/api/what-are-
application-programming-interfaces

[16] What is a REST API? 2017. RedHat [online]. 100 E. Davie St. Raleigh, NC
27601: RedHat. Available at: https://www.redhat.com/en/topics/api/wha
t-is-a-rest-api

[17] JSON vs XML. W3Schools [online]. W3Schools. Available at: https://www.
w3schools.com/js/js_json_xml.asp

[18] S. Zhang, Y. Gao, M. Zhang, J. Ge and S. Wang, "The Study of Network
Security Event Correlation Analysis Based on Similar Degree of the Attributes,"
2013 Fourth International Conference on Digital Manufacturing & Automation,
2013, pp. 1565-1569, doi: 10.1109/ICDMA.2013.375.

[19] CVE [online]. 2021. MITRE Corporation. Available at: https://cve.mitre.
org/index.html

58

https://freeradius.org/about/#project
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.postgresql.org/about/
https://www.pgadmin.org/docs/pgadmin4/latest/index.html
https://www.pgadmin.org/docs/pgadmin4/latest/index.html
https://www.insight.com/content/dam/insight-web/Canada/PDF/partner/cisco/cisco-umbrella-at-a-glance.pdf
https://www.insight.com/content/dam/insight-web/Canada/PDF/partner/cisco/cisco-umbrella-at-a-glance.pdf
https://www.insight.com/content/dam/insight-web/Canada/PDF/partner/cisco/cisco-umbrella-at-a-glance.pdf
https://www.checkpoint.com/solutions/endpoint-security/
https://www.checkpoint.com/solutions/endpoint-security/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html

[20] PostgreSQL Installation Steps. © 2022. PostgreSQL [online]. The PostgreSQL
Global Development Group. Available at: https://www.postgresql.org/dow
nload/linux/ubuntu/

[21] GOOLEY, Jason a Chris JACKSON. Cisco Certified DevNet Associate
DEVASC 200-901 Official Cert Guide.Pearson Education, 2020. ISBN:
0136642969

[22] Cloud Security APIs [online]. 2021. Cisco Systems, Inc. 170 West Tasman Dr.
San Jose, CA 95134 USA: Cisco DevNet. Available at: https://developer.
cisco.com/docs/cloud-security/

[23] Cisco Umbrella reporting - Activity search [online]. 2021. Europe: Cisco. Avail-
able at: https://dashboard.umbrella.com

[24] Fixing git HTTPS Error: "bad key length" on macOS 12 [online]. 2021. Stack-
overflow: User: nd. Available at: https://stackoverflow.com/questions/
69734654/fixing-git-https-error-bad-key-length-on-macos-12

59

https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://developer.cisco.com/docs/cloud-security/
https://developer.cisco.com/docs/cloud-security/
https://dashboard.umbrella.com
https://stackoverflow.com/questions/69734654/fixing-git-https-error-bad-key-length-on-macos-12
https://stackoverflow.com/questions/69734654/fixing-git-https-error-bad-key-length-on-macos-12

A Contents of the electronic attachment
The entire application is in an electronic attachment and the directory structure is
described below.

/ ... root directory of the appended archive
.vscode/..vscode settings

launch.json
settings.json

help_scripts/..help scripts
get_categories.py API call to get all categories and their IDs

src/..all source files
behaviour_risk_calculator/..................main code of the application

services/.......................support classes for the main application
config_service.py
database_service.py
umbrella_reporting_service.py

app.py ...main application
config.json ... configuration file
requirments.txt requirements needed for the app to run
risk_score_calculation.py

whitelist_script/..white list app
config.json ... configuration file
config_service.py
requirments.txt
whitelist.pyapplication for whitelisting desired user endpoint

.gitignore.........file that ignores unwanted files from uploading to repository
CURLS.md...markdown file with curls
LICENCE..................................main file of the slides for presentation
README.md.....................................description file of the repository

60

	Introduction
	Endpoint security
	Established practice in endpoint security
	Risks of decentralised operations
	Future of endpoint security

	Behaviour vs Compliance
	Compliance
	Behaviour

	Platform selection
	Automation and security products
	Third party automation and security products

	Chosen solutions and tools used
	Cisco ASA
	Server - VMWARE VM_Ubuntu
	Programming language
	API
	Data formats
	AAA
	Database
	Umbrella

	Correlation of information
	CVE Mapping
	Mapping of know attack vectors

	Manual procedure
	Manual procedure, which will be surpassed by automation

	Implementation details
	Solution
	Configuration
	Environment variables

	Cisco Umbrella
	END Point Device
	CISCO ASA
	Group Policies
	Dynamic Access Policies
	AAA Server Groups

	Server
	VM - Ubuntu
	FreeRADIUS server
	PostgreSQL

	Code implementation
	config.json
	Main file app.py
	Service - config_service.py
	Service - umbrella_reporting_service.py
	Service - database_service.py
	Service - risk_score_calculation.py
	whitelist.py

	Results
	Conclusion
	Bibliography
	Contents of the electronic attachment

