
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

LANGUAGE FORHIGH-LEVEL DESCRIPTIONOFUSERINTERFACE REQUIREMENTS
VYSOKOÚROVŇOVÝ JAZYK PRO POPIS UŽIVATELSKÉHO PROSTŘEDÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. MARTIN RAŠOVSKÝ
AUTOR PRÁCE
SUPERVISOR Ing. RADIM KRČMÁŘ
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This master’s thesis investigates new high-level language for description of graphical user
interface. The theoretical part of this thesis studies the UI technologies and software
methodologies from a side of general requirements on new language. From that, we de-
rive general requirements specifying what it is meant to be a functional part of an UI. We
also list requirements for special educational needs according to known computer therapy
design principles. According to analyzed requirements is proposed a design of new lan-
guage, including an algorithm of composition of UI components for further implementation
of the language. Designed language is implemented in C# programming language and is
demonstrated on a representative example. We conclude this work with outlining further
extensions of the proposed language.

Abstrakt
Diplomová práce se zabývá problematikou návrhu vysokoúrovňového jazyka pro popis grafick-
ého uživatelského rozhraní. Teoretická část rozebírá současné technologie uživatelských
rozhraní zejména pro stanovení požadavků na nový jazyk. Z těchto poznatků násladně
jsou shrnuty zásadní požadavky, které se nutně musí zakomponovat při návrhu samotného
jazyka. Jsou zde zmíněny i požadavky z pohledu osob se specifickými vzdělávacími potře-
bami dle tzv. návrhových principů počítačové terapie. Následně práce dle analyzovaných
požadavků navrhuje jazyk pro vysokoúrovňový popis uživatelského rozraní. Součástí návrhu
jazyka je také popis algoritmu pro kompozici jednotlivých komponent definovaných v jazyce
do výsledného uživatelského prostředí. Navržený jazyk je implementován v programovacím
jazyce C#. Implementace je demonstrována na reprezentativních příkladech. Nakonec se
práce věnuje dalším možným rozšířením jazyka.

Keywords
Graphical user interface, high-level language, usability, accessibility, touch screen design,
computer therapy, design principles, MDE, SBVR, OCL, visual programming.

Klíčová slova
Grafické uživatelské prostředí, vysokoúrovňový jazyk, použitelnost, přístupnost, dotykové
rozhraní, počítačová terapie, návrhové principy, MDE, SBVR, OCL, vizuální programování.

Reference
RAŠOVSKÝ, Martin. Language for High-Level Description of User Interface Requirements.
Brno, 2018. Master’s thesis. Brno University of Technology, Faculty of Information Tech-
nology. Supervisor Ing. Radim Krčmář

Rozšířený abstrakt

Pojem grafické uživatelské prostředí1 je v oblasti informatiky část aplikace umožnující
uživateli snadnou interakci se systémem, např. pomocí různých grafických tlačítek a tex-
tových polí. Postupem času byly vyvinuty nástroje pro rychlejší a jednodušší vývoj těchno
uživatelských rozhraní. Pomocí těchto nástrojů se začaly vyvíjet systémy s uživateským
prostředím využívající podobné ovládací prvky a díky tomu se uživatelé nemusejí učit jak
používat uživatelské prostředí v každé nové aplikaci. V současnosti je téměř většina mod-
erních aplikací rozšířena právě o toto grafické uživatelské prostředí. Na druhou stranu
pokud programátor chce aplikace inovovat do novějších technologií vzhledem k uživatel-
skému prostředí, tak musí typicky přepsat zdrojový kód. Daný proces následně stojí mnoho
nákladů. Pokud se podíváme na příklad vývoje ASP.NET technologií, tak zde mohla být
daná aplikace napsána v technologii ASP.NET Web forms. Po několika letech byla vydána
další technologie ASP.NET MVC. Pokud by právě programátor chtěl využívat nejnovější
technologii, musel by pak aplikaci v technologii ASP.NET Web forms přepsat do technolo-
gie ASP.NET MVC. Navíc se obě technologie liší syntaxí a architekturou. Tedy abychom
dosáhli migrace technologie uživatelského prostředí, firma musí typicky investovat do vývoje
zcela nové aplikace. Navíc výsledná migrovaná verze může vypadat zcela stejně jako ta
původní.

Přesně daný vysvětlený problém se snaží řešit programátoři při vývoji komerční ap-
likace corima, vyvíjené firmou COPS Gmbh. V této firmě vznikl požadavek vytvořit tutéž
aplikaci, avšak v jiné technologii uživatelského rozhraní. corima je mnohouživatelská client-
server aplikace and aplikační platforma v jednom. Serverová strana i klientská strana je
vyvíjena ve frameworku .NET. Serverová strana je vyvíjena v technologii .NET WCF,
zatímco klientská strana je vyvíjena v .NET WPF technologii. Jelikož většina business
logiky je umístěna na serveru, není problém tuto business logiku opětovně použít novým
klientem. Problém je ovšem s opětovným použitím uživatelského prostředí. Proto vznikl
nápad vytvořit mechanismus konverze jedné .NET uživatelské technologie do druhé. Aby-
chom dosáhli dané konverze, bude pravděpodobně nutné vytvořit reprezentaci uživatelského
prostředí nezávislou na konkrétní .NET technologii. Reprezentace uživatelského prostředí
by měla být vysokoúrovňová a měla by obsahovat prostředky pro popis běžných uživatel-
ských prostředí v aplikační platformě corima.

Přístup k návrhu vysokoúrovňového popisu uživatelského prostředí se bude odvíjet od
funkce komponent uživatelského prostředí.

Výsledným cílem práce je navrhnout deklarativní vysokoúrovňový jazyk pro nezávislý
popis uživatelského rozhraní. Uživatelské prostředí popsané v tomto novém jazyce bude
dále vstupem do tzv. generátoru. Tento generátor je program v jazyce c#, který na zák-
ladě vstupu bude generovat adekvátní výstup ve formě uživatelského prostředí v konkrétní
cílové .NET technologii uživatelského prostředí. Použití generátoru bude demonstrováno
na typických CRUD formulářích, které byly vysvětleny v textu práce.

Následně jsou zanalyzovány požadavky pro návrh tohoto jazyka. Tyto požadavky
jsou nezávislost technologie uživatelsého rozhraní, snížení nákladů během migrace z jedné
technologie uživatelského prostředí do druhé technologie uživatelského prostředí, oddělení
funkce a konstrukce v daném jazyce, zohlednění různých atributů komponent uživatelského
prostředí, zohlednění požadavků ohledně finančních aplikací a možnost propojení uživatel-
ského prostředí s back-end logikou.

1Pro účely zkrácení textu budeme používat pojem uživatelské prostředí

Na základě těchto definovaných požadavků je navržen nový jazyk. Tento nový jazyk je
navržen jako meta-model a to z toho důvodu, že jeho reprezentace může být jak grafická,
tak textová, např. XML. V práci je uvedeno schéma tohoto meta modelu s vysvětlením jeho
důležitých částí. Nyní řekneme, že daný jazyk se zkládá z následujících entit: technologie
uživatelského rozhraní, komponenta reprezentující fukci, konstrukce, stránka uživatelského
rozhraní, obecná vlastnost, kontrukční vlastnost. Dané entity definují stránku uživatel-
ského rozhraní a spolu s technolgií jsou dále vstupy do generátoru. Nakonec v návrhu
definujeme algoritmus pomocí něhož generátor komponuje definované konstrukce v jazyce
do výsledného uživelského rozhraní.

Implementací tohoto jazyka v jazyce C# je vhodné převedení návrhu jazyka jako meta-
modelu do reálného použití v praxi do jazyka C#. Jednotlivé entity jsou převedeny do
zdrojového kódu a je implementován algoritmus generátoru a vhodně rozšířen pro použití
v aplikační platformě corima. Je zde ukázáno, že systém je schopen generovat CRUD
formuláře a propojit uživatelské prostředí s back-end logikou aplikace.

Vyhodnocení ukazuje, že byly splněny všechny body zadání včetně vytyčených konkrét-
ních cílů během práce. V rámci vyhodnocení bylo ukázáno, že generátor je schopný vzít v
úvahu různé definice uživatelského rozhraní a podle nich generovat různé realizace. Zároveň
bylo ukázáno, že systém je schopný generovat uživatelské prostředí definované pro jedince
se specifickými vzdělávacími potřebami.

Možné další rozšíření práce bylo shledáno v optimalizaci algoritmu pro kompozici uži-
vatelských komponent navrženého jazyka. Problém může nastat, pokud v jazyce bude
definováno příliš mnoho komponent s podobnými obecnými vlastnostmi. V tomto případě
může daný algoritmus vybrat méně vhodnou konstrukci dané komponenty uživatelského
rozhraní.

Language for High-Level Description of User In-
terface Requirements

Declaration
Hereby I declare that this masters’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Jiří Fiala, Ing. Krčmář Radim, and Ing. Ondřej Dvořák. All
the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

. .
Martin Rašovský

May 23, 2018

Acknowledgements
I am using this opportunity to express my gratitude to the Ing. Ondřej Dvořák who
supported me throughout the completion of this thesis.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Overview . 3
1.3 Structure of the Text . 4
1.4 Goals . 5

2 State of The Art 6
2.1 Separating Function and Construction . 6
2.2 UI Principles . 7

2.2.1 UI principles of current designs (General) 7
2.2.2 UI principles of current designs (Business-Domain) 17
2.2.3 UI principles of current designs (User groups) 18

2.3 Approaches to describe UI . 18
2.3.1 Languages for UI definition . 18

2.4 CRUD operations . 24

3 Analysis and design of new language for UI definition 26
3.1 Analysis of requirements for a new language 26

3.1.1 Independence of the user interface technology 26
3.1.2 Reduction of a cost within migration between UI technologies 26
3.1.3 Separation of the function and construction 27
3.1.4 Attributes of UI controls (Usability, accessibility, HCI requirements

and user groups) . 27
3.1.5 Business-domain requirements . 27
3.1.6 Connection to back-end logic . 27

3.2 Goals Revisited . 28
3.3 Proper design of UI language . 28
3.4 Algorithm of composition of UI . 35

4 Implementation 39
4.1 Technical information . 39
4.2 Implementation of .NET library . 40
4.3 Implementation of constructions for CRUD operations 44

5 Related work 45

6 Evaluation 47
6.1 Evaluation with respect to the assignment 47

1

6.2 Evaluation with respect to the Related work 48
6.3 Evaluation of implemented language and results 48

6.3.1 Evaluation of high-level form of the proposed language 49
6.3.2 Evaluation of independence of UI technology 49
6.3.3 Evaluation of separation of function and construction 49
6.3.4 Evaluation of attributes of UI controls and business domain require-

ments . 49
6.3.5 Algorithm of composition of UI . 52
6.3.6 Reduction of cost within the migration 52

7 Conclusion 53

Bibliography 55

Appendices 59
List of Appendices . 60

A CD contents 61

B Figures 62

2

Chapter 1

Introduction

1.1 Motivation
In information technology, a graphical user interface (GUI)1 is a part of a software giving
a user control over the application, for instance using buttons and text fields. Currently,
most of the modern software applications are extended with GUI. A program with GUI
includes graphical controls that user can control with mouse, keyboard or with touch screen.
Over time user interface (UI) technologies have evolved to give developers the ability to
create these GUI easier and faster. The developer is now able to create new applications
having similar design and users do not have to relearn the interface. On the other hand,
a switch to a new technology usually requires to rewrite the code. Such a re-engineering
of aging system is related with a big cost. E.g., in development of web based ASP.NET2

application, an application was initially written in ASP.NET Web forms3. After few years,
new technology called ASP.NET MVC4 was released. Although it shares the name with
original ASP.NET, it differs in syntax and architecture. Next technology in ASP.NET
was introduced ASP.NET API that came up with the use of JavaScript frameworks, e.g.,
AngularJS, Knockout, or React. To gain features offered by these technologies, the company
must invest into rebuilding the whole software. However, the resulting UI mostly looks and
feels the same, only the technology underneath changes.

Therefore the motivation of this thesis is to reduce costs of migrating UI to new tech-
nologies. To achieve that, the migration should try to keep two aspects:

• the same function of migrated UI,

• certain UI attributes of migrated UI.

1.2 Overview
During a life-cycle of a commercial software system corima, developed by COPS GmbH,
a requirement for a client in new technology came up. corima is a multi-user client-server

1Graphical user interface is being shortened to user interface (UI)
2ASP.NET is a framework designed for building enterprise-class server-based web applications using

.NET on Windows.
3ASP.NET is Web forms is one of the ASP.NET web development models and it is the oldest one.
4ASP.NET MVC is is one of the ASP.NET web development models. ASP.NET MVC is a framework

using Model View Controller (MVC) design pattern.

3

application and an application platform at once. A server and a client are both developed
in .NET framework. Server side is developed in .NET WCF5 technology, while the client
is developed in .NET WPF6 technology. New client for corima is demanded in ASP.NET
technology. Since a business logic is mostly placed on a server-side, the new required client
can fully reuse it. However, an idea of reusing client-side source code arose. The idea was to
introduce a mechanism to convert UI from one .NET technology to another. To achieve the
conversion, some new technology-independent representation of UI should be established.
A representation should be independent from any existing language and should describe
the UI well enough for most common usages in corima.

An approach would require to separate its function from a construction in a specific
technology. Thus, instead of describing UI by explicitly referring to UI constructs of given
technology (e.g., JavaScript Text-box), we should concentrate on describing its function
(e.g., Text Input). The use of so-called declarative language seems to be a natural choice
for describing the UI. Therefore, this thesis elaborates on how to represent User interface
requirements using a higher-level description. It investigates the optimal structure of such a
language, it shows implied restrictions (e.g., limited developer’s freedom), and it prototypes
the use of this language in corima.

Hence, the goal of this thesis is to introduce a declarative language for an independent
UI description. The code in that language will be further used as an input for so-called
generator. For purposes of corima, the generator will be .NET library generating7 UI in
the required .NET technology. Generator is the key factor of choosing how the final UI will
look like. This way we will achieve the consistency between the different .NET technologies
while having the same declarative description of the UI. Therefore we could generate an
application to HTML and CSS for a ASP.NET web application and XAML files for a WPF
application.

1.3 Structure of the Text
In Section 1.4, we will define the goals of this thesis. In Chapter 2 of this thesis, we will
describe the general rules for user interface from which will be derived the requirements
on the new language. This also includes the requirements from a point of usability and
accessibility, which are very important especially for individuals with specific educational
needs. Here we come from the domain of computer therapy design principles, that offers
solutions to common issues in UI design. Further in Section 2.3, we will describe current
languages that are used for the UI definition and can be taken as an inspiration for the
new language, where will be taken the advantages of these languages for the new proposed
language. In Section 3.2, we will revisit the goals and state the specific goals that should
be achieved. In the Chapter 3, there will be analyzed the problem and proposed a high-
level language. In the Chapter 4, we will describe how the language was implemented in
.NET and how generator was constructed. In the Chapter 5, we will show the related
work, possibilities how to generate UI from other existing languages, and why their direct

5The Windows Communication Foundation (WCF) is a framework for building service-oriented applica-
tions (SOA). Using WCF, a developer can expose endpoints from which data can be send between a server
and a client.

6The Windows Presentation Foundation (WPF) is a framework for building user interactive Windows
applications. WPF provides a consistent programming model that separates UI from business logic.

7Generator represents .NET generating library.

4

use in corima is not cumbersome. Finally, in Chapter 7 we will conclude the thesis in the
conclusion and provide how the further integration to corima should look like.

1.4 Goals
The goal of this thesis is to propose a solution to reduce costs of migration of UI from one
.NET technology to another:

1. Define characteristics of typical UI,

2. Propose a language to describe characteristics of UI,

3. Propose a mechanism to make the use of described characteristics,

4. Evaluate, how the mechanism and language can help to reduce costs of migration
from one UI technology to another.

5

Chapter 2

State of The Art

To design a high-level language, we must introduce common principles of UI first. We cover
these principles from the most general to the most specific ones. All important aspects of
these discussed principles should influence the language design of language accordingly.

While we need to propose a design of language keeping some attributes and its function,
we need to discuss possibilities how the separation of function and construction with its
attributes can be solved. One of those approaches is studies in Section 2.1.

In Section 2.2.1, we cover common approaches to achieve usability and accessibility of
each UI control. We follow with the groups of common UI controls and their common
constructions, including the touch screen design principles for these constructions. Further
we will study the computer therapy design principles with focus on UI. Finally, we derive
requirements that should be considered in new language describing UI on a general level.

Next, in Section 2.2.2, we reveal specifics of UI principles within certain business do-
main1 . There are described required attributes for finance domains that should be con-
sidered in new language. Finally for UI principles there will be described how user specific
groups have impact of the UI itself and how it should be considered in language too.

New language is not needed to design from scratch, therefore we will study and describe
the current approaches how user interfaces are defined. For each approach there will be
finally concluded what we can benefit from it and what is not suitable for our purposes and
the explanation of the reason.

The mechanism should be demonstrated on some complex UI. As an example of complex
UI is UI performing so called CRUD operations among some memory unit. We will provide
an explanation what these CRUD operations are and what are minimal requirements that
an UI performing these CRUD operations should consist of.

2.1 Separating Function and Construction
The goal of this thesis is to reduce costs on migrating UI from one technology to another.
One possibility to assess this problem is to clearly separate a function and a construction
(F/C) of a system (i.e., UI), and to map F to C using a rigorous engineering way. This
approach is grounded in findings of Enterprise Engineering (EE)[16]. Their applicability
in Software Engineering has been studied by researchers at Faculty of Information Tech-
nology at Czech Technical University (FIT CTU) in Prague. Thus, in this thesis, we refer

1In this text, business domain represents all business specific activities such as finance, accounting,
marketing, medicine, and research.

6

to a paper Affordance-driven Software Assembling (ADA)[18], which overviews the con-
cepts of software architecture aiming at reducing costs of systems by clearly separating
their function from their construction. The research [18] explains, that based on so-called
𝜏 -theory (Teleology Across Ontology) [15] and 𝛽-theory (Binding Essence to Technology
under Architecture) [14], software system can be assembled from certain components. How-
ever, this approach expects that components expose their properties, and that we clearly
describe users with their purposes on using the system. Furthermore, the approach ex-
pects a reasonable automated, or semi-automated mapping algorithm selecting convenient
components. The Figure 2.1 demonstrates this approach.

Figure 2.1: Affordances in component-based systems [18]

Since in this thesis, we want to propose a solution of building up a system respecting
limitations of challenged individuals, and we want to reduce costs on migrating systems
from one technology to another, the research at FIT CTU is an important basis of our
work.

2.2 UI Principles
A designer has to involve the creativity to outcome the interesting appearance of an UI.
However, the UI would be worthless if it would not keep certain aspects that leads the
design to be usable by the appropriate target group. No matter what kind of UI for any
kind of application is designed, the UI should consists of common UI regions (called UI
controls) for which all targets groups are used to. Further when a designer constructs the
UI for a target group with some physical or mental disposition, a designer should take these
dispositions into account and produce the design to be usable also for these target users,
e.g., a designer designs a suitable sound control for blind people. All these general aspects
(called principles) of a UI will be described in the further text with then focus on specific
needs of mentally challenged people. We will also propose a common set of UI controls that
might be considered by new language.

2.2.1 UI principles of current designs (General)

Usability and Accessibility

Generally, a user interface (UI) can be created individually according to a developer’s
attitude and a design feeling. A given user interface is usually not appropriate for everybody.
A number of users can face troubles to understand it. Others are not able to use it at all.
The UI is commonly judged by its user friendliness, or easiness to use. However, the right
technical term expressing the quality of UI is known as a usability. Usability has many
definitions. The ISO 9241 standard on Ergonomics of Human System Interaction (Part 11
1998) defines usability as [25]:

7

This part deals with the extent to which a product can be used by specified users
to achieve specified goals with effectiveness (Task completion by users), efficiency
(Task in time) and satisfaction (responded by user in term of experience) in a
specified context of use (users, tasks, equipments and environments).

Jakob Nielsen [35] states:

Usability has multiple components and is traditionally associated with these five
usability attributes: learn-ability, efficiency, memorability, errors, satisfaction.

Even though the designed system is not very usable, the common practice in companies
is solved by introductory lessons or trainings to explain end-users how to deal with the
new software. However, there can be also users that have some dispositions to be not able
to work with presented software at all. This kind of people can be children that cannot
read, seniors, somehow mentally challenged individuals, etc. Due to this facts, the designer
should follow some rules during the creation of user interface to avoid the problem stated
above. To address this problem, another essential term to study is accessibility. Accessibility
is usually connected with the use of UI by people with disabilities and by the older people.
ISO 9241 standard on Ergonomics of Human System Interaction (Part 171 2008b) defines
accessibility as [26]:

The usability of a product, service, environment or facility by people with the
widest range of capabilities.

By accessibility we also understand the physical ability to have “access” to the usage of
a provided system. Therefore, the “accessibility” plays an important role in a system. It
expresses a barrier between the system and its user.

Firstly, this text will be more focused on usability. That means that it will be more
focused on general rules for well usable user interface. In further sub sections we will specify
other rules for the touch screen design and mentally disabled people (accessibility).

From general point of view, the design should maximize the number of people who can:

• reach the controls (accessibility),

• find the individual controls or keys if they can’t see them (visibility),

• read the labels on the controls or keys (readability),

• physically operate controls and other input mechanisms (physically accessible),

• understand how to operate controls and other input mechanisms (intuitive),

• connect special alternative input devices,

• view the output display without triggering a seizure (compactness).

That means, there should be some standard how to create UI to have the best usability
of demanded product. In the process of designing user interface, the UI is typically produced
from a finite set of elements. To increase the usability, it is recommended to use well-known
elements. The users are familiar with them, and they expect them to behave in a certain
way. Thus, choosing this kind of elements seems to maximize the number of people capable
to use them.

User interface elements are:

8

• input controls,

• navigational components,

• informational components,

• containers.

Input controls

Input controls allow user to interact with an application. Widely used input controls are
check-boxes, radio buttons, drop-down lists, list boxes, buttons, toggles, text fields, date
fields, and buttons.

Check-boxes allow the user to select one or more options from a set. It is usually best
to present check-boxes in a vertical list. More than one column is acceptable as well, if
the list is long enough that it might require scrolling or if comparison of terms might be
necessary. See fig. 2.2 for check-boxes example.

Figure 2.2: Check-boxes example

Radio buttons are used to allow users to select one item at a time.
Drop-down lists allow users to select one item from a set at a time, but are more

suitable for large sets. The list is shown after clicking the drop-down list and user is able
to scroll through a set and select one item.

A button indicated an action upon touch and is typically labeled using a text, an icon
or both. See fig. 2.3 for a button example.

Figure 2.3: A button example

A drop-down button consists of a button that when clicked displays a drop-down list
of mutually exclusive items. See fig. 2.4 for a button example.

Figure 2.4: A drop-down button example

9

A toggle button allows the user to change a setting between two states. They are most
effective when the on/off states are visually different. See fig. 2.5 for a button example.

Figure 2.5: Toggle buttons example

Text fields allow users to enter text. It can allow either a single line or multiple lines
of text. See fig. 2.6 for a button example.

Figure 2.6: Text fields example

Navigational components

Navigational components are elements such as search fields, sliders, icons and pagination
dividers. These controls allows user to navigate in the system and increase usability.

Search field allows users to enter a keyword or phrase and submit it to search the
index with the intention of getting back the most relevant results. Typically search fields
are single-line text boxes and are often accompanied by a search button. See fig. 2.7 for a
button example.

Figure 2.7: Search field example

A slider, also known as a track bar allows users to set or adjust a value. When the
user changes the value, it does not change the format of the interface or other information
on the screen. See fig. 2.8 for a button example.

Figure 2.8: Slider example

An icon is a simplified image serving as an intuitive symbol that is used to help users
to navigate the system.

Pagination divides content up between pages, and allows users to skip between pages
or go in order through the content. See fig. 2.9 for a button example.

10

Figure 2.9: Pagination example

Informational components

Informational components are elements indicating additional information to the user for
better user experience. The user can be for example informed if data is loading or if an
error occurred. The informational components are: a progress bar, a tool-tip, a message
box and a modal window.

A progress bar indicates where a user is as they advance through a series of steps in
a process or it can indicate percentage done from the whole process. Process can be for
example downloading of some file or shopping order. See fig. 2.10 for a button example.

Figure 2.10: Progress bar example

A tool-tip allows a user to see hints when they hover over an item indicating the name
or purpose of the item. See fig. 2.11 for a button example.

Figure 2.11: Tool-tip example

A message box or dialog box is a smaller window in window that provides information
to users and requires performing an action.

A modal window is smaller window within window and requires users to interact with
it in some way before they can return to the parent window. See fig. 2.12 for a button
example.

Figure 2.12: Modal window example

11

Containers

Containers are elements that contain any kind of information in an effective way. The only
one commonly used container is an accordion.

An accordion is a vertically stacked list of items that utilizes show/hide functionality.
When a label is clicked, it expands the section showing the content within. There can have
one or more items showing at a time and may have default states that reveal one or more
sections without the user clicking. See fig. 2.13 for a button example.

Figure 2.13: Accordion example

Touch screen design

When we focus on the touchscreen design, the well known user controls should be changed
to satisfy users interacting with the system via their fingers and hands that interact with
the system itself and therefore to be usable with human hands.

Nielsen creates a set of design patterns applicable for the construction of touchscreen
based mobile design [36]. These problems are grouped in three main problem areas: (1)
Utilizing screen space, (2) Interaction mechanisms and (3) Design at large. Furthermore,
there are patterns based on experiments made for the purpose of usability heuristics for
touchscreen-based mobile devices [24] [23]. The patterns use the same template like Nielsen
used [36] with some modifications.

As the outcome, there are new patterns for mobile touch screen devices [24]:

• TMDP1.1 The thumb rule,

• TMDP1.2 The thumb rule #2,

• TMDP3 Explicit user control,

• TMDP4 Recognizable icons,

• TMDP5 Clean form fields,

• TMDP6 Shape of buttons.

The TMDP1.1 The thumb rule is defined as following:

Use When: Designing the interface. Placing main elements/options on the
screen.
How: Place main elements within a range of a semicircle with a 2,7 inches’
radius from the right-middle side of the screen.

12

Why: The average length of a human thumb is 2,7 inches. Considering that
statistically, most of users hold the phone with their right hand and use their
right thumb to interact with the device, main elements should be placed within
user’s reach...[24]

For purposes of this thesis there should be added another rule regarding the size of the
finger. It means that user controls should have minimal size to be comfortably clicked on
and to avoid clicking the elements that user doesn’t want to click on. We will focus on this
in following section too.

Designs for mentally challenged individuals

In-spite the fact the touch screen is much more usable than common PC for mentally
challenged individuals, according to current studies, opinions and experiences, mentally
challenged people can encounter some problems using touch screen devices [21]. The most
common problems occur with buttons, menus, a text size, and with the touch screen devices
itself. Buttons are often too small, it cannot be clicked on them when pressing too long and
provides no action. Menus are constructed that there is a lot of options to select, most of
them unnecessary or misleading. Text sizes are too small to read even with the corrective
lenses.

The possible solution could be in keeping following set of requirements:

• Remove unneeded buttons (images, functions). Try to find negative factors on ev-
ery button (images, functions). If the button (image, function) is here only due to
aesthetic purpose, remove it,

• Input controls must be of a suitable size so that they can be easily pressed or even
seen,

• Add voice output for available menus for blind people,

• Add alternative feedback to interface components such as scrollbars, drop down lists
etc., when user interacts them,

• Add more information to the user, for example: when a system needs two clicks to
perform some action, after first click it should inform user to click again on another
component.

These set of rules can solve many problems in using UI by mentally challenged people,
however, these studies do not cover all issues regarding usage of UI by mentally challenged
people. These rules are too specific and only somehow decreases the set of problems that
can occur. Due to this fact we need some study that can generally describe the solution,
from which we can derive possible solution on at least the most common problems occurring
in the study of mentally challenged.

Design principles: Computer Therapy (i-CT)

The project of the computer therapy represents new way of research in a field of information
technology and in result it brings new attitude to therapy for mentally challenged people.
The author of the project itself is Ing. Jiří Fiala [19]. In 2012 the project originated
in directly in a mentally disabled care facility and is currently developed on a Faculty of

13

Information Technology Brno University of Technology with a support of Red Hat company
[6], with the non-profit sector donated from ICT resources focused on education and therapy
of mentally challenged people, and with support of experts from iSEN community [4] (SEN
stands for Special Educational Needs).

The detail goal of the presented computer therapy is the application of suitable resources
of information technologies for specification of uniformed standard for a hardware/software
development. This standard should be easily used in practice, should be publicly accessible
and due to its implementation a created software should be effectively usable by people with
some mental disorder (special education and therapy). This should lead to therapy which
has long term effect, decreases impacts of daily issues and compensates deficits, including
help to decrease impact of mental disorder. The synthesis is made from several branches of
study and the problematics is analyzed in its whole life cycle [19] [20] [21]. In the research
of computer therapy there are proposed SW/HW design principles with the same names.
These design principles with the usage of suitable methods from software engineering, e.g.
MDE [37], leads to the improvement of a quality of development process directly on an end
application. Final application (SW) is due to keeping the unified standard better usable on
a current HW and accessible for the target group.

For purposes of this thesis the design principles of computer therapy can be summarized
into several priorities [21]:

• Specification of a goal: Before a development of an application on a specific HW
there should be clearly specified goal, eg. compensation of some dispositions of a
person,

• Safety: Developers and an application should keep security and safety restrictions for
a mentally challenged people. An application should support several different modes
depending on the current user. Modes should be at least for a client, an assistant and
a system administrator.

• Open source: In a development process there should be an emphasis on usage of
open source technologies, together with publicly sharing the source codes. Source
codes should be accessible for free to allow extending itself by another developers
around the world. Also it should be free to use to be able to build with it another
useful applications. A developer should add these extensions back to this application,

• Cross-platform software: An application should be available on several mobile
platforms. The development of application should be handled as cross platform, that
means to be compilable according to developer’s need to all supported platforms,

• Expandability: An application should have clearly defined structure and should
have been implemented in higher programming language with an usage of object
oriented design. A development should be realized according to modern standards,

• Configuration: An application should take into account on individual needs of
clients and support maximal adaptation to this needs. Moreover an application should
support switching between configuration of several clients,

• Usability: Applications should not need any Internet access. Applications should
be usable for its SEN purpose also including the usage outside a school environment.
SEN usability gives more constrains than common usability, hence they are part of
i-CT design principles,

14

• Accessibility: Applications should have low prices to be able to be offered to less
wealthy people and non profit organizations. Further SEN accessibility also setup
other constrains which are matter of proposed CT design principles.

These priorities also let to the design and development of a new framework. With
this framework was also created several applications that satisfy these priorities. The new
framework is called Framework computer therapy and is more deeply described in [27]. The
therapy using presented IT resources are finally used as a permanent activity that can be
offered regularly according to an individual plan. This attitude brings to the target group
several possibilities of usage with new applications [19] [21]:

• Serves as an educational tool: Teaching of school subjects, reading, writing,

• Compensation tool: Becomes as a part of the person,

• Development of intellectual abilities: Handling the daily needs and activities of
every person,

• Free time activities: Serves for relaxation and rest of a person, decreasing of a
stress,

• Connection with other therapies: e.g. the usage for a music therapy.

The design principles of computer therapy for UI: usability and affordances

For the purposes and goals of this thesis we will be more focused on stated design principles
of computer therapy from a view of priorities of usability and accessibility on a mobile touch
screen platform that will be further described according to [21]. The stated standard of the
computer therapy also states design principles with a focus on a user interface and “human
computer interaction” that is also focused on this mobile touch screen devices. These
principles are then called “principles of usability and affordances amplification” .
This is essential for the following design of the high-level language for the description of
user interface, because it states the requirements and criteria for the design. These two
principles will be described in the following subsection.

The principles of usability and affordances amplification

The principles of usability and affordances amplification are also related to general rules
of Human Computer Interaction (HCI)[17], however they do not use some specific set of
proposals that should be kept on specific UI component. It is due to its generality, which
should be applicable to the most of UI components, which may differ in many attributes.
Hence these principles tells the designer generally what should be done in the design of UI
[21].

Definition of problem of affordances: Generally each control or other ac-
tion element in user interface should suggest its usage (affordances). In the case
of mentally challenged individuals, this rule should be multiplied (amplified) by
the degree of intelligence deficiency or deficiency in perception abilities.
Solution for problem of affordances is following: each element of user
interface should be formed well enough (size, shape, color, sound response) to

15

suggest its usage, even for the mentally disabled (e.g. using simplified and ampli-
fied principles of “Design of everyday things”). Furthermore, all gestures should
be intuitive, simply based on common-known, real world gestures (real world of
mentally challenged) [21].

The problem of usability is defined as following: A similar situation
occurs in the focus on user interface element’s practical usability. A user inter-
face element may be usable (touchable) for an intellectually capable individual,
but not usable (touchable) for a mentally challenged individual with worse per-
ception or deficiency in soft motoric functions.
The solution for the problem of usability can be following: Size of ele-
ments should be large enough to avoid “thick finger effect” and distances among
elements should allow freer place to avoid of multiple action-button touches [21].

The same holds for other UI component’s attributes, parameters which can be matter
of invisibility, unreadability, inaccessibility and unintuitivity. For the usage of this thesis
we can list a set of following rules, which are also part of proposed CT design principles
[21] and that should be kept for a usage of designing UI for mentally challenged people:

• shape of an element should have rounded edges,

• color of an element should be different different than its background or in the case of
the same colors these colors should have enough contrast,

• text inside an element should have enough space from the edge of an element and
should be centered inside an element,

• an element should have some minimal size,

• distances between elements should be given from the sizes of two elements together,

• elements should be equally positioned on the space of user interface (to avoid creating
chunks).

Requirements on languages for GUI and design

If we compare the present possibilities and computer therapy, we can figure out that com-
puter therapy solves problems more generally to cover all possible problems. E.g., rules like
“Remove not needed buttons” or “Input controls must be of a suitable size so that they can
be easily pressed or even seen” are covered in “principles of usability and affordances
amplification” . Due to that fact, we will use computer therapy as a domain from which we
will propose set of requirements that should be described by following designed language for
UI definition. From computer therapy, it can be seen that more design principles are con-
cerned about the content of UI description with proper style - construction of each element
and construction among them. However, it also proposes some semantics meaning which
is part of affordances amplification principle (e.g., for certain SEN purpose there should
be used proper UI component, which semantics is the closest to our purpose). In further
part of this thesis we will focus more on construction rules covered in i-CT design principle.
Construction has its functional purpose. E.g., language should be able to somehow describe
the shape of the elements that will be used for the definition of UI. The analysis will be
more discussed in Chapter 3 where we will describe the general solution for all possible

16

descriptions of UI by new language, not only focused on mentally challenged people, but
also for other possible target groups that can occur in the common life situations.

2.2.2 UI principles of current designs (Business-Domain)

When we come to the Business-Domains, such as Finance or medicine, UI is needed to
fulfill all the Domain requirements. Domain requirement is such an attribute specific for a
certain domain. For purposes of the thesis there will be studied requirements in the Finance
domain. In the Finance domain sector there, are typical attributes that should be kept to
keep consistence between Finance applications:

• decimal separator,

• thousand separator,

• currency format,

• negative pattern,

• date-time formats,

• number precision.

Decimal separator is the character used as the decimal separator. For instance, Great
Britain and the United States are two of the few places in the world that use a period (.)
to indicate the decimal place. Many other countries use a comma (,) instead. The decimal
separator is also called the radix character.

Likewise, thousand separator is the character used to separate groups of thousands.
In the U.K. and U.S. use a comma (,) to separate groups of thousands, many other countries
use a period (.) instead, and some countries separate thousands groups with a thin space.

Currency format is the way of expressing monetary units. There are three possibilities
how to express monetary units:

1. The currency sign. The currency sign is primarily used for graphic purposes. Alter-
natively, its use is also permitted in promotional publications (e.g. sales catalogs).
No space after the sign. E.g. €35.

2. The ISO code. ISO code for defining currency is ISO 4217. ISO 4217 is international
standard for marking the currencies as 3 character codes. These codes are defined by
International Organization for Standardization (ISO). E.g. 30 EUR

3. The written name. Used when a monetary unit is referred to generally however an
amount is not included. E.g. an amount in euros

Negative pattern is the way how to distinguish positive and negative numbers. There
could two ways:

• minus sign before the value,

• different graphical representation of the values. For instance, positive values can be
displayed in green color otherwise negative values with red color.

17

Date-time formats are formats that represents date and time values in Finance ap-
plications. These must follow ISO 8601, the International Standard for the representation
of dates and times. ISO 8601 describes a large number of date/time formats. To reduce
the scope for error and the complexity of software, it is useful to restrict the supported
formats to a small number. This profile defines a few date/time formats, likely to satisfy
most requirements.

Number precision is important attribute in Finance sector. In finance sector often
occurs situation when user edits thousands or even millions. Then is is suitable to offer
customer possibility to enter these thousands (millions) as if it would be single units.

2.2.3 UI principles of current designs (User groups)

In previous sections is described impact of user onto the UI. Derived from these facts, specific
groups of users demands the specific requirements for the UI. Users differ with respect
to, for instance, their preferences, capabilities, speaking different languages and level of
experience. E.g., young, middle age, old people or even mentally challenged individuals or
people having some physical disorder. This heterogeneity of end users should be considered
in the proposed language.

2.3 Approaches to describe UI
In present, a huge set of technology-specific approaches for defining (development of) UI
exists. So far, many variations of programming/markup languages (e.g., C#, C++, Java,
HTML) with different widget libraries (e.g., WPF, Qt, Swing) has been developed. Auto-
matic conversion between these technologies is not solved problem. Reasons why automatic
conversion fails is mainly based on the complexity of developed UI, e.g., dependencies of
form fields, validations, connection to back-end logic and technical differences between
languages. Therefore instead of technology-specific approaches is needed a higher-level
description language. This language should contain concrete descriptions, from which
could be obtained concrete technology-specific implementations of user interface through
associated conversions.

2.3.1 Languages for UI definition

SW methodology (MDE, OMG)

Model Driven Engineering (MDE) is a software methodology that has a goal to define
software specification with the highest amount of abstraction and also raise amount of au-
tomation in an software development. MDE focuses on creating and exploiting conceptual
models at different levels of abstraction that can be used for the description of every possible
problem. Hence it increases the level of abstraction in specification of a software. Also with
the usage of executable model transformations raise the automation in software develop-
ment. Model transformations in practice means the transformation of high-level models to
the lower models until the models itself are executable. For further purposes of this thesis it
can be used as a template to be interpreted as UI by a specific technology, e.g. HTML inter-
preted by a web browser. These high-level models are represented in some model notation
or language. Such language is then called Domain Specific Language (DSL)[33] due to the
fact that model is connected with a certain domain. The representation of DSL then can be
textual or visual. More information regarding DSL can be found in [22]. DSL specifies the

18

model called Domain Specific Model (DSM) [28]. Finally the whole application can be thus
specified by several DSMs that are specified in different DSLs. The term often related to
MDE is Model Driven Architecture (MDA). MDA was introduced by Object Management
Group (OMG) and can be seen as OMG’s vision on MDE. For purposes of this thesis the
language for description of graphic user interface is the specific case of modeling language
for a creation of a model that is usable for development according to MDE.

SBVR

Semantics of Business Vocabulary and Business Rules (SBVR) [7] is the meta-model for
development of semantic models of business rules and business vocabularies. Presented
rules are described in common language, however some rules are presented graphically in
proper cases. Therefore SBVR offers language that describes a structure of rules that is
written in a language that business people commonly use (need to point out that opposite
way is more often in companies). This usable language SBVR calls “semantic formulation”
that is not expressions or statements. Semantic formulations are structures which create
meaning. There exists a vocabulary in SBVR that describes these meanings. In SBVR,
the meaning of a sentence is communicated as facts about the semantic formulation. In
formal language it means a restatement of the meaning [9]. We will describe semantic
formulation on the following simple business rule. The rule is stated several times with
the same meaning. We should also note that there can be other possible interpretations of
these rules [9]:

A barred driver must not be a driver of a rental.
It is prohibited that a barred driver be a driver of a rental.
It is obligatory that no barred driver is a driver of a rental.

Description of semantic formulation of the business rule above in terms of the SBVR
[9]:

The rule is meant by an obligation claim.
That obligation claim embeds a logical negation.
The negand of the logical negation is an existential quantification.
The existential quantification introduces a first variable.
The first variable ranges over the concept ‘barred driver’.
The existential quantification scopes over a second existential quantification.
The atomic formulation is based on the fact type ‘rental has driver’.
The atomic formulation has a role binding.
The role binding is of the fact type role ‘rental’ of the fact type.
The role binding binds to the second variable.
The atomic formulation has a second role binding. The second role binding is
of the fact type role ‘driver’ of the fact type.
The second role binding binds to the first variable.

As we can see, SBVR is not used to provide a clear and short description like formal
language, however, SBVR is used to provide detailed description about meaning. The
description is then divided into sentences where each sentence represents a fact about the
rule.

19

OCL

A class diagram from UML 2 is generally not able to specify all kind of information to
the model. The problem occurs when we need to describe additional constraints about
the objects in the model. These constrains are then directly written into model in natural
language. However common practice has shown that this always leads to misinterpreta-
tion. Hence some formal languages were developed to describe these constrains in a clear
formal way. One of these formal languages is called Object Constraint Language (OCL).
OCL [3] is formal language used for description of expressions and constrains on UML
models. Therefore the OCL is a language for description of expressions on object-oriented
models. Expressions then specify rules that must be kept for the modeled system or specify
conditions to be hold for queries over objects in a model. These expressions also enables
to set operations that can manage a change of the state of the system. Even though it
is formal language it can be easily read and write due to the fact that it was designed as
a business modeling language. When an expression is evaluated, it just returns a value.
OCL cannot be used as standard programming language, because it cannot generate the
executable code. Even though it is not programming language it is typed language, e.g.
user cannot compare a String with an Integer. Each Classifier defined within a UML model
represents a distinct OCL type. The example of class diagram with OCL can be seen on
fig. 2.14. In addition, OCL includes a set of supplementary predefined types [3].

Figure 2.14: Example of class diagram with OCL

From the OCL specification we can list a set of purposes where to use OCL:

• as a query language,
• to specify invariants on classes and types in the class model,

2Stands for Unified Modeling Language.

20

• to specify type invariant for Stereotypes,
• to describe pre- and post conditions on Operations and Methods,
• to describe Guards,
• to specify target (sets) for messages and actions,
• to specify constraints on operations, and
• to specify derivation rules for attributes for any expression over a UML

model.

Visual programming languages

In a recent past, for a usage of computer was necessary to educate people. Progress in infor-
mation technologies brought the user graphical user interface that should be usable without
learning. Moreover there were developed applications that enables people to publish their
content on the Internet or Social networks without programming. However, when a per-
son wants to develop his own software, there still exists a “barrier” due to programming
language. Fortunately there were developed tools that offer user user-friendly interface
for development of software. These tools are called Visual programming languages (VPL).
These languages are platforms that typically provides user a set of visual graphic elements,
like diagrams, free-hand sketches, icons, or demonstrations of actions performed by graphi-
cal objects, from which with a support drag-drop interface can be created output software.
These languages also abstract a way of other functionality like functions or conditions that
must be hold in an application. Graphic elements typically serves as input and connections
between them serves as the output of the application. Then run of a program is started on
a start element where is given an input and then are given outputs to the other elements
by its connections and continues in this order till the program reaches last elements. An
example of VSL can be seen on fig. 2.15 (RapidMiner studio).

21

Figure 2.15: Example of Visual programming language

For the purposes of this thesis it is essential that these GUI elements are often described
in some meta language that holds information about elements, their positions connections
and settings. The following description of GUI 2.1 represents a shortened source code for
fig. 2.15. As we can see, the source code is defined in XML 3 which is the most common
language used for the description of user interface. In the next sections we will study further
other languages that are based on XML and describe the user interface.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.000">

<context>
<input/>
<output/>
<macros/>

</context>
<operator activated="true" class="process"
compatibility="5.3.000"
expanded="true" name="Process">

<operator activated="true" class="k_means"
compatibility="5.3.000" expanded="true"
height="76" name="Clustering" width="90" x="447" y="165">

<description>For clustering of text data</description>
<parameter key="k" value="7"/>
...

</operator>
<operator activated="true" class="correlation_matrix"

3stands for Extensible Markup Language [2]

22

compatibility="5.3.000"
expanded="true" height="94" name="Correlation Matrix"
width="90" x="581" y="165">

<parameter key="create_weights" value="false"/>
<parameter key="normalize_weights" value="true"/>
<parameter key="squared_correlation" value="false"/>

</operator>
<operator activated="true" class="text:wordlist_to_data"
compatibility="5.3.002"
expanded="true" height="76" name="WordList to Data"
width="90" x="447" y="300"/>

<operator activated="true" class="write_csv"
compatibility="5.3.000" expanded="true"
height="76" name="Write CSV" width="90" x="581" y="300">
<parameter key="csv_file"
value="PATH/fracking-example-stemming-wordlist.csv"/>
<parameter key="column_separator" value=","/>
<parameter key="encoding" value="SYSTEM"/>

</operator>
...

</process>
</operator>

</process>

Listing 2.1: An source file for Visual programming language

XUL

XUL (XML User Interface Language) is XML based language that is used to write appli-
cations. It is markup language implemented as XML dialect. The user interface design is
defined generally as three sets of files:

• XUL files serving as content files that defines the user interface, eq. lists elements
that are in applications and labels,

• the second type of files contains the other information about the design of elements
in a form of CSS files and images, and,

• files containing localization strings.

A simple login prompt on fig. 2.16 has the following source Listing 2.2.

Figure 2.16: A simple login prompt in XUL

23

<vbox>
<hbox>

<label control="login" value="Login:"/>
<textbox id="login"/>

</hbox>
<hbox>

<label control="pass" value="Password:"/>
<textbox id="pass"/>

</hbox>
<button id="ok" label="OK"/>
<button id="cancel" label="Cancel"/>

</vbox>

Listing 2.2: XUL source file for the simple login prompt in XUL

Conclusion on current languages of UI definition

For a specification of high-level language for UI definition there is needed to specify the term
high-level. High-level for this thesis means specification of a user interface by means of its
functionality, e.g. language that describes a text box on a page is not high-level. high-level
language description is for example that on a page is some element that can receive text
input or generally an input of information of some type. Therefore as we have mentioned in
section SW methodology it should be specific case of modeling language according to MDE.
A language that is generally describing a UI and after a set of some specific steps generates
exact UI in specific markup language, e.g. HTML. To conclude studied languages, SBVR
is used for business modeling that is generally used for generating semantic formulation of
the business rule and is not able to generate UI. OCL is able to add information about
objects, however it is not good path for defining UI of the objects. On the other hand, we
can benefit from the advantages of SBVR and OCL. SBVR show us how to describe a rule
in a semantic sentence, that can be used in our language, because we need a way how to
define the UI abstractly. OCL has it strong advantages in describing rules among objects
and we can similarly use it for specifying these logical constrains on our UI elements. To
go on to the visual programming, we can see that visual programming languages uses XML
representations of processes that exactly describes the processes without an abstraction.
The same stands for the markup languages like XUL or XAML. Therefore none of studied
languages are valid for a high-level UI definition as we defined above. In the following
chapter we will describe the requirements on this language and the design of the new high-
level language will be proposed.

2.4 CRUD operations
In a field of computer programming, CRUD stands for create, read, update, and delete.
Each of these words represents an operation typically performed on some row in rela-
tional database table. In general, these operations can be performed not only on relational
databases, but also performed on any kind of persistent storage.

An acronym CRUD is also often used to describe UI conventions that enables to view,
manage and destroy some persistent unit, e.g., form editing users data. The acronym CRUD

24

is probably firstly popularized in book Managing the Data-base Environment [32]. As a
minimum requirements for a user interface described as CRUD, the UI must allow to:

• Create new entries,

• View existing entries,

• Manage existing entries,

• Delete or invalidate existing entries.

For purpose of this thesis we will use the CRUD as the goal to show the further proposed
mechanism will be able to generate CRUD forms.

25

Chapter 3

Analysis and design of new
language for UI definition

In this chapter, we will analyze the requirements for the language derived from the Chap-
ter 2. According to the requirements we will provide revisited goals that has to be ac-
complished within the thesis. Next we will propose a design of high-level language for
description of UI. At the end of the chapter we will describe the algorithm of composition
of UI components designed, where the algorithm is essential for further implementation of
the generator tool.

3.1 Analysis of requirements for a new language
New proposed language is considered to be in a high-level form. High-level form can be
considered as the first main requirement derived from the Section 2.3. From approaches in
Section 2.3 we derived that we cannot use any of the current technology-specific languages
for description of UI. Presented high-level form can be explained as an abstract language
describing the UI independent from specific platform and technology. Based on MDE we
require to propose a DSL having specific requirements based on discussed knowledge covered
in Chapter 2. Now, we will go through the analyzed requirements from Chapter 2.

3.1.1 Independence of the user interface technology

The language should be introduced to keep independence from any existing user interface
technology. This requirement is already covered by the specification of a language as a
DSL. A DSL can have a textual or visual form. We will create a language as a domain
diagram and describe its semantic meaning with words. Therefore high-level form strongly
connects to this requirement.

3.1.2 Reduction of a cost within migration between UI technologies

To reduce cost within migration from one UI technology to another, a DSL should consist
of the specification of technologies. A designed UI in new high-level language (DSL) will
be possible to generate in several technologies of user interface. In next requirements, we
will describe a attributes that will help to keep a consistence between the UIs generated in
different technologies.

26

3.1.3 Separation of the function and construction

From Section 2.1, a DSL should consists of certain components having its properties and
users with their purposes to the UI (system). For a DSL, it is important to define an UI
with user only by purpose (function). Therefore this approach achieves the separation of
the construction from the function part.

Next requirement is to propose some automatic or semi-automatic mapping algorithm
selecting convenient components.

3.1.4 Attributes of UI controls (Usability, accessibility, HCI requirements
and user groups)

From HCI and according to the definition of usability, we should be able to define a set
of commonly used UI elements and controls in a DSL. Next requirement is responsibility
(compactness) of UI design. Responsive design should respond to a different sizes of a
screen. On a different devices the controls should be replaced or resized in a way that user
is still able to interact with a system. Next there are other rules from HCI a DSL should
consider like accessibility, visibility, readability, physically accessible ,and intuitive.

According to computer therapy project the UI for mentally challenged people must have
specific construction of elements, like color, shape, and distances between elements must
be in proper relations.

The language for UI definition should have some phrases for definition that this UI
design should be touchscreen or not. If so, the rules defined in 2 should follow. There
the positions of elements, recognizable icons, shape of buttons etc., has its function. That
means here already came the first answer concerning the construction and its function.

Furthermore proposed language has to enable designer to describe UI for specific group
of people. The set of computer therapy requirements is too small because a DSL should
enable to describe UI usable by children.

To sum up, there is very big set of attributes that can describe a control or UI. Probably
can occur situation when during the time there will come another attribute and the designed
DSL should be extended. Moreover there must be a way how to describe some general
attributes like if the UI is designed for finance domain. Therefore all these discussed possible
attributes of a UI control should be generalized to general attributes in a DSL.

3.1.5 Business-domain requirements

The proposed language should contain an option to define all finance specific attributes,
such as decimal separator character or currency format. This attributes will accordingly
affect the construction of generated elements affecting only the business domain.

3.1.6 Connection to back-end logic

A designed DSL should consist of some mechanism how to provide an option to connect a
generated UI to the back-end logic. This requirement is not studied explicitly in the 2 but
is needed for corima.

27

3.2 Goals Revisited
In Chapter 2, we described all the important facts about the UI generation. We must state
the exact goals that are revisited according to gained knowledge.

Now, it is clear we need to create high-level language in a form of DSL that will describe
instances of abstract user interface. The steps to this approach will be:

1. Goal 0: Create a meta-model of a high-level language for describing UI including
general attributes of the UI components. These attributes should consists of functional
purpose of UI element, business-domain attributes, user group attributes, and any
other kind of attributes,

2. Goal 1: Clarify the algorithm of composition of components according to its charac-
teristics,

3. Goal 2: Propose a proof-of-concept of language implementation in .NET including
class diagram of a proposed system,

4. Goal 3: Propose an implementation of components necessary for CRUD operations,

5. Goal 4: Propose an implementation of mapping logic of algorithm of composition.

The first two points will be described in this chapter. The next points will be described
in Chapter 4, where technical details will be explained.

3.3 Proper design of UI language
Proposed language was designed as meta-model independent from any platform and tech-
nology. The reason why it was designed by a meta-modeling is because this meta-model
can be then represented in any form, e.g., XML. This meta-model will be further taken
and used to create domain specific language for corima purpose in .NET. Furthermore, it
is designed for possibility to use this meta-model in any other DSL and in any specific
technology. The scheme of the meta-model is depicted in Fig. 3.1.

28

Figure 3.1: Meta model of high-level language for UI description.

As we can see in Figure 3.1, the proposed language consists of the following elements:

• Technology,

• Functional component,

• View,

• Construction,

• General characteristic,

• Construction characteristic,

• General characteristics mapping,

• ViewGenerator (or just a generator).

29

Each of listed elements has its own semantic meaning important to be well described to
fully understand the language. Now, we will provide a description for each of the elements.

ViewGenerator presented in the scheme is not a part of a language. ViewGenerator
represents some kind of a UI generating library. Immediate inputs to this library are
view and technology. View defines UI together with context parameters, and technology
specifies in which technology is UI finally generated. We can see the ViewGenerator do not
have available information regarding the exact constructions that should be rendered. The
ViewGenerator have only the all set of functional components having some characteristics
that will be described further and according to them, it has to choose which one of the
constructions is the most valid for the UI. This determination of the most valid constructions
is the most important and key role in the thesis. All decisive logic and UI rendering is done
by this tool and its algorithm will be described at the end of this chapter.

View as can be seen in Fig. 3.1 is abstract representation of UI consisting of a set of
functional components. This view can order these components or wrap functional compo-
nents to bigger groups with so called grouping functional components used for grouping of
components. Affecting the view can be then managed through other functional components
created in the DSL. View is not capable of specifying the exact look of the UI. Each view
should have its unique name describing the purpose of the UI page. For example, view for
displaying user data in grid should be called ”UserDataGridView”.

Functional component is an abstract representation of some construction having
specific function. We can derive the function of the component from the problem of
affordances. All UI components are having some purpose and therefore we can derive
from that its function. The wrappers of UI component are having wrapping function, text-
boxes inputing function, tables filtering purpose, pagers paging purpose and so on. We
can find the function name easily from its use. Good to point out, this function has to
be named by name that not affect construction of any component because it would be
recipe also for construction of this component. For instance, component with function for
inputting any kind of data can have infinite set of real constructions. E.g., secured text-
box, text-area for longer texts, image upload component, and responsive text-box. Thats
why we can simply abstract the UI with this set of UI functional components. To specify
further rendering attributes, we have to introduce new concept – characteristics. These
characteristics then should affect the rendering logic. Each functional component will then
have according to its function its unique name similar to the view. E.g., the component
with function for inputting any kind of data will have unique name like ”Imputtable”. An
example of derivation of function and therefore the functional component is depicted on
Figure 3.2.

30

Figure 3.2: Example of functional component and its naming. Graphic content was designed
by the author in HTML and CSS.

Characteristics are abstract self explaining additional declarative information added
to the functional component and construction. There are designed two types of Charac-
teristics:

• General characteristic. General characteristics are attributes concerning any type
of additional information extending the functional component/construction. These
characteristics are designed to add typically information regarding user groups. On
the other hand, they may contain also any other information. These general char-
acteristics should describe whether UI is usable (principle of usability), accessible
(principle of accessibility) or whether the UI is valid for mentally challenged peo-
ple. These general characteristics should be given a valid self-explaining name that
explains the semantic of an characteristic. For instance functional component/con-
struction having the characteristic called ”ImageUploadable” would suggest the func-
tional component/construction should be somehow capable of uploading images. See
the fact the language does not advise any further steps or parameters how the final
construction should look like. Therefore general characteristics can be also described
as static semantic information of any kind. The purpose of this general characteris-
tics is to create a very abstract language unlimited of a set of available attributes the
UI can consist of. Designer then can propose his own characteristics that suits for
him. Therefore designer can create unlimited number of general characteristics and
describe with them the functional component/construction that best suites for the
construction. This is next key extension of the language allowing the language to be
in high-level form. An illustration of derivation of general characteristic is depicted
on Figure 3.3,

31

Figure 3.3: Illustration example of derivation of general characteristics from a simple text-
area. Graphic content was designed by the author in HTML and CSS.

• Construction characteristics are attributes having purpose to extend the func-
tional component/construction with some parametrized information. Furthermore its
semantic is to extend just its construction. That is why they are called construction
characteristics. These information extends the final generated construction with con-
text model. These construction characteristics has been designed e.g. to add labels to
the UI components, add unique identifiers to UI components or define thousand sep-
arator character. Moreover, with these construction specific characteristic is possible
to generate UI with connection to back-end logic and therefore allows the designer
to create complex UIs. Construction characteristics advise how exactly UI control
should look like. For instance text-box having construction characteristic describing
label name as ”User name” may be rendered as a text-box having appropriate label.
Again it does not mean a label must be rendered there. This is just an advise for
generator that should suggest its use. Illustration how construction characteristics
affects the rendering of some functional component is depicted on Figure 3.4.

32

Figure 3.4: Illustration how construction characteristics affects the functional component
during the rendering. Graphic content was designed by the author in HTML and CSS.

Construction presented in the scheme represents a wrapper containing real construc-
tion of an UI component implemented in certain UI technology. According to exact imple-
mentation of construction are further defined its technology, function and characteristics1.
This definition of technology, function and characteristics will be called mapping in this pa-
per. This mapping of technologies, functions and characteristics is done by developer. Only
developer knows in which specific technology is the UI component implemented. Technol-
ogy could be derived automatically, however function definitely cannot be derived so easily.
Even human could have sometimes problems with determining purpose of some UI elements
without further clicking and interaction. Thats why according to terms like usability and
affordances only developer who designed and developed the specific UI component should
be capable of defining its function. The same claim is valid for the characteristics. Even
more, characteristics should be defined as precise as possible. Again, only the developer who
implemented the UI component can derive this set of general characteristics. For instance,
the UI component may have some attributes hidden in the source code such as mandatory
field in a form.

Since the functional component and construction is explained, it is needed to
describe the mapping of characteristics to these components. When a construction is im-
plemented, there must exist some of platform independent set of general characteristics and
construction characteristics defined in the language. These characteristics are defined by

1Characteristics are meant generally both general and construction characteristics

33

developer explicitly. Each characteristic is having its unique name in the language and its
semantic function. This semantic function has to be described with every new character-
istic to keep consistence between UIs. When these characteristics are defined they serves
as some kind of a dictionary. The set of technologies is similar to the characteristics. It is
defined set of technologies with given unique name. Each technology represents unique UI
technology where no duplicates are available.

Mapping of construction and general characteristics to functional component is depicted
in Fig. 3.1. Firstly will be described mapping of general characteristics to functional com-
ponent. A functional component is having a subset of whole set of general characteristics.
This mapping represents that described functional component in a view. According to
these characteristics will be also rendered. There is no connection to the implementation of
construction. Designer in this state assumes there exists just some construction matching
these general characteristics.

The situation is very similar with the mapping construction characteristics to
functional component. A developer assigns a set of construction characteristics to a
functional component, each having its value. Developer assumes these construction charac-
teristics will be used during the rendering process, but they do not have to be used at all.
This choice will be made by the other developer of specific construction if the developer
will use the construction characteristic or not.

Mapping of general characteristics to construction is depicted in Fig. 3.1 as Gen-
eral Characteristics Mapping. It is a set of elements having general characteristic
and relevance of concrete construction to this general characteristic. For instance, UI
component implementation of form for children will have general characteristic so called
”children-user-group”. The relevance is designed as integer from 0 to 100. The relevance
can be also described as a fuzzy set, where zero means the characteristic does not suits
with implementation at all and number 100 means the characteristics fully represents the
implementation of UI component. For instance, UI component implementation of form
for children will have general characteristic so called ”children-user-group” with relevance
100, but characteristic so called ”older-user-group” with relevance 0. Again, this relevance
should be very strongly considered by a developer. Due to this mapping logic is possibility
to design UI components for mentally challenged people. There developer will keep the
rules of accessibility, usability, visibility, readability, compactness, touchscreen design and
computer therapy principles and after that describe this UI component with characteristic
with unique name ”mentally-challenged-user-group”. Mapping of general characteristics to
construction is depicted on Figure 3.5.

34

Figure 3.5: Illustration how general characteristics are mapped to some construction.
Graphic content was designed by the author in HTML and CSS.

Good to point out these characteristics with relevance are then given only to the con-
structions itself, see on the scheme. Functional components than has just its general char-
acteristics and construction characteristics and then the generator should according to its
algorithm get a most suitable construction.

3.4 Algorithm of composition of UI
Now we assume there in a language is designed a set of technologies and a set of general
and construction characteristics. There is also defined a view having appropriate functional
components to which are mapped the general and construction characteristics. Moreover
assume there exists a big set of constructions to cover all combinations of functional com-
ponents and their mapped characteristics and technologies. Let us assume we want to
generate the defined view in a specific technology. ViewGenerator is responsible for this
generating logic. ViewGenerator has as the input the view and the technology. The algo-
rithm of generating the view in a specified technology is described in the Algorithm 1. The
algorithm was separated into several smaller algorithms for better readability.

In algorithm there is firstly filtered the constructions according the given technology.
Then is in cycle for each functional component executed the same logic of finding the
most appropriate UI construction and then its implementation. As can be seen in the
Algorithm 1, the logic also handles the situation when functional component has specified
zero number of general characteristics. This algorithm for this case retrieves the first
available construction. For the implementation of this algorithm there should be included
in DSL some kind of the default general characteristic that should be included in some
construction and behaved as a fall-back for these edge situations.

For the second situation when construction has specified some general characteristics
there is separated Algorithm 2 which describes how we choose the most valid construction
according to its characteristics. The algorithm is firstly trying to find all the constructions
having all of the general characteristics specified in the functional component. However if
there are none of those having all of these characteristics, there is mechanism how to choose
at least most valid constructions. We choose every construction having one same general
characteristic as the functional component has. By this algorithm we achieve bigger set
of constructions and we need to choose only one of them. This choice is then made by
relevances of general characteristics in constructions. For this purpose we need only to
order the list of achieved constructions by this relevances.

35

Algorithm of ordering the constructions according to relevances is depicted in Algo-
rithm 3. It is based on principle that sorts the characteristics with the highest relevances
to the left. The same relevances keeps next to each other and the characteristics with lower
relevances than sorts to the right. Therefore final sorted array should consist of the best
constructions on the left of an array.

Once the constructions are ordered, algorithm selects the first construction from the
left. Now the implementation of UI in specific technology is loaded from selected most
valid construction. All construction characteristics are substituted in appropriate places in
implementation of the UI. We can again see that there is not required that implementation
has to use these construction characteristics. Some of the constructions might use them
and rest of the constructions might not use them.

Finally the implementations in specific technology are concatenated together as whole
view and returned from the ViewGenerator.

Algorithm 1: Algorithm of composition of UI in specified UI technology and view
Inputs : A view 𝑉 ; a technology 𝑇
Output: A generated UI in specific technology as plain-text
initialization;
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑈𝐼 ← 𝑒𝑚𝑝𝑡𝑦𝑆𝑡𝑟𝑖𝑛𝑔;
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠← 𝑒𝑚𝑝𝑡𝑦𝑆𝑒𝑡;
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠← 𝑔𝑒𝑡𝐴𝑙𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝐴𝑆𝑦𝑠𝑡𝑒𝑚𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦(𝑇);
foreach functional component 𝑓𝑐𝑖 ∈ 𝑉 do

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠← 𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑓𝑐𝑖);
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠←
𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑜𝑛𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑓𝑐𝑖);

if 𝑓𝑐𝑖 have any general characteristics then
Logic of choosing valid construction according to general characteristics, see
Algorithm 2;

else
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠←
𝑎𝑝𝑝𝑒𝑛𝑑𝑆𝑒𝑡(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑔𝑒𝑡𝐹 𝑖𝑟𝑠𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑆𝑒𝑡(
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠));

𝑠𝑜𝑟𝑡𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠← sort the set 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 according to
relevances in characteristics, see Algorithm 3 ;
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛← 𝑔𝑒𝑡𝐹 𝑖𝑟𝑠𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑆𝑒𝑡(𝑠𝑜𝑟𝑡𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠);
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛←
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑈𝐼(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠);
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑈𝐼 ← 𝑎𝑝𝑝𝑒𝑛𝑑𝑆𝑡𝑟𝑖𝑛𝑔(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑈𝐼, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛);

return 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑈𝐼;

36

Algorithm 2: Logic of choosing valid construction according to characteristics.
Inputs : All variables having Algorithm 1
Output: A set of 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠← 𝑔𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑓𝑐𝑖);
foreach
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 do

𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐹𝑜𝑟𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝐹𝑟𝑜𝑚𝑉 𝑖𝑒𝑤 ← 0;
foreach 𝑣𝑖𝑒𝑤𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 ∈ 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠
do

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛←
𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖);

foreach 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ∈
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 do

if 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ==
𝑣𝑖𝑒𝑤𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 then

𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐹𝑜𝑟𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝐹𝑟𝑜𝑚𝑉 𝑖𝑒𝑤 ++;
break;

if 𝐶𝑜𝑢𝑛𝑡(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) ==
𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐹𝑜𝑟𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝐹𝑟𝑜𝑚𝑉 𝑖𝑒𝑤 then

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠←
𝑎𝑝𝑝𝑒𝑛𝑑𝑆𝑒𝑡(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖);

if 𝑖𝑠𝐸𝑚𝑝𝑡𝑦𝑆𝑒𝑡(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠) then
foreach
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
do

𝑣𝑎𝑙𝑖𝑑𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝐹𝑜𝑟𝑂𝑛𝑒𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐← 𝑓𝑎𝑙𝑠𝑒;
foreach
𝑣𝑖𝑒𝑤𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 ∈ 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 do

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛←
𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖);

foreach 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ∈
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 do

if 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑂𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ==
𝑣𝑖𝑒𝑤𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 then

𝑣𝑎𝑙𝑖𝑑𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝐹𝑜𝑟𝑂𝑛𝑒𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐← 𝑡𝑟𝑢𝑒;
break;

if 𝑣𝑎𝑙𝑖𝑑𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝐹𝑜𝑟𝑂𝑛𝑒𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 then
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠←
𝑎𝑝𝑝𝑒𝑛𝑑𝑆𝑒𝑡(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐴𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖);

break ;

return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠;

37

Algorithm 3: Sorting of constructions according to relevance of characteristics.
Input : A 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 from Algorithm 1
Output: A set of ordered 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠← 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠;
𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑠𝑁𝑜𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑← 𝑡𝑟𝑢𝑒;
while 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑠𝑁𝑜𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑 do

𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑠𝑁𝑜𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
for 𝑖← 0; 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠)− 2 ; 𝑖++ do

𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝐿𝑒𝑓𝑡𝐶𝑜𝑢𝑛𝑡← 0;
𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝑅𝑖𝑔ℎ𝑡𝐶𝑜𝑢𝑛𝑡← 0;
foreach 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 ∈
𝑔𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖) do

foreach 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 ∈
𝑔𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖+1) do

𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒1←
𝑔𝑒𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐);
𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒2←
𝑔𝑒𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛2𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐);

if 𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒1 > 𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒2 then
𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝐿𝑒𝑓𝑡𝐶𝑜𝑢𝑛𝑡++;

if 𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒1 < 𝑐𝑜𝑛𝑠𝑡𝑟𝐶ℎ𝑎𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒2 then
𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝑅𝑖𝑔ℎ𝑡𝐶𝑜𝑢𝑛𝑡++;

if 𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝐿𝑒𝑓𝑡𝐶𝑜𝑢𝑛𝑡 < 𝑜𝑟𝑑𝑒𝑟𝑇𝑜𝑅𝑖𝑔ℎ𝑡𝐶𝑜𝑢𝑛𝑡 then
𝑠𝑤𝑖𝑡𝑐ℎ𝐼𝑡𝑒𝑚𝑠𝐼𝑛𝐴𝑟𝑟𝑎𝑦𝐵𝑦𝐼𝑛𝑑𝑒𝑥𝑒𝑠(𝑖, 𝑖+ 1, 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠);
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑠𝑁𝑜𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑← 𝑡𝑟𝑢𝑒;

return 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠;

38

Chapter 4

Implementation

This chapter discusses the implementation of the given language designed in Chapter 3.
Section 4.1 provides technical information about the proposed solution including the expla-
nation of used framework and programming language. Text further describes explanations
why the choice regarding a programming language is the most suitable for purposes of
corima.

The Section 4.2 describes the class-diagram of a proposed solution. Each part of the
class-diagram is explained. Finally, there is explained how the algorithm of composition of
UI was used in source code and what changes had to be made there.

4.1 Technical information
The only one requirement for technical implementation was to be able to reuse the view logic
for all .NET platforms. Therefore, the most suitable solution for corima was to propose a
solution as the .NET library. The library itself should be independent from any other .NET
framework and the implementations of the UI components will be loaded by the library and
used from another .NET source .dll files (files with extension .dll).

The next variable needed to discuss is the most suitable .NET programming language
for the .NET library. For implementation was chosen the C# programming language. This
was chosen from several reasons. First reason is that this language is used in corima as
main language and developers who involves in that has the main experience. The second
reason is it is the most advanced multi-paradigm language from all .NET languages and is
still under development and new features are being developed in new versions. To describe
it fully C# is a multi-paradigm programming language containing strong typing, imper-
ative, declarative, functional, generic, class-based, and component-oriented programming
disciplines. It was developed by Microsoft within its .NET initiative and later approved
as a standard by ECMA-334 and ISO/IEC 23270:2006. C# is one of the programming
languages designed for the Common Language Infrastructure.

As an integrated development environment (IDE) was chosen Visual Studio. Visual
Studio has build in a lot of programming languages including all .NET programming lan-
guages (we need) and other UI specific languages, like XML, HTML ,and CSS. Some other
languages can be then included as a plug-ins. Visual Studio also contains of other features
like debugging, code analysis, refactoring tools, underlining of errors, and IntelliSense1.

1IntelliSense is an implementation of a code completion used in Visual Studio.

39

Proposed solution in .NET and programming language C# creates the .NET library.
As was described before, the library should not be dependent on implementations of con-
structions of UI components. The reason is the implementations brings together with them
dependencies on other framework libraries that can contain platform specific libraries, such
as Microsoft.Web.Mvc containing infrastructure for ASP.NET MVC. Therefore these depen-
dencies must be excluded from the general .NET library to the platform specific application.

4.2 Implementation of .NET library
Implementation of the new language proposed in Chapter 3 was produced in several steps
when each part of the language was continuously converted into C#. This conversion had
several iterations influenced by the changing of language itself and also by the improving
of the current solution.

To achieve Goal 2 there was proposed an implementation of the new language. The
final proposed implementation of the new language for UI in .NET is depicted on Figure 4.1.
In implementation is kept consistent naming with analysis so the semantic meanings of each
classes should be at least partially clear from Chapter 3. The implementation details will
be described in the following text.

The implementation will be described from bottom to top, therefore firstly will be
described the simplest parts of the system up to the most sophisticated parts.

As can be seen on the Figure 4.1 ICharacteristic is the most simplest node on the class
diagram and represents the general characteristics. The realizations of the interface IChar-
acteristic are the general characteristics. Unique name is solved by the name of the class
(realization). Semantic meaning of each realization should be written as comment next
to the class definition. We can see there were already defined some set of general charac-
teristics, such as SecureCharacteristic class. An example of realization of ICharacteristic
interface in C# can be seen on Listing 4.1.

40

Figure 4.1: Class diagram of implementation of new language.

41

/// <summary>
/// General characteristic describing the UI that is valid for usage in

finance domain.
/// </summary>
public class FinanceCharacteristic : ICharacteristic
{

}

Listing 4.1: Example of implementation of ICharacteristic interface

we can see the class itself not contain any other properties or methods. Therefore
it is independent from any .NET technology and can be reused then in any other .NET
framework technology.

Implementation of ICharacteristic called DefaultCharacteristic has its special meaning.
It is different from all of the implementations of ICharacteristic because is directly bend to
the system. Role of the DefaultCharacteristic is to specify those constructions that should
behave as a fallback for not found valid constructions demanded by the developer (by other
characteristics). Or will be used in situations when there are no characteristics specified at
all. See implementation of DefaultCharacteristic on Listing 4.2.

/// <summary>
/// General characteristic used as an fallback for any type of functional

construction not having specified its general characteristics.
/// </summary>
public class DefaultCharacteristic : ICharact8eristic
{

}

Listing 4.2: Implementation of DefaultCharacteristic

Realization of technology is interface ITechnology. The interface contains only one
required method and it is GetRequiredByType() returning the type in which UI should be
generated. This type is essential for generating the UI for different types of technologies,
because not all UIs is suitable to be generated just as sequence of characters (string). An
example of instance class of this interface is the AspNetMvcTechnology.

For the purpose of mapping the general characteristics to functional component or
construction was proposed the class CharacteristicsMappingItem. The class consists of the
Relevance and Characteristic. The Relevance is of type integer and Characteristic is needed
to be derived from interface ICharacteristic. For better setting of characteristics in method
SetCharacteristic() there was introduced the static class called Mapping that enables the
selection of all implementations of Icharacteristic interface. The use is proposed for Visual
Studio IntelliSense showing all possible implementations. The example of use of Mapping
class is depicted on Figure 4.2.

42

Figure 4.2: The example of use of Mapping class in Visual Studio.

An implementation of Construction is depicted on Figure 4.1. It is the interface ICon-
struction containing four methods that needs to be implemented. Method GetTechnology()
requires to return an implementation of ITechnology interface. Method GetFunction() has
to return the implementation of IFunctionalComponent. Third method GetCharacteris-
ticMapping() sets the array of implementations of CharacteristicsMappingItem described
before. Last method is called GetConstruction and it returns the implementation of specific
construction, where it gets as parameters constructionId for mapping back-end logic and
PropertyDescriptions that represents construction characteristics from Chapter 3. The logic
of the PropertyDescriptions has been reused from corima and is extracted in class-diagram
appropriately. The reason why it was reused is that implementation of these construction
characteristics is not part of the assignment and should be also studied well in State of
the Art and then also considered in analysis. The whole problem would then too much
extend the thesis. Moreover the problem of construction characteristics is already solved
by corima, so we can just reuse it for purposes of this thesis. The reused code from corima
is commented appropriately. An example of implementation of IConstruction interface is
ButtonConstruction. The construction of UI generated for CRUD operations from Goal 3
will be described in the end of this chapter.

An abstract class called IFunctionalComponent is node of diagram representing the
functional component. An abstract class in C# programming language means it can have
implemented in class some methods and some of them can contain only their declarations.
It has properties Id, CharacteristicsMapping ,and ConstructionDescriptor. Id is in abstract
class for connection of back-end logic to the control. CharacteristicsMapping is the same
as for Construction, hovewer there is further not used Relevance in the mapping. The
ConstructionDescriptor describes the construction characteristics for a given functional
component. ConstructionDescriptor is class reused from corima and we will describe it no
more. For each of these attributes there are already defined setters for simplest initiation
of the new instance of class derived from IFunctionalComponent abstract class.

Now when all components of the scheme is presented, is needed to express the im-
plementation specifics of ViewGenerator. ViewGenerator was implemented according to
Algorithm 1 and slightly changed to suit for C#.

Firstly in source code are retrieved all classes derived from IConstruction interface. This
extraction of classes is achieved by C# reflection2 technology. Then are appropriate param-
eters assigned to the Algorithm 1. The main change in the source code in comparism with
Algorithm 2 is that the source code is extended for situations when functional component

2Reflection C# provides objects (of type Type) that describe assemblies, modules and types.

43

has not specified general characteristics. In this case there are preferred the constructions
having the DefaultCharacteristic with relevance bigger than 0.

4.3 Implementation of constructions for CRUD operations
To achieve Goal 3 we will show the implementation of UI components for CRUD operations.
There was implemented UI component for viewing forms called WebEntityWindow. This
form can manage instances of defined classes. These classes can consist of several attributes
and these attributes can have several data types. Therefore the UI component for viewing
forms then consists of several sub UI componets for editing the different data types. These
data types for implemented UI components are:

• string,

• int,

• DateTime,

• bool,

• double.

The WebEntityWindow uses then the IPropertyDescriptions for further specification of
each attribute of the managed class. It uses PropertyType to determine what type of at-
tribute is needed to be rendered and according to that what construction should be used.
DefaultValue is used for getting default value for each attribute’s construction. Last impor-
tant information is how constructionId is used in this construction. This constructionId is
finally also rendered as id=”constructionId value“ into the UI constrol so developer then can
handle the construction with javascript and connect to the back-end logic. In Appendices
are included examples of generated views with implementation of WebEntityWindow.

44

Chapter 5

Related work

Automatic generating of complex user interfaces is currently solved by various approaches.
These approaches can be divided into aspect based approaches, generation approaches,
model based approaches, and inspection based approaches according to their attributes.
Each of these approaches has its own advantages suitable for development of specific types
of applications. On the other hand, all of this approaches may fail in situations like dynamic
changing of UI during the runtime (e.g. validation of forms) or adaptation to user.

One of the simplest solution to develop/design UI is use of visual editors and widget
builders, e.g., XAML Designer from Microsoft [1], Qt GUI Designer [5] or Swing GUI builder
[8]. Once such tool sets are used to design first version of UI for specific technology-based
language and platform, it is very difficult to maintain this UI with these tools. Moreover
these tools provide limited set of controls and functionality than it is possible to design in
target UI language. Also builders are not able to adapt to the further UI changes in the
source code, therefore editor may be disabled for all further changes [29]. So some kind of
refactoring, wrapping UIs to functions to be reused or maintained is not possible for these
tools. Maintenance is one of the most important requirements to finance applications.

Next systems using widget based builders are systems that consists of form-based UI
for accessing data in relational databases. For instance, examples of these systems can
be SQL Server Management Studio (SSMS), Oracle SQL Developer, Microsoft Access [13]
and Oracle Forms. These systems also consists of semi-automatic generation of the tables.
These systems work very effectively for their use, however they are not implemented to
generate more complex UIs and also in several technology based languages. They do not
contain support for custom templates, context adaptation for disabled users, they contain
limited set of components and also UI is being generated for specific platform.

Model based approach, Model-driven development (MDD) [41] is an approach using
model as the source of information and the resulting code is being generated from the
model using given transformation rules. Variant of this MDD, Model-based user interface
development (MBUILD) has then advantage in no replication of information, however it is
applied only to basic use-cases.

Further investigation on model-based approach was done by Stephanidis C. [39]. Work
provides an information regarding self-adaptation techniques of UI in web platform. They
show the differences between adaptivity terms and adaptability. Adaptability is here re-
ferred to self adaptation based on knowledge before rendering of the UI. Next, Adaptivity
refers to self-adaptations based on knowledge gained during the use of UI. In [39] is proposed
project to show adaptivity features. To sum up, project is able to adapt to people with
disabilities or adapt to interests of the user. This adaptation is done by context knowledge

45

gained from questionnaires or other system resources. Self adaptation of UI during the
runtime is not goal of this thesis, therefore this approach is not valid for our purposes.

MDD is further studied by Sottet et al. [38]. Their work provides information regard-
ing MDD approaches to model-code and model-model transformations. (Semi)automatic
UI generation preserving usability is described. Transformation mappings has been defined
that keep usability properties. Authors of the work state ergonomic and usability attributes
defined by mappings are very often inconsistent and the solution should contain compro-
mises. Finally they also showed their solution on a home heater control. Unfortunately,
the work has some disadvantages. For instance, system not allows parametrization of UI
controls, modification or positioning. Even more, the presented system is not compatible
with traditional development approaches (C++, JavaEE).

To fill the gap between HCI design and software engineering Lyuten [30] applies MDD
based approach on a task-centered approach. Concur Task Tree (CTT) notation is used in
this paper to design tasks in an environment context-aware manner. However, similar to
[38] there is not possible to connect with traditional development approaches.

Calvary et al. [10] propose an unifying reference platform for developing multi-context
UIs. The context is divided into environment, user and platform context. There is also
introduced the plastic UI supporting multiple contexts of use while preserving usability as
context-adaption occurs. However, this approach is too complex for common UIs and is
difficult to be used by real systems.

Clerckx et al. used MBUILD model transformations [12]. In [12] occurred inconsis-
tencies for more complex cases of UI. These inconsistencies occurred between the source
and derived models. They show in [12] that these inconsistencies created in source models
should be back reflected in abstract models too.

UI developed with MDD often struggles from other issues. [34] shows situations when
MDD suffers during adaptation and evolution management. MDD can generate common
UIs, however when it comes to small modification of UI it is easier in target source code
than in model itself [11]. Therefore developer need to add the information to the source
code manually and this become very impractical. Next, using domain specific languages
(DSL) for the UI definition, these DSLs often do not provide type safety and are edited
manually in plain-text as XML. This attitude leads often to errors.

Macik et al. [31] describe their user interface platform (UIP) for machine generation of
context sensitive UIs. Their inputs for the generation of UI are abstract UI (AUI) defined in
their domain specific language and context model. AUI is defined as hierarchical composite
structure describing UI independent from platform. The structure describes what the UI
should consists of (input, output and action triggers). In AUI there is no description about
the construction of the individual components and the layout of the UI. AUI can be defined
manually, by visual editor or generated through code inspection of the persistence model of
data oriented applications. Next, context model is defined according to ability based design
provided by [40]. The UI generator outputs concrete user interfaces (CUI). These CUI are
finally send to platform-specific applications interpreting CUI for the user using native UI
elements. Problem is that whole system/framework is based on Java Persistent API (JPA).
The back-end logic is then connected to Java because of data mapping. Moreover the UIP
clients are platform based and do not allow web based clients. For our purposes we need
general solution that can generate UIs in different .NET technologies where backend logic
can be written in any .NET technology.

46

Chapter 6

Evaluation

In this chapter we discuss the implemented solution with respect to the assignment and the
defined goals derived from the assignment. Next, we discuss the reasons why none of the
related work was not used and a new approach was proposed and implemented in corima.
Finally, in this chapter, we present the testing of implemented language and we show how
the implemented solution responds to different definition of the UI.

6.1 Evaluation with respect to the assignment
To demonstrate, how the assignment was accomplished, we need to state what has been
discussed in the thesis. Now, we review each point of an assignment separately, and we
clarify the way we approached that.

1. Study existing languages for system specification and to define a set of annotations
for common software user interface (UI) components, we discussed that in Chapter 2
and we defined the set of common UI components there,

2. Study the computer therapy design principles with focus on UI, we studied that in
Chapter 2 and extended how different user groups can be handled by a language
(Section 2.2.1),

3. Design a language for high-level description of UI requirements, we designed a lan-
guage in Chapter 3,

4. Implement a tool for automatic generation of required UI from defined and designed
descriptions, we implemented a tool in Chapter 4 and demonstrated the use on gen-
eration of UI for CRUD operations,

5. Demonstrate the use of the designed language and implement a tool with focus on
description of UI requirements for people with disabilities, we demonstrate the use
of language in Chapter 3 and we took into account the requirements for people with
disabilities so the language contains of general characteristics that are able to obtain
descriptions designed for people with disabilities, furthermore now in this chapter we
will test the implemented tool to show the generated user interfaces also for these
people with disabilities,

6. Evaluate the solution and suggest possible future enhancements, we will evaluate that
in this chapter and give suggestions for possible future enhancements.

47

Therefore, up to the last point the assignment the thesis is already accomplished. Now,
we need to evaluate the thesis according to defined goals derived from the assignment.

1. The goal to create a meta-model of a high-level language for describing UI including
general attributes of the UI components, we introduced in Chapter 3 (Goal 0),

2. Goal 1 is accomplished at the end of Chapter 3. The algorithm of composition of UI
components is explained with possible enhancements,

3. Goal 2 is achieved in Chapter 4 where is also included class diagram of a proposed
system. On the diagram there is also distinguished between reused corima models
and new designed modules,

4. Goal 3 is achieved by implementation of WebEntityWindow that is UI component
for ASP.NET MVC that creates a form having multiple possible types of fields and
is able to manage them,

5. Implementation of constructions for CRUD operations are described in Chapter 4 in
Section 4.3 (Goal 4).

6.2 Evaluation with respect to the Related work
The Related work chapter described us possible related solutions to the problem of gener-
ating UI. In this section we will discuss the advantages and disadvantages of these related
works and why these solutions are not suitable for corima purposes.

Visual editors and widget builders are tools that best suits for definition of complex
UIs containing some interaction with customer and a lot of specific features. Because these
features are difficult to define declaratively, these tools have its purpose. Also these tools
are used to generate UI in specific technology. For purposes of corima, it is needed to define
UIs declaratively and in several UI technologies. Also they lack with maintenance of UI
source code. Therefore these tools cannot be used for corima purposes.

Next related works and their disabilities according to corima were described in Chap-
ter 5.

The most suitable found solution would be the last described one by Macik et al. [31].
The problem with this solution is that back-end side of the application has to be written
in Java Persistent API. This would need to be able to somehow change also for some .NET
variant of API. The second problem is the UI definition would need to be extended by an
existing corima code (e.g., IConstructionDescriptor, and IPropertyDescription that limits
the usage of this tool. Therefore finally was the best way to propose clean direct solution
just for corima.

6.3 Evaluation of implemented language and results
The evaluation of proposed language will be conceived as a list of language requirements and
their implementation. In each implementation, actual functionality in the UI generator will
be demonstrated. In addition, for each implementation, possible deficiencies and extensions
will be discussed.

48

6.3.1 Evaluation of high-level form of the proposed language

An requirement of language in high-level form is accomplished due to the fact we proposed
a general domain model (Figure 3.1) that is handled as a DSL in Chapter 3. This DSL
can be further taken and used in any technology, e.g, in XML. We implemented for corima
solution of this DSL in .NET technology in C# programming language. Even though it
is implemented in C# the DSL has just declarative purpose and is strongly independent
from the constructions of controls. These constructions just use the implemented DSL in
C# not affecting it with its specific technology, see 4.1.

6.3.2 Evaluation of independence of UI technology

Once the DSL implemented in C# is used we can see from 4.1 the view is totally inde-
pendent from the technology. The technology is just a parameter to the generator process
(ViewGenerator from the class diagram) taken. Therefore there cannot be a way to create
there these dependencies.

6.3.3 Evaluation of separation of function and construction

From the 4.1 can be seen the two nodes. These are IConstruction and IFunctionalCom-
ponent. Therefore their roles are seperated. Each IConstruction can have one function by
which is described, but the IFunctionalComponent can have infinite possible IConstruction.
The mapping algorithm in ViewGenerator compose those elements together.

6.3.4 Evaluation of attributes of UI controls and business domain re-
quirements

As a solution for a general attributes in UI there was introduced IGeneralCharacteristic
in DSL. IGeneralCharacteristic can express any kind of additive information to the UI,
therefore it perfectly matches the needs. To demonstrate the system can generate different
UIs according to different characteristics we created two different constructions of compo-
nents for CRUD operations. One construction suitable for finance domain and the second
suitable for mentally challenged people.

The source code defining these two views differs only in the characteristics. The source
codes of the views are shown on Listing 6.1 and Listing 6.2. The only difference in the
source codes is the definition of characteristics. However, the generated UIs from these
views differs a lot. The generated UIs are depicted on Figure 6.1 and Figure 6.2. The UI
for mentally challenged people was implemented with respect to specified rules in Chapter 2.
We can clearly see these two generated views suits for defined general characteristics and
therefore the requirement is accomplished.

From business domain was introduced an requirement for specification of some construc-
tion attributes. This requirement was accomplished by reusing source code from corima.
To demonstrate the usage, see Listing 6.3. This IConstructionDescriptor can describe the
fields in CRUD form, e.g., labels.

var technology = new AspNetMvcTechnology();
List<IFunctionalComponent> view = new List<IFunctionalComponent>(){};

var characteristics = new List<CharacteristicsMappingItem>(){
new CharacteristicsMappingItem().SetCharacteristic(

Mapping.Characteristic(x => x.FinanceCharacteristic))

49

};
view.Add(new SubmitableFunctionalComponent()

.SetCharacteristicsDescriptorMapping(characteristics)

.SetConstructionDescriptor(new UserFormConstructionDescriptor())

.SetConstructionId("PresenationSubmittableId"));

string viewContent = (string)ViewGenerator.GenerateView(view,
technology);

Listing 6.1: Implementation of view for finance domain

var technology = new AspNetMvcTechnology();
List<IFunctionalComponent> view = new List<IFunctionalComponent>() { };

var characteristics = new List<CharacteristicsMappingItem>(){
new CharacteristicsMappingItem().SetCharacteristic(

Mapping.Characteristic(x =>
x.MentallyChallengedIndividualsCharacteristic))

};
view.Add(new SubmitableFunctionalComponent()

.SetCharacteristicsDescriptorMapping(characteristics)

.SetConstructionDescriptor(new UserFormConstructionDescriptor())

.SetConstructionId("PresenationSubmittableId"));

string viewContent = (string)ViewGenerator.GenerateView(view,
technology);

Listing 6.2: Implementation of view for mentally challenged people

public class UserFormConstructionDescriptor : IConstructionDescriptor<TmpUser>{
public UserFormConstructionDescriptor(){}
public void SpecifyConstruction(IConstructionDescription<TmpUser>

description)
{

description.Field(x => x.Name)
.Label("Name").Id("sss");

description.Field(x => x.Surname)
.Label("Surname");

description.Field(x => x.DateOfBirth)
.Label("Enter date of birth");

description.Field(x => x.Salary)
.Label("Salary");

description.Field(x => x.Mature)
.Label("Is mature?");

}
}

Listing 6.3: Implementation of IConstructionDescriptor

50

Figure 6.1: An generated UI suitable for finance domain.

Figure 6.2: An UI better suitable for mentally challenged people generated by the im-
plemented tool according to specified rules in Chapter 2 (Background image from pix-
abay.com).

51

6.3.5 Algorithm of composition of UI

The testing was managed in a way where a several general characteristics were assigned to
the views and it was observed how the ViewGenerator handled the views and which con-
structions were selected during the generation process. The demonstration of the generated
views with different general characteristics was depicted on Figure 6.1 and Figure 6.2.

The possible improvement is in the algorithm of selection of the constructions according
to its general characteristics. The problem is when there will exist a huge set of construction
having very similar general characteristics with almost the same relevances. In current
solution the algorithm choose from very similar construction the one with the first name in
the alphabetic order.

6.3.6 Reduction of cost within the migration

The reduction of cost within migration can be seen when we have one definition of view and
just change the technology in which the UI should be generated. Therefore we can reuse
this UI definition in any future technology and back-end logic too. The only work for a new
technology will be to implement in new technology exactly same constructions as in previous
technology. This process leads to reduce the implementation time of constructions, because
previous construction are having a lot of general characteristics describing the construction
so the developer can better understand for which purpose the construction should be and
what properties should consist of. Also the constructions very probably will be implemented
as build from smaller constructions to build bigger one as is depicted on Figure 3.1. Hence,
the generator very probably will reduce cost of migration from one UI technology in .NET
to another. The exact reduced cost will be calculated further when the generator will be
more used in corima.

52

Chapter 7

Conclusion

In this Master’s thesis, we studied possibilities of separation of function and construction
(F/C) and graphical user interface according to HCI, touchscreen design and mentally
challenged people needs. Further in the thesis were studied software methodologies, like
model driven engineering, that is used for the definition of the new model (language defini-
tion). Languages like SBVR or OCL are then described to benefit from their strong points.
Further there are studied the typical finance domain attributes important for corima.

We analyzed the set of requirements on any language. When we studied all existing
languages we analyzed there has to be proposed a new language. According to the re-
quirements we designed a new language as DSL having the possibility to express the user
interface as a functional components having certain general attributes called characteristics
in the language. The designed DSL is also having the possibility to include the construction
of these functional components in specific technologies and have the certain construction at-
tributes (called construction characteristics in a DSL) according to studied finance domain
attributes.

At the end of analysis, we define the algorithm that composes the defined user inter-
face in new language into real user interface in specific UI technology. This algorithm is
introduced in pseudo-code and further described for better understanding.

The designed language was taken and used as a base for an implementation of a language
in .NET and programming language C#. Including the implementation was introduced a
generator tool using defined algorithm of composition of UI components. Generator has
as inputs the technology (in which UI should be generated) and the defined view. The
process of generation of UI from available implemented constructions is automated by the
generator.

In evaluation we states all of the points of assignment were accomplished. Further we
show how the language responds on different definition of UI with different set of charac-
teristics. Therefore the way of separation of function and construction results in expected
results. This way we have achieved the expected results for the generation of UI for mentally
challenged people and finance sector too. Finally we state the real reduced cost within mi-
gration is not calculated, however there are several reasons why the cost should be reduced
and the cost will be definitely calculated when the migration will be finished in corima.

Possible enhancements are defined for the algorithm of composition of UI components.
The enhancement is about the optimization of the algorithm when there will be defined a
huge set of constructions in a system. There constructions having very similar construc-
tion characteristics can be selected better. The whole designed language and implemented
solution is currently being integrated in corima and is running in real environment.

53

54

Bibliography

[1] Creating a UI by using XAML Designer in Visual Studio. [Online; 20.5.2018].
Retrieved from: https://docs.microsoft.com/en-us/visualstudio/designers/
creating-a-ui-by-using-xaml-designer-in-visual-studio

[2] Extensible Markup Language (XML) 1.0 (Fifth Edition). [Online; 8.1.2017].
Retrieved from: https://www.w3.org/TR/REC-xml/

[3] Object Constraint Language™ (OCL™). [Online; 8.1.2017].
Retrieved from: http://www.omg.org/spec/OCL/

[4] Project I-SEN (open community of parrents, pedagogues, therapists and IT experts).
[Online; 8.1.2017].
Retrieved from: http://www.i-sen.cz

[5] Qt GUI Designer. [Online; 20.5.2018].
Retrieved from: https://doc.qt.io/archives/2.3/designer.html

[6] Red Hat. [Online; 8.1.2017].
Retrieved from: https://www.redhat.com/en

[7] Semantics Of Business Vocabulary And Rules™ (SBVR™). [Online; 8.1.2017].
Retrieved from: http://www.omg.org/spec/SBVR/

[8] Swing gui builder (2013). [Online; 20.5.2018].
Retrieved from: https://netbeans.org/features/java/swing.html

[9] Baisley, D.; Hall, J.; Chapin, D.: Semantic Formulations in SBVR. [Online; 8.1.2017].
Retrieved from: https://www.w3.org/2004/12/rules-ws/paper/67/

[10] Calvary, G.; Coutaz, J.; Thevenin, D.; et al.: A Unifying Reference Framework for
multi-target user interfaces. Interacting with Computers. vol. 15, no. 3. 2003: pp.
289–308. doi:10.1016/S0953-5438(03)00010-9. /oup/backfile/content_public/
journal/iwc/15/3/10.1016_s0953-5438(03)00010-9/3/iwc15-0289.pdf.
Retrieved from: http://dx.doi.org/10.1016/S0953-5438(03)00010-9

[11] Cerny, T.; Donahoo, M. J.; Song, E.: Towards Effective Adaptive User Interfaces
Design. In Proceedings of the 2013 Research in Adaptive and Convergent Systems.
RACS ’13. New York, NY, USA: ACM. 2013. ISBN 978-1-4503-2348-2. pp. 373–380.
doi:10.1145/2513228.2513278.
Retrieved from: http://doi.acm.org/10.1145/2513228.2513278

55

https://docs.microsoft.com/en-us/visualstudio/designers/creating-a-ui-by-using-xaml-designer-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/designers/creating-a-ui-by-using-xaml-designer-in-visual-studio
https://www.w3.org/TR/REC-xml/
http://www.omg.org/spec/OCL/
http://www.i-sen.cz
https://doc.qt.io/archives/2.3/designer.html
https://www.redhat.com/en
http://www.omg.org/spec/SBVR/
https://netbeans.org/features/java/swing.html
https://www.w3.org/2004/12/rules-ws/paper/67/
/oup/backfile/content_public/journal/iwc/15/3/10.1016_s0953-5438(03)00010-9/3/iwc15-0289.pdf
/oup/backfile/content_public/journal/iwc/15/3/10.1016_s0953-5438(03)00010-9/3/iwc15-0289.pdf
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
http://doi.acm.org/10.1145/2513228.2513278

[12] Clerckx, T.; Luyten, K.; Coninx, K.: The Mapping Problem Back and Forth:
Customizing Dynamic Models While Preserving Consistency. In Proceedings of the
3rd Annual Conference on Task Models and Diagrams. TAMODIA ’04. New York,
NY, USA: ACM. 2004. ISBN 1-59593-000-0. pp. 33–42. doi:10.1145/1045446.1045455.
Retrieved from: http://doi.acm.org/10.1145/1045446.1045455

[13] Conrad, J.; Viescas, J.: Microsoft Access 2010 Inside Out. Microsoft Press. first
edition. 2010. ISBN 0735626855, 9780735626850.

[14] Dietz, J.; Hoogervorst, J.: Theories in Enterprise Engineering Memorandum - BETA.
2014.
Retrieved from: http://www.ciaonetwork.org/uploads/eewc2014/EE-theories

[15] Dietz, J.; Hoogervorst, J.: Theories in Enterprise Engineering Memorandum - TAO.
2014.
Retrieved from: http://www.ciaonetwork.org/uploads/eewc2014/EE-theories

[16] Dietz, J. L. G.: Enterprise Ontology: Theory and Methodology. Berlin, Heidelberg:
Springer-Verlag. 2006. ISBN 3540291695.

[17] Dix, A.; Finlay, J. E.; Abowd, G. D.; et al.: Human-Computer Interaction (3rd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.. 2003. ISBN 0130461091.

[18] Dvorak, O.; Pergl, R.; Kroha, P.: Affordance-driven Software Assembling. Enterprise
Engineering Working Conference. 2018. doi:inprintpaper.

[19] Fiala, J.; Kočí, R.: Počítačová terapie jako koncept nové formy terapie pro osoby s
mentálním postižením: teorie i praxe. Journal of Technology and Information
Education. vol. 6, no. 1. 2014: pp. 89–103. ISSN 1803-537X.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=10718

[20] Fiala, J.; Kočí, R.: Computer as Therapy in role of alternative and augmentative
communication. 2015. 34–42 pp.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php.cs?id=10737

[21] Fiala, J.; Zendulka, J.: Mentally challenged as design principles and models for their
applications. Applied Computer Science. vol. 12, no. 4. 2016: pp. 28–48. ISSN
1895-3735.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=11129

[22] Fowler, M.: Domain Specific Languages. Addison-Wesley Professional. first edition.
2010. ISBN 0321712943, 9780321712943.

[23] Inostroza, R.; Rusu, C.; Roncagliolo, S.; et al.: Usability Heuristics Validation
through Empirical Evidences: A Touchscreen-Based Mobile Devices Proposal. Nov
2012. 60-68 pp.. doi:10.1109/SCCC.2012.15.

[24] Inostroza, R.; Rusu, C.; Roncaliolo, S.; et al.: Design Patterns for Touchscreen-based
Mobile Devices: Users Above All! ChileCHI ’13. New York, NY, USA: ACM. 2013.
ISBN 978-1-4503-2200-3. 50–51 pp.. doi:10.1145/2535597.2535616.
Retrieved from: http://doi.acm.org/10.1145/2535597.2535616

56

http://doi.acm.org/10.1145/1045446.1045455
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories
http://www.fit.vutbr.cz/research/view_pub.php?id=10718
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=10737
http://www.fit.vutbr.cz/research/view_pub.php?id=11129
http://doi.acm.org/10.1145/2535597.2535616

[25] ISO 9241-11:1998: Ergonomic requirements for office work with visual display
terminals (VDTs) – Part 11: Guidance on usability. Standard. March 1998.

[26] ISO 9241-171:2008: Ergonomics of human-system interaction – Part 171: Guidance
on software accessibility. Standard. 2008.

[27] Kalina, J.: Vývoj i-CT frameworku a jeho aplikace pro komunikaci typu ANO/NE.
Master’s Thesis. Brno: Vysoké učení technické v Brně. Fakulta informačních
technologií. The address of the publisher. 2016.
Retrieved from: http://hdl.handle.net/11012/61917

[28] Kelly, S.; Tolvanen, J.: Domain-Specific Modeling - Enabling Full Code Generation.
Wiley. 2008. ISBN 978-0-470-03666-2.
Retrieved from:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html

[29] Kennard, R.; Leaney, J.: Towards a general purpose architecture for UI generation.
Journal of Systems and Software. vol. 83, no. 10. 2010: pp. 1896 – 1906. ISSN
0164-1212. doi:https://doi.org/10.1016/j.jss.2010.05.079.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0164121210001597

[30] Kris, L.; Chris, V.; Jan, V. d. B.; et al.: Context-sensitive User Interfaces for
Ambient Environments: Design, Development and Deployment. In Mobile Computing
and Ambient Intelligence: The Challenge of Multimedia, edited by N. Davies;
T. Kirste; H. Schumann. number 05181 in Dagstuhl Seminar Proceedings. Dagstuhl,
Germany: Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany. 2005. ISSN 1862-4405.
Retrieved from: http://drops.dagstuhl.de/opus/volltexte/2005/377

[31] Macik, M.; Cerny, T.; Slavik, P.: Context-sensitive, cross-platform user interface
generation. Journal on Multimodal User Interfaces. vol. 8, no. 2. Jun 2014: pp.
217–229. ISSN 1783-8738. doi:10.1007/s12193-013-0141-0.
Retrieved from: https://doi.org/10.1007/s12193-013-0141-0

[32] Martin, J.: Managing the Data Base Environment. Upper Saddle River, NJ, USA:
Prentice Hall PTR. first edition. 1983. ISBN 0135505828.

[33] Mernik, M.; Heering, J.; Sloane, A. M.: When and How to Develop Domain-specific
Languages. ACM Comput. Surv.. vol. 37, no. 4. December 2005: pp. 316–344. ISSN
0360-0300. doi:10.1145/1118890.1118892.
Retrieved from:
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/1118890.1118892

[34] Morin, B.; Barais, O.; Jezequel, J. M.; et al.: Models@ Run.time to Support Dynamic
Adaptation. Computer. vol. 42, no. 10. Oct 2009: pp. 44–51. ISSN 0018-9162.
doi:10.1109/MC.2009.327.

[35] Nielsen, J.: Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.. 1993. ISBN 0125184050.

57

http://hdl.handle.net/11012/61917
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
http://www.sciencedirect.com/science/article/pii/S0164121210001597
http://drops.dagstuhl.de/opus/volltexte/2005/377
https://doi.org/10.1007/s12193-013-0141-0
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/1118890.1118892

[36] Nilsson, E. G.: Design Patterns for User Interface for Mobile Applications. Adv. Eng.
Softw.. vol. 40, no. 12. December 2009: pp. 1318–1328. ISSN 0965-9978.
doi:10.1016/j.advengsoft.2009.01.017.
Retrieved from: http://dx.doi.org/10.1016/j.advengsoft.2009.01.017

[37] Rodrigues da Silva, A.: Model-driven Engineering. Comput. Lang. Syst. Struct..
vol. 43, no. C. October 2015: pp. 139–155. ISSN 1477-8424.
doi:10.1016/j.cl.2015.06.001.
Retrieved from: http://dx.doi.org/10.1016/j.cl.2015.06.001

[38] Sottet, J.-S.; Calvary, G.; Coutaz, J.; et al.: A Model-Driven Engineering Approach
for the Usability of Plastic User Interfaces. In Engineering Interactive Systems, edited
by J. Gulliksen; M. B. Harning; P. Palanque; G. C. van der Veer; J. Wesson. Berlin,
Heidelberg: Springer Berlin Heidelberg. 2008. ISBN 978-3-540-92698-6. pp. 140–157.

[39] Stephanidis, C.: Adaptive Techniques for Universal Access. User Modeling and
User-Adapted Interaction. vol. 11, no. 1. Mar 2001: pp. 159–179. ISSN 1573-1391.
doi:10.1023/A:1011144232235.
Retrieved from: https://doi.org/10.1023/A:1011144232235

[40] Wobbrock, J. O.; Kane, S. K.; Gajos, K. Z.; et al.: Ability-Based Design: Concept,
Principles and Examples. ACM Trans. Access. Comput.. vol. 3, no. 3. April 2011: pp.
9:1–9:27. ISSN 1936-7228. doi:10.1145/1952383.1952384.
Retrieved from: http://doi.acm.org/10.1145/1952383.1952384

[41] Černý, T.; Song, E.: Model-driven Rich Form Generation. vol. 15. 07 2012: pp.
2695–2714.

58

http://dx.doi.org/10.1016/j.advengsoft.2009.01.017
http://dx.doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1023/A:1011144232235
http://doi.acm.org/10.1145/1952383.1952384

Appendices

59

List of Appendices

A CD contents 61

B Figures 62

60

Appendix A

CD contents

As a part of the thesis are also attached contents of implemented application on an enclosed
storage media. Source files of the implemented solution are placed into the folder src.
There is also stored the file readme.txt, where is described a way of usage of proposed
implementation. There are also included predefined .sln files for opening the project directly
in Visual Studio.

61

Appendix B

Figures

62

Figure B.1: Generated view using WebEntityWindow construction. See different inputs for
different data types, default values, and defined id in the generated source code.

63

Figure B.2: Generated view using WebEntityWindow construction with focus on connection
to back-end with JavaScript.

64

	Introduction
	Motivation
	Overview
	Structure of the Text
	Goals

	State of The Art
	Separating Function and Construction
	UI Principles
	UI principles of current designs (General)
	UI principles of current designs (Business-Domain)
	UI principles of current designs (User groups)

	Approaches to describe UI
	Languages for UI definition

	CRUD operations

	Analysis and design of new language for UI definition
	Analysis of requirements for a new language
	Independence of the user interface technology
	Reduction of a cost within migration between UI technologies
	Separation of the function and construction
	Attributes of UI controls (Usability, accessibility, HCI requirements and user groups)
	Business-domain requirements
	Connection to back-end logic

	Goals Revisited
	Proper design of UI language
	Algorithm of composition of UI

	Implementation
	Technical information
	Implementation of .NET library
	Implementation of constructions for CRUD operations

	Related work
	Evaluation
	Evaluation with respect to the assignment
	Evaluation with respect to the Related work
	Evaluation of implemented language and results
	Evaluation of high-level form of the proposed language
	Evaluation of independence of UI technology
	Evaluation of separation of function and construction
	Evaluation of attributes of UI controls and business domain requirements
	Algorithm of composition of UI
	Reduction of cost within the migration

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	CD contents
	Figures

