
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

L A N G U A G E F O R H I G H - L E V E L D E S C R I P T I O N O F U S E R
I N T E R F A C E R E Q U I R E M E N T S
VYSOKOUROVŇOVÝ JAZYK PRO POPIS UŽIVATELSKÉHO PROSTŘEDÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MARTIN RAŠOVSKÝ
AUTOR PRÁCE

SUPERVISOR Ing. RADIM KRČMÁŘ
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This master's thesis investigates new high-level language for description of graphical user
interface. The theoretical part of this thesis studies the U I technologies and software
methodologies from a side of general requirements on new language. F r o m that, we de
rive general requirements specifying what it is meant to be a functional part of an U I . We
also list requirements for special educational needs according to known computer therapy
design principles. Accord ing to analyzed requirements is proposed a design of new lan
guage, including an a lgori thm of composit ion of U I components for further implementat ion
of the language. Designed language is implemented in C # programming language and is
demonstrated on a representative example. We conclude this work wi th out l ining further
extensions of the proposed language.

Abstrakt
Dip lomová p r á c e se zabývá problematikou n á v r h u vysokoúrovňového j azyka pro popis grafick
ého už iva te lského r o z h r a n í . Teore t i cká čás t rozeb í rá současné technologie už iva te l ských
r o z h r a n í ze jména pro s t anoven í p o ž a d a v k ů na nový jazyk. Z t ě c h t o p o z n a t k ů n a s l á d n e
jsou shrnuty z á s a d n í požadavky , k t e r é se n u t n ě m u s í zakomponovat př i n á v r h u s a m o t n é h o
jazyka . Jsou zde z m í n ě n y i p o ž a d a v k y z pohledu osob se specifickými vzdě lávac ími p o t ř e
bami dle tzv. n á v r h o v ý c h p r inc ipů počítačové terapie. N á s l e d n ě p ráce dle ana lyzovaných
p o ž a d a v k ů navrhuje jazyk pro vysokoúrovňový popis už iva te lského roz ran í . Součás t í n á v r h u
jazyka je t a k é popis algori tmu pro kompozici j edno t l i vých komponent def inovaných v jazyce
do výs l edného už iva te l ského p ros t ř ed í . Nav ržený jazyk je i m p l e m e n t o v á n v p r o g r a m o v a c í m
jazyce C # . Implementace je d e m o n s t r o v á n a na r e p r e z e n t a t i v n í c h p ř ík ladech . Nakonec se
p ráce věnuje da l š ím m o ž n ý m rozš í řen ím jazyka.

Keywords
Graphica l user interface, high-level language, usability, accessibility, touch screen design,
computer therapy, design principles, M D E , S B V R , O C L , visual programming.

Klíčová slova
Grafické uživate lské p ros t ř ed í , vysokoúrovňový jazyk, použ i t e lnos t , p ř í s t u p n o s t , do tykové
rozhran í , počítačová terapie, n á v r h o v é principy, M D E , S B V R , O C L , v izuá ln í p rog ramován í .

Reference
R A S O V S K Ý , M a r t i n . Language for High-Level Description of User Lnterface Requirements.
Brno , 2018. Master 's thesis. Brno Universi ty of Technology, Facul ty of Information Tech
nology. Supervisor Ing. R a d i m K r č m á ř

Rozšířený abstrakt

Pojem grafické už iva te lské p r o s t ř e d í je v oblasti informatiky čás t aplikace umožňuj íc í
uživatel i snadnou interakci se s y s t é m e m , n a p ř . p o m o c í různých grafických t l ač í t ek a tex
tových polí . Postupem času byly vyvinuty n á s t r o j e pro rychlejší a j e d n o d u š š í vývoj t ě c h n o
už iva te l ských rozh ran í . P o m o c í t ě ch to n á s t r o j ů se zača ly vyví je t s y s t é m y s u ž i v a t e s k ý m
p r o s t ř e d í m využívaj ící p o d o b n é ov ládac í p rvky a d íky tomu se už iva te lé nemuse j í uč i t jak
použ íva t uživate lské p r o s t ř e d í v k a ž d é nové apl ikaci . V současnos t i je t é m ě ř vě t š ina mod
erních ap l ikac í rozš í řena p rávě o toto grafické uživate lské p ros t ř ed í . N a druhou stranu
pokud p r o g r a m á t o r chce aplikace inovovat do novějších technologi í vzhledem k uživatel
skému p ros t ř ed í , tak m u s í typicky p ř e p s a t zdro jový kód . D a n ý proces nás l edně s toj í mnoho
n á k l a d ů . P o k u d se p o d í v á m e na p ř ík l ad vývoje A S P . N E T technologi í , tak zde mohla bý t
d a n á aplikace n a p s á n a v technologii A S P . N E T Web forms. P o někol ika letech byla v y d á n a
dalš í technologie A S P . N E T M V C . P o k u d by p rávě p r o g r a m á t o r chtěl využ íva t nejnovější
technologii, musel by pak apl ikaci v technologii A S P . N E T Web forms p ř e p s a t do technolo
gie A S P . N E T M V C . Navíc se o b ě technologie liší s y n t a x í a architekturou. Tedy abychom
dosáhl i migrace technologie už iva te lského p ros t ř ed í , firma m u s í typicky investovat do vývoje
zcela nové aplikace. Nav íc výs l edná mig rovaná verze m ů ž e vypadat zcela s te jně jako ta
původn í .

P ř e s n ě d a n ý vysvě t lený p r o b l é m se snaž í řeši t p r o g r a m á t o ř i př i vývoj i komerčn í ap
likace corima, vyví jené firmou C O P S G m b h . V t é t o firmě v z n i k l p o ž a d a v e k vy tvo ř i t t u t é ž
apl ikaci , avšak v j iné technologii už iva te l ského rozh ran í , cor ima je m n o h o u ž i v a t e l s k á client-
server aplikace and ap l ikačn í platforma v jednom. Serverová strana i k l i en t ská strana je
vyví jena ve frameworku . N E T . Serverová strana je vyví jena v technologii . N E T W C F ,
za t ímco k l i en t ská strana je vyví jena v . N E T W P F technologii. Jel ikož vě t š ina business
logiky je u m í s t ě n a na serveru, nen í p r o b l é m tuto business logiku o p ě t o v n ě použ í t n o v ý m
klientem. P r o b l é m je ovšem s o p ě t o v n ý m p o u ž i t í m už iva te l ského p ros t ř ed í . P ro to vzn ik l
n á p a d vy tvo ř i t mechanismus konverze j e d n é . N E T uživate lské technologie do d r u h é . A b y
chom dosáh l i d a n é konverze, bude p r a v d ě p o d o b n ě n u t n é vy tvo ř i t reprezentaci už iva te l ského
p r o s t ř e d í nezávis lou na k o n k r é t n í . N E T technologii. Reprezentace už iva te l ského p r o s t ř e d í
by m ě l a bý t vysokoúrovňová a mě la by obsahovat p r o s t ř e d k y pro popis běžných uživatel
ských p r o s t ř e d í v ap l ikačn í p l a t fo rmě corima.

P ř í s t u p k n á v r h u vysokoúrovňového popisu už iva te l ského p r o s t ř e d í se bude odví je t od
funkce komponent už iva te l ského p ros t ř ed í .

V ý s l e d n ý m cí lem p r á c e je navrhnout d e k l a r a t i v n í vysokoúrovňový jazyk pro nezávis lý
popis už iva te l ského rozh ran í . Uživate lské p r o s t ř e d í p o p s a n é v tomto novém jazyce bude
dá le vs tupem do tzv. g e n e r á t o r u . Tento g e n e r á t o r je program v jazyce c# , k t e r ý na zák
ladě vs tupu bude generovat a d e k v á t n í v ý s t u p ve formě už iva te lského p r o s t ř e d í v k o n k r é t n í
cílové . N E T technologii už iva te l ského p ros t ř ed í . P o u ž i t í g e n e r á t o r u bude d e m o n s t r o v á n o
na typ ických C R U D formulář ích , k t e r é byly vysvě t leny v textu p ráce .

Nás l edně jsou zana lyzovány p o ž a d a v k y pro n á v r h tohoto jazyka . T y t o p o ž a d a v k y
jsou nezávis los t technologie už iva te l sého rozh ran í , sn ížení n á k l a d ů b ě h e m migrace z j e d n é
technologie už iva te l ského p r o s t ř e d í do d r u h é technologie už iva te lského p ros t ř ed í , oddě len í
funkce a konstrukce v d a n é m jazyce, zoh ledněn í různých a t r i b u t ů komponent už iva te l ského
p ros t ř ed í , zoh ledněn í p o ž a d a v k ů oh l edně f inančních ap l ikac í a m o ž n o s t p r o p o j e n í uživatel
ského p r o s t ř e d í s back-end logikou.

1 Pro účely zkrácení textu budeme používat pojem uživatelské prostředí

http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

N a zák l adě t ě c h t o def inovaných p o ž a d a v k ů je n a v r ž e n nový jazyk. Tento nový jazyk je
nav ržen jako meta-model a to z toho d ů v o d u , že jeho reprezentace m ů ž e bý t jak grafická,
tak t ex tová , n a p ř . X M L . V p rác i je uvedeno s c h é m a tohoto meta modelu s vysvě t l en ím jeho
důlež i tých čás t í . N y n í ř e k n e m e , že d a n ý jazyk se zk l ádá z následuj íc ích entit: technologie
už iva te lského rozh ran í , komponenta reprezentu j íc í fukci, konstrukce, s t r á n k a už iva te l ského
rozhran í , o b e c n á vlastnost, k o n t r u k č n í vlastnost. D a n é entity definují s t r á n k u uživatel
ského r o z h r a n í a spolu s technolgi í jsou dá le vstupy do g e n e r á t o r u . Nakonec v n á v r h u
definujeme algoritmus p o m o c í něhož g e n e r á t o r komponuje definované konstrukce v jazyce
do výs l edného uživelského rozhran í .

I m p l e m e n t a c í tohoto j azyka v jazyce C # je v h o d n é p řeveden í n á v r h u j azyka jako meta-
modelu do r eá lného použ i t í v praxi do j azyka C # . J edno t l i vé entity jsou p ř evedeny do
zdro jového k ó d u a je i m p l e m e n t o v á n algoritmus g e n e r á t o r u a v h o d n ě rozš í řen pro použ i t í
v ap l ikačn í p l a t fo rmě corima. Je zde u k á z á n o , že s y s t é m je schopen generovat C R U D
formuláře a propojit už ivate lské p r o s t ř e d í s back-end logikou aplikace.

V y h o d n o c e n í ukazuje, že byly sp lněny všechny body z a d á n í vče tně vy tyčených konkré t
ních cílů b ě h e m p ráce . V r á m c i v y h o d n o c e n í bylo u k á z á n o , že g e n e r á t o r je schopný vzít v
úvahu r ů z n é definice už iva te l ského r o z h r a n í a podle nich generovat r ů z n é realizace. Zároveň
bylo u k á z á n o , že s y s t é m je schopný generovat uživate lské p r o s t ř e d í definované pro jedince
se specif ickými vzdělávac ími p o t ř e b a m i .

Možné dalš í rozší ření p r á c e bylo sh l edáno v opt imal izaci algori tmu pro kompozici uži
va te l ských komponent n a v r ž e n é h o jazyka . P r o b l é m m ů ž e nastat, pokud v jazyce bude
definováno příl iš mnoho komponent s p o d o b n ý m i o b e c n ý m i vlastnostmi. V tomto p ř í p a d ě
m ů ž e d a n ý algoritmus vybrat m é n ě vhodnou konstrukci d a n é komponenty už iva te l ského
rozhran í .

Language for High-Level Description of User In
terface Requirements

Declaration
Hereby I declare that this masters's thesis was prepared as an original author's work under
the supervision of M r . Ing. J i ř í F i a l a , Ing. K r č m á ř R a d i m , and Ing. O n d ř e j D v o ř á k . A l l
the relevant information sources, which were used during preparation of this thesis, are
properly cited and included i n the list of references.

M a r t i n R a š o v s k ý
M a y 23, 2018

Acknowledgements
I a m using this opportuni ty to express my gratitude to the Ing. Ondfej Dvorak who
supported me throughout the completion of this thesis.

Contents

1 Introduction 3
1.1 Mot iva t ion 3
1.2 Overview 3
1.3 Structure of the Text 4
1.4 Goals 5

2 State of T h e A r t 6
2.1 Separating Funct ion and Const ruct ion 6
2.2 U I Principles 7

2.2.1 U I principles of current designs (General) 7
2.2.2 U I principles of current designs (Business-Domain) 17
2.2.3 U I principles of current designs (User groups) 18

2.3 Approaches to describe U I 18
2.3.1 Languages for U I definition 18

2.4 C R U D operations 24

3 Analysis and design of new language for U I definition 26
3.1 Analys is of requirements for a new language 26

3.1.1 Independence of the user interface technology 26
3.1.2 Reduct ion of a cost wi th in migrat ion between U I technologies 26
3.1.3 Separation of the function and construction 27
3.1.4 At t r ibutes of U I controls (Usabili ty, accessibility, H C I requirements

and user groups) 27
3.1.5 Business-domain requirements 27
3.1.6 Connect ion to back-end logic 27

3.2 Goals Revis i ted 28
3.3 Proper design of U I language 28
3.4 A l g o r i t h m of composit ion of U I 35

4 Implementation 39
4.1 Technical information 39
4.2 Implementation of . N E T l ibrary 40
4.3 Implementation of constructions for C R U D operations 44

5 Related work 45

6 Evaluation 47
6.1 Evaluat ion wi th respect to the assignment 47

1

6.2 Evalua t ion w i t h respect to the Related work 48
6.3 Evalua t ion of implemented language and results 48

6.3.1 Evalua t ion of high-level form of the proposed language 49
6.3.2 Evalua t ion of independence of U I technology 49
6.3.3 Evalua t ion of separation of function and construction 49
6.3.4 Evalua t ion of attributes of U I controls and business domain require

ments 49
6.3.5 A l g o r i t h m of composit ion of U I 52
6.3.6 Reduct ion of cost wi th in the migrat ion 52

7 Conclusion 53

Bibl iography 55

Appendices 59

Lis t of Appendices 60

A C D contents 61

B Figures 62

1

Chapter 1

Introduction

1.1 Motivat ion

In information technology, a graphical user interface (G U I) 1 is a part of a software giving
a user control over the application, for instance using buttons and text fields. Currently,
most of the modern software applications are extended wi th G U I . A program wi th G U I
includes graphical controls that user can control w i th mouse, keyboard or w i th touch screen.
Over t ime user interface (UI) technologies have evolved to give developers the abi l i ty to
create these G U I easier and faster. The developer is now able to create new applications
having similar design and users do not have to relearn the interface. O n the other hand,
a switch to a new technology usually requires to rewrite the code. Such a re-engineering
of aging system is related wi th a big cost. E .g . , in development of web based A S P . N E T 2

application, an applicat ion was in i t ia l ly wri t ten in A S P . N E T Web forms 3 . After few years,
new technology called A S P . N E T M V C ' 1 was released. A l t h o u g h it shares the name wi th
original A S P . N E T , it differs in syntax and architecture. Next technology i n A S P . N E T
was introduced A S P . N E T A P I that came up wi th the use of JavaScript frameworks, e.g.,
Angu la r JS , Knockout , or React . To gain features offered by these technologies, the company
must invest into rebuilding the whole software. However, the resulting U I mostly looks and
feels the same, only the technology underneath changes.

Therefore the motivat ion of this thesis is to reduce costs of migrat ing U I to new tech
nologies. To achieve that, the migrat ion should t ry to keep two aspects:

• the same function of migrated U I ,

• certain U I attributes of migrated U I .

1.2 Overview

Dur ing a life-cycle of a commercial software system corima, developed by C O P S G m b H ,
a requirement for a client in new technology came up. cor ima is a multi-user client-server

1 Graphical user interface is being shortened to user interface (UI)
2 ASP. NET is a framework designed for building enterprise-class server-based web applications using

.NET on Windows.
3 ASP.NET is Web forms is one of the ASP.NET web development models and it is the oldest one.
4 ASP.NET M V C is is one of the ASP.NET web development models. ASP.NET M V C is a framework

using Model View Controller (MVC) design pattern.

3

http://ASP.NET2
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

application and an applicat ion platform at once. A server and a client are both developed
in . N E T framework. Server side is developed i n . N E T W C F J technology, while the client
is developed i n . N E T W P F 6 technology. New client for cor ima is demanded i n A S P . N E T
technology. Since a business logic is mostly placed on a server-side, the new required client
can fully reuse i t . However, an idea of reusing client-side source code arose. The idea was to
introduce a mechanism to convert U I from one . N E T technology to another. To achieve the
conversion, some new technology-independent representation of U I should be established.
A representation should be independent from any existing language and should describe
the U I well enough for most common usages i n corima.

A n approach would require to separate its function from a construction in a specific
technology. Thus, instead of describing U I by expl ici t ly referring to U I constructs of given
technology (e.g., JavaScript Text-box), we should concentrate on describing its function
(e.g., Text Input). The use of so-called declarative language seems to be a natural choice
for describing the U I . Therefore, this thesis elaborates on how to represent User interface
requirements using a higher-level description. It investigates the opt imal structure of such a
language, it shows impl ied restrictions (e.g., l imi ted developer's freedom), and it prototypes
the use of this language i n corima.

Hence, the goal of this thesis is to introduce a declarative language for an independent
U I description. The code i n that language w i l l be further used as an input for so-called
generator. For purposes of corima, the generator w i l l be . N E T l ibrary generating 7 U I in
the required . N E T technology. Generator is the key factor of choosing how the final U I w i l l
look like. This way we w i l l achieve the consistency between the different . N E T technologies
while having the same declarative description of the U I . Therefore we could generate an
application to H T M L and C S S for a A S P . N E T web applicat ion and X A M L files for a W P F
application.

1.3 Structure of the Text

In Section 1.4, we w i l l define the goals of this thesis. In Chapter 2 of this thesis, we w i l l
describe the general rules for user interface from which w i l l be derived the requirements
on the new language. This also includes the requirements from a point of usabil i ty and
accessibility, which are very important especially for individuals w i th specific educational
needs. Here we come from the domain of computer therapy design principles, that offers
solutions to common issues in U I design. Further i n Section 2.3, we w i l l describe current
languages that are used for the U I definition and can be taken as an inspirat ion for the
new language, where w i l l be taken the advantages of these languages for the new proposed
language. In Section 3.2, we w i l l revisit the goals and state the specific goals that should
be achieved. In the Chapter 3, there w i l l be analyzed the problem and proposed a high-
level language. In the Chapter 4, we w i l l describe how the language was implemented in
. N E T and how generator was constructed. In the Chapter 5, we w i l l show the related
work, possibilities how to generate U I from other existing languages, and why their direct

5 The Windows Communication Foundation (WCF) is a framework for building service-oriented applica
tions (SOA). Using WCF, a developer can expose endpoints from which data can be send between a server
and a client.

6The Windows Presentation Foundation (WPF) is a framework for building user interactive Windows
applications. W P F provides a consistent programming model that separates UI from business logic.

7Generator represents .NET generating library.

4

http://ASP.NET
http://ASP.NET

use in corima is not cumbersome. F ina l ly , in Chapter 7 we w i l l conclude the thesis i n the
conclusion and provide how the further integration to cor ima should look like.

1.4 Goals

The goal of this thesis is to propose a solution to reduce costs of migrat ion of U I from one
. N E T technology to another:

1. Define characteristics of typ ica l U I ,

2. Propose a language to describe characteristics of U I ,

3. Propose a mechanism to make the use of described characteristics,

4. Evaluate, how the mechanism and language can help to reduce costs of migrat ion
from one U I technology to another.

5

Chapter 2

State of The Ar t

To design a high-level language, we must introduce common principles of U I first. We cover
these principles from the most general to the most specific ones. A l l important aspects of
these discussed principles should influence the language design of language accordingly.

W h i l e we need to propose a design of language keeping some attributes and its function,
we need to discuss possibilities how the separation of function and construction w i t h its
attributes can be solved. One of those approaches is studies i n Section 2.1.

In Section 2.2.1, we cover common approaches to achieve usabil i ty and accessibility of
each U I control. We follow wi th the groups of common U I controls and their common
constructions, including the touch screen design principles for these constructions. Further
we w i l l study the computer therapy design principles w i t h focus on U I . F ina l ly , we derive
requirements that should be considered in new language describing U I on a general level.

Next , in Section 2.2.2, we reveal specifics of U I principles wi th in certain business do
m a i n 1 . There are described required attributes for finance domains that should be con
sidered i n new language. F i n a l l y for U I principles there w i l l be described how user specific
groups have impact of the U I itself and how it should be considered in language too.

New language is not needed to design from scratch, therefore we w i l l study and describe
the current approaches how user interfaces are defined. For each approach there w i l l be
finally concluded what we can benefit from it and what is not suitable for our purposes and
the explanation of the reason.

The mechanism should be demonstrated on some complex U I . A s an example of complex
U I is U I performing so called C R U D operations among some memory unit . We w i l l provide
an explanation what these C R U D operations are and what are min ima l requirements that
an U I performing these C R U D operations should consist of.

2.1 Separating Function and Construction

The goal of this thesis is to reduce costs on migrat ing U I from one technology to another.
One possibil i ty to assess this problem is to clearly separate a function and a construction
(F / C) of a system (i.e., UI) , and to map F to C using a rigorous engineering way. This
approach is grounded i n findings of Enterprise Engineering (EE)[]. The i r applicabi l i ty
in Software Engineering has been studied by researchers at Facul ty of Information Tech
nology at Czech Technical Univers i ty (F I T C T U) i n Prague. Thus, i n this thesis, we refer

1 In this text, business domain represents all business specific activities such as finance, accounting,
marketing, medicine, and research.

(i

to a paper Affordance-driven Software Assembling (A D A) [18], which overviews the con
cepts of software architecture a iming at reducing costs of systems by clearly separating
their function from their construction. The research [18] explains, that based on so-called
r- theory (Teleology Across Ontology) [15] and /3-theory (Bind ing Essence to Technology
under Architecture) [14], software system can be assembled from certain components. How
ever, this approach expects that components expose their properties, and that we clearly
describe users w i th their purposes on using the system. Furthermore, the approach ex
pects a reasonable automated, or semi-automated mapping algori thm selecting convenient
components. The Figure 2.1 demonstrates this approach.

(user * purpose) * (component * properties)

What are the users? For which purpose? What are the properties of components? What is the f nal construction?

Figure 2.1: Affordances in component-based systems [18]

Since i n this thesis, we want to propose a solution of bui ld ing up a system respecting
l imitat ions of challenged individuals , and we want to reduce costs on migrat ing systems
from one technology to another, the research at F I T C T U is an important basis of our
work.

2.2 U I Principles

A designer has to involve the creativity to outcome the interesting appearance of an U I .
However, the U I would be worthless if it would not keep certain aspects that leads the
design to be usable by the appropriate target group. N o matter what k ind of U I for any
k ind of applicat ion is designed, the U I should consists of common U I regions (called U I
controls) for which a l l targets groups are used to. Further when a designer constructs the
U I for a target group wi th some physical or mental disposition, a designer should take these
dispositions into account and produce the design to be usable also for these target users,
e.g., a designer designs a suitable sound control for b l ind people. A l l these general aspects
(called principles) of a U I w i l l be described in the further text w i th then focus on specific
needs of mentally challenged people. We w i l l also propose a common set of U I controls that
might be considered by new language.

2.2.1 U I pr inc ip les of current designs (Genera l)

Usabil i ty and Accessibility

Generally, a user interface (UI) can be created indiv idual ly according to a developer's
att i tude and a design feeling. A given user interface is usually not appropriate for everybody.
A number of users can face troubles to understand i t . Others are not able to use it at a l l .
The U I is commonly judged by its user friendliness, or easiness to use. However, the right
technical term expressing the quali ty of U I is known as a usability. Usability has many
definitions. The ISO 9241 standard on Ergonomics of Human System Interaction (Part 11
1998) defines usability as [25]:

7

This part deals with the extent to which a product can be used by specified users
to achieve specified goals with effectiveness (Task completion by users), efficiency
(Task in time) and satisfaction (responded by user in term of experience) in a
specified context of use (users, tasks, equipments and environments).

Jakob Nielsen [35] states:

Usability has multiple components and is traditionally associated with these five
usability attributes: learn-ability, efficiency, memorability, errors, satisfaction.

Even though the designed system is not very usable, the common practice in companies
is solved by introductory lessons or trainings to explain end-users how to deal w i th the
new software. However, there can be also users that have some dispositions to be not able
to work wi th presented software at a l l . This k ind of people can be children that cannot
read, seniors, somehow mentally challenged individuals , etc. Due to this facts, the designer
should follow some rules during the creation of user interface to avoid the problem stated
above. To address this problem, another essential term to study is accessibility. Accessibility
is usually connected wi th the use of U I by people w i t h disabilities and by the older people.
ISO 9241 standard on Ergonomics of Human System Interaction (Part 171 2008b) defines
accessibility as [26]:

The usability of a product, service, environment or facility by people with the
widest range of capabilities.

B y accessibility we also understand the physical abi l i ty to have "access" to the usage of
a provided system. Therefore, the "accessibility" plays an important role i n a system. It
expresses a barrier between the system and its user.

Firs t ly , this text w i l l be more focused on usability. Tha t means that it w i l l be more
focused on general rules for well usable user interface. In further sub sections we w i l l specify
other rules for the touch screen design and mentally disabled people (accessibility).

F rom general point of view, the design should maximize the number of people who can:

• reach the controls (accessibility),

• find the ind iv idua l controls or keys i f they can't see them (visibi l i ty) ,

• read the labels on the controls or keys (readability),

• physically operate controls and other input mechanisms (physically accessible),

• understand how to operate controls and other input mechanisms (intuitive),

• connect special alternative input devices,

• view the output display without triggering a seizure (compactness).

That means, there should be some standard how to create U I to have the best usabil i ty
of demanded product. In the process of designing user interface, the U I is typical ly produced
from a finite set of elements. To increase the usability, it is recommended to use well-known
elements. The users are familiar w i th them, and they expect them to behave in a certain
way. Thus , choosing this k ind of elements seems to maximize the number of people capable
to use them.

User interface elements are:

8

• input controls,

• navigational components,

• informational components,

• containers.

Input controls

Input controls allow user to interact w i th an applicat ion. W i d e l y used input controls are
check-boxes, radio buttons, drop-down lists, list boxes, buttons, toggles, text fields, date
fields, and buttons.

Check-boxes allow the user to select one or more options from a set. It is usually best
to present check-boxes i n a vert ical list. More than one column is acceptable as well , i f
the list is long enough that it might require scrolling or i f comparison of terms might be
necessary. See fig. 2.2 for check-boxes example.

I posses:

0 a b i k e

0 a ca r

• a v a n

Figure 2.2: Check-boxes example

Radio buttons are used to allow users to select one i tem at a t ime.
Drop-down lists allow users to select one i tem from a set at a time, but are more

suitable for large sets. The list is shown after c l icking the drop-down list and user is able
to scroll through a set and select one i tem.

A button indicated an action upon touch and is typical ly labeled using a text, an icon
or both. See fig. 2.3 for a but ton example.

Q Search

Figure 2.3: A but ton example

A drop-down button consists of a but ton that when clicked displays a drop-down list
of mutual ly exclusive items. See fig. 2.4 for a but ton example.

Dropdown button example »

H T M L

C S S

JavaScr ipt

Figure 2.4: A drop-down but ton example

9

A toggle button allows the user to change a setting between two states. They are most
effective when the on/off states are visual ly different. See fig. 2.5 for a but ton example.

Enabled Disabled

Figure 2.5: Toggle buttons example

Text fields allow users to enter text. It can allow either a single line or mult iple lines
of text. See fig. 2.6 for a but ton example.

Text:

Lorem ipsum dolor sit a met, consect

Multiline text input:

Lorem ipsum dolor sit arret,

consectetur adipiscing elit. Donee

al iquam ipsum vel mattis lacinia.

Nam sapien quam. dictum ac

Figure 2.6: Text fields example

Navigational components

Navigat ional components are elements such as search fields, sliders, icons and pagination
dividers. These controls allows user to navigate in the system and increase usability.

Search field allows users to enter a keyword or phrase and submit it to search the
index wi th the intention of getting back the most relevant results. Typ ica l ly search fields
are single-line text boxes and are often accompanied by a search button. See fig. 2.7 for a
but ton example.

Search

Figure 2.7: Search field example

A slider, also known as a track bar allows users to set or adjust a value. W h e n the
user changes the value, it does not change the format of the interface or other information
on the screen. See fig. 2.8 for a but ton example.

D
45

Figure 2.8: Slider example

A n icon is a simplified image serving as an intuit ive symbol that is used to help users
to navigate the system.

Pagination divides content up between pages, and allows users to skip between pages
or go i n order through the content. See fig. 2.9 for a but ton example.

10

First 1 2 3 4 5 6 7 Last

Figure 2.9: Paginat ion example

Informational components

Informational components are elements indicat ing addi t ional information to the user for
better user experience. The user can be for example informed i f data is loading or if an
error occurred. The informational components are: a progress bar, a tool-t ip, a message
box and a moda l window.

A progress bar indicates where a user is as they advance through a series of steps in
a process or it can indicate percentage done from the whole process. Process can be for
example downloading of some file or shopping order. See fig. 2.10 for a but ton example.

Figure 2.10: Progress bar example

A tool-tip allows a user to see hints when they hover over an i tem indicat ing the name
or purpose of the i tem. See fig. 2.11 for a but ton example.

Tooltip bottom

On the bottom

Figure 2.11: Tool- t ip example

A message box or dialog box is a smaller window in window that provides information
to users and requires performing an action.

A modal window is smaller window wi th in window and requires users to interact w i th
it i n some way before they can return to the parent window. See fig. 2.12 for a but ton
example.

Are you sure?

Are you sure you want to permanenty
delete this file?

Figure 2.12: M o d a l window example

11

Containers

Containers are elements that contain any k ind of information i n an effective way. The only
one commonly used container is an accordion.

A n accordion is a vert ically stacked list of items that utilizes show/hide functionality.
W h e n a label is clicked, it expands the section showing the content wi th in . There can have
one or more items showing at a t ime and may have default states that reveal one or more
sections without the user cl icking. See fig. 2.13 for a but ton example.

Static Header, initially expanded

Dynamic Group Header -1

Dynamic Group Header - 2

Dynamic Group Body - 2

Figure 2.13: Accord ion example

Touch screen design

W h e n we focus on the touchscreen design, the well known user controls should be changed
to satisfy users interacting wi th the system v i a their fingers and hands that interact w i th
the system itself and therefore to be usable wi th human hands.

Nielsen creates a set of design patterns applicable for the construction of touchscreen
based mobile design []. These problems are grouped i n three ma in problem areas: (1)
U t i l i z i n g screen space, (2) Interaction mechanisms and (3) Design at large. Furthermore,
there are patterns based on experiments made for the purpose of usabil i ty heuristics for
touchscreen-based mobile devices [21] [23]. The patterns use the same template like Nielsen
used [36] w i th some modifications.

A s the outcome, there are new patterns for mobile touch screen devices [24]:

. T M D P 1 . 1 The thumb rule,

. T M D P 1 . 2 The thumb rule #2,

• T M D P 3 Exp l i c i t user control,

• T M D P 4 Recognizable icons,

. T M D P 5 Clean form fields,

. T M D P 6 Shape of buttons.

The T M D P 1 . 1 The thumb rule is defined as following:

Use W h e n : Designing the interface. P lac ing main elements/options on the
screen.
How: Place ma in elements wi th in a range of a semicircle w i th a 2,7 inches'
radius from the right-middle side of the screen.

12

W h y : The average length of a human thumb is 2,7 inches. Considering that
statistically, most of users hold the phone w i t h their right hand and use their
right thumb to interact w i th the device, main elements should be placed wi th in
user's reach...[21]

For purposes of this thesis there should be added another rule regarding the size of the
finger. It means that user controls should have min ima l size to be comfortably clicked on
and to avoid cl icking the elements that user doesn't want to click on. We w i l l focus on this
in following section too.

Designs for mentally challenged individuals

In-spite the fact the touch screen is much more usable than common P C for mentally
challenged individuals , according to current studies, opinions and experiences, mentally
challenged people can encounter some problems using touch screen devices [21]. The most
common problems occur w i th buttons, menus, a text size, and wi th the touch screen devices
itself. But tons are often too small , it cannot be clicked on them when pressing too long and
provides no action. Menus are constructed that there is a lot of options to select, most of
them unnecessary or misleading. Text sizes are too smal l to read even wi th the corrective
lenses.

The possible solution could be in keeping following set of requirements:

• Remove unneeded buttons (images, functions). Try to find negative factors on ev
ery but ton (images, functions). If the but ton (image, function) is here only due to
aesthetic purpose, remove it,

• Input controls must be of a suitable size so that they can be easily pressed or even
seen,

• A d d voice output for available menus for b l ind people,

• A d d alternative feedback to interface components such as scrollbars, drop down lists
etc., when user interacts them,

• A d d more information to the user, for example: when a system needs two clicks to
perform some action, after first click it should inform user to click again on another
component.

These set of rules can solve many problems i n using U I by mentally challenged people,
however, these studies do not cover a l l issues regarding usage of U I by mentally challenged
people. These rules are too specific and only somehow decreases the set of problems that
can occur. Due to this fact we need some study that can generally describe the solution,
from which we can derive possible solution on at least the most common problems occurring
in the study of mentally challenged.

Design principles: Computer Therapy (i-CT)

The project of the computer therapy represents new way of research in a field of information
technology and i n result it brings new att i tude to therapy for mentally challenged people.
The author of the project itself is Ing. Jiff F i a l a [19]. In 2012 the project originated
in direct ly i n a mentally disabled care facility and is currently developed on a Facul ty of

13

Information Technology Brno Univers i ty of Technology wi th a support of R e d Hat company
[6], w i t h the non-profit sector donated from I C T resources focused on education and therapy
of mentally challenged people, and wi th support of experts from i S E N community [] (S E N
stands for Special Educa t iona l Needs).

The detai l goal of the presented computer therapy is the appl icat ion of suitable resources
of information technologies for specification of uniformed standard for a hardware/software
development. Th is standard should be easily used i n practice, should be publ ic ly accessible
and due to its implementat ion a created software should be effectively usable by people wi th
some mental disorder (special education and therapy). Th is should lead to therapy which
has long term effect, decreases impacts of dai ly issues and compensates deficits, including
help to decrease impact of mental disorder. The synthesis is made from several branches of
study and the problematics is analyzed in its whole life cycle [19] [20] [21]. In the research
of computer therapy there are proposed S W / H W design principles w i th the same names.
These design principles w i th the usage of suitable methods from software engineering, e.g.
M D E [37], leads to the improvement of a quali ty of development process direct ly on an end
applicat ion. F i n a l applicat ion (SW) is due to keeping the unified standard better usable on
a current H W and accessible for the target group.

For purposes of this thesis the design principles of computer therapy can be summarized
into several priorities [21]:

• Specification of a goal: Before a development of an applicat ion on a specific H W
there should be clearly specified goal, eg. compensation of some dispositions of a
person,

• Safety: Developers and an applicat ion should keep security and safety restrictions for
a mentally challenged people. A n applicat ion should support several different modes
depending on the current user. Modes should be at least for a client, an assistant and
a system administrator.

• O p e n source: In a development process there should be an emphasis on usage of
open source technologies, together w i th publ ic ly sharing the source codes. Source
codes should be accessible for free to allow extending itself by another developers
around the world. A l so it should be free to use to be able to bu i ld w i t h it another
useful applications. A developer should add these extensions back to this applicat ion,

• Cross-platform software: A n applicat ion should be available on several mobile
platforms. The development of appl icat ion should be handled as cross platform, that
means to be compilable according to developer's need to a l l supported platforms,

• Expandabil i ty: A n applicat ion should have clearly defined structure and should
have been implemented i n higher programming language wi th an usage of object
oriented design. A development should be realized according to modern standards,

• Configuration: A n applicat ion should take into account on ind iv idua l needs of
clients and support max ima l adaptat ion to this needs. Moreover an applicat ion should
support switching between configuration of several clients,

• Usability: Appl ica t ions should not need any Internet access. Appl ica t ions should
be usable for its S E N purpose also including the usage outside a school environment.
S E N usabil i ty gives more constrains than common usability, hence they are part of
i-CT design principles,

14

• Accessibility: Appl ica t ions should have low prices to be able to be offered to less
wealthy people and non profit organizations. Further S E N accessibility also setup
other constrains which are matter of proposed C T design principles.

These priorities also let to the design and development of a new framework. W i t h
this framework was also created several applications that satisfy these priorities. The new
framework is called Framework computer therapy and is more deeply described i n [27]. The
therapy using presented I T resources are finally used as a permanent act ivi ty that can be
offered regularly according to an ind iv idua l plan. This att i tude brings to the target group
several possibilities of usage w i t h new applications [19] [21]:

• Serves as an educational tool: Teaching of school subjects, reading, wr i t ing ,

• Compensat ion tool: Becomes as a part of the person,

• Development of intellectual abilities: Hand l ing the dai ly needs and activities of
every person,

• Free time activities: Serves for relaxation and rest of a person, decreasing of a
stress,

• Connect ion with other therapies: e.g. the usage for a music therapy.

T h e design principles of computer therapy for U I : usability and affordances

For the purposes and goals of this thesis we w i l l be more focused on stated design principles
of computer therapy from a view of priorities of usabil i ty and accessibility on a mobile touch
screen platform that w i l l be further described according to [21]. The stated standard of the
computer therapy also states design principles w i th a focus on a user interface and "human
computer interaction" that is also focused on this mobile touch screen devices. These
principles are then called "principles of usability and affordances amplification".
This is essential for the following design of the high-level language for the description of
user interface, because it states the requirements and cri teria for the design. These two
principles w i l l be described in the following subsection.

T h e principles of usability and affordances amplification

The principles of usabil i ty and affordances amplification are also related to general rules
of H u m a n Computer Interaction (HCI)[17], however they do not use some specific set of
proposals that should be kept on specific U I component. It is due to its generality, which
should be applicable to the most of U I components, which may differ in many attributes.
Hence these principles tells the designer generally what should be done in the design of U I
[21].

Definition of problem of affordances: Generally each control or other ac
tion element in user interface should suggest its usage (affordances). In the case
of mentally challenged individuals, this rule should be multiplied (amplified) by
the degree of intelligence deficiency or deficiency in perception abilities.
Solution for problem of affordances is following: each element of user
interface should be formed well enough (size, shape, color, sound response) to

15

suggest its usage, even for the mentally disabled (e.g. using simplified and ampli
fied principles of "Design of everyday things"). Furthermore, all gestures should
be intuitive, simply based on common-known, real world gestures (real world of
mentally challenged) [21].

The problem of usability is defined as following: A similar situation
occurs in the focus on user interface element's practical usability. A user inter
face element may be usable (touchable) for an intellectually capable individual,
but not usable (touchable) for a mentally challenged individual with worse per
ception or deficiency in soft motoric functions.
The solution for the problem of usability can be following: Size of ele
ments should be large enough to avoid "thick finger effect" and distances among
elements should allow freer place to avoid of multiple action-button touches [21].

The same holds for other U I component's attributes, parameters which can be matter
of invisibi l i ty, unreadability, inaccessibility and unintui t ivi ty . For the usage of this thesis
we can list a set of following rules, which are also part of proposed C T design principles
[21] and that should be kept for a usage of designing U I for mentally challenged people:

• shape of an element should have rounded edges,

• color of an element should be different different than its background or in the case of
the same colors these colors should have enough contrast,

• text inside an element should have enough space from the edge of an element and
should be centered inside an element,

• an element should have some min ima l size,

• distances between elements should be given from the sizes of two elements together,

• elements should be equally positioned on the space of user interface (to avoid creating
chunks).

Requirements on languages for G U I and design

If we compare the present possibilities and computer therapy, we can figure out that com
puter therapy solves problems more generally to cover a l l possible problems. E .g . , rules like
"Remove not needed buttons " or "Input controls must be of a suitable size so that they can
be easily pressed or even seen" are covered i n "principles of usability and affordances
amplification". Due to that fact, we w i l l use computer therapy as a domain from which we
w i l l propose set of requirements that should be described by following designed language for
U I definition. F r o m computer therapy, it can be seen that more design principles are con
cerned about the content of U I description wi th proper style - construction of each element
and construction among them. However, it also proposes some semantics meaning which
is part of affordances amplification principle (e.g., for certain S E N purpose there should
be used proper U I component, which semantics is the closest to our purpose). In further
part of this thesis we w i l l focus more on construction rules covered in i-CT design principle.
Construct ion has its functional purpose. E .g . , language should be able to somehow describe
the shape of the elements that w i l l be used for the definition of U I . T h e analysis w i l l be
more discussed i n Chapter 3 where we w i l l describe the general solution for a l l possible

16

descriptions of U I by new language, not only focused on mentally challenged people, but
also for other possible target groups that can occur i n the common life situations.

2.2.2 U I pr inc ip les of current designs (B u s i n e s s - D o m a i n)

W h e n we come to the Business-Domains, such as Finance or medicine, U I is needed to
fulfill a l l the Doma in requirements. Doma in requirement is such an at tr ibute specific for a
certain domain. For purposes of the thesis there w i l l be studied requirements i n the Finance
domain. In the Finance domain sector there, are typ ica l attributes that should be kept to
keep consistence between Finance applications:

• decimal separator,

• thousand separator,

• currency format,

• negative pattern,

• date-time formats,

• number precision.

Decimal separator is the character used as the decimal separator. For instance, Great
B r i t a i n and the Uni t ed States are two of the few places i n the world that use a period (.)
to indicate the decimal place. M a n y other countries use a comma (,) instead. The decimal
separator is also called the radix character.

Likewise, thousand separator is the character used to separate groups of thousands.
In the U . K . and U . S . use a comma (,) to separate groups of thousands, many other countries
use a per iod (.) instead, and some countries separate thousands groups w i t h a th in space.

Currency format is the way of expressing monetary units. There are three possibilities
how to express monetary units:

1. The currency sign. The currency sign is pr imar i ly used for graphic purposes. Al te r
natively, its use is also permit ted in promotional publications (e.g. sales catalogs).
N o space after the sign. E . g . €35.

2. The ISO code. ISO code for defining currency is ISO 4217. ISO 4217 is international
standard for marking the currencies as 3 character codes. These codes are defined by
International Organizat ion for Standardizat ion (ISO). E . g . 30 E U R

3. The wri t ten name. Used when a monetary unit is referred to generally however an
amount is not included. E . g . an amount i n euros

Negative pattern is the way how to dist inguish positive and negative numbers. There
could two ways:

• minus sign before the value,

• different graphical representation of the values. For instance, positive values can be
displayed i n green color otherwise negative values w i t h red color.

17

Date-time formats are formats that represents date and t ime values i n Finance ap
plications. These must follow ISO 8601, the International Standard for the representation
of dates and times. ISO 8601 describes a large number of date / t ime formats. To reduce
the scope for error and the complexity of software, it is useful to restrict the supported
formats to a smal l number. This profile defines a few date / t ime formats, l ikely to satisfy
most requirements.

N u m b e r precision is important attr ibute i n Finance sector. In finance sector often
occurs si tuation when user edits thousands or even mil l ions. T h e n is is suitable to offer
customer possibil i ty to enter these thousands (millions) as i f it would be single units.

2.2.3 U I pr inc ip les of current designs (User groups)

In previous sections is described impact of user onto the U I . Derived from these facts, specific
groups of users demands the specific requirements for the U I . Users differ w i th respect
to, for instance, their preferences, capabilities, speaking different languages and level of
experience. E .g . , young, middle age, old people or even mentally challenged individuals or
people having some physical disorder. Th is heterogeneity of end users should be considered
in the proposed language.

2.3 Approaches to describe U I

In present, a huge set of technology-specific approaches for defining (development of) U I
exists. So far, many variations of programming/markup languages (e.g., C # , C + + , Java,
H T M L) w i t h different widget libraries (e.g., W P F , Qt , Swing) has been developed. Au to
matic conversion between these technologies is not solved problem. Reasons why automatic
conversion fails is mainly based on the complexity of developed U I , e.g., dependencies of
form fields, validations, connection to back-end logic and technical differences between
languages. Therefore instead of technology-specific approaches is needed a higher-level
description language. Th is language should contain concrete descriptions, from which
could be obtained concrete technology-specific implementations of user interface through
associated conversions.

2.3.1 Languages for U I def ini t ion

S W methodology (M D E , O M G)

Model Driven Engineering (MDE) is a software methodology that has a goal to define
software specification w i t h the highest amount of abstraction and also raise amount of au
tomation i n an software development. M D E focuses on creating and exploi t ing conceptual
models at different levels of abstraction that can be used for the description of every possible
problem. Hence it increases the level of abstraction in specification of a software. A l so w i th
the usage of executable model transformations raise the automation i n software develop
ment. Model transformations i n practice means the transformation of high-level models to
the lower models un t i l the models itself are executable. For further purposes of this thesis it
can be used as a template to be interpreted as U I by a specific technology, e.g. H T M L inter
preted by a web browser. These high-level models are represented i n some model notat ion
or language. Such language is then called Domain Specific Language (D S L) [33] due to the
fact that model is connected wi th a certain domain. The representation of D S L then can be
textual or visual . More information regarding D S L can be found in [22]. D S L specifies the

18

model called Domain Specific Model (D S M) [28]. F i n a l l y the whole applicat ion can be thus
specified by several D S M s that are specified i n different D S L s . The term often related to
M D E is Model Driven Architecture (MDA). M D A was introduced by Object Management
Group (OMG) and can be seen as O M G ' s vision on M D E . For purposes of this thesis the
language for description of graphic user interface is the specific case of modeling language
for a creation of a model that is usable for development according to M D E .

S B V R

Semantics of Business Vocabulary and Business Rules (SB VR) [7] is the meta-model for
development of semantic models of business rules and business vocabularies. Presented
rules are described in common language, however some rules are presented graphically in
proper cases. Therefore S B V R offers language that describes a structure of rules that is
wri t ten i n a language that business people commonly use (need to point out that opposite
way is more often i n companies). Th is usable language S B V R calls "semantic formulation"
that is not expressions or statements. Semantic formulations are structures which create
meaning. There exists a vocabulary i n S B V R that describes these meanings. In S B V R ,
the meaning of a sentence is communicated as facts about the semantic formulation. In
formal language it means a restatement of the meaning []. We w i l l describe semantic
formulation on the following simple business rule. The rule is stated several times wi th
the same meaning. We should also note that there can be other possible interpretations of
these rules [9]:

A barred driver must not be a driver of a rental.
It is prohibited that a barred driver be a driver of a rental.
It is obligatory that no barred driver is a driver of a rental.

Descript ion of semantic formulation of the business rule above i n terms of the S B V R
[9]:

The rule is meant by an obligation claim.
That obligation claim embeds a logical negation.
The negand of the logical negation is an existential quantification.
The existential quantification introduces a first variable.
The first variable ranges over the concept 'barred driver'.
The existential quantification scopes over a second existential quantification.
The atomic formulation is based on the fact type 'rental has driver'.
The atomic formulation has a role binding.
The role binding is of the fact type role 'rental' of the fact type.
The role binding binds to the second variable.
The atomic formulation has a second role binding. The second role binding is
of the fact type role 'driver' of the fact type.
The second role binding binds to the first variable.

A s we can see, S B V R is not used to provide a clear and short description like formal
language, however, S B V R is used to provide detailed description about meaning. The
description is then divided into sentences where each sentence represents a fact about the
rule.

19

O C L

A class diagram from U M L 2 is generally not able to specify a l l k ind of information to
the model . The problem occurs when we need to describe addi t ional constraints about
the objects i n the model. These constrains are then directly wr i t ten into model i n natural
language. However common practice has shown that this always leads to misinterpreta
t ion. Hence some formal languages were developed to describe these constrains i n a clear
formal way. One of these formal languages is called Object Constraint Language (OCL).
O C L [] is formal language used for description of expressions and constrains on U M L
models. Therefore the O C L is a language for description of expressions on object-oriented
models. Expressions then specify rules that must be kept for the modeled system or specify
conditions to be hold for queries over objects in a model . These expressions also enables
to set operations that can manage a change of the state of the system. Even though it
is formal language it can be easily read and write due to the fact that it was designed as
a business modeling language. W h e n an expression is evaluated, it just returns a value.
O C L cannot be used as standard programming language, because it cannot generate the
executable code. Even though it is not programming language it is typed language, e.g.
user cannot compare a Str ing wi th an Integer. E a c h Classifier defined wi th in a U M L model
represents a distinct O C L type. The example of class diagram wi th O C L can be seen on
fig. 2.14. In addit ion, O C L includes a set of supplementary predefined types [3].

inv: transactions.card.owner->sizei

points: Integer
date ; Date
program!) -

Loyalty Prog ram

Figure 2.14: Example of class diagram wi th O C L

From the O C L specification we can list a set of purposes where to use O C L :

• as a query language,

• to specify invariants on classes and types i n the class model,

2 Stands for Unified Modeling Language.

20

• to specify type invariant for Stereotypes,

• to describe pre- and post conditions on Operations and Methods,

• to describe Guards,

• to specify target (sets) for messages and actions,

• to specify constraints on operations, and

• to specify derivation rules for attributes for any expression over a U M L
model.

Visua l programming languages

In a recent past, for a usage of computer was necessary to educate people. Progress i n infor
mat ion technologies brought the user graphical user interface that should be usable without
learning. Moreover there were developed applications that enables people to publ ish their
content on the Internet or Social networks without programming. However, when a per
son wants to develop his own software, there s t i l l exists a "barrier" due to programming
language. Fortunately there were developed tools that offer user user-friendly interface
for development of software. These tools are called Visual programming languages (VPL).
These languages are platforms that typical ly provides user a set of visual graphic elements,
like diagrams, free-hand sketches, icons, or demonstrations of actions performed by graphi
cal objects, from which w i t h a support drag-drop interface can be created output software.
These languages also abstract a way of other functionality like functions or conditions that
must be hold i n an applicat ion. Graph ic elements typical ly serves as input and connections
between them serves as the output of the applicat ion. T h e n run of a program is started on
a start element where is given an input and then are given outputs to the other elements
by its connections and continues i n this order t i l l the program reaches last elements. A n
example of V S L can be seen on fig. 2.15 (Rap idMine r studio).

21

9 Reposi tor ies £3

] I j) Samp les [nane1.

1 II DB
1 ^ Local Repository = •.•=•,

& Operators K ^ P r o c e s s ^ Problems

•S? - I I $ I 3> 14-1 ^ - - j ö l P rocess •

H Q Process Control (37)
E B - Q Utility (54)
H C] Repos i to ryAccess [6]
H Q Import (27)
H C] Export (18]
H Q Data Transformation (1151
H C] Modeling (118)
H Q E v a l u a t i o n s)
H Q Text Process ing [43)

Log

Main Process

Retrieve

Correlation M„

m

WordListto D..

3 \

Figure 2.15: Example of V i s u a l programming language

For the purposes of this thesis it is essential that these G U I elements are often described
in some meta language that holds information about elements, their positions connections
and settings. The following description of G U I 2.1 represents a shortened source code for
fig. 2.15. A s we can see, the source code is defined i n X M L 3 which is the most common
language used for the description of user interface. In the next sections we w i l l study further
other languages that are based on X M L and describe the user interface.

<?xml version="l.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.000">

<context>
<input/>
<output/>
<macros/>

</context>
<operator activated="true" class="process"
compatibility="5.3.000"
expanded="true" name="Process">

<operator activated="true" class="k_means"
compatibility="5.3.000" expanded="true"
height="76" name="Clustering" width="90" x="447" y="165">

<description>For clus t e r i n g of text data</description>
<parameter key="k" value="7"/>

</operator>
<operator activated="true" class="correlation_matrix"

3stands for Extensible Markup Language [2]

22

compatibility="5.3.000"
expanded="true" height="94" name="Correlation Matrix"
width="90" x="581" y="165">

<parameter key="create_weights" value="false"/>
<parameter key="normalize_weights" value="true"/>
<parameter key="squared_correlation" value="false"/>

</operator>
<operator activated="true" class="text:wordlist_to_data"
compatibility="5.3.002"
expanded="true" height="76" name="WordList to Data"
width="90" x="447" y="300"/>
<operator activated="true" class="write_csv"
compatibility="5.3.000" expanded="true"
height="76" name="Write CSV" width="90" x="581" y="300">
<parameter key="csv_file"
value="PATH/fracking-example-stemming-wordlist.csv"/>
<parameter key="column_separator" value=","/>
<parameter key="encoding" value="SYSTEM"/>

</operator>

</process>
</operator>

</process>

Lis t ing 2.1: A n source file for V i s u a l programming language

X U L

X U L (X M L User Interface Language) is X M L based language that is used to write appli

cations. It is markup language implemented as X M L dialect. The user interface design is

defined generally as three sets of files:

• X U L files serving as content files that defines the user interface, eq. lists elements

that are i n applications and labels,

• the second type of files contains the other information about the design of elements

in a form of C S S files and images, and,

• files containing localizat ion strings.

A simple login prompt on fig. 2.16 has the following source L i s t i ng 2.2.

Login 1
Login:

Password:

OK

Cancel

Figure 2.16: A simple login prompt in X U L

23

<vbox>
<hbox>

<label control="login" value="Login:"/>
Ctextbox id="login"/>

</hbox>
<hbox>

<label control="pass" value="Password:"/>
<textbox id="pass"/>

</hbox>
<button id="ok" label="0K"/>
<button id="cancel" label="Cancel"/>

</vbox>

Lis t ing 2.2: X U L source file for the simple login prompt i n X U L

Conclusion on current languages of U I definition

For a specification of high-level language for U I definition there is needed to specify the term
high-level. High-level for this thesis means specification of a user interface by means of its
functionality, e.g. language that describes a text box on a page is not high-level, high-level
language description is for example that on a page is some element that can receive text
input or generally an input of information of some type. Therefore as we have mentioned in
section S W methodology it should be specific case of modeling language according to M D E .
A language that is generally describing a U I and after a set of some specific steps generates
exact U I i n specific markup language, e.g. H T M L . To conclude studied languages, S B V R
is used for business modeling that is generally used for generating semantic formulation of
the business rule and is not able to generate U I . O C L is able to add information about
objects, however it is not good path for defining U I of the objects. O n the other hand, we
can benefit from the advantages of S B V R and O C L . S B V R show us how to describe a rule
in a semantic sentence, that can be used i n our language, because we need a way how to
define the U I abstractly. O C L has it strong advantages i n describing rules among objects
and we can s imilar ly use it for specifying these logical constrains on our U I elements. To
go on to the visual programming, we can see that visual programming languages uses X M L
representations of processes that exactly describes the processes without an abstraction.
The same stands for the markup languages like X U L or X A M L . Therefore none of studied
languages are val id for a high-level U I definition as we defined above. In the following
chapter we w i l l describe the requirements on this language and the design of the new high-
level language w i l l be proposed.

2.4 C R U D operations

In a field of computer programming, C R U D stands for create, read, update, and delete.
Each of these words represents an operation typical ly performed on some row in rela
t ional database table. In general, these operations can be performed not only on relational
databases, but also performed on any k ind of persistent storage.

A n acronym C R U D is also often used to describe U I conventions that enables to view,
manage and destroy some persistent unit , e.g., form editing users data. The acronym C R U D

24

is probably firstly popularized in book Manag ing the Data-base Environment [32]. A s a
m i n i m u m requirements for a user interface described as C R U D , the U I must allow to:

• Create new entries,

• V i e w exist ing entries,

• Manage existing entries,

• Delete or invalidate existing entries.

For purpose of this thesis we w i l l use the C R U D as the goal to show the further proposed
mechanism w i l l be able to generate C R U D forms.

25

Chapter 3

Analysis
language

and design of new
for UI definition

In this chapter, we w i l l analyze the requirements for the language derived from the Chap
ter 2. Accord ing to the requirements we w i l l provide revisited goals that has to be ac
complished wi th in the thesis. Next we w i l l propose a design of high-level language for
description of U I . A t the end of the chapter we w i l l describe the a lgori thm of composit ion
of U I components designed, where the a lgori thm is essential for further implementat ion of
the generator tool .

3.1 Analysis of requirements for a new language

New proposed language is considered to be in a high-level form. High-level form can be
considered as the first main requirement derived from the Section 2.3. F r o m approaches in
Section 2.3 we derived that we cannot use any of the current technology-specific languages
for description of U I . Presented high-level form can be explained as an abstract language
describing the U I independent from specific platform and technology. Based on M D E we
require to propose a D S L having specific requirements based on discussed knowledge covered
in Chapter 2. Now, we w i l l go through the analyzed requirements from Chapter 2.

3.1.1 Independence of the user interface technology

The language should be introduced to keep independence from any existing user interface
technology. This requirement is already covered by the specification of a language as a
D S L . A D S L can have a textual or visual form. We w i l l create a language as a domain
diagram and describe its semantic meaning wi th words. Therefore high-level form strongly
connects to this requirement.

3.1.2 R e d u c t i o n of a cost w i t h i n m i g r a t i o n between U I technologies

To reduce cost w i th in migrat ion from one U I technology to another, a D S L should consist
of the specification of technologies. A designed U I in new high-level language (D S L) w i l l
be possible to generate i n several technologies of user interface. In next requirements, we
w i l l describe a attributes that w i l l help to keep a consistence between the UIs generated in
different technologies.

26

3.1.3 S e p a r a t i o n of the func t ion a n d cons truc t ion

From Section 2.1, a D S L should consists of certain components having its properties and
users wi th their purposes to the U I (system). For a D S L , it is important to define an U I
wi th user only by purpose (function). Therefore this approach achieves the separation of
the construction from the function part.

Next requirement is to propose some automatic or semi-automatic mapping algori thm
selecting convenient components.

3.1.4 A t t r i b u t e s of U I controls (Usabi l i ty , accessibil ity, H C I requirements
a n d user groups)

From H C I and according to the definition of usability, we should be able to define a set
of commonly used U I elements and controls i n a D S L . Next requirement is responsibility
(compactness) of U I design. Responsive design should respond to a different sizes of a
screen. O n a different devices the controls should be replaced or resized i n a way that user
is s t i l l able to interact w i th a system. Next there are other rules from H C I a D S L should
consider like accessibility, visibil i ty, readability, physically accessible ,and intuit ive.

According to computer therapy project the U I for mentally challenged people must have
specific construction of elements, like color, shape, and distances between elements must
be i n proper relations.

The language for U I definition should have some phrases for definition that this U I
design should be touchscreen or not. If so, the rules defined i n 2 should follow. There
the positions of elements, recognizable icons, shape of buttons etc., has its function. That
means here already came the first answer concerning the construction and its function.

Furthermore proposed language has to enable designer to describe U I for specific group
of people. The set of computer therapy requirements is too smal l because a D S L should
enable to describe U I usable by children.

To sum up, there is very big set of attributes that can describe a control or U I . P robab ly
can occur si tuation when dur ing the t ime there w i l l come another at tr ibute and the designed
D S L should be extended. Moreover there must be a way how to describe some general
attributes like if the U I is designed for finance domain. Therefore a l l these discussed possible
attributes of a U I control should be generalized to general attributes in a D S L .

3.1.5 B u s i n e s s - d o m a i n requirements

The proposed language should contain an option to define a l l finance specific attributes,
such as decimal separator character or currency format. Th i s attributes w i l l accordingly
affect the construction of generated elements affecting only the business domain.

3.1.6 C o n n e c t i o n to b a c k - e n d logic

A designed D S L should consist of some mechanism how to provide an option to connect a
generated U I to the back-end logic. This requirement is not studied expl ic i t ly i n the 2 but
is needed for corima.

27

3.2 Goals Revisited

In Chapter 2, we described a l l the important facts about the U I generation. We must state
the exact goals that are revisited according to gained knowledge.

Now, it is clear we need to create high-level language i n a form of D S L that w i l l describe
instances of abstract user interface. The steps to this approach w i l l be:

1. Goa l 0: Create a meta-model of a high-level language for describing U I including
general attributes of the U I components. These attributes should consists of functional
purpose of U I element, business-domain attributes, user group attributes, and any
other k ind of attributes,

2. Goa l 1: Clar i fy the a lgori thm of composit ion of components according to its charac
teristics,

3. Goa l 2: Propose a proof-of-concept of language implementat ion i n . N E T including
class diagram of a proposed system,

4. Goa l 3: Propose an implementat ion of components necessary for C R U D operations,

5. Goa l 4: Propose an implementat ion of mapping logic of a lgori thm of composit ion.

The first two points w i l l be described i n this chapter. The next points w i l l be described
in Chapter 4, where technical details w i l l be explained.

3.3 Proper design of U I language

Proposed language was designed as meta-model independent from any platform and tech
nology. The reason why it was designed by a meta-modeling is because this meta-model
can be then represented in any form, e.g., X M L . This meta-model w i l l be further taken
and used to create domain specific language for cor ima purpose i n . N E T . Furthermore, it
is designed for possibil i ty to use this meta-model i n any other D S L and in any specific
technology. The scheme of the meta-model is depicted i n F i g . 3.1.

28

General C h a ra c te ris tic s M a p p i rig

C ha racte rist icNa me
real(0-1): Relevance

Name

inputs-in

contains-
of

Construction

General Characteristic

Name

h a s

contains-
of

Implementation

is--described-
by

contains-ot
n

Construe tionPara meter
Name
Type Of Para mete r

Name
Value

Construction Characteristic

1 Functional component

Name

C reate (C ha racte rist icsL ist,
Technology}

n

contains--of

View

Name

inputs-in

VlewGenerator

Ge nerate View (tech no logy.view}

<

Figure 3.1: M e t a model of high-level language for U I description.

A s we can see i n Figure 3.1, the proposed language consists of the following elements:

Technology,

Funct ional component,

V iew,

Construct ion,

General characteristic,

Construct ion characteristic,

General characteristics mapping,

ViewGenera tor (or just a generator).

29

Each of listed elements has its own semantic meaning important to be well described to
fully understand the language. Now, we w i l l provide a description for each of the elements.

ViewGenerator presented i n the scheme is not a part of a language. ViewGenerator
represents some k ind of a U I generating library. Immediate inputs to this l ibrary are
view and technology. V i e w defines U I together w i th context parameters, and technology
specifies i n which technology is U I finally generated. We can see the ViewGenera tor do not
have available information regarding the exact constructions that should be rendered. The
ViewGenera tor have only the a l l set of functional components having some characteristics
that w i l l be described further and according to them, it has to choose which one of the
constructions is the most val id for the U I . This determination of the most val id constructions
is the most important and key role in the thesis. A l l decisive logic and U I rendering is done
by this tool and its a lgori thm w i l l be described at the end of this chapter.

View as can be seen i n F i g . 3.1 is abstract representation of U I consisting of a set of
functional components. This view can order these components or wrap functional compo
nents to bigger groups w i t h so called grouping functional components used for grouping of
components. Affecting the view can be then managed through other functional components
created i n the D S L . V i e w is not capable of specifying the exact look of the U I . E a c h view
should have its unique name describing the purpose of the U I page. For example, view for
displaying user data in gr id should be called "UserDataGridView".

Functional component is an abstract representation of some construction having
specific function. We can derive the function of the component from the problem of
affordances. A l l U I components are having some purpose and therefore we can derive
from that its function. The wrappers of U I component are having wrapping function, text-
boxes input ing function, tables filtering purpose, pagers paging purpose and so on. We
can find the function name easily from its use. G o o d to point out, this function has to
be named by name that not affect construction of any component because it would be
recipe also for construction of this component. For instance, component w i th function for
input t ing any k ind of data can have infinite set of real constructions. E .g . , secured text-
box, text-area for longer texts, image upload component, and responsive text-box. Thats
why we can s imply abstract the U I wi th this set of U I functional components. To specify
further rendering attributes, we have to introduce new concept - characteristics. These
characteristics then should affect the rendering logic. Each functional component w i l l then
have according to its function its unique name similar to the view. E .g . , the component
wi th function for input t ing any k ind of data w i l l have unique name like "Imputtable ". A n
example of derivation of function and therefore the functional component is depicted on
Figure 3.2.

30

t e s t - i m a g e p n g

b i
This is content of the textarea that can be extended for more l ines. This is
content of the textarea that can be extended for more l ines. This is content of the
textarea that can be extended for more lines.

Password:

Emai l :

Date:

Function is to input any
kind of data.

ema i l (5) tes t . com

10.01.2018 x : Unique name
"Datalnputable"

Figure 3.2: Example of functional component and its naming. Graph ic content was designed
by the author i n H T M L and C S S .

Characteristics are abstract self explaining addi t ional declarative information added
to the functional component and construction. There are designed two types of Charac
teristics:

• General characteristic. General characteristics are attributes concerning any type
of addi t ional information extending the functional component/construct ion. These
characteristics are designed to add typical ly information regarding user groups. O n
the other hand, they may contain also any other information. These general char
acteristics should describe whether U I is usable (principle of usabil i ty) , accessible
(principle of accessibility) or whether the U I is val id for mentally challenged peo
ple. These general characteristics should be given a val id self-explaining name that
explains the semantic of an characteristic. For instance functional component/con-
struction having the characteristic called "ImageUploadable" would suggest the func
t ional component/construct ion should be somehow capable of uploading images. See
the fact the language does not advise any further steps or parameters how the final
construction should look like. Therefore general characteristics can be also described
as static semantic information of any k ind . The purpose of this general characteris
tics is to create a very abstract language unl imi ted of a set of available attributes the
U I can consist of. Designer then can propose his own characteristics that suits for
h im. Therefore designer can create unl imi ted number of general characteristics and
describe wi th them the functional component/construct ion that best suites for the
construction. This is next key extension of the language allowing the language to be
in high-level form. A n i l lustrat ion of derivation of general characteristic is depicted
on Figure 3.3,

31

General characteristics:

This is content of the textarea that can be extended for more lines. This is
content of the textarea that can be extended for more lines This is content of the
textarea that can be extended for mere lines

Multiple lines
Extendable size
Responsive
Formatable text
Finance domain

Figure 3.3: I l lustrat ion example of derivation of general characteristics from a simple text-
area. Graph ic content was designed by the author i n H T M L and C S S .

• Construct ion characteristics are attributes having purpose to extend the func
t ional component/construct ion wi th some parametrized information. Furthermore its
semantic is to extend just its construction. Tha t is why they are called construction
characteristics. These information extends the final generated construction wi th con
text model . These construction characteristics has been designed e.g. to add labels to
the U I components, add unique identifiers to U I components or define thousand sep
arator character. Moreover, w i th these construction specific characteristic is possible
to generate U I w i t h connection to back-end logic and therefore allows the designer
to create complex UIs. Const ruct ion characteristics advise how exactly U I control
should look like. For instance text-box having construction characteristic describing
label name as "User name" may be rendered as a text-box having appropriate label.
A g a i n it does not mean a label must be rendered there. Th is is just an advise for
generator that should suggest its use. I l lustrat ion how construction characteristics
affects the rendering of some functional component is depicted on Figure 3.4.

32

Functional component

called
"Datalnputable"

Date: i e . e i . 2 0 1 8 xC •

Construction Characteristics

- Label Date
- ValueType DateTime
- DefaultValue 10.01.2018
- ValueFormat DD.MM.YYYY
- BackendID #Datelnputl

Figure 3.4: I l lustrat ion how construction characteristics affects the functional component
during the rendering. Graphic content was designed by the author i n H T M L and C S S .

Construct ion presented i n the scheme represents a wrapper containing real construc
t ion of an U I component implemented i n certain U I technology. Accord ing to exact imple
mentation of construction are further defined its technology, function and characteristics 1 .
Th is definition of technology, function and characteristics w i l l be called mapping i n this pa
per. Th is mapping of technologies, functions and characteristics is done by developer. O n l y
developer knows i n which specific technology is the U I component implemented. Technol
ogy could be derived automatically, however function definitely cannot be derived so easily.
Even human could have sometimes problems wi th determining purpose of some U I elements
without further cl icking and interaction. Thats why according to terms like usabil i ty and
affordances only developer who designed and developed the specific U I component should
be capable of defining its function. The same c la im is val id for the characteristics. Even
more, characteristics should be defined as precise as possible. A g a i n , only the developer who
implemented the U I component can derive this set of general characteristics. For instance,
the U I component may have some attributes hidden i n the source code such as mandatory
field in a form.

Since the functional component and construction is explained, it is needed to
describe the mapping of characteristics to these components. W h e n a construction is im
plemented, there must exist some of platform independent set of general characteristics and
construction characteristics defined i n the language. These characteristics are defined by

1 Characteristics are meant generally both general and construction characteristics

33

http://ie.ei.2018

developer explicit ly. Each characteristic is having its unique name in the language and its
semantic function. This semantic function has to be described wi th every new character
istic to keep consistence between UIs. W h e n these characteristics are defined they serves
as some k ind of a dictionary. The set of technologies is s imilar to the characteristics. It is
defined set of technologies w i th given unique name. E a c h technology represents unique U I
technology where no duplicates are available.

M a p p i n g of construction and general characteristics to functional component is depicted
in F i g . 3.1. F i r s t l y w i l l be described mapping of general characteristics to functional com
ponent. A functional component is having a subset of whole set of general characteristics.
Th is mapping represents that described functional component in a view. Accord ing to
these characteristics w i l l be also rendered. There is no connection to the implementat ion of
construction. Designer in this state assumes there exists just some construction matching
these general characteristics.

The si tuation is very similar w i th the mapping construction characteristics to
functional component. A developer assigns a set of construction characteristics to a
functional component, each having its value. Developer assumes these construction charac
teristics w i l l be used during the rendering process, but they do not have to be used at a l l .
Th is choice w i l l be made by the other developer of specific construction i f the developer
w i l l use the construction characteristic or not.

M a p p i n g of general characteristics to construction is depicted i n F i g . 3.1 as G e n
eral Characteristics M a p p i n g . It is a set of elements having general characteristic
and relevance of concrete construction to this general characteristic. For instance, U I
component implementat ion of form for children w i l l have general characteristic so called
"children-user-group". The relevance is designed as integer from 0 to 100. The relevance
can be also described as a fuzzy set, where zero means the characteristic does not suits
w i th implementat ion at a l l and number 100 means the characteristics fully represents the
implementation of U I component. For instance, U I component implementat ion of form
for children w i l l have general characteristic so called "children-user-group" w i th relevance
100, but characteristic so called "older-user-group" w i th relevance 0. Aga in , this relevance
should be very strongly considered by a developer. Due to this mapping logic is possibil i ty
to design U I components for mentally challenged people. There developer w i l l keep the
rules of accessibility, usability, visibil i ty, readability, compactness, touchscreen design and
computer therapy principles and after that describe this U I component w i th characteristic
w i th unique name "mentally-challenged-user-group". M a p p i n g of general characteristics to
construction is depicted on Figure 3.5.

34

General characteristics construction mapping

Name Relevance

This is content of the textarea that can be extended for more l ines. This is
content of the textarea that can he extended for more lines. This is content of the
textarea that can be extended for more lines

b
- Multiple lines
- Extendable size

100
80

-Respo nsive 75
30
25

- Formatable text
- Finance domain

Figure 3.5: I l lustrat ion how general characteristics are mapped to some construction.
Graphic content was designed by the author in H T M L and C S S .

G o o d to point out these characteristics w i th relevance are then given only to the con
structions itself, see on the scheme. Funct ional components than has just its general char
acteristics and construction characteristics and then the generator should according to its
algori thm get a most suitable construction.

3.4 Algor i thm of composition of U I

Now we assume there i n a language is designed a set of technologies and a set of general
and construction characteristics. There is also defined a view having appropriate functional
components to which are mapped the general and construction characteristics. Moreover
assume there exists a big set of constructions to cover a l l combinations of functional com
ponents and their mapped characteristics and technologies. Let us assume we want to
generate the defined view i n a specific technology. ViewGenerator is responsible for this
generating logic. ViewGenera tor has as the input the view and the technology. The algo
r i thm of generating the view i n a specified technology is described in the A l g o r i t h m 1. The
algori thm was separated into several smaller algorithms for better readability.

In a lgori thm there is firstly filtered the constructions according the given technology.
Then is i n cycle for each functional component executed the same logic of finding the
most appropriate U I construction and then its implementation. A s can be seen i n the
A l g o r i t h m 1, the logic also handles the si tuation when functional component has specified
zero number of general characteristics. Th i s a lgori thm for this case retrieves the first
available construction. For the implementat ion of this a lgori thm there should be included
in D S L some k ind of the default general characteristic that should be included i n some
construction and behaved as a fall-back for these edge situations.

For the second si tuation when construction has specified some general characteristics
there is separated A l g o r i t h m 2 which describes how we choose the most val id construction
according to its characteristics. The algori thm is firstly t ry ing to find a l l the constructions
having a l l of the general characteristics specified in the functional component. However i f
there are none of those having a l l of these characteristics, there is mechanism how to choose
at least most va l id constructions. We choose every construction having one same general
characteristic as the functional component has. B y this a lgori thm we achieve bigger set
of constructions and we need to choose only one of them. This choice is then made by
relevances of general characteristics i n constructions. For this purpose we need only to
order the list of achieved constructions by this relevances.

35

A l g o r i t h m of ordering the constructions according to relevances is depicted i n Algo
r i thm 3. It is based on principle that sorts the characteristics w i t h the highest relevances
to the left. The same relevances keeps next to each other and the characteristics w i th lower
relevances than sorts to the right. Therefore final sorted array should consist of the best
constructions on the left of an array.

Once the constructions are ordered, a lgori thm selects the first construction from the
left. Now the implementat ion of U I in specific technology is loaded from selected most
val id construction. A l l construction characteristics are substituted i n appropriate places in
implementation of the U I . We can again see that there is not required that implementat ion
has to use these construction characteristics. Some of the constructions might use them
and rest of the constructions might not use them.

F ina l ly the implementations i n specific technology are concatenated together as whole
view and returned from the ViewGenerator .

A l g o r i t h m 1: A l g o r i t h m of composit ion of U I i n specified U I technology and view
Inputs : A view V; a technology T
Output: A generated U I i n specific technology as plain-text
ini t ial izat ion:
generated!]I <— empty String:
selectedConstructions <— emptySet:
constructions <— getAUConstructionsInASystemByTechnology(T):
foreach functional component fci G V do

constructionC'haracteristies <— getConstructionCharacteristics(fci):
filteredFunctionalC onstructions

filterC onstructions AcconrdingToFunctionalComponent(constructions, fci):
if fci have any general characteristics then

Logic of choosing val id construction according to general characteristics, see
A l g o r i t h m 2:

else
selectedConstructions <—

appendSet(selectedC onstructions, getFirstElementInSet(
filter'edFunctionalConstructions)):

sortedSelectedConstructions <— sort the set selectedConstructions according to
relevances i n characteristics, see A l g o r i t h m 3 ;

selectedC onstruction <— getFirstElementInSet{sortedS electedC onstructions);
generatedConstruction <—

generateU I (selectedC onstruction, constructionC haracteristics):
generatedUI <— appendString(generatedUI,generatedC'onstruction):

return generatedUI:

36

A l g o r i t h m 2: Logic of choosing val id construction according to characteristics.
Inputs : A l l variables having A l g o r i t h m 1
Output: A set of selectedConstructions
generalCharacteristics <— getGeneralCharacteristics(fci);
foreach

constructionByTechnologyAndFunctiorii G filteredFunctionalConstructions do
counterForValidatingCharacteristicsFromView <— 0:
foreach viewFunctionalComponentCharacteristic G generalCharacteristics

do
generalCharacteristicsOf Construction <—

getC onstructionGeneralCharacteristics (constructionByTechnologyAndFunctioni):

foreach generalCharacteristicOf Construction G
generaleharacteristicsOfConstruction do

if generalCharacteristicOf Construction ==
view FunctionalComponentChar acter istic then

counter ForValidatingC har acteristicsFromView + +:
break:

if Count(generalCharacteristics) ==
counter ForValidatingC har acteristicsFromView then

selectedC onstructions <—
appendset(selectedConstruction, constructionByTechnologyAndFunctioni);

if isEmptySet(selectedConstructions) then
foreach

constructionByTechnologyAndFunctioni G filter edFunctionalC onstructions
do

validAtLeastForOneCharacteristic <— false:
foreach

viewFunctionalComponentC har acter istic G generalCharacteristics do
generale har acteristicsO f Construction ^~

getConstructionGeneralCharacteristics(constructionByTechnologyAndFunctioni):

foreach generale har acteristicO fC onstruction G
g eneralChar acter i sticsO f Construction do

if generale har acteristicO f Construction ==
view FunctionalComponentChar acter istic then

valid AtLeastF or OneChar acter istic <— true:
break:

if valid AtLeastF or OneChar acter istic then
selectedC onstructions <—

appendset(selectedConstruction, constructionByTechnologyAndFunctioni);

break ;

return selectedC onstructions;

37

A l g o r i t h m 3: Sort ing of constructions according to relevance of characteristics.
Input : A selectedConstructions from A l g o r i t h m 1
Output: A set of ordered selectedC onstructions
order edSelectedC onstructions <— selectedC onstructions:
ordered SelectedC' onstructions 1sNotOrdered <— true:
while selectedConstructionsIsNotOrdered do

orderedSelectedConstructionsIsNotOrdered <— false:
for i <— 0; i < length(orderedSelectedConstructions) — 2 ; i + + do

orderToLeftCount <— 0:
orderToRightCount <— 0:
foreach constructionlCharacteristic G

getGener alCharacteristicsiorder edSelectedC onstructionsi) do
foreach constructionlCharacteristic G

getGeneralCharacteristics{orderedSelectedConstructionsi+i) do
constrCharRelevancel <—

if orderToLeftCount < orderToRightCount then
switchItemsInArrayByIndexes(i, i + 1, order edSelectedC onstructions):
selectedC onstructionsIsN otOrdered <— true:

return order edSelectedC onstructions:

38

Chapter 4

Implementation

This chapter discusses the implementat ion of the given language designed i n Chapter 3.
Section 4.1 provides technical information about the proposed solution including the expla
nation of used framework and programming language. Text further describes explanations
why the choice regarding a programming language is the most suitable for purposes of
corima.

The Section 4.2 describes the class-diagram of a proposed solution. E a c h part of the
class-diagram is explained. Final ly , there is explained how the algori thm of composi t ion of
U I was used i n source code and what changes had to be made there.

4.1 Technical information

The only one requirement for technical implementat ion was to be able to reuse the view logic
for a l l . N E T platforms. Therefore, the most suitable solution for cor ima was to propose a
solution as the . N E T library. The l ibrary itself should be independent from any other . N E T
framework and the implementations of the U I components w i l l be loaded by the l ibrary and
used from another . N E T source .d l l files (files w i th extension .dll).

The next variable needed to discuss is the most suitable . N E T programming language
for the . N E T library. For implementat ion was chosen the C # programming language. This
was chosen from several reasons. F i rs t reason is that this language is used in corima as
main language and developers who involves in that has the ma in experience. The second
reason is it is the most advanced mult i -paradigm language from a l l . N E T languages and is
s t i l l under development and new features are being developed in new versions. To describe
it fully C # is a mult i -paradigm programming language containing strong typing, imper
ative, declarative, functional, generic, class-based, and component-oriented programming
disciplines. It was developed by Microsoft w i th in its . N E T init iat ive and later approved
as a standard by E C M A - 3 3 4 and I S O / T E C 23270:2006. C # is one of the programming
languages designed for the C o m m o n Language Infrastructure.

A s an integrated development environment (IDE) was chosen V i s u a l Studio. V i s u a l
Studio has bu i ld i n a lot of programming languages including a l l . N E T programming lan
guages (we need) and other U I specific languages, like X M L , H T M L ,and C S S . Some other
languages can be then included as a plug-ins. V i s u a l Studio also contains of other features
like debugging, code analysis, refactoring tools, underl ining of errors, and IntelliSense 1 .

1IntelliSense is an implementation of a code completion used in Visual Studio.

39

Proposed solution in . N E T and programming language C # creates the . N E T library.
A s was described before, the l ibrary should not be dependent on implementations of con
structions of U I components. The reason is the implementations brings together w i th them
dependencies on other framework libraries that can contain platform specific libraries, such
as Microsoft. Web.Mvc containing infrastructure for A S P . N E T M V C . Therefore these depen
dencies must be excluded from the general . N E T l ibrary to the platform specific applicat ion.

4.2 Implementation of . N E T library

Implementation of the new language proposed i n Chapter 3 was produced i n several steps
when each part of the language was continuously converted into C # . Th i s conversion had
several iterations influenced by the changing of language itself and also by the improving
of the current solution.

To achieve Goa l 2 there was proposed an implementat ion of the new language. The
final proposed implementat ion of the new language for U I i n . N E T is depicted on Figure 4.1.
In implementat ion is kept consistent naming wi th analysis so the semantic meanings of each
classes should be at least par t ia l ly clear from Chapter 3. The implementat ion details w i l l
be described i n the following text.

The implementat ion w i l l be described from bot tom to top, therefore firstly w i l l be
described the simplest parts of the system up to the most sophisticated parts.

A s can be seen on the Figure 4.1 I Characteristic is the most simplest node on the class
diagram and represents the general characteristics. The realizations of the interface IChar-
acteristic are the general characteristics. Unique name is solved by the name of the class
(realization). Semantic meaning of each realization should be wri t ten as comment next
to the class definition. We can see there were already defined some set of general charac
teristics, such as Secure Characteristic class. A n example of realization of ICharacterist ic
interface i n C # can be seen on L i s t i ng 4.1.

40

http://ASP.NET

V i e w G e n e r a t o r

A s p N e t M v e T e c h n o l o g y

S e t u r e C h a r a c l e r i s t i c

W P F T e c h n o l o g y

F i n a n c e C h a r a c t e r i s t i c D e f a u l t C h a r a c t e r i s t i c

- « I n t e r f a c e »
IChar JíĽter ist ie

M e n t a l l y C h a l l e n g e d l n d i v i d u a l s C h a r a c t e r i s t i c

string : Gene rateView(IEnumerL.iD S '-IH ri::li:>ruilüomponenl>
viewFunctionalComponents. ITechnology technology)

Listri Fu net ionalCompcnent>:
getFunctionalCompoenntsl)

C h a r a c t e r i s t i c s M a p p i n g l t e m

« l n t e r f a c e »
• T e c h n o l o g y

Type : GetRequiredRetumType()

I Characterist ic: Characteristic
ml: Relevance

Characterist icsMappingl lem: SetChara^li: riLLi.:íl r.-h: :. r: :..:LsrÍ5tic characteristic)
CharacteristicsMappingltern : SetRelevance[int relevance)

= 1
« A b s t r a c t c l a s s »

I F u n c t i o n a l C o m p o n e n t

« l t e r f a e e »
• C o n s t r u c t i o n

T e x r B o x W e b C o n s t m e l i o n

W e b E n ti ty W in d • w C o n s Im c I io n

ITechnology : G et Techno logy [)
- - £ > IFunctionalComponent : GetFunction()

ListtCharacteristicsMappingltems : GetCharacteristicMapping[)
object: GetCo instruction (string construct ions. List^lPropertyDescript ion 1 p ropery Descriptions):

_ str ing: Id
List^Charscter is l icsMappingltem*: CharatLsri iLi: iM;.ipping Relevance not used
I Construction Descriptor: Construction Descriptor

I Functional Component: SetChLiryLLQriilic:LDOiC:HplnnMapping[
List^Characteri5tbsMappingltem> toSet)
I Functional Component: SetConsln. [ilianDs^Lnplanl L-ansln LlionLJeacriptor toSet)
IFunctionalComponent: SetConstructionld[string id)

F i l t e r a b l e F u n c l i o n a l C o m p o n e n l I n p u t a b l e F u n c t i o n a l C o m p o n e n t

Reused construction characteristics from C o R i M a

« l n t e r f a c e »
I P rope r t y D e s c r i p t i o n

string PropertyPath
Type PropertyType
string Name
string Label
bool IsResdcnly
object DefauflValue
string Id if Id for matching construction with the functionality

« I n t e r f a c e »
I C o n s t r u c t i o n D e s c r i p t o r

« I n t e r f a c e »
I C o n s t r u c t i o n D e s c r i p t o r

« I n t e r f a c e »
I C o r is tru t t i n n De s t r i p ti on

SrJecifyConstruclion(ICon5tnjclionDescriplion<T^ description)

« I n t e r f a c e s *
I G e n e r a l P u r p o s e

IGeneralPurpose e TProper ty a :
Field^TPrapsrly- ' iSuLLs n.LiriĽ] Expressions Expre

<Func*T Object TProperty>> valueExpression)

Fcrmat[string format)
- lsHidden[)

Label[string label)
DefaultValue[TProperty value)
ld(string id)//Mapping ID for backend logic

S u b m i t a b l e F u n e t i o n a l C o m p o n e n t

« S t a t i c c l a s s »
M a p p i n g

static I Characterist ic:
C ha ra cte r ist ic <• T P rope rty > [

Expression e F u n c * Characteristics.
T P r o p e r t y " propertyLsmbda)

/// <summary>
/// General c h a r a c t e r i s t i c describing the UI that i s v a l i d for usage i n

finance domain.
/// </summary>
public class FinanceCharacteristic : ICharacteristic
{

}

Lis t ing 4.1: Example of implementat ion of ICharacterist ic interface

we can see the class itself not contain any other properties or methods. Therefore
it is independent from any . N E T technology and can be reused then in any other . N E T
framework technology.

Implementation of ICharacteristic called DefaultCharacteristic has its special meaning.
It is different from a l l of the implementations of ICharacteristic because is directly bend to
the system. Role of the DefaultCharacteristic is to specify those constructions that should
behave as a fallback for not found val id constructions demanded by the developer (by other
characteristics). O r w i l l be used in situations when there are no characteristics specified at
a l l . See implementat ion of DefaultCharacteristic on L i s t ing 4.2.

/// <summary>
/// General c h a r a c t e r i s t i c used as an fall b a c k f or any type of functional

construction not having s p e c i f i e d i t s general c h a r a c t e r i s t i c s .
/// </summary>
public class DefaultCharacteristic : ICharact8eristic
{

}

Lis t ing 4.2: Implementation of DefaultCharacteristic

Real izat ion of technology is interface ITechnology. The interface contains only one
required method and it is GetRequiredByType() returning the type in which U I should be
generated. This type is essential for generating the U I for different types of technologies,
because not a l l UIs is suitable to be generated just as sequence of characters (string). A n
example of instance class of this interface is the AspNetMvcTechnology.

For the purpose of mapping the general characteristics to functional component or
construction was proposed the class CharacteristicsMappingltem. The class consists of the
Relevance and Characterist ic. The Relevance is of type integer and Characterist ic is needed
to be derived from interface ICharacteristic. For better setting of characteristics i n method
SetCharacteristicQ there was introduced the static class called Mapping that enables the
selection of a l l implementations of I characteristic interface. The use is proposed for V i s u a l
Studio IntelliSense showing a l l possible implementations. The example of use of M a p p i n g
class is depicted on Figure 4.2.

42

new Charac ter is t icsMapping I tem(J .SetCharae ter is t ic (Mapping .Charac ter is t ic^ => x .))

Characteristics.DefaultCharacteristic Mappings.Characteristics.DefaultCharacteristicI get; set; } J* |DefaultCharacteristic

© Equals

J* FinanceCharacteristic

© GetHashCode

© GetType

MentallyChallengedlndividualsCharacteristic

J* SecureCharacteristic

© ToString

Figure 4.2: The example of use of M a p p i n g class i n V i s u a l Studio.

A n implementat ion of Construct ion is depicted on Figure 4.1. It is the interface ICon-
struction containing four methods that needs to be implemented. M e t h o d GetTechnology()
requires to return an implementat ion of ITechnology interface. M e t h o d GetFunction() has
to return the implementat ion of IFunctionalComponent. T h i r d method GetCharacteris-
ticMapping() sets the array of implementations of CharacteristicsMappingltem described
before. Last method is called GetConstruction and it returns the implementat ion of specific
construction, where it gets as parameters constructionld for mapping back-end logic and
Property Descriptions that represents construction characteristics from Chapter 3. The logic
of the Property Descriptions has been reused from corima and is extracted i n class-diagram
appropriately. The reason why it was reused is that implementat ion of these construction
characteristics is not part of the assignment and should be also studied well in State of
the A r t and then also considered i n analysis. The whole problem would then too much
extend the thesis. Moreover the problem of construction characteristics is already solved
by corima, so we can just reuse it for purposes of this thesis. The reused code from corima
is commented appropriately. A n example of implementat ion of IConstruction interface is
ButtonConstruction. The construction of U I generated for C R U D operations from Goa l 3
w i l l be described in the end of this chapter.

A n abstract class called IFunctionalComponent is node of diagram representing the
functional component. A n abstract class i n C # programming language means it can have
implemented in class some methods and some of them can contain only their declarations.
It has properties Id, CharacteristicsMapping ,and ConstructionDescriptor. Id is i n abstract
class for connection of back-end logic to the control. CharacteristicsMapping is the same
as for Construct ion, hovewer there is further not used Relevance in the mapping. The
ConstructionDescriptor describes the construction characteristics for a given functional
component. ConstructionDescriptor is class reused from corima and we w i l l describe it no
more. For each of these attributes there are already defined setters for simplest in i t ia t ion
of the new instance of class derived from IFunctionalComponent abstract class.

Now when a l l components of the scheme is presented, is needed to express the im
plementation specifics of View Generator. View Generator was implemented according to
A l g o r i t h m 1 and slightly changed to suit for C # .

F i r s t ly i n source code are retrieved a l l classes derived from IConstruction interface. Th is
extraction of classes is achieved by C # reflection 2 technology. Then are appropriate param
eters assigned to the A l g o r i t h m 1. The main change i n the source code in comparism wi th
A l g o r i t h m 2 is that the source code is extended for situations when functional component

2Reflection C# provides objects (of type Type) that describe assemblies, modules and types.

43

has not specified general characteristics. In this case there are preferred the constructions
having the DefaultCharacteristic w i th relevance bigger than 0.

4.3 Implementation of constructions for C R U D operations

To achieve G o a l 3 we w i l l show the implementation of U I components for C R U D operations.
There was implemented U I component for viewing forms called Web Entity Window. Th is
form can manage instances of defined classes. These classes can consist of several attributes
and these attributes can have several data types. Therefore the U I component for viewing
forms then consists of several sub U I componets for edit ing the different data types. These
data types for implemented U I components are:

• string,

• int,

• Da teTime,

• bool ,

• double.

The WebEntity Window uses then the IPropertyDescriptions for further specification of
each attr ibute of the managed class. It uses Proper ty Type to determine what type of at
tr ibute is needed to be rendered and according to that what construction should be used.
DefaultValue is used for getting default value for each attribute's construction. Last impor
tant information is how constructionld is used i n this construction. This constructionld is
finally also rendered as id= „constructionld value" into the U I constrol so developer then can
handle the construction wi th javascript and connect to the back-end logic. In Appendices
are included examples of generated views wi th implementat ion of WebEntity Window.

44

Chapter 5

Related work

Automat ic generating of complex user interfaces is currently solved by various approaches.
These approaches can be divided into aspect based approaches, generation approaches,
model based approaches, and inspection based approaches according to their attributes.
Each of these approaches has its own advantages suitable for development of specific types
of applications. O n the other hand, a l l of this approaches may fail in situations like dynamic
changing of U I during the runtime (e.g. val idat ion of forms) or adaptat ion to user.

One of the simplest solution to develop/design U I is use of visual editors and widget
builders, e.g., X A M L Designer from Microsoft [], Qt G U I Designer [] or Swing G U I builder
[8]. Once such tool sets are used to design first version of U I for specific technology-based
language and platform, it is very difficult to mainta in this U I wi th these tools. Moreover
these tools provide l imi ted set of controls and functionality than it is possible to design in
target U I language. Also builders are not able to adapt to the further U I changes i n the
source code, therefore editor may be disabled for a l l further changes []. So some k ind of
refactoring, wrapping UIs to functions to be reused or maintained is not possible for these
tools. Maintenance is one of the most important requirements to finance applications.

Next systems using widget based builders are systems that consists of form-based U I
for accessing data i n relational databases. For instance, examples of these systems can
be S Q L Server Management Studio (S S M S) , Oracle S Q L Developer, Microsoft Access [13]
and Oracle Forms. These systems also consists of semi-automatic generation of the tables.
These systems work very effectively for their use, however they are not implemented to
generate more complex UIs and also i n several technology based languages. They do not
contain support for custom templates, context adaptat ion for disabled users, they contain
l imi ted set of components and also U I is being generated for specific platform.

M o d e l based approach, Model-dr iven development (M D D) [41] is an approach using
model as the source of information and the resulting code is being generated from the
model using given transformation rules. Variant of this M D D , Model-based user interface
development (M B U I L D) has then advantage i n no replication of information, however it is
applied only to basic use-cases.

Further investigation on model-based approach was done by Stephanidis C . [39]. Work
provides an information regarding self-adaptation techniques of U I i n web platform. They
show the differences between adapt ivi ty terms and adaptabili ty. Adap tab i l i ty is here re
ferred to self adaptat ion based on knowledge before rendering of the U I . Next , A d a p t i v i t y
refers to self-adaptations based on knowledge gained during the use of U I . In [39] is proposed
project to show adapt ivi ty features. To sum up, project is able to adapt to people wi th
disabilities or adapt to interests of the user. Th is adaptat ion is done by context knowledge

45

gained from questionnaires or other system resources. Self adaptat ion of U I during the
runtime is not goal of this thesis, therefore this approach is not val id for our purposes.

M D D is further studied by Sottet et a l . [38]. The i r work provides information regard
ing M D D approaches to model-code and model-model transformations. (Semi)automatic
U I generation preserving usabil i ty is described. Transformation mappings has been defined
that keep usabil i ty properties. Authors of the work state ergonomie and usabil i ty attributes
defined by mappings are very often inconsistent and the solution should contain compro
mises. F i n a l l y they also showed their solution on a home heater control. Unfortunately,
the work has some disadvantages. For instance, system not allows parametrization of U I
controls, modification or posit ioning. E v e n more, the presented system is not compatible
wi th t radi t ional development approaches (C + + , J a v a E E) .

To fill the gap between H C I design and software engineering L y u t e n [30] applies M D D
based approach on a task-centered approach. Concur Task Tree (C T T) notat ion is used in
this paper to design tasks in an environment context-aware manner. However, s imilar to
[38] there is not possible to connect w i th t radi t ional development approaches.

Calvary et a l . [10] propose an unifying reference platform for developing multi-context
UIs. The context is d ivided into environment, user and platform context. There is also
introduced the plastic U I support ing mult iple contexts of use while preserving usabil i ty as
context-adaption occurs. However, this approach is too complex for common UIs and is
difficult to be used by real systems.

Clerckx et a l . used M B U I L D model transformations [12]. In [12] occurred inconsis
tencies for more complex cases of U I . These inconsistencies occurred between the source
and derived models. They show i n [12] that these inconsistencies created i n source models
should be back reflected in abstract models too.

U I developed wi th M D D often struggles from other issues. [] shows situations when
M D D suffers dur ing adaptat ion and evolution management. M D D can generate common
UIs, however when it comes to smal l modification of U I it is easier i n target source code
than i n model itself [II]. Therefore developer need to add the information to the source
code manual ly and this become very impract ical . Next , using domain specific languages
(DSL) for the U I definition, these D S L s often do not provide type safety and are edited
manually i n plain-text as X M L . This att i tude leads often to errors.

M a c i k et a l . [31] describe their user interface platform (UIP) for machine generation of
context sensitive UIs. The i r inputs for the generation of U I are abstract U I (AUI) defined in
their domain specific language and context model. A U I is defined as hierarchical composite
structure describing U I independent from platform. The structure describes what the U I
should consists of (input, output and action triggers). In A U I there is no description about
the construction of the ind iv idua l components and the layout of the U I . A U I can be defined
manually, by visual editor or generated through code inspection of the persistence model of
data oriented applications. Next , context model is defined according to abi l i ty based design
provided by [10]. The U I generator outputs concrete user interfaces (C U I) . These C U I are
finally send to platform-specific applications interpreting C U I for the user using native U I
elements. P rob lem is that whole system/framework is based on Java Persistent A P I (J P A) .
The back-end logic is then connected to Java because of data mapping. Moreover the U I P
clients are platform based and do not allow web based clients. For our purposes we need
general solution that can generate UIs i n different . N E T technologies where backend logic
can be wri t ten i n any . N E T technology.

46

Chapter 6

Evaluation

In this chapter we discuss the implemented solution wi th respect to the assignment and the
defined goals derived from the assignment. Next , we discuss the reasons why none of the
related work was not used and a new approach was proposed and implemented i n corima.
Final ly , i n this chapter, we present the testing of implemented language and we show how
the implemented solution responds to different definition of the U I .

6.1 Evaluation with respect to the assignment

To demonstrate, how the assignment was accomplished, we need to state what has been
discussed i n the thesis. Now, we review each point of an assignment separately, and we
clarify the way we approached that.

1. Study existing languages for system specification and to define a set of annotations
for common software user interface (UI) components, we discussed that i n Chapter 2
and we defined the set of common U I components there,

2. Study the computer therapy design principles w i th focus on U I , we studied that in
Chapter 2 and extended how different user groups can be handled by a language
(Section 2.2.1),

3. Design a language for high-level description of U I requirements, we designed a lan
guage i n Chapter 3,

4. Implement a tool for automatic generation of required U I from defined and designed
descriptions, we implemented a tool i n Chapter 4 and demonstrated the use on gen
eration of U I for C R U D operations,

5. Demonstrate the use of the designed language and implement a tool w i th focus on
description of U I requirements for people wi th disabilities, we demonstrate the use
of language i n Chapter 3 and we took into account the requirements for people wi th
disabilities so the language contains of general characteristics that are able to obtain
descriptions designed for people wi th disabilities, furthermore now i n this chapter we
w i l l test the implemented tool to show the generated user interfaces also for these
people wi th disabilities,

6. Evaluate the solution and suggest possible future enhancements, we w i l l evaluate that
in this chapter and give suggestions for possible future enhancements.

47

Therefore, up to the last point the assignment the thesis is already accomplished. Now,
we need to evaluate the thesis according to defined goals derived from the assignment.

1. The goal to create a meta-model of a high-level language for describing U I including
general attributes of the U I components, we introduced in Chapter 3 (Goal 0),

2. Goa l 1 is accomplished at the end of Chapter 3. The algori thm of composit ion of U I
components is explained wi th possible enhancements,

3. Goa l 2 is achieved i n Chapter 4 where is also included class diagram of a proposed
system. O n the diagram there is also distinguished between reused corima models
and new designed modules,

4. Goa l 3 is achieved by implementat ion of Web Entity Window that is U I component
for A S P . N E T M V C that creates a form having mult iple possible types of fields and
is able to manage them,

5. Implementat ion of constructions for C R U D operations are described in Chapter 4 in
Section 4.3 (Goal 4).

6.2 Evaluation with respect to the Related work

The Related work chapter described us possible related solutions to the problem of gener
ating U I . In this section we w i l l discuss the advantages and disadvantages of these related
works and why these solutions are not suitable for cor ima purposes.

Visua l editors and widget builders are tools that best suits for definition of complex
UIs containing some interaction wi th customer and a lot of specific features. Because these
features are difficult to define declaratively, these tools have its purpose. A l so these tools
are used to generate U I i n specific technology. For purposes of corima, it is needed to define
UIs declaratively and i n several U I technologies. A l s o they lack w i t h maintenance of U I
source code. Therefore these tools cannot be used for cor ima purposes.

Next related works and their disabilities according to cor ima were described in Chap
ter 5.

The most suitable found solution would be the last described one by M a c i k et al. [31].
The problem wi th this solution is that back-end side of the appl icat ion has to be wri t ten
in Java Persistent A P I . This would need to be able to somehow change also for some . N E T
variant of A P I . The second problem is the U I definition would need to be extended by an
existing corima code (e.g., IConstructionDescriptor, and IPropertyDescription that l imits
the usage of this tool . Therefore finally was the best way to propose clean direct solution
just for corima.

6.3 Evaluation of implemented language and results

The evaluation of proposed language w i l l be conceived as a list of language requirements and
their implementation. In each implementation, actual functionality i n the U I generator w i l l
be demonstrated. In addit ion, for each implementation, possible deficiencies and extensions
w i l l be discussed.

18

http://ASP.NET

6.3.1 E v a l u a t i o n of h igh- level f o r m of the p r o p o s e d language

A n requirement of language i n high-level form is accomplished due to the fact we proposed
a general domain model (Figure 3.1) that is handled as a D S L in Chapter 3. Th is D S L
can be further taken and used in any technology, e.g, in X M L . We implemented for corima
solution of this D S L in . N E T technology i n C # programming language. Even though it
is implemented i n C # the D S L has just declarative purpose and is strongly independent
from the constructions of controls. These constructions just use the implemented D S L in
C # not affecting it w i th its specific technology, see 4.1.

6.3.2 E v a l u a t i o n of independence of U I technology

Once the D S L implemented in C # is used we can see from 4.1 the view is total ly inde
pendent from the technology. The technology is just a parameter to the generator process
(ViewGenerator from the class diagram) taken. Therefore there cannot be a way to create
there these dependencies.

6.3.3 E v a l u a t i o n of separat ion of funct ion a n d cons truc t ion

From the 4.1 can be seen the two nodes. These are IConstruction and IFunctionalCom-
ponent. Therefore their roles are seperated. E a c h IConstruction can have one function by
which is described, but the IFunctionalComponent can have infinite possible IConstruction.
The mapping algori thm i n ViewGenerator compose those elements together.

6.3.4 E v a l u a t i o n of a t tr ibutes of U I controls a n d business d o m a i n re
quirements

A s a solution for a general attributes i n U I there was introduced IGeneralCharacteristic
in D S L . IGeneralCharacteristic can express any k ind of additive information to the U I ,
therefore it perfectly matches the needs. To demonstrate the system can generate different
UIs according to different characteristics we created two different constructions of compo
nents for C R U D operations. One construction suitable for finance domain and the second
suitable for mentally challenged people.

The source code defining these two views differs only i n the characteristics. The source
codes of the views are shown on L i s t i ng 6.1 and L i s t i ng 6.2. The only difference i n the
source codes is the definition of characteristics. However, the generated UIs from these
views differs a lot. The generated UIs are depicted on Figure 6.1 and Figure 6.2. The U I
for mentally challenged people was implemented wi th respect to specified rules in Chapter 2.
We can clearly see these two generated views suits for defined general characteristics and
therefore the requirement is accomplished.

F rom business domain was introduced an requirement for specification of some construc
t ion attributes. Th is requirement was accomplished by reusing source code from corima.
To demonstrate the usage, see L i s t i ng 6.3. This IConstructionDescriptor can describe the
fields i n C R U D form, e.g., labels.

var technology = new AspNetMvcTechnology();
List<IFunctionalComponent> view = new List<IFunctionalComponent>0{};

var c h a r a c t e r i s t i c s = new List<CharacteristicsMappingItem>(){
new CharacteristicsMappingltemO.SetCharacteristic(

Mapping.Characteristic(x => x.FinanceCharacteristic))

49

};
view.Add(new SubmitableFunctionalComponent()

.SetCharacteristicsDescriptorMapping(characteristics)

.SetConstructionDescriptor(new UserFormConstructionDescriptor())

.SetConstructionldC'PresenationSubmittableld"));

s t r i n g viewContent = (string)ViewGenerator.GenerateView(view,
technology);

Lis t ing 6.1: Implementation of view for finance domain

var technology = new AspNetMvcTechnology();
List<IFunctionalComponent> view = new List<IFunctionalComponent>() { };

var c h a r a c t e r i s t i c s = new List<CharacteristicsMappingItem>(){
new CharacteristicsMappingltemO.SetCharacteristic(

Mapping.Characteristic(x =>
x.MentallyChallengedlndividualsCharacteristic))

};
view.Add(new SubmitableFunctionalComponent()

.SetCharacteristicsDescriptorMapping(characteristics)

.SetConstructionDescriptor(new UserFormConstructionDescriptor())

.SetConstructionldC'PresenationSubmittableld"));

s t r i n g viewContent = (string)ViewGenerator.GenerateView(view,
technology);

Lis t ing 6.2: Implementation of view for mentally challenged people

public class UserFormConstructionDescriptor : IConstructionDescriptor<TmpUser>{
public UserFormConstructionDescriptor(){}
public void SpecifyConstruction(IConstructionDescription<TmpUser>

description)
{

description.Field(x => x.Name)
.Label("Name").IdC'sss");

description.Field(x => x.Surname)
.Label("Surname");

description.Field(x => x.DateOfBirth)
.LabelC'Enter date of b i r t h ") ;

description.Field(x => x.Salary)
.Label("Salary");

description.Field(x => x.Mature)
.Label("Is mature?");

}

}

Lis t ing 6.3: Implementation of IConstructionDescriptor

50

Name:

Surname:

Enter date of birth:

Salary:

l& mature?:

mrn/dd/yyyy

Create entity

Figure 6.1: A n generated U I suitable for finance domain.

Name:

Surname:

Enter date of birth:

Salary:

Is mature?:

c

c

c mm/dd/yyyy

c

Create entity

D
1

Figure 6.2: A n U I better suitable for mentally challenged people generated by the im
plemented tool according to specified rules i n Chapter 2 (Background image from pix-
abay.com).

51

http://abay.com

6.3.5 A l g o r i t h m of c o m p o s i t i o n of U I

The testing was managed in a way where a several general characteristics were assigned to
the views and it was observed how the View Generator handled the views and which con
structions were selected during the generation process. The demonstration of the generated
views wi th different general characteristics was depicted on Figure 6.1 and Figure 6.2.

The possible improvement is i n the a lgori thm of selection of the constructions according
to its general characteristics. The problem is when there w i l l exist a huge set of construction
having very similar general characteristics w i th almost the same relevances. In current
solution the a lgori thm choose from very similar construction the one wi th the first name in
the alphabetic order.

6.3.6 R e d u c t i o n of cost w i t h i n the m i g r a t i o n

The reduction of cost wi th in migrat ion can be seen when we have one definition of view and
just change the technology i n which the U I should be generated. Therefore we can reuse
this U I definition i n any future technology and back-end logic too. The only work for a new
technology w i l l be to implement i n new technology exactly same constructions as i n previous
technology. This process leads to reduce the implementat ion t ime of constructions, because
previous construction are having a lot of general characteristics describing the construction
so the developer can better understand for which purpose the construction should be and
what properties should consist of. A l so the constructions very probably w i l l be implemented
as bu i ld from smaller constructions to bu i ld bigger one as is depicted on Figure 3.1. Hence,
the generator very probably w i l l reduce cost of migrat ion from one U I technology i n . N E T
to another. The exact reduced cost w i l l be calculated further when the generator w i l l be
more used in corima.

52

Chapter 7

Conclusion

In this Master 's thesis, we studied possibilities of separation of function and construction
(F / C) and graphical user interface according to H C I , touchscreen design and mentally
challenged people needs. Further i n the thesis were studied software methodologies, like
model driven engineering, that is used for the definition of the new model (language defini
t ion). Languages like S B V R or O C L are then described to benefit from their strong points.
Further there are studied the typica l finance domain attributes important for corima.

We analyzed the set of requirements on any language. W h e n we studied a l l existing
languages we analyzed there has to be proposed a new language. Accord ing to the re
quirements we designed a new language as D S L having the possibil i ty to express the user
interface as a functional components having certain general attributes called characteristics
in the language. The designed D S L is also having the possibil i ty to include the construction
of these functional components i n specific technologies and have the certain construction at
tributes (called construction characteristics in a D S L) according to studied finance domain
attributes.

A t the end of analysis, we define the a lgori thm that composes the defined user inter
face i n new language into real user interface i n specific U I technology. This a lgori thm is
introduced i n pseudo-code and further described for better understanding.

The designed language was taken and used as a base for an implementat ion of a language
in . N E T and programming language C # . Including the implementat ion was introduced a
generator tool using defined algori thm of composit ion of U I components. Generator has
as inputs the technology (in which U I should be generated) and the defined view. The
process of generation of U I from available implemented constructions is automated by the
generator.

In evaluation we states a l l of the points of assignment were accomplished. Further we
show how the language responds on different definition of U I wi th different set of charac
teristics. Therefore the way of separation of function and construction results in expected
results. Th is way we have achieved the expected results for the generation of U I for mentally
challenged people and finance sector too. F i n a l l y we state the real reduced cost w i th in mi
gration is not calculated, however there are several reasons why the cost should be reduced
and the cost w i l l be definitely calculated when the migrat ion w i l l be finished i n corima.

Possible enhancements are defined for the a lgori thm of composit ion of U I components.
The enhancement is about the opt imizat ion of the a lgori thm when there w i l l be defined a
huge set of constructions in a system. There constructions having very similar construc
t ion characteristics can be selected better. The whole designed language and implemented
solution is currently being integrated in corima and is running i n real environment.

53

54

Bibliography

[1] Crea t ing a U I by using X A M L Designer in V i s u a l Studio. [Online; 20.5.2018].
Retrieved from: h t t p s : / / d o c s . m i c r o s o f t . c o m / e n - u s / v i s u a l s t u d i o / d e s i g n e r s /
c r e a t i n g - a - u i - b y - u s i n g - x a m l - d e s i g n e r - i n - v i s u a l - s t u d i o

[2] Extensible M a r k u p Language (X M L) 1.0 (Fif th Ed i t ion) . [Online; 8.1.2017].
Retrieved from: h t t p s : / / w w w . w 3 . o r g / T R / R E C - x m l /

[3] Object Constraint L a n g u a g e ™ (O C L ™) . [Online; 8.1.2017].
Retrieved from: h t tp : / /www.omg.o rg / spec /OCL/

[4] Project I - S E N (open community of parrents, pedagogues, therapists and I T experts).
[Online; 8.1.2017].
Retrieved from: h t t p : / / w w w . i - s e n . c z

[5] Q t G U I Designer. [Online; 20.5.2018].
Retrieved from: h t t p s : / / d o c . q t . i o / a r c h i v e s / 2 . 3 / d e s i g n e r . h t m l

[6] R e d Hat . [Online; 8.1.2017].
Retrieved from: h t tp s : / /www. redha t . com/en

[7] Semantics O f Business Vocabulary A n d R u l e s ™ (S B V R ™) . [Online; 8.1.2017].
Retrieved from: h t tp : / /www.omg.o rg / spec /SBVR/

[8] Swing gui builder (2013). [Online; 20.5.2018].
Retrieved from: h t t p s : / / n e t b e a n s . o r g / f e a t u r e s / j a v a / s w i n g . h t m l

[9] Baisley, D . ; H a l l , J . ; Chap in , D . : Semantic Formulations i n S B V R . [Online; 8.1.2017].
Retrieved from: h t t p s : / / w w w . w 3 . o r g / 2 0 0 4 / 1 2 / r u l e s - w s / p a p e r / 6 7 /

[10] Calvary, G . ; Coutaz, J . ; Thevenin, D . ; et a l . : A Unify ing Reference Framework for
multi-target user interfaces. Interacting with Computers, vol . 15, no. 3. 2003: pp.
289-308. doi:10.1016/S0953-5438(03)00010-9. / o u p / b a c k f i l e / c o n t e n t _ p u b l i c /
j o u r n a l / i w c / 1 5 / 3 / 1 0 . 1 0 1 6 _ s 0 9 5 3 - 5 4 3 8 (0 3) 0 0 0 1 0 - 9 / 3 / i w c l 5 - 0 2 8 9 . p d f .
Retrieved from: h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / S 0 9 5 3 - 5 4 3 8 (0 3) 0 0 0 1 0 - 9

[11] Cerny, T . ; Donahoo, M . J . ; Song, E . : Towards Effective Adapt ive User Interfaces
Design. In Proceedings of the 2013 Research in Adaptive and Convergent Systems.
R A C S '13. New York , N Y , U S A : A C M . 2013. I S B N 978-1-4503-2348-2. pp. 373-380.
doi:10.1145/2513228.2513278.
Retrieved from: h t tp : / / do i . acm.o rg /10 .1145 /2513228 .2513278

55

http://docs.microsoft.com/
https://www.w3.org/TR/REC-xml/
http://www.omg.org/spec/OCL/
http://www.i-sen.cz
https://doc.qt.io/archives/2.3/designer.html
https://www.redhat.com/en
http://www.omg.org/spec/SBVR/
https://netbeans.org/features/java/swing.html
https://www.w3.org/2004/12/rules-ws/paper/67/
http://dx.doi.org/10
http://doi.acm.org/10.1145/2513228.2513278

[12] Clerckx, T. ; Luy ten , K . ; Coninx , K . : The M a p p i n g Prob lem Back and Forth:
Cus tomiz ing Dynamic Models W h i l e Preserving Consistency. In Proceedings of the
3rd Annual Conference on Task Models and Diagrams. T A M O D I A '04. New York ,
N Y , U S A : A C M . 2004. I S B N 1-59593-000-0. pp. 33-42. doi:10.1145/1045446.1045455.
Retrieved from: h t tp : / / do i . acm.o rg /10 .1145 /1045446 .1045455

[13] Conrad , J . ; Viescas, J . : Microsoft Access 2010 Inside Out. Microsoft Press, first
edit ion. 2010. I S B N 0735626855, 9780735626850.

[14] Die tz , J . ; Hoogervorst, J . : Theories i n Enterprise Engineering Memorandum - B E T A .
2014.
Retrieved from: h t t p : / / w w w . c i a o n e t w o r k . o r g / u p l o a d s / e e w c 2 0 1 4 /EE - t h e o r i e s

[15] Die tz , J . ; Hoogervorst, J . : Theories in Enterprise Engineering Memorandum - T A O .
2014.
Retrieved from: h t t p : / / w w w . c i a o n e t w o r k . o r g / u p l o a d s / e e w c 2 0 1 4 /EE - t h e o r i e s

[16] Die tz , J . L . C : Enterprise Ontology: Theory and Methodology. Ber l in , Heidelberg:
Springer-Verlag. 2006. I S B N 3540291695.

[17] D i x , A . ; Finlay, J . E . ; A b o w d , G . D . ; et a l . : Human-Computer Interaction (3rd
Edition). Upper Saddle River , N J , U S A : Prent ice-Hal l , Inc.. 2003. I S B N 0130461091.

[18] Dvorak, O. ; Pergl , R . ; K r o h a , P.: Affordance-driven Software Assembling. Enterprise
Engineering Working Conference. 2018. doi:inprintpaper.

[19] F i a l a , J . ; Kočí , R . : P o č í t a č o v á terapie jako koncept nové formy terapie pro osoby s
m e n t á l n í m pos t i žen ím: teorie i praxe. Journal of Technology and Information
Education, vol . 6, no. 1. 2014: pp. 89-103. I S S N 1803-537X.
Retrieved from: h t t p : //www.f i t . v u t b r . c z / r e s e a r c h / v i e w _ p u b . p h p ? i d = 1 0 7 1 8

[20] F i a l a , J . ; Kočí , R . : Computer as Therapy in role of alternative and augmentative
communication. 2015. 34-42 pp.
Retrieved from: h t t p : //www.f i t . v u t b r . c z / r e s e a r c h / v i e w _ p u b . p h p . c s ? i d = 1 0 7 3 7

[21] F i a l a , J . ; Zendulka, J . : Menta l ly challenged as design principles and models for their
applications. Applied Computer Science, vol . 12, no. 4. 2016: pp. 28-48. I S S N
1895-3735.
Retrieved from: h t t p : //www.f i t . v u t b r . c z / r e s e a r c h / v i e w _ p u b . p h p ? i d = 1 1 1 2 9

[22] Fowler, M . : Domain Specific Languages. Addison-Wesley Professional, first edition.
2010. I S B N 0321712943, 9780321712943.

[23] Inostroza, R . ; Rusu , C ; Roncagliolo, S.; et a l . : Usability Heuristics Validation
through Empirical Evidences: A Touchscreen-Based Mobile Devices Proposal. N o v
2012. 60-68 pp.. doi :10.1109/SCCC.2012.15.

[24] Inostroza, R . ; Rusu , C ; Roncal iolo, S.; et a l . : Design Patterns for Touchscreen-based
Mobile Devices: Users Above All! C h i l e C H I '13. New York , N Y , U S A : A C M . 2013.
I S B N 978-1-4503-2200-3. 50-51 pp.. doi:10.1145/2535597.2535616.
Retrieved from: h t tp : / / do i . acm.o rg /10 .1145 /2535597 .2535616

56

http://doi.acm.org/10.1145/1045446.1045455
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories
http://www.f
http://www.f
http://www.f
http://vutbr.cz/research/view_pub
http://doi.acm.org/10.1145/2535597.2535616

[25] ISO 9241-11:1998: Ergonomie requirements for office work w i t h visual display
terminals (V D T s) - Par t 11: Guidance on usability. Standard. M a r c h 1998.

[26] ISO 9241-171:2008: Ergonomics of human-system interaction - Par t 171: Guidance
on software accessibility. Standard. 2008.

[27] K a l i n a , J . : Vývoj i-CT frameworku a jeho aplikace pro komunikaci typu ANO/NE.
Master 's Thesis. Brno: Vysoké učen í technické v B r n ě . Faku l ta in formačních
technologi í . The address of the publisher. 2016.
Retrieved from: http : / / h d l . h a n d l e.net / 1 1 0 1 2 / 6 1 9 1 7

[28] Ke l ly , S.; Tolvanen, J . : Domain-Specific Modeling - Enabling Full Code Generation.
Wiley . 2008. I S B N 978-0-470-03666-2.
Retrieved from:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html

[29] Kennard , R . ; Leaney, J . : Towards a general purpose architecture for U I generation.
Journal of Systems and Software, vol . 83, no. 10. 2010: pp. 1896 - 1906. I S S N
0164-1212. doi:https://doi.org/10.1016/j.jss.2010.05.079.
Retrieved from:
http: //www.sciencedirect.com/science/article /pi i /S0164121210001597

[30] K r i s , L . ; Chr is , V . ; Jan , V . d. B . ; et a l . : Context-sensitive User Interfaces for
Ambient Environments: Design, Development and Deployment. In Mobile Computing
and Ambient Intelligence: The Challenge of Multimedia, edited by N . Davies:
T . Ki rs te ; H . Schumann, number 05181 in Dagstuhl Seminar Proceedings. Dagstuhl ,
Germany: Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI) , Schloss Dagstuhl , Germany. 2005. I S S N 1862-4405.
Retrieved from: h t t p : / / d r o p s . d a g s t u h l.de/o p u s / v o l l texte / 2 0 0 5 / 3 7 7

[31] M a c i k , M . ; Cerny, T . ; Slavik, P. : Context-sensitive, cross-platform user interface
generation. Journal on Multimodal User Interfaces, vol . 8, no. 2. Jun 2014: pp.
217-229. I S S N 1783-8738. doi:10.1007/sl2193-013-0141-0.
Retrieved from: h t t p s : / / d o i.org / 1 0 . 1 0 0 7 / s l 2 1 9 3 - 0 1 3 - 0 1 4 1 - 0

[32] M a r t i n , J . : Managing the Data Base Environment. Upper Saddle River , N J , U S A :
Prentice H a l l P T R . first edition. 1983. I S B N 0135505828.

[33] Mern ik , M . ; Heering, J . ; Sloane, A . M . : W h e n and How to Develop Domain-specific
Languages. ACM Comput. Surv.. vo l . 37, no. 4. December 2005: pp. 316-344. I S S N
0360-0300. doi:10.1145/1118890.1118892.
Retrieved from:
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/1118890.1118892

[34] M o r i n , B . ; Barais , O. ; Jezequel, J . M . ; et a l . : M o d e l s ® Run. t ime to Support Dynamic
Adapta t ion . Computer, vol . 42, no. 10. Oct 2009: pp. 44-51. I S S N 0018-9162.
doi:10.1109/MC.2009.327.

[35] Nielsen, J . : Usability Engineering. San Francisco, C A , U S A : Morgan Kaufmann
Publishers Inc.. 1993. I S B N 0125184050.

57

http://hdl.handle.net/11012/61917
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
https://doi.org/10.1016/j.jss.2010.05.079
http://www.sciencedirect.com/science/article/pii/S0164121210001597
http://drops.dagstuhl.de/
https://doi.org/10.1007/sl2193-013-0141-0
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/1118890.1118892

[36] Nilsson, E . G . : Design Patterns for User Interface for Mobi le Appl ica t ions . Adv. Eng.
Softw.. vol . 40, no. 12. December 2009: pp. 1318-1328. I S S N 0965-9978.
doi:10.1016/j.advengsoft.2009.01.017.
Retrieved from: h t t p : / / d x . d o i . O r g / 1 0 . 1 0 1 6 / j . a d v e n g s o f t . 2 0 0 9 . 0 1 . 0 1 7

[37] Rodrigues da Silva, A . : Model-dr iven Engineering. Comput. Lang. Syst. Struct..
vol . 43, no. C . October 2015: pp. 139-155. I S S N 1477-8424.
doi:10.1016/j.cl.2015.06.001.
Retrieved from: h t t p : / / d x . d o i . O r g / 1 0 . 1 0 1 6 / j . c l . 2 0 1 5 . 0 6 . 0 0 1

[38] Sottet, J.-S.; Calvary, G . ; Coutaz , J . ; et a l . : A Mode l -Dr iven Engineering Approach
for the Usabi l i ty of P las t ic User Interfaces. In Engineering Interactive Systems, edited
by J . Gul l iksen; M . B . Harning; P . Palanque; G . C . van der Veer; J . Wesson. Ber l in ,
Heidelberg: Springer Be r l i n Heidelberg. 2008. I S B N 978-3-540-92698-6. pp. 140-157.

[39] Stephanidis, C : Adapt ive Techniques for Universal Access. User Modeling and
User-Adapted Interaction, vol . 11, no. 1. M a r 2001: pp. 159-179. I S S N 1573-1391.
doi:10.1023/A:1011144232235.
Retrieved from: h t t p s : / / d o i . O r g / 1 0 . 1 0 2 3 / A : 1 0 1 1 1 4 4 2 3 2 2 3 5

[40] Wobbrock, J . O. ; Kane , S. K . ; Gajos, K . Z. ; et a l . : Ab i l i t y -Based Design: Concept,
Principles and Examples . ACM Trans. Access. Comput.. vol . 3, no. 3. A p r i l 2011: pp.
9:1-9:27. I S S N 1936-7228. doi:10.1145/1952383.1952384.
Retrieved from: h t tp : / / do i . acm.o rg /10 .1145 /1952383 .1952384

[41] Cerny, T . ; Song, E . : Model-dr iven R i c h F o r m Generation, vol . 15. 07 2012: pp.
2695-2714.

58

http://dx.doi.Org/10.1016/j.advengsoft.2009.01.017
http://dx.doi.Org/10.1016/j.cl.2015.06.001
https://doi.Org/10.1023/A:1011144232235
http://doi.acm.org/10.1145/1952383.1952384

Appendices

59

List of Appendices

A C D contents

B Figures

Appendix A

C D contents

A s a part of the thesis are also attached contents of implemented applicat ion on an enclosed
storage media. Source files of the implemented solution are placed into the folder src.
There is also stored the file readme.txt, where is described a way of usage of proposed
implementation. There are also included predefined .sin files for opening the project directly
in V i s u a l Studio.

61

Appendix

Figures

T3 i-l

L U | 11

i/l U H

QJ itj O

HJ r o
H 3 ilJ =
m H n vi

J Z O - H J Z
U > 4J

IU VI IU
n ifl ^ Q

, till U C Q

-M O O W
• j - H •_!
t i 4-1 T3 i /

4-1 II
' i
•H M
£j IL

W\ - H 10 - H
. • C L E

HI i
I i in
lO I. J

T3 - H ffi -H

m m i J •.
Ill L L L -H

J L ig O ill
Q £ - H £

4 J l/i 4 J "J

•H X Ul U

er s w rn
£ IU U - d

£ |,1 TJ Q
ifl ^ m Q

H m in o

°>, S "
T £i aj

m + J <n '
1 / 1 TO i=

_ i "H
i , '•• "'

I]J —
Z C L
L L 1/1

•?

. i R
i.i . I.

C L 1/1
i.i • \
i.

O
. 1 i-,

• •_
r -. i

3 s
>i -H
4-1 - H
-H 4 J
•H •=
•~ in

1.5
r -, i

tv. -H
-M -H
-H 4 J
-H C
C II 1

• •_
T -, 1

- H 3

>, -H
4-' H
- H -U

• _ in

£ j I]J
•Li
3 :
- II

i.i in
IU r-i

£ j <L
11 .•
2 :
- II

1/1

LI U\

IU i-l

£ J a>
i i
J = *

II w J =
i/i i/i +J
L*I ig L
IU i 1 -H

, i y>

+-'
C 3
H C L A

, i i.j

C 3
A m D. A
i - C L C L

H u m

•:
A in d f i A
K t "i • in L

.1 g
• '_
r -, i

[_ [_ y 4 J u a, ^ L n - H ^ i n -H n
U U • 1 / 1 £1 u ~
+. + J £ . 5 i/l

in o w 5 v A

m a. A
_ Q . C L.

iu C L + J 1) F
L D . C L L U C 1 1 -
£ i LH - H £ i JS JS , a

: £1 u ui

•

2

•If.l III

Figure B . l : Generated view using Web Entity Window construction. See different inputs for
different data types, default values, and defined i d i n the generated source code.

63

I LI VI O
C T 3 A

I.-I l i - H

JZ1 T 3 JZ
4J AJ

L c m
ID U Q

F 1,1 "T? Ijjj

L-'l L I'j 'IJ

gj (c c >

• . « J - M <LI
n - H J _
L >, 1/1 U

13 - H ra u
= U L C

rg O 1/1 -H

• " • -H

L 15 lil II
O - C F= O .

c 6 + J 0

i/i ^ rn c o - H
----- iLI L

rg O E u
J Z J U L I M

. Jll VI '4- L.

•nS.
U TJ IC 1,1
X. <Q r_ C
U L + J 0

-H T 3 U Ul

1 rg bfl +J 15

iTJ E iLI CI -

X > , E_ rg u O - H
m | J - i -ri - i i. • ra

-H II
U VI U
L I; n ••

i ii K
5 5 * 5 t i p !
'-> v\ I.

wi o v ^
> ^ A
V v •*

K

11

•

— 11

in
IS

m

I
O

Figure B .2 : Generated view using Web Entity Window construction wi th focus on connection
to back-end w i t h JavaScript.

64

