

Bezkontaktní měření drsnosti povrchu u součástí z plastů a kompozitů

Bakalářská práce

Studijní program: Autor práce: Vedoucí práce: B0715A270008 Strojírenství Jakub Svoboda doc. Ing. Jan Jersák, CSc. Katedra obrábění a montáže

Zadání bakalářské práce

Bezkontaktní měření drsnosti povrchu u součástí z plastů a kompozitů

Jméno a příjmení: Osobní číslo: Studijní program: Akademický rok:

Jakub Svoboda S19000358 B0715A270008 Strojírenství Zadávající katedra: Katedra obrábění a montáže 2020/2021

Zásady pro vypracování:

- 1. Charakteristiky nejpoužívanějších parametrů drsnosti povrchu.
- 2. Bezkontaktní měření parametrů drsnosti povrchu konfokálním mikroskopem.
- 3. Návrh metodiky pro měření drsnosti povrchu u součástí z plastů a kompozitů.
- 4. Realizace experimentů.
- 5. Hodnocení výsledků měření.
- 6. Shrnutí výsledků a vyvození závěrů.

Rozsah grafických prací: Rozsah pracovní zprávy: Forma zpracování práce: Jazyk práce: dle potřeby 30 – 40 stran textu tištěná/elektronická Čeština

Seznam odborné literatury:

1. NESLUŠAN, M., TUREK, S., BRYCHTA, J., aj. *Experimentálne metódy v trieskovom obrábaní*. 1. vyd. Žilina: Žilinská univerzita, 2007. 343 s. ISBN 978-80-8070-711-8.

2. BÁTORA, B., VASILKO, K. *Obrobené povrchy – technologická dedičnosť, funkčnosť*. 1. vyd. Trenčín: TU v Trenčíne a GC Tech, 2000. 184 s. ISBN 80-88914-19-1.

3. ČSN EN ISO 4287. Geometrické požadavky na výrobky (GPS) – Struktura povrchu: Profilová metoda

– Termíny, definice a parametry struktury povrchu. 1999. Praha: Český normalizační institut.

4. ČSN ISO 8688-1. Testovanie trvanlivosti pri frézovaní, Časť 1: Rovinné frézovanie. 1993. Praha: Centrum služeb pro normalizaci.

5. SERBUS, D. Ověření metodiky pro měření drsnosti povrchu na konfokálním mikroskopu Olympus LEXT (bakalářská práce). -. Praha: ČVUT, 2018. [cit. 12. září 2019]. Dostupné na:

https://dspace.cvut.cz/bitstream/handle/10467/79407/F2-BP-2018-Serbus-David-

Overeni%20metodiky%20pro%20mereni%20drsnosti%20povrchu%20na%20konfokalnim%20mikroskopu%20Olym 1&isAllowed=y.

ISBN-.

Vedoucí práce:

	doc. Ing. Jan Jersák, CSc.
	Katedra obrábění a montáže

L.S.

Datum zadání práce:5. října 2020Předpokládaný termín odevzdání:5. dubna 2022

prof. Dr. Ing. Petr Lenfeld děkan doc. Ing. et Ing. Štěpánka Dvořáčková, Ph.D. vedoucí katedry

Prohlášení

Prohlašuji, že svou bakalářskou práci jsem vypracoval samostatně jako původní dílo s použitím uvedené literatury a na základě konzultací s vedoucím mé bakalářské práce a konzultantem.

Jsem si vědom toho, že na mou bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do mých autorských práv užitím mé bakalářské práce pro vnitřní potřebu Technické univerzity v Liberci.

Užiji-li bakalářskou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti Technickou univerzitu v Liberci; v tomto případě má Technická univerzita v Liberci právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce vložený do IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má bakalářská práce bude zveřejněna Technickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách mohou vyplývat z porušení tohoto prohlášení.

14. ledna 2022

Jakub Svoboda

ANOTACE

Bakalářská práce se zabývá nejnovějšími informacemi o procesu měření drsnosti povrchu technických materiálů s použitím dotykové a bezdotykové metody měření za využití přístrojové měřící techniky.

Hlavním cílem bakalářské práce je porovnání dosažených výsledků měření metodou dotykového a bezdotykového měření drsnosti povrchu.

V teoretické části práce jsou představeny informace o zmíněných metodách měření drsnosti a základní pojmy vysvětlující řešenou problematiku.

Vedle toho v práci zmiňuji informace o měřených parametrech drsnosti povrchu a popisuji konkrétní metody měření drsnosti.

Dosažení cíle je věnována celá experimentální část, která obsahuje informace o metodice a realizaci experimentu. V závěru práce jsou popsány dosažené výsledky a celkové zhodnocení experimentu.

Klíčová slova

Drsnost. Profilometr. Parametry povrchu. Optický mikroskop.

ANNOTACION

This bachelor thesis presents the latest information on the process of measuring the surface roughness of technical materials using tactile and non-contact measuring methods using instrumental measuring techniques.

The main goal of the bachelor thesis was to compare the achieved measurement results by the method of contact and non-contact surface roughness measurement.

The theoretical part of the thesis presents basic information about the mentioned methods of roughness measurement, basic concepts explaining the problem.

In addition, information on the measured surface roughness parameters is mentioned and specific methods of roughness measurement are described.

The whole experimental part is devoted to achieving the goal, which contains information about the methodology and implementation of the experiment. At the end of the work, the achieved results and the overall evaluation of the experiment are described.

Keywords

Roughness. Profilometer. Surface parameters. Optical microscope

Katedra obrábění a montáže

Evidenční číslo práce: KOM 1316

Jméno a příjmení: Jakub Svoboda

Vedoucí práce:

doc. Ing. Štěpánka Dvořáčková, Ph.D.

Počet stran:	68
Počet příloh:	3
Počet tabulek:	34
Počet obrázků:	13
Počet diagramů:	21

PODĚKOVÁNÍ

Rád bych touto cestou vyjádřil poděkování vedoucímu práce panu docentovi Ing. Janu Jersákovi, CSc., za jeho čas, trpělivost a metodickou pomoc při vedení mé bakalářské práce.

Velké poděkování patří i paní docentce Ing. Štěpánce Dvořáčkové, Ph.D., která mi v závěru práce poskytla mnoho cenných rad a podnětů, vedoucích ke zdárnému dokončení práce. Rád bych i poděkoval panu bakaláři Martinovi Váňovi, za jeho cenné připomínky a odborné rady, které byly podnětné pro tvorbu této bakalářské práce.

OBSAH SEZNAM ΡΟΙΙΖΊΤΥ΄CH ΖΚΒΑΤΕΚ Α SYMBOLŮ	7
2 SOUČASNÝ STAV MĚŘENÍ DRSNOSTI POVRCHU MATERIÁLU	9
2 1 Dotykové měření	
2.2 Bezdotykové měření	13
3 1 Zhotovení vzorků	17
3.2 Testovací materiál a jeho charakteristika	
3.2.1 Charakteristika oceli S355 dle EN 10025-2	
3.2.2 Charakteristika Polvamidu PA 6 – vytlačovaný polvamid	
3 2 3 Charakteristika Polyoxymetylen POM C	19
3.2.4 Charakteristika PE 1000 recyklovaný	
3 2 5 Čistá epoxidová prvskyřice	20
3 2 6 Ublíkové vlákno tkanina	20
3 2 6 Uhlíkové vlákno prameny	20
3.3 Stroiní součásti	20
3.4 Řezné podmínky	21
3.5 Použité měřicí přístroje	22
3.6 Měřené parametry	24
3.6.1 Parametr Ra	24
3.6.2 Parametr Rz	25
3.6.3 Materiálový podíl profilu (nosný podíl) $R_{mr(c)}$, WS_m , PS_m	25
3.7 Podmínky měření	26
3.7.1 Příprava vzorků před měřením	26
3.8 Statistické zpracovaní dat	26
4 EXPERIMENTÁLNÍ ČÁST	27
4.1 Plast	27
4.1.1 Frézování silonu – PA 6	27
4.1.2 Soustružení silonu – PA 6	28
4.1.3 Broušení silonu – PA 6	29
4.1.4 Frézování Polyacetalu (POM)	31
4.1.5 Soustružení Polyacetalu (POM)	32
4.1.6 Broušení Polyacetalu (POM)	33
4.1.7 Frézování PE 1000 Recyklovaný	35
4.1.8 Soustružení PE 1000 Recyklovaný	36
4.1.9 Broušení PE 1000 Recyklovaný	37
4.2 Kompozit	39
4.2.1 Frézování čisté epoxidové pryskyřice	39
4.2.2 Soustružení čisté epoxidové pryskyřice	40

4.2.3 Broušení čisté epoxidové pryskyřice	41
4.2.4 Frézování epoxidové pryskyřice (ve formě tkaniny)	43
4.2.5 Soustružení epoxidové pryskyřice (ve formě tkaniny)	44
4.2.6 Broušení epoxidové pryskyřice (ve formě tkaniny)	45
4.2.7 Frézování epoxidové pryskyřice (ve formě pramenů)	47
4.2.8 Soustružení epoxidové pryskyřice (ve formě pramenů)	48
4.2.9 Broušení epoxidové pryskyřice (ve formě pramenů)	49
4.3 Ocel	51
4.3.1 Frézování oceli S355J2	51
4.3.2 Soustružení oceli S355J2	52
4.3.3 Broušení oceli S355J2	53
5 DISKUZE	55
6 ZÁVĚR	60
SEZNAM POUŽITÉ LITERATURY	61
SEZNAM PŘÍLOH	64

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

2D	[-]	dvourozměrné
3D	[-]	třírozměrné
a_p	[-]	přísuv
Č <i>SN</i>	[-]	Česká technická norma
EN	[-]	Evropská norma
F	[m.min ⁻¹]	posuv za minutu
f_n	[m.ot ⁻¹]	posuv za otáčku
ISO	[-]	Mezinárodní organizace pro normalizaci
Lr	[mm]	základní délka
М	[-]	střední aritmetická čára profilu
Mr	[%]	materiálový poměr
Mr1	[%]	podíl materiálu nad povrchem
Mr2	[%]	podíl materiálu pod povrchem
NJOD	[-]	nejnižší hodnota / dotyková metoda
NVHO	[-]	nejvyšší hodnota / optická metoda
P – parametry	[-]	parametry základního profilu
Ra	[µm]	průměrná aritmetická úchylka profilu
Rc	[µm]	průměrná výška prvku drsnosti
R – parametry	[-]	parametry profilu drsnosti
Rq	[µm]	střední kvadratická hodnota drsnosti
Rz	[µm]	maximální výška profilu drsnosti
$R_{mr(c)}$, WS_m	[%]	materiálový podíl profilu (nosný podíl)
S	[mm ²]	plocha
SK	[-]	slinutý karbid
VBD	[-]	vyměnitelná břitová destička
Vc	[m.mm ⁻¹]	řezná rychlost
W – parametry	[-]	parametry profilu vlnitosti
x,y	[mm]	osy souřadného systému pro měření povrchu
ypmax	[mm]	výška prohlubní
yvmax	[mm]	výška výstupků
γ	[°]	úhel snímacího hrotu
λ	[nm]	vlnová délka
λc (λ cut-off)	[nm]	mezní vlnová délka
λf	[nm]	vlnová délka dlouhovlnného filtru profilu
λs	[nm]	vlnová délka krátkovlnného filtru profilu

1 ÚVOD

Rozvoj výrobní technologie spolu se zaváděním nových pokrokových měřících metod nám pomáhají lépe zkoumat kvalitu a vlastnosti povrchu různých průmyslových součástí. Vlastnosti povrchové vrstvy výrazně ovlivňují spolehlivost a životnost součástí během jejich celého provozního cyklu. [1]

Z technologického hlediska výroby pod výrazem kvalita rozumíme veličiny jako přesnost rozměru, přesnost geometrického tvaru polohy a drsnosti povrchu. Drsnost povrchu materiálu ovlivňuje přesnost chodu součásti stroje, jejich hlučnost, dobu záběhu, ztráty třením, přesnost tepla únavovou pevnost a podobně. [1] [14]

Hlavním cílem této bakalářská práce bylo porovnání dosažených výsledků měření drsnosti zkoumaného povrchu u zvolených materiálů. Předkládaná práce se zabývá problematikou a měřením drsnosti povrchu dvěma metodami dotykovou a bezdotykovou.

V současné době se upřednostňuje bezdotykové měření, které poskytuje mnoho výhod zejména v oblasti plošného hodnocení daného povrchu a měřené plochy se specifickými fyzikálními a technickými parametry.

Bakalářská práce představuje nejnovější informace o procesu měření drsnosti povrchu technických materiálů s použitím dotykové a bezdotykové metody měření za využití přístrojové měřící techniky.

Zásadním cílem bakalářské práce je porovnání dosažených výsledků měření drsnosti a dosažené výsledky porovnat.

Bakalářská práce je členěna do teoretické, experimentální a závěrečné části.

Teoretická část pojednává o problematice drsnosti povrchu a jejímu významu, dále se popisují základní pojmy drsnosti povrchu, způsoby měření a měřící přístroje. Vychází se zde z informací tuzemské i mezinárodní odborné literatury.

Experimentální části popisuji metodiku měření drsnosti povrchu s následným zobrazením a vyhodnocením naměřených výsledků.

Závěrečná část porovnává výsledky dosažené v rámci laboratorních měření.

2 SOUČASNÝ STAV MĚŘENÍ DRSNOSTI POVRCHU MATERIÁLU

Současný růst kvality při výrobě strojních dílů vyžaduje ruku v ruce vývoj nových mnohem kvalitnějších a výkonnějších měřících přístrojů pro zachycení skutečného stavu finální výroby.

U těchto měřících přístrojů se klade důraz na vysokou přesnost, opakovatelnost a na stabilitu chování v procesu měření. [1] [14]

Vysoká přesnost měření vyžaduje dostatečné vertikální i horizontální rozlišení ke zvolenému cíli měření. Aby se naměřený výsledek minimálně lišil u různých přístrojů je potřeba zajistit vazbu naměřeného výsledku na danou základnu u měření drsnosti na základní délky, což je metr. [1] [14]

Tato vazba se nazývá metrologická návaznost, a ta se prokazuje zkouškou a následným vydáním certifikátu (protokolu) vydaným příslušným národním institutem. Volba měřícího přístroje se musí zodpovědně zabývat výše zmíněnými požadavky, které spolu s rychlostí snímáním a rozsahem měřené veličiny souvisejí. Tyto faktory jsou důležité pro správné plnění funkcí měřícího přístroje, a aby se naplňovalo měřítko nákladů pro pořízení k výkonu.

Na trhu v současné době působí mnoho renomovaných firem, které dodávají přístroje odolné na okolní vlivy (vibrace u bezdotykový přístrojů na okolní světlo). [1] [14]

a) Kvalitativní měření (vizuální)

Při tomto měření se využívá lidských smyslů, a to hmatu a zraku. Porovnává se zkontrolovaný povrch materiálu se vzorkovými plochami, které mají stanovenou drsnost. Pro usnadnění nalezení poruchy materiálu, lze používat různé optické přístroje jako například lupu, mikroskop a další. Tato metoda je však omezena rozlišovací schopností lidských smyslů a vlastnosti optických pomůcek. [1] [14]

b) Porovnávací metoda

Jedná se o spojení vizuální a dotykové metody, kdy k vyhodnocení povrchu používáme speciálních měrek (etalonů).

Metoda spočívá v porovnávání měřeného vzorku s etalony.

Pro kvalitnější posouzení povrchu provádíme porovnávání na více místech. I tato metoda je velmi zatížena lidským faktorem, ale je přesnější než metoda vizuální. [1] [14]

c) Dotykové měření

V tomto měření se používá rovnoměrný pohyb měřícího doteku po ploše kontrolovaného vzorku. Využívají se přístroje, které jsou schopny zkoumat daný povrch pomocí snímacích hrotů. Tyto hroty zaznamenávají úchylky ve změně profilu povrchu. Přístroj

je dále schopen vypočítat parametry, aby se daly dobře rozpoznat změny drsnosti. Výsledky se zobrazují v daném zvětšení. [1] [14]

d) Bezdotykové měření (optické)

Zde se využívá principu chromatické vady. Chromatická vada je barevná vada čočky. Příčinou vady je závislost ohniskové délky optického přístroje na dané vlnové délce použitého světla. Vychází se ze skutečnosti, že se světlo každé barvy v optickém přístroji láme jinak: záření dlouhovlnné červené nejméně, krátkovlnné fialové nejvíce. [1] [14]

Optické metody měření drsnosti povrchu mají ve srovnání s metodou dotykovou následující výhody:

- bezkontaktnost (tj. nedestruktivnost)

- potenciální možnost poskytovat výsledky měření téměř okamžitě

 - "integrálnost" získané informace o povrchu (informace je získávána většinou z vetší či menší plochy povrchu).

Nevýhody této metody:

 ve většině případů nutnost apriorních předpokladů o charakteru drsnosti neznámého měřeného povrchu (které jsou nutné pro řešení interakce světla s povrchem)

- nejsou v praxi tak široce užívány, jako kontaktní profiloměr. [1] [14]

2.1 Dotykové měření

Dotykové měřící přístroje se v současnosti stále ještě ve velké míře používají. Dle normy ČSN EN 3274 je dotykový měřící přístroj definován jako přístroj, který je uzpůsoben zkoumat dané povrchy pomocí snímacího hrotu. Svým pohybem na povrchu podává informace ohledně úchylek ve formě profilu povrchu, zároveň přístroj vypočítává parametry a v konečné fázi je zaznamenává. [12] [16] [22]

Nejdůležitější části dotykových měřících přístrojů (profilometrů) je hrot vyrobený z diamantů. Tvar snímacího hrotu udává norma ČSN EN 3274 jako kužel s kulovou špičkou. Statická přítlačná síla na hrot ve střední poloze je 0,00075 N. [12] [16] [22]

Obr. 2.1 Schéma konfokálního snímání povrchu [16] [22]

Správnost výsledků měření ovlivňuje:

- poloměr zaoblení snímacího hrotu (2 μm, 5 μm, 10 μm),
- vrcholový úhel snímacího hrotu (60°, 90°),
- měřicí (přítlačná) síla (cca 0,00075 N),
- rychlost změny měřicí síly,
- poloměr zaoblení kluzné patky snímače (u relativní metody),
- celkové geometrické uspořádání systému snímače.

Dotykový měřící přístroj je tvořen částmi:

a) Mechanická část

Stolek – na který měřenou součást umístíme.

Snímací rameno – v němž je usazen snímací hrot, rameno zaručuje pohyb konstantní rychlosti a snímací hrot kopíruje nerovnosti povrchu.

Elektromotor – zajišťuje přímočarý (vratný) pohyb hrotu. [12] [16] [22]

b) Elektronická část

Mechanický signál generovaný snímacím hrotem převádí signál na elektrický, a ten se zpracovává a převádí na požadované hodnoty příslušnému parametru drsnosti nebo může vytvářet grafický záznam nerovností povrchu.

Měřící hrot zaznamenává svým pohybem určitý profil, jenž nezobrazuje přesně profil reálného povrchu. Můžeme říci, že se jedná o ekvidistantní křivku ve vzdálenosti poloměru zaoblení snímacího hrotu od snímaného profilu. To způsobuje z velké části zaoblení špičky snímacího hrotu. Tuto chybu, respektive její vliv upravujeme pomocí daných korekcí. [12] [16]

Obr.2.2 Schéma indukčního snímače [11]

Výhody dotykových metod:

- není potřeba dokonale lesklý povrch, diamantový hrot dokáže odsouvat nečistoty (olejové skvrny),
- vysoká přesnost, jednoduchost,
- přímé měření parametrů struktury povrchu,
- velká rozlišovací schopnost,
- vhodné pro kalibraci výsledků z nepřímých metod,

Nevýhody dotykových metod:

- možnost znehodnocení kontrolovaného povrchu,
- nemožnost měřit mikronerovnost omezení rádiem špičky diamantového hrotu,
- možnost přichycení snímacího hrotu k měřenému adheznímu povrchu a následné poškození hrotu,
- omezený pohyb hrotu po měřeném povrchu,
- nutnost měnit hroty.

Obr. 2.3 Snímací hrot – omezení rádiem špičky [30]

Měřící hroty

Pro měření drsnosti se měřící hroty vyrábí z diamantů pro jeho tvrdost. K dosažení co nejlepšího kontaktu měřícího hrotu s povrchem materiálu je určení nejoptimálnějšího geometrického hrotu. Tuto schopnost ovlivníme volbou poměru kulového zakončení hrotu s jeho vrcholovým úhlem. Další faktor, který ovlivňuje kvalitu kontaktu hrotu s povrchem je velikost síly, kterou se hrot přitlačuje k povrchu. Pro sjednocení metodiky byla vydána norma ČSN EN 3274 ve které se jako nejoptimálnější tvar hrotu předepisuje kužel hrot s kulovou špičkou. [1]

Jmenovitý poloměr zaoblení špičky může mít hodnotu 2–5 a 10 µm s vrcholovým úhlem kužele 60° nebo 90°. [1]

Obr.2.4 Diamantový hrot [11]

2.2 Bezdotykové měření

Prostorové měření a hodnocení povrchu nám přináší cenné a praktické využití informací o charakteristice povrchu a jeho funkčních vlastnostech. K lepšímu hodnocení textury povrchu, nám přispívá vývoj měřící techniky a programového zabezpečení celého procesu. Pokrokové měřící přístroje uplatňují ve větší míře bezdotykové způsoby snímání povrchu, a to především optické. Tyto přístroje využívají přesnější a výkonnější pohybové i náhonové uzly. Výsledkem je, že povrch je snímaný výrazně rychleji v porovnání s klasickými metodami.

Měření a zpracování podstatně většího počtu dat, které popisují prostorový profil povrchu, získají velké množství informací pro skutečnou reálnou kontrolu povrchu.

Prostorová analýza povrchu vzniká pomocí grafického zobrazení, a to formou axometrického pohledu, topografické mapy, nebo záznamu rozdělení souřadnic. Charakteristika povrchu například velikost, tvar a rozložení výstupku a prohloubení profilu zvyšuje kvalitu hodnocení povrchu, a také využití pro výrobu vlastností funkčního zatížení povrchu. Díky rozšířeným možnostem, lze posoudit funkční vlastnosti povrchu jako například průběh opotřebení, tření, mazání nebo těsnění.

Výhodou dat získaných použitím bezdotykovým přístrojem probíhá opačně, než u přístrojů dotykových. V první fázi se provádí rekonstrukce dané plochy na jejím základě se vyhodnocuje daná textura povrchu.

Z těchto dat odvozujeme i profilové parametry a to definicí žádaného profilu napříč touto plochou. [14] [24]

Dotyková metoda pracuje zásadně na základě metody profilové, což je pravý opak, protože se skládaná plocha tvoří na základě profilů a né že jsou profily z danné plochy tvarovány jako v bezkontaktní metodě. [14] [24]

V dnešní době se mezi nejpoužívanější bezkontaktní metody hodnocení povrchu řadí:

- Optická interferometrie (dvousvazkové či vícesvazkové, pomocí monochromatického nebo polychromatického optického zařízení),
- Mikroskopické metody (skenovací mikroskopie, holografická mikroskopie, skenovací optická mikroskopie blízkého pole),
- Optické rozptylové metody (založené na měření intenzity rozptýleného světla po odrazu na měřeném povrchu – používané zejména v praxi),
- Elektronová mikroskopie (SEM Scanning Electron Microscopy, TEM Transmission Electron Microscopy),
- Senzory (na bázi konfokálního principu při měření s polychromatickým zdrojem záření).

Výhody bezdotykových metod:

- vysoká rychlost snímaní (obousměrné),
- nedestruktivnost kontrolovaného povrchu,
- možnost měřit mikronerovnost (nejsou omezeny rádiem špičky jako dotykové metody),
- lze měřit měkké, adhezní materiály,
- nedochází k opotřebení měřidla,
- opakovatelnost měření a okamžitost výsledků.

Obr.2.5 Měření mikronerovností pomocí laseru [30]

Nevýhody bezdotykových metod:

- možnost ztráty dat (paprsek se neodrazí zpět do detektoru správně),
- nutnost důkladného očištění kontrolovaného povrchu,
- odrazivost od měřeného povrchu (černé těleso, stříbrné těleso),
- výsledek měření ovlivněn okolním prostředím (světlo, vibrace),
- složitější interpretace výsledků,
- měření parametrů struktury povrchu je nepřímé.

U bezdotykových měřících přístrojů funguje opačný postup zpracování dat než u dotykových měřících přístrojů, tzn., že nejprve se provede rekonstrukce snímané plochy, poté jsou po aplikaci filtračních metod vyhodnocovány požadované parametry struktury povrchu.

Mnohé studie potvrdili význam bezdotykových měřících přístrojů pro metrologii. Důležitost plošných metod měření nebo upřednostnění bezkontaktních metod například z důvodu křehkosti měřeného prvku, nutnosti objemového měření nebo nestabilního povrchu odlitku.

Metoda světelného řezu

Tato metoda využívá svazku rovnoběžných paprsků, které jsou usměrněny tenkou mezerou (štěrbinou) do tvaru tenké roviny. Paprsky světla dopadají na měřený povrch pod úhlem 45° přes stanovený optický systém čoček. [24]

Obr.2.6 Optická schéma mikroskopu pro světelný řez [24]

- 1 Osvětlovací těleso, 2 Barevný filtr, 3 Kondenzor, 4 Štěrbina,
- 5 Osvětlovací objektiv, 6 Pozorovací objektiv, 7 Posuvná destička se značkou,
- 8 Čočka, 9 Měřená plocha.

Metoda laserovou profilometrií

Laserová profilometrie využívá tak zvaného triangulačního principu. To znamená, že tenký laserový paprsek je promítán na měřený objekt. Obraz laserového paprsku na měřeném objektu se snímá pod stanoveným úhlem CCD kamerou. Snímáním laserového paprsku nám vzniká obrázek, ze kterého vyhodnocujeme profil objektu v průřezu daným laserovým paprskem.

Touto metodou můžeme měřit různé povrchy, např.: plast, gumu, dřevo, keramiku, kámen, kovy. Velmi důležité je zvážit a zhodnotit možnosti laserového profilometru při konkrétní

aplikaci u lesklých povrchů. Tuto metodu lze aplikovat při měření vytlačovaných profilů, profilu pneumatik, kontrole tvaru výlisku, měření objemu kulatiny. [24] [26]

Základní konfokální mikroskopie

Konfokální mikroskop se řadí mezi mikroskopy s velmi vysokým rozlišení a velmi dobrou kvalitou kontrastu. Podstatou konfokální mikroskopie je, že ze světelného zdroje vychází paprsek světla, který prochází clonou s dírkou. Při procesu měření se světelný paprsek zaostřuje na určitý bod a velikost rozlišovací mezery. Zapotřebí je ještě jedna clona, která se nachází před fotodetektorem. V momentě, kdy paprsek prochází touto clonou, je schopna odfiltrovat odražené světlo, které má místo původu mimo zaostřený bod. To zapříčiňuje úplně přesné informace, které se týkají struktury povrchu daného bodu.

Záření vytvářející takto vysoké rozlišení může posloužit mimo jiné jako povrchový výškový snímač textury povrchu měřícího přístroje.

Pokud je paprsek soustředěný na povrchu, bude pohybem čočky objektivu podél vertikální osy maximální signál. Toto je možné použít k detekci povrchové výšky na základě analýzy detekovaného signálu. [22]

Důležité je zmínit, že konfokální mikroskopy lze rozdělit na dva druhy, a to na konfokální mikroskop laserový řádkovací a na konfokální mikroskop s rotujícím diskem.

Laserový řádkovací konfokální mikroskop využívá laserový paprsek jako zdroj světla. Mikroskop snímá plochu bod po bodu. Ke snímání plochy dochází proto pomalu. Pohybovat se musí buďto paprsek světla nebo vzorek samotný. Výhodou tohoto typu je energie, která je schopna se nasměrovat pouze do jediného bodu.

Jako zdrojem světla využívá konfokální mikroskop s rotujícím diskem bílé světlo. Místo clon používá Nipkowovův kotouč. Tento kotouč tvoří spirála z otvorů. Tento typ je velmi využívaný při vytváření 3D obrazů povrchu, především kvůli rychlosti vytváření snímků. Mikroskop je schopen vytvořit až sto snímků za vteřinu. [21]

Obr. 2.7 Nákres konfokálního mikroskopu [20]

a) laserový řádkovací konfokální mikroskop, [20]

b) konfokální mikroskop s rotujícím diskem. [20]

3 METODIKA

Metodika měření je část práce, která pojednává o přípravě vzorků, jejich obrobení a popisu měření potřebných veličin pro zpracování hodnot podle cíle bakalářské práce. Materiály byly zkoumány v oblasti z hlediska drsnosti povrchu.

Zadáním práce bylo změřit a porovnat 7 různých materiálů, viz tabulka 3.1, ve které bylo obrábění realizováno při různých podmínkách. Zhotovené vzorky byly měřeny na dvou měřících přístrojích. Měřicí přístroje potřebné ke zjištění hodnot drsnosti povrchu jsou majetkem katedry obrábění a montáže na Technické univerzitě v Liberci. Stroje a nástroje vhodné pro obrobení požadovaných povrchu jsou majetkem strojní firmy Prodeco a,s. Bílina.

3.1 Zhotovení vzorků

Pro zhotovení vzorků byly použité technologie obrábění a to frézování, soustružení, broušení. K získání širokého spektra hodnot z měření drsnosti byly vyrobeny vzorky z plastu kompozitu a oceli. Každý vzorek dostal pro nezaměnitelnost naměřených hodnot své označení. Označení vzorku dle příslušné obráběcí operace. Pro frézování FVZ1, FVZ2 a FVZX., pro soustružení SVZ1, SVZ2 a SVZX, pro broušení BVZ1, BVZ2 a BVZX.

Použité materiály					
Číslo vzorku	Název				
1	Polyamid (Silon) PA 6				
2	Polyoxymetylen POM C				
3	PE 1000 recyklovaný				
4	Čistá epoxidová pryskyřice				
5	Uhlíkové vlákno ve formě tkaniny				
6	Uhlíkové vlákno ve formě pramenu				
7	Ocel S355J2				

Tab. 3.1 Použité materiály

3.2 Testovací materiál a jeho charakteristika

3.2.1 Charakteristika oceli S355 dle EN 10025-2

Ocel S355 je nejběžněji používaná konstrukční ocel, která je klasifikována dle normy EN 10025-2. Je jemnozrnná jakostní ocel s chemickým složením a mechanickými vlastnostmi podobající se oceli ČSN 11 523.

Tyto materiály se používají pro staticky nebo dynamicky namáhané, svařované konstrukce a strojní součásti, u kterých je kladen nárok na vyšší mez kluzu. Vyrábějí se z nich např. plechy, tyče, trubky, dráty. Ty se pak používají na výrobu součásti strojů, automobilů, pro mostní konstrukce, ohýbané profily nebo tlakové nádoby. Ocel S355 se dodává v jakostních stupních, například JR, J0, J2, K2. [14] [15]

Zaručená svařitelnost platí do maximálního obsahu uhlíku 0,22 %. Norma uvádí pro každou značku obsah doprovodných prvků a mechanické vlastnosti (Tab. 3.2)

Tab. 3.2 Přehled chemického složení a mechanických vlastností oceli S355										
Nelegované konstrukční oceli podle normy ČSN EN 10025-2										
	R _e R _m Teplota C v Mn Si P S N									N
Značka	[MPa]	[MPa]	KV [kJ]	při KV	% max	max.	max.	max.	max.	max.
S355J2	S355J2 355 470-630 27 -20 0,22 1,6 0,55 0,030 0,030 -								-	
Vysvětlivky: S-konstrukční oceli, JR-zkouška vrubové houževnatosti při 20°C, J0 - zkouška vrubové										
houževnatosti při 0°C, J2 - zkouška vrubové houževnatosti při -20°C, K2 - zkouška vrubové										
houževnatosti při -20°C, KV - nárazová práce										

Tah	22	Dřahlad	ahomiakáho	dožoní o	machaniakúch	vlootnootí	oooli	C255
av.	3.Z	Freineu	Chennickeno	SIUZEIII a	mechanickvcn	viasuiosu	ocen	3300

3.2.2 Charakteristika Polyamidu PA 6 – vytlačovaný polyamid

Univerzální plast pro konstrukci a údržbu strojů. Je vhodný zvláště pro výrobu konstrukčních a kluzkých prvků, které jsou vystaveny silným dynamickým zatížením a mají jednoduché profily. Vytlačovaný polyamid se dá univerzálně použít v náročných aplikacích v případě, že nejsou stanoveny velmi těsné rozměrové tolerance. [27]

Vlastnosti:

- dlouhodobé pracovní teploty -40 až 85 °C
- vysoká pevnost v tahu
- velmi vysoké protažení při protržení
- vysoká rázová houževnatost
- největší pohlcování vlhkosti ze všech polyamidů (až 3 %)

- nejnižší elektrický odpor ze všech polyamidů
- výborné tlumení hluku a vibrací
- výborné kluzné vlastnosti [27]

3.2.3 Charakteristika Polyoxymetylen POM C

Polyoxymetylen kopolymer (Sustarin C) je mnohostranně použitelný technický plast s vysokou pevností a tvarovou stálostí. Má nízké adhezní síly, a proto má dobré kluzné vlastnosti.

POM C je díky své vynikající třískové obrobitelnosti s tvořením krátkých třísek nejoblíbenějším materiálem pro výrobu tvarově a rozměrově stálých konstrukčních a kluzných součástí. [28]

Vlastnosti:

- dlouhodobé pracovní teploty -40 až 100 °C
- vysoká pevnost a tuhost
- velmi dobré kluzné vlastnosti
- dobré elektro-izolační vlastnosti
- vysoká rázová houževnatost
- nízké pohlcování vlhkosti
- dobrá rozměrová stálost
- vyšší odolnost vůči hydrolýze ve srovnání s POM H
- vysoká odolnost vůči rozpouštědlům
- vysoká odolnost proti vzniku napěťových trhlin [28]

3.2.4 Charakteristika PE 1000 recyklovaný

PE-UHMW s přídavkem recyklované suroviny (Polystone MR, PROlen 3000 RCM) je levnější alternativou PE 1000 využívanou zejména v obecném strojírenství, těžební a poháněcí technice, obalovém a nápojovém průmyslu a manipulační technice. PE 1000 recyklát dosahuje molekulární hmotnosti ~ 3,0 - 4,0 mil. g/mol a je dostupný v podobě lisovaných desek. [29]

Vlastnosti:

- vysoká odolnost proti opotřebení
- dobré kluzné vlastnosti
- dobré tlumení hluku
- vysoká houževnatost při úderu i při nízkých teplotách [29]

3.2.5 Čistá epoxidová pryskyřice

Příprava vzorků čisté pryskyřice probíhala volbou vhodného druhu tohoto materiálu, dále odlitím do forem, vytvrzením a poté konečnou rozměrovou úpravou jednotlivých vzorků.

3.2.6 Uhlíkové vlákno tkanina

Epoxidová pryskyřice s uhlíkovými vlákny ve formě tkaniny, byla vyrobena tak, že vrstvy tkaniny byly v separované formě kladeny na sebe a prosycovány epoxidovou pryskyřicí s tvrdidlem. Při přípravě vzorků bylo dbáno na to, aby pryskyřice obalila uhlíková vlákna a vytvořila požadované mezifázové rozhraní.

3.2.6 Uhlíkové vlákno prameny

Epoxidová pryskyřice s uhlíkovými vlákny ve formě pramenů, nastříhané prameny na stejné rozměry byli nakladeny do formy a poté zality epoxidovou pryskyřicí, následně zalité vzorky byli vytvrzeny a poté upraveny na dané rozměry.

3.3 Strojní součásti

Vzorky, které byly vyrobeny na Technické univerzitě v Liberci.

Technologie	Stroj	Nástroj
Frézování	DOOSAN MYXN	Fréza $arnothing$ 50 mm, 5 VBD
	G600/50	
Soustružení	SU50	soustružnický nůž s VBD-SK
Broušení	BPH 320 A	kotouč RN

Tab. 3.3 Stroje a nástroje použité při obrábění

3.4 Řezné podmínky

Z následujících tabulek je patrné, že každý vzorek byl zhotoven za různých řezných podmínek a tyto řezné podmínky jsou uvedeny v následujících tabulkách.

Frézování									
	Otáčky Otáčky Otáčky Otáčky Otáčky								
Materiál	n1 [ot / min]	n2 [ot / min]	n3 [ot / min]	n4 [ot / min]	n5 [ot / min]				
Ocel	3000	2500	2000	1500	1000				
Plast	3000	2500	2000	1500	1000				
Kompozit	3000	2500	2000	1500	1000				
Posuv									
f [mm/min]	f [mm/min] 120 mm/min								
Přísuv									
<i>a_p</i> [mm]	1 mm								

Soustružení										
	Otáčky Otáčky Otáčky Otáčky Otáčky									
Materiál	n1 [ot / min]	n2 [ot / min]	n3 [ot / min]	n4 [ot / min]	n5 [ot / min]					
Ocel	3000	2500	2000	1500	1000					
Plast	3000	2500	2000	1500	1000					
Kompozit	3000	2500	2000	1500	1000					
Posuv										
f [mm/min]	0,2 mm / ot									
Přísuv										
a_p [mm]			1 mm							

Broušení										
Matoriál	Otáčky Otáčky		Otáčky	Otáčky	Otáčky					
Wateria	n1 [ot / min]	n2 [ot / min]	n3 [ot / min]	n4 [ot / min]	n5 [ot / min]					
Ocel	3000	2500	2000	1500	1000					
Plast	3000	2500	2000	1500	1000					
Kompozit	3000	2500	2000	1500	1000					
Posuv f [mm/min]	15,5 m / min									
Přísuv a _p [mm]			0,02 mm							

Tab. 3.6 Řezné podmínky při broušení

3.5 Použité měřicí přístroje

K získání požadovaných hodnot byla zvolena dotyková a následně bezdotyková metoda.

K dotykovému měření povrchu vzorku byl použit měřící přístroj viz obr. 4.1 Profilometr Mitutoyo SV-2000 N2.

Obr. 3.1 Profilometr Mitutoyo SV-2000 N2

Údaje o měřidle Mitutoyo SV-2000 N2						
Тур	Surftest SV-2000 N2					
Výrobce	Mitutoyo					
Snímač	12AAB404					

Tab. 3.8 Pracovní hodnoty měřením a parametry

Pracovní hodnoty měřením a parametry							
Měřená dráha	5.6 mm						
Rychlost	0.5 mm/s						
λs (Cut Off)	0.80 mm						
Poloměr hrotu	5 µm						
Použitý hrot	Diamantový						

Získaná data z měření byla zpracována v profesionálním softwaru Surfpak. Tento přístroj využívá snímací hrot s poloměrem zaoblení 5 µm. Při čemž profil se zkoumal ve směru kolmém na směr posuvu obrábění. Software Surfpak je schopen měřit 26 parametrů drsnosti, které odpovídají normám ISO, DIN, ANSI a JIS.

Bezkontaktní měření vzorku bylo realizováno na přístroji VK-X 1000 od výrobce firmy KYENCE – viz obr.4.2 Mikroskop Keyence VK-X1000.

Obr.3.2 Mikroskop Keyence VK-X1000

Naměřené data se následně analyzovala za použití softwaru A1 – ANALYZER, který je součástí měřícího přístroje.

Údaje o měřidle Keyence VK-X1000						
Тур	VK – X1000					
Výrobce	KEYENCE					
Objektiv	50x					

Tab. 3.9 Údaje o měřidle Keyence VK-X1000

3.6 Měřené parametry

Zjišťovanými a vyhodnocenými parametry bylo:

- Střední aritmetická úchylka Ra [µm]
- Největší výška profilu Rz [µm]
- Nosný podíl Rmc [%]

3.6.1 Parametr Ra

Parametr je střední aritmetická úchylka drsnosti. Parametr je nejčastější hodnota drsnosti povrchu. Jedná se o střední aritmetickou hodnotu absolutních odchylek profilu v rozsahu základní délky. Vyhodnocení parametru drsnosti střední aritmetické odchylky hodnoceného profilu-je integrační veličina, tato hodnota se často zaměřuje s všeobecnými pojmy drsnosti. [14] [16] [24]

Odčítáním na střední čáře m dostaneme úsečku profilu x, y(x) je funkce, která popisuje profil povrchu od střední čáry m, jsou souřadnice libovolného počtu bodů profilu v hranicích základní délky (i=1, 2, ..., n), l je rozměr úsečky, po které stanovujeme mikrogeometrii povrchu, n je množství bodu profilu na úsečce l. [14] [16] [24]

Vzorec pro výpočet střední aritmetické úchylky profilu:

Obr. 3.3 Průměrná aritmetická úchylka profilu drsnosti Ra [24]

3.6.2 Parametr Rz

Parametr Rz je parametr výšky profilu. Tento parametr je velmi rozšířený. Parametr R_z je definován součtem výšky nejvyššího výstupku profilu a hloubky nejnižší prohlubně profilu v rozsahu základní délky. Orientačně můžeme tuto hodnotu spočítat jako čtyřnásobek parametru Ra. [14] [16] [24]

Vzorec pro výpočet parametru výšky profilu:

$$R_{z} = \frac{\sum_{i=5}^{5} |y_{pmi}| + \sum_{i=5}^{5} |y_{vmi}|}{5}$$
(3.2)

Obr. 3.4 Největší výška profilu Rz [24]

3.6.3 Materiálový podíl profilu (nosný podíl) $R_{mr(c)}$, WS_m , PS_m

Jedná se o poměr délky materiálu elementu profilu $M_{l(c)}$ na stanovené úrovni c, stažené k vyhodnocené délce.

K výpočtu se používá vzorec:

$$R_{mr(c)} = \frac{M_{l(c)}}{L_n}$$
(3.3)

Je vhodné měřit nosný podíl k výšce referenčního řezu, značeného jako c_o , a to v jedné výšce. Vztažná čára a jejich možný posun směrem do profilu k definovaného materiálového podílu stanovující výšky definičního řezu c_o . [14] [25]

Obr. 3.5 Materiálový poměr profilu [25]

Křivka materiálového poměru se v odborné literatuře nazývá jako Abbottova křivka a představuje nám materiálový poměr profilu v závislosti na výšce úrovni viz obrázek.

Obr. 3.6 Abbottova křivka [25]

Danou strukturu profilu povrchu nám znázorňuje vytvořená Abbotova křivka. Z jejího průběhu můžeme odvodit chování profilu povrchu jako například záběh hnací hřídele, opotřebení ložné plochy nebo stav povrchu vodících pouzder. Povrch s malým profilem prohlubní lze klasifikovat jako ten s velmi dobrými vlastnosti proti opotřebení.

Na druhou stranu strmě klesající křivka vypovídá o přítomnosti velkých prohlubní v povrchu. To ukazuje na nepříznivý stav opotřebení. [14] [25]

Volba míst pro měření byla na čelních plochách vzorku. Měření hodnot se provedlo kolmo na směr obrábění.

3.7 Podmínky měření

Dotyková metoda – přístroj Surftest SV – 2000 N2.

Okolní teplota v laboratoři 21 °C ± 0,5°C. Bezdotykové měření přístrojem VK – X1000. Okolní teplota v laboratoři 21 °C ± 0,5°C.

3.7.1 Příprava vzorků před měřením

Aby nedocházelo ke zkreslení naměřených hodnot byli vzorky ošetřeny (umyty) pomocí vaty a lékařského benzínu a vloženy na stolek měřícího přístroje.

Při manipulaci se vzorky a nástroji byly použity gumové rukavice s cílem, aby nedošlo k přímému kontaktu vzorku s povrchem ruky tedy jeho kontaminaci.

3.8 Statistické zpracovaní dat

Z naměřených dat byl vypočten aritmetický průměr x, následně byla vypočtena nejistota měření.

Nejistota měření byla určena v souladu s dokumentem EA-4/02 M:2013

4 EXPERIMENTÁLNÍ ČÁST

Tato část práce shrnuje informace o naměřených hodnotách. Dá se z ní vyčíst průměrná aritmetická úchylka, celková výška profilu a také materiálový nosní podíl.

Pro odlišení naměřených údajů v tabulkách byly použité rozdílné barvy. Nejvyšší naměřené hodnoty červeně, nejnižší hodnoty žlutě.

4.1 Plast

4.1.1 Frézování silonu – PA 6

Soubory naměřených hodnot parametrů drsnosti povrchu zkoumaných vzorků. Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.1 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.1 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,377 μm metodou optickou u vzorku FVZ5.
- II. Minimální hodnota Ra byla naměřena 1,200 μm metodou dotykovou u vzorku FVZ1.
- III. Maximální hodnota Rz byla naměřena 8,817 μm metodou optickou u vzorku FVZ5.
- IV. Minimální hodnota Rz byla naměřena 7,135 μm metodou dotykovou u vzorku FVZ1.
- V. Maximální hodnota Rmr byla naměřena 74,869 % metodou optickou u vzorku FVZ2.
- VI. Minimální hodnota Rmr byla naměřena 59,021 % metodou dotykové u vzorku FVZ4.

Polyamid (Silon – PA 6)									
Frézování	Dot	tyková met	oda		Op	Optická metoda			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]		
FVZ1	<mark>1,200</mark>	<mark>7,135</mark>	59,594	FVZ1	1,245	7,830	64,322		
	<mark>±0,047</mark>	<mark>±0,279</mark>	±7,420		±0,035	±0,417	±6,677		
FVZ2	1,229	7,439	64,217	FVZ2	1,270	8,076	<mark>74,869</mark>		
	±0,045	±0,293	±12,253		±0,370	±0,574	±6,237		
FVZ3	1,235	7,740	60,399	FVZ3	1,315	8,281	65,832		
	±0,041	±0,379	±7,209		±0,046	±0,443	±6,431		
FVZ4	1,287	7,892	<mark>59,021</mark>	FVZ4	1,316	8,173	59,085		
	±0,069	±0,496	<mark>±9,911</mark>		±0,343	±0,905	±6,504		
FVZ5	1,330	8,178	59,915	FVZ5	<mark>1,377</mark>	<mark>8,817</mark>	59,262		
	±0,048	±0,518	±11,376		<mark>±0,030</mark>	±0,527	±7,202		

Tab. 4.1 Parametry drsnosti povrchu frézovaného plastu-Silon PA

4.1.2 Soustružení silonu – PA 6

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.2 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.2 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,502 μm metodou optickou u vzorku SVZ5.
- II. Minimální hodnota Ra byla naměřena 2,333 μm metodou dotykovou u vzorku SVZ1.
- III. Maximální hodnota Rz byla naměřena 13,396 μm metodou optickou u vzorku SVZ5.
- IV. Minimální hodnota Rz byla naměřena 12,316 µm metodou dotykovou u vzorku SVZ2.
- V. Maximální hodnota Rmr byla naměřena 64,668 % metodou optickou u vzorku SVZ5.
- VI. Minimální hodnota Rmr byla naměřena 58,607 % metodou dotykové u vzorku SVZ1.

Polyamid (Silon – PA 6)								
Soustružení	Dot	yková met	oda		Optická metoda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	
SVZ1	2,333 ±0,034	12,331 ±0,344	58,607 ±2,838	SVZ1	2,411 ±0,062	12,766 ±0,276	60,556 ±2,958	
SVZ2	2,367 ±0,041	<mark>12,316</mark> ±0,332	61,265 ±2,131	SVZ2	2,446 ±0,057	12,979 ±0,215	63,714 ±1,353	
SVZ3	2,385 ±0,055	13,017 ±0,281	59,765 ±3,001	SVZ3	2,428 ±0,041	13,352 ±0,291	61,350 ±2,846	
SVZ4	2,401 ±0,062	12,782 ±0,516	60,854 ±2,751	SVZ4	2,462 ±0,039	13,172 ±0,415	62,203 ±2,734	
SVZ5	2,428 ±0,024	12,897 ±0,388	63,019 ±2,715	SVZ5	<mark>2,502</mark> ±0,084	13,396 ±0,387	64,668 ±2,861	

Tab. 4.2 Parametry drsnosti povrchu soustruženého plastu-Silon PA

4.1.3 Broušení silonu – PA 6

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.3 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.3 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,865 μm metodou optickou u vzorku BVZ5.
- II. Minimální hodnota Ra byla naměřena 2,185 μm metodou dotykovou u vzorku BVZ1.
- III. Maximální hodnota Rz byla naměřena 22,785 μm metodou optickou u vzorku BVZ5.
- IV. Minimální hodnota Rz byla naměřena 19,243 µm metodou dotykovou u vzorku BVZ1.
- V. Maximální hodnota Rmr byla naměřena 60,702 % metodou dotykovou u vzorku BVZ5.
- VI. Minimální hodnota Rmr byla naměřena 51,904 % metodou dotykové u vzorku BVZ1.

Polyamid (Silon – PA 6)								
Broušení	Dot	zyková met	oda		Or	Optická metoda		
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	
BVZ1	<mark>2,185</mark> ±0,042	<mark>19,243</mark> ±1,401	<mark>51,904</mark> ±5,142	BVZ1	2,203 ±0,094	21,394 ±0,414	52,553 ±6,980	
BVZ2	2,283 ±0,079	20,004 ±0,407	56,721 ±5,288	BVZ2	2,573 ±0,320	22,159 ±0,852	56,770 ±5,624	
BVZ3	2,534 ±0,295	20,847 ±0,904	59,777 ±5,874	BVZ3	2,742 ±0,409	22,305 ±0,992	58,426 ±5,297	
BVZ4	2,795 ±0,399	21,059 ±0,928	59,453 ±2,572	BVZ4	2,834 ±0,268	22,570 ±0,756	60,702 ±2,770	
BVZ5	2,847 ±0,413	21,622 ±1,161	58,307 ±5,767	BVZ5	2,865 ±0,364	22,785 ±0,909	58,956 ±5,721	

Tab. 4.3 Parametry drsnosti povrchu broušeného plastu-Silon PA

Níže jsou uvedeny dosažené výsledky. V grafech 4.1–4.3 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro plast silon – PA 6.

Obr. 4.1 Grafické znázornění průměrných hodnot výsledků Ra

Obr. 4.2 Grafické znázornění průměrných hodnot výsledků Rz

Obr. 4.3 Grafické znázornění průměrných hodnot výsledků Rmr

4.1.4 Frézování Polyacetalu (POM)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.4 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.4 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,721μm metodou optickou u vzorku FVZ9.
- II. Minimální hodnota Ra byla naměřena 1,519 μm metodou dotykovou u vzorku FVZ7.
- III. Maximální hodnota Rz byla naměřena 9,672 μm metodou optickou u vzorku FVZ10.
- IV. Minimální hodnota Rz byla naměřena 9,028 μm metodou dotykovou u vzorku FVZ9.
- V. Maximální hodnota Rmr byla naměřena 44,191 % metodou optickou u vzorku FVZ9.
- VI. Minimální hodnota Rmr byla naměřena 33,063 % metodou dotykové u vzorku FVZ6.

Polyacetal (POM)									
Frézování	Dot	tyková met	oda		OI	Optická metoda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]		
FVZ6	1,525 ±0,042	9,077 ±0,296	<mark>33,063</mark> ±5,396	FVZ6	1,557 ±0,070	8,771 ±0,300	28,583 ±4,907		
FVZ7	<mark>1,519</mark> ±0,054	9,197 ±0,312	36,842 ±4,782	FVZ7	1,583 ±0,051	8,839 ±0,315	34,860 ±4,725		
FVZ8	1,569 ±0,078	9,348 ±0,364	37,849 ±4,266	FVZ8	1,637 ±0,043	9,348 ±41,120	40,063 ±4,528		
FVZ9	1,599 ±0,040	<mark>9,028</mark> ±0,324	42,659 ±4,822	FVZ9	1,721 ±0,059	9,389 ±0,289	44,191 ±7,007		
FVZ10	1,609 ±0,063	9,698 ±0,435	45,627 ±4,528	FVZ10	1,698 ±0,056	9,672 ±0,292	39,159 ±4,822		

Tab. 4.4 Parametry drsnosti povrchu frézovaného plastu-Polyacetalu POM

4.1.5 Soustružení Polyacetalu (POM)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.5 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.5 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,771 μm metodou optickou u vzorku SVZ10.
- II. Minimální hodnota Ra byla naměřena 2,311 μm metodou dotykovou u vzorku SVZ9.
- III. Maximální hodnota Rz byla naměřena 17,460 μm metodou optickou u vzorku SVZ8.
- IV. Minimální hodnota Rz byla naměřena 15,233 µm metodou dotykovou u vzorku SVZ6.
- V. Maximální hodnota Rmr byla naměřena 69,181 % metodou optickou u vzorku SVZ9.
- VI. Minimální hodnota Rmr byla naměřena 59,112 % metodou dotykové u vzorku SVZ7.

Polyacetal (POM)								
Soustružení	Dot	yková met	oda		Optická metoda			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	
SVZ6	2,348 ±0,042	<mark>15,233</mark> ±0,300	62,770 ±5,142	SVZ6	2,566 ±0,094	16,920 ±0,414	63,419 ±6,980	
SVZ7	2,359 ±0,040	15,359 ±0,337	<mark>59,112</mark> ±4,900	SVZ7	2,538 ±0,109	14,936 ±0,525	61,561 ±4,987	
SVZ8	2,368 ±0,063	15,453 ±0,700	63,760 ±3,617	SVZ8	2,629 ±0,091	17,460 ±0,401	61,309 ±6,104	
SVZ9	<mark>2,311</mark> ±0,052	15,357 ±0,405	57,232 ±5,172	SVZ9	2,665 ±0,101	17,084 ±0,525	69,181 ±5,290	
SVZ10	2,422 ±0,050	15,739 ±0,529	64,480 ±4,555	SVZ10	<mark>2,771</mark> ±0,104	17,329 ±0,804	60,629 ±5,390	

Tab. 4.5 Parametry drsnosti povrchu soustruženého plastu-Polyacetalu POM

4.1.6 Broušení Polyacetalu (POM)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.6 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.6 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,356 μm metodou optickou u vzorku BVZ8.
- II. Minimální hodnota Ra byla naměřena 1,777 μm metodou dotykovou u vzorku BVZ8.
- III. Maximální hodnota Rz byla naměřena 17,302 μm metodou optickou u vzorku BVZ10.
- IV. Minimální hodnota Rz byla naměřena 15,844 µm metodou dotykovou u vzorku BVZ9.
- V. Maximální hodnota Rmr byla naměřena 61,093 % metodou optickou u vzorku BVZ9.
- VI. Minimální hodnota Rmr byla naměřena 53,189 % metodou dotykovou u vzorku BVZ6.

Polyacetal (POM)								
Broušení	Doty	yková met	toda		Optická metoda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	
BVZ6	1,894 ±0,042	16,419 ±0,296	<mark>53,189</mark> ±5,396	BVZ6	1,973 ±0,055	16,113 ±0,300	50,657 ±6,115	
BVZ7	1,905 ±0,052	16,643 ±0,383	56,509 ±4,059	BVZ7	2,284 ±0,061	16,637 ±0,610	51,977 ±5,994	
BVZ8	<mark>1,777</mark> ±0,232	16,841 ±0,530	59,325 ±4,989	BVZ8	2,356 ±0,211	17,035 ±0,772	57,093 ±4,059	
BVZ9	2,271 ±0,298	<mark>15,844</mark> ±0,357	61,968 ±4,240	BVZ9	2,200 ±0,141	17,237 ±0,615	61,093 ±3,866	
BVZ10	2,357 ±0,293	17,008 ±0,431	60,709 ±4,186	BVZ10	2,236 ±0,061	17,302 ±0,625	54,777 ±4,636	

Tab. 4.6 Parametry drsnosti povrchu Broušeného plastu-Polyacetalu POM

Níže jsou uvedeny dosažené výsledky. V grafech 4.4–4.6 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro plast polyacetal POM.

Obr. 4.4 Grafické znázornění průměrných hodnot výsledků Ra

Obr.4.5 Grafické znázornění průměrných hodnot výsledků Rz

Obr. 4.6 Grafické znázornění průměrných hodnot výsledků Rmr

4.1.7 Frézování PE 1000 Recyklovaný

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.7 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.7 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,391 μm metodou optickou u vzorku FVZ14.
- II. Minimální hodnota Ra byla naměřena 1,247 μm metodou dotykovou u vzorku FVZ13.
- III. Maximální hodnota Rz byla naměřena 7,723 μm metodou optickou u vzorku FVZ13.
- IV. Minimální hodnota Rz byla naměřena 5,035 µm metodou dotykovou u vzorku FVZ12.
- V. Maximální hodnota Rmr byla naměřena 76,827 % metodou optickou u vzorku FVZ13.
- VI. Minimální hodnota Rmr byla naměřena 60,093 % metodou dotykovou u vzorku FVZ15.

PE 1000 Recyklovaný										
Frézování	Dot	yková met	oda		Oŗ	otická meto	oda			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]			
FVZ11	1,291 ±0,044	5,136 ±0,345	66,659 ±5,920	FVZ11	1,274 ±0,022	6,856 ±0,359	76,279 ±3,435			
FVZ12	1,344 ±0,077	<mark>5,035</mark> ±0,334	67,617 ±4,340	FVZ12	1,287 ±0,024	7,112 ±0,272	76,337 ±3,603			
FVZ13	<mark>1,247</mark> ±0,065	5,780 ±0,253	65,507 ±5,753	FVZ13	1,326 ±0,032	7,723 ±0,426	76,827 ±3,955			
FVZ14	1,386 ±0,034	6,175 ±0,217	66,326 ±4,896	FVZ14	<mark>1,391</mark> ±0,056	7,679 ±0,369	73,980 ±2,897			
FVZ15	1,390 ±0,049	6,102 ±0,366	<mark>60,093</mark> ±4,361	FVZ15	1,321 ±0,029	7,618 ±0,556	68,455 ±3,879			

Tab. 4.7 Parametry drsnosti povrchu frézovaného plastu-PE 1000 Recyklovaný

4.1.8 Soustružení PE 1000 Recyklovaný

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.8 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.8 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,746 μm metodou optickou u vzorku SVZ14.
- II. Minimální hodnota Ra byla naměřena 2,072 μm metodou dotykovou u vzorku SVZ11.
- III. Maximální hodnota Rz byla naměřena 12,972 μm metodou optickou u vzorku SVZ12.
- IV. Minimální hodnota Rz byla naměřena 10,650 μm metodou dotykovou u vzorku SVZ11.
- V. Maximální hodnota Rmr byla naměřena 85,706 % metodou optickou u vzorku SVZ11.
- VI. Minimální hodnota Rmr byla naměřena 80,894 % metodou dotykovou u vzorku SVZ15.

PE 1000 Recyklovaný											
Soustružení	Dot	yková met	oda		Ор	Optická metoda					
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]				
SVZ11	<mark>2,072</mark> ±0,042	<mark>10,650</mark> ±0,849	85,057 ±5,142	SVZ11	2,290 ±0,094	11,857 ±0,413	<mark>85,706</mark> ±6,980				
SVZ12	2,116 ±0,032	11,064 ±0,888	85,192 ±5,351	SVZ12	2,354 ±0,090	12,972 ±0,429	84,641 ±6,354				
SVZ13	2,342 ±0,096	12,216 ±0,455	84,506 ±4,848	SVZ13	2,416 ±0,119	12,632 ±0,522	82,687 ±5,767				
SVZ14	2,467 ±0,090	12,356 ±0,545	82,452 ±6,661	SVZ14	2,746 ±0,135	12,678 ±0,622	81,433 ±6,491				
SVZ15	2,423 ±0,081	12,592 ±0,553	80,894 ±5,327	SVZ15	2,603 ±0,112	12,891 ±0,508	81,975 ±5,868				

Tab. 4.8 Parametry drsnosti povrchu soustruženého plastu-PE 1000 Recyklovaný

4.1.9 Broušení PE 1000 Recyklovaný

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.9 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.9 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 0,872 μm metodou optickou u vzorku BVZ15.
- II. Minimální hodnota Ra byla naměřena 0,648 μm metodou dotykovou u vzorku BVZ12.
- III. Maximální hodnota Rz byla naměřena 7,580 µm metodou optickou u vzorku BVZ15.
- IV. Minimální hodnota Rz byla naměřena 4,760 µm metodou dotykovou u vzorku BVZ11.
- V. Maximální hodnota Rmr byla naměřena 91,780 % metodou optickou u vzorku BVZ11.
- VI. Minimální hodnota Rmr byla naměřena 74,964 % metodou dotykovou u vzorku BVZ15.

PE 1000 Recyklovaný											
Broušení	Dot	yková met	oda		Ор	otická meto	oda				
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]				
BVZ11	0,654 ±0,044	<mark>4,760</mark> ±0,345	86,128 ±5,920	BVZ11	0,718 ±0,022	6,236 ±0,359	91,780 ±3,435				
BVZ12	<mark>0,648</mark> ±0,037	5,084 ±0,322	80,676 ±4,358	BVZ12	0,762 ±0,037	6,460 ±0,277	87,332 ±3,364				
BVZ13	0,702 ±0,036	4,934 ±0,388	76,244 ±5,111	BVZ13	0,796 ±0,034	6,814 ±0,462	82,196 ±3,330				
BVZ14	0,744 ±0,033	5,270 ±0,321	78,495 ±5,219	BVZ14	0,838 ±0,048	7,223 ±0,688	83,046 ±2,298				
BVZ15	0,822 ±0,053	5,504 ±0,585	<mark>74,964</mark> ±5,455	BVZ15	0,872 ±0,041	7,580 ±0,753	80,515 ±5,087				

Tab. 4.9 Parametry drsnosti povrchu broušeného plastu-PE 1000 Recyklovaný

Níže jsou uvedeny dosažené výsledky. V grafech 4.7-4.9 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro plast PE 1000 Recyklovaný.

Obr. 4.9 Grafické znázornění průměrných hodnot výsledků Rmr

4.2 Kompozit

4.2.1 Frézování čisté epoxidové pryskyřice

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.10 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.10 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,474 μm metodou optickou u vzorku FVZ19.
- II. Minimální hodnota Ra byla naměřena 1,011 μm metodou dotykovou u vzorku FZV17.
- III. Maximální hodnota Rz byla naměřena 9,598 μm metodou optickou u vzorku FVZ18.
- IV. Minimální hodnota Rz byla naměřena 6,583 µm metodou dotykovou u vzorku FVZ16.
- V. Maximální hodnota Rmr byla naměřena 74,475 % metodou optickou u vzorku FVZ18.
- VI. Minimální hodnota Rmr byla naměřena 66,975 % metodou dotykovou u vzorku FVZ20.

Čistá epoxidová pryskyřice										
Frézování	Dot	yková met	oda		Oŗ	otická meto	oda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]			
FVZ16	1,021 ±0,081	<mark>6,583</mark> ±0,503	72,229 ±3,324	FVZ16	1,159 ±0,015	9,076 ±0,306	73,443 ±3,577			
FVZ17	<mark>1,011</mark> ±0,013	6,807 ±0,514	73,182 ±2,975	FVZ17	1,300 ±0,043	9,311 ±0,230	73,696 ±1,712			
FVZ18	1,211 ±0,015	6,911 ±0,487	72,761 ±2,769	FVZ18	1,405 ±0,042	9,598 ±0,243	74,475 ±3,875			
FVZ19	1,333 ±0,028	7,146 ±0,453	69,952 ±2,916	FVZ19	<mark>1,474</mark> ±0,013	9,394 ±0,442	72,460 ±3,200			
FVZ20	1,386 ±0,063	7,033 ±0,567	<mark>66,975</mark> ±3,749	FVZ20	1,411 ±0,148	9,423 ±0,451	72,922 ±5,748			

Tab. 4.10 Parametry drsnosti povrchu frézovaného kompozitu-Uhlíkové vlákno

4.2.2 Soustružení čisté epoxidové pryskyřice

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.11 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.11 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,141 μm metodou optickou u vzorku SVZ20.
- II. Minimální hodnota Ra byla naměřena 1,312 μm metodou dotykovou u vzorku SVZ19.
- III. Maximální hodnota Rz byla naměřena 8,888 μm metodou optickou u vzorku SVZ20.
- IV. Minimální hodnota Rz byla naměřena 7,226 μm metodou dotykovou u vzorku SVZ16.
- V. Maximální hodnota Rmr byla naměřena 80,977 % metodou optickou u vzorkuSVZ19.
- VI. Minimální hodnota Rmr byla naměřena 74,648 % metodou dotykovou u vzorkuSVZ20.

Čistá epoxidová pryskyřice										
Soustružení	Dot	yková met	oda		Optická metoda					
Vzorek	Ra [μm] Rz [μm] Rmr [%]		Vzorek	Ra [µm]	Rz [μm]	Rmr [%]				
SVZ16	1,315 ±0,033	<mark>7,226</mark> ±0,097	76,782 ±2,492	SVZ16	1,451 ±0,053	7,284 ±0,106	80,541 ±1,746			
SVZ17	1,352 ±0,034	7,510 ±0,278	75,024 ±4,127	SVZ17	1,504 ±0,067	7,509 ±0,352	76,883 ±3,108			
SVZ18	1,374 ±0,027	7,573 ±0,374	75,060 ±2,082	SVZ18	1,570 ±0,091	7,932 ±0,564	79,219 ±2,159			
SVZ19	<mark>1,312</mark> ±0,089	7,699 ±0,349	78,018 ±3,401	SVZ19	1,713 ±0,098	8,409 ±0,715	80,977 ±3,254			
SVZ20	1,630 ±0,086	8,130 ±0,623	<mark>74,648</mark> ±6,552	SVZ20	2,141 ±0,289	8,888 ±0,955	75,412 ±7,881			

Tab. 4.11 Parametry drsnosti povrchu soustruženého kompozitu-Uhlíkové vlákno

4.2.3 Broušení čisté epoxidové pryskyřice

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.12 jsou hodnoty průměrné.

Porovnáním hodnot v tabulce je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,537 μm metodou optickou u vzorku BVZ19.
- II. Minimální hodnota Ra byla naměřena 0,844 μm metodou dotykovou u vzorku BZV16.
- III. Maximální hodnota Rz byla naměřena 9,339 µm metodou optickou u vzorku BVZ18.
- IV. Minimální hodnota Rz byla naměřena 5,130 µm metodou dotykovou u vzorku BVZ18.
- V. Maximální hodnota Rmr byla naměřena 77,990 % metodou optickou u vzorku BVZ16.
- VI. Minimální hodnota Rmr byla naměřena 68,802 % metodou dotykovou u vzorkuBVZ17.

	Čistá epoxidová pryskyřice										
Broušení	Do	tyková meto	oda		Ο	ptická meto	da				
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]				
BVZ16	<mark>0,844</mark> ±0,013	5,687 ±0,461	76,776 ±3,324	BVZ16	1,013 ±0,015	8,096 ±0,306	77,990 ±3,577				
BVZ17	0,875 ±0,023	5,944 ±0,439	<mark>68,802</mark> ±2,892	BVZ17	1,193 ±0,111	8,353 ±0,311	71,316 ±2,517				
BVZ18	0,936 ±0,065	<mark>5,130</mark> ±0,517	73,739 ±4,003	BVZ18	1,222 ±0,104	<mark>9,339</mark> ±0,404	74,053 ±2,884				
BVZ19	1,157 ±0,318	6,357 ±0,575	72,806 ±4,632	BVZ19	1,537 ±0,101	8,566 ±0,497	75,120 ±2,590				
BVZ20	1,306 ±0,243	6,624 ±0,570	74,640 ±3,846	BVZ20	1,465 ±0,123	9,133 ±0,672	76,254 ±3,706				

Tab.4.12 Parametry drsnosti povrchu broušeného kompozitu-Uhlíkové vlákno

Níže jsou uvedeny dosažené výsledky. V grafech 4.10 - 4.12 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro kompozit čisté epoxidové pryskyřice.

Obr.4.11 Grafické znázornění průměrných hodnot výsledků Rz

Obr.4.12 Grafické znázornění průměrných hodnot výsledků Rmr

4.2.4 Frézování epoxidové pryskyřice (ve formě tkaniny)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.13 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.13 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,452 μm metodou optickou u vzorku FVZ22.
- II. Minimální hodnota Ra byla naměřena 1,211 μm metodou dotykovou u vzorku FZV24.
- III. Maximální hodnota Rz byla naměřena 10,392 μm metodou optickou u vzorku FVZ25.
- IV. Minimální hodnota Rz byla naměřena 7,699 μm metodou dotykovou u vzorku FVZ21.
- V. Maximální hodnota Rmr byla naměřena 80,665 % metodou optickou u vzorku FVZ23.
- VI. Minimální hodnota Rmr byla naměřena 68,342 % metodou dotykovou u vzorku FVZ24.

Epoxidová pryskyřice (ve formě tkaniny)										
Frézování	Dot	tyková met	oda		OI	otická meto	da			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]			
FVZ21	1,236 ±0,079	<mark>7,699</mark> ±0,694	72,238 ±5,511	FVZ21	1,360 ±0,066	9,868 ±0,399	79,966 ±3,881			
FVZ22	1,306 ±0,088	8,200 ±0,779	69,254 ±5,483	FVZ22	1,452 ±0,060	9,962 ±0,423	76,986 ±3,217			
FVZ23	1,404 ±0,090	8,269 ±0,717	72,932 ±5,122	FVZ23	1,559 ±0,051	10,083 ±0,358	80,665 ±4,049			
FVZ24	<mark>1,211</mark> ±0,068	8,443 ±0,737	<mark>68,342</mark> ±5,091	FVZ24	1,686 ±0,068	10,295 ±0,419	76,032 ±3,403			
FVZ25	1,546 ±0,133	8,540 ±0,595	69,687 ±5,063	FVZ25	1,782 ±0,070	10,392 ±0,342	77,420 ±4,193			

Tab.4.13 Parametry drsnosti povrchu frézovaného kompozitu-Tkanina

4.2.5 Soustružení epoxidové pryskyřice (ve formě tkaniny)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.14 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.14 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,316 μm metodou optickou u vzorku SVZ23
- II. Minimální hodnota Ra byla naměřena 1,668 μm metodou dotykovou u vzorku SZV22.
- III. Maximální hodnota Rz byla naměřena 11,110 µm metodou optickou u vzorku SVZ22.
- IV. Minimální hodnota Rz byla naměřena 8,581 µm metodou dotykovou u vzorku SVZ21.
- V. Maximální hodnota Rmr byla naměřena 84,374 % metodou optickou u vzorku SVZ25.
- VI. Minimální hodnota Rmr byla naměřena 68,185 % metodou dotykovou u vzorku SVZ24.

Epoxidová pryskyřice (ve formě tkaniny)										
Soustružení	Dot	tyková met	oda		Optická metoda					
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]			
SVZ21	1,739 ±0,088	<mark>8,581</mark> ±0,785	68,438 ±5,511	SVZ21	1,794 ±0,066	10,344 ±0,399	76,171 ±3,881			
SVZ22	<mark>1,668</mark> ±0,108	9,215 ±0,589	72,874 ±7,205	SVZ22	2,043 ±0,258	11,110 ±0,567	78,163 ±4,105			
SVZ23	1,970 ±0,408	8,761 ±0,848	72,264 ±5,527	SVZ23	2,316 ±0,199	10,591 ±0,329	80,670 ±3,134			
SVZ24	2,185 ±0,632	8,968 ±0,742	<mark>68,185</mark> ±5,327	SVZ24	2,258 ±0,362	10,488 ±0,380	76,903 ±3,965			
SVZ25	2,259 ±0,622	8,735 ±0,670	73,851 ±5,241	SVZ25	2,287 ±0,695	10,539 ±0,399	84,374 ±4,752			

Tab.4.14 Parametry drsnosti povrchu soustruženého kompozitu-Tkanina

4.2.6 Broušení epoxidové pryskyřice (ve formě tkaniny)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.15 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.15 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 3,165 μm metodou optickou u vzorku BVZ25.
- II. Minimální hodnota Ra byla naměřena 2,637 μm metodou dotykovou u vzorku BZV21.
- III. Maximální hodnota Rz byla naměřena 10,926 µm metodou optickou u vzorku BVZ22.
- IV. Minimální hodnota Rz byla naměřena 8,455 µm metodou dotykovou u vzorku BVZ23.
- V. Maximální hodnota Rmr byla naměřena 81,530 % metodou optickou u vzorku BVZ24.
- VI. Minimální hodnota Rmr byla naměřena 69,100 % metodou dotykovou u vzorku BVZ22.

Epoxidová pryskyřice (ve formě tkaniny)										
Broušení	Dot	yková met	oda		Oŗ	otická meto	oda			
Vzorek	Ra [μm] Rz [μm] Rmr [%]			Vzorek	Ra [µm]	Rz [µm]	Rmr [%]			
BVZ21	<mark>2,637</mark> ±0,088	8,566 ±0,780	70,766 ±5,245	BVZ21	2,792 ±0,066	10,324 ±0,399	75,399 ±3,881			
BVZ22	2,950 ±0,261	9,130 ±0,487	<mark>69,100</mark> ±5,210	BVZ22	2,924 ±0,265	10,926 ±0,481	76,944 ±3,683			
BVZ23	3,154 ±0,370	<mark>8,455</mark> ±0,765	72,014 ±5,527	BVZ23	3,002 ±0,127	10,444 ±0,421	79,361 ±4,097			
BVZ24	3,005 ±0,580	9,904 ±0,831	72,328 ±5,080	BVZ24	3,144 ±0,329	10,621 ±0,365	81,530 ±4,278			
BVZ25	2,893 ±0,720	10,407 ±0,938	72,860 ±6,556	BVZ25	<mark>3,165</mark> ±0,242	10,817 ±0,373	76,313 ±5,676			

Tab. 4.15 Parametry drsnosti povrchu broušení kompozitu-Tkanina

Níže jsou uvedeny dosažené výsledky. V grafech 4.13 - 4.15 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro kompozit epoxidové pryskyřice (ve formě tkaniny).

Obr. 4.13 Grafické znázornění průměrných hodnot výsledků Ra

Obr. 4.14 Grafické znázornění průměrných hodnot výsledků Rz

Obr. 4.15 Grafické znázornění průměrných hodnot výsledků Rmr

4.2.7 Frézování epoxidové pryskyřice (ve formě pramenů)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.16 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.16 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 1,415 μm metodou optickou u vzorku FVZ30.
- II. Minimální hodnota Ra byla naměřena 1,250 μm metodou dotykovou u vzorku FZV30.
- III. Maximální hodnota Rz byla naměřena 8,925 μm metodou optickou u vzorku FVZ29.
- IV. Minimální hodnota Rz byla naměřena 6,985 µm metodou dotykovou u vzorku FVZ27.
- V. Maximální hodnota Rmr byla naměřena 44,770 % metodou optickou u vzorku FVZ30.
- VI. Minimální hodnota Rmr byla naměřena 39,372 % metodou dotykovou u vzorku FVZ29.

Epoxidová pryskyřice (prameny)										
Frézování	Dot	tyková mete	oda		O	ptická meto	da			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]			
FVZ26	1,257 ±0,060	6,939 ±0,661	40,103 ±6,628	FVZ26	1,288 ±0,056	7,506 ±0,428	43,037 ±7,334			
FVZ27	1,291 ±0,064	<mark>6,985</mark> ±0,633	41,438 ±6,630	FVZ27	1,322 ±0,079	7,604 ±0,312	44,382 ±7,941			
FVZ28	1,306 ±0,049	7,413 ±0,668	40,404 ±6,460	FVZ28	1,349 ±0,073	8,065 ±0,465	43,348 ±7,035			
FVZ29	1,311 ±0,040	7,820 ±0,724	<mark>39,372</mark> ±6,298	FVZ29	1,376 ±0,062	<mark>8,925</mark> ±0,524	42,314 ±6,685			
FVZ30	<mark>1,250</mark> ±0,035	8,339 ±0,802	41,827 ±5,681	FVZ30	<mark>1,415</mark> ±0,066	8,696 ±0,549	44,770 ±9,148			

Tab.4.16 Parametry drsnosti povrchu frézovaného kompozitu-Recyklát

4.2.8 Soustružení epoxidové pryskyřice (ve formě pramenů)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.17 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.17 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,220 μm metodou optickou u vzorku SVZ29.
- II. Minimální hodnota Ra byla naměřena 1,455 μm metodou dotykovou u vzorku SZV28.
- III. Maximální hodnota Rz byla naměřena 10,599 µm metodou optickou u vzorku SVZ28.
- IV. Minimální hodnota Rz byla naměřena 8,141 μm metodou dotykovou u vzorku SVZ27.
- V. Maximální hodnota Rmr byla naměřena 60,229 % metodou optickou u vzorku SVZ29.
- VI. Minimální hodnota Rmr byla naměřena 44,716 % metodou dotykovou u vzorku SVZ26.

Epoxidová pryskyřice (prameny)										
Soustružení	Dot	yková met	oda		Ор	otická meto	oda			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]			
SVZ26	1,505 ±0,060	8,207 ±0,643	<mark>44,716</mark> ±6,463	SVZ26	1,536 ±0,056	9,086 ±0,672	47,883 ±6,950			
SVZ27	1,720 ±0,383	8,141 ±0,890	49,232 ±6,324	SVZ27	1,789 ±0,321	10,075 ±0,422	51,720 ±7,206			
SVZ28	<mark>1,455</mark> ±0,417	9,488 ±0,828	52,737 ±6,067	SVZ28	1,860 ±0,435	10,599 ±0,357	56,186 ±6,858			
SVZ29	1,940 ±0,387	9,702 ±0,807	58,177 ±5,819	SVZ29	2,220 ±0,455	10,433 ±0,429	60,229 ±7,527			
SVZ30	2,006 ±0,457	9,735 ±0,878	55,775 ±6,075	SVZ30	2,141 ±0,415	10,494 ±0,353	59,384 ±7,374			

Tab. 4.17 Parametry drsnosti povrchu soustruženého kompozitu-Recyklát

4.2.9 Broušení epoxidové pryskyřice (ve formě pramenů)

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.18 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.18 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,989 μm metodou optickou u vzorku BVZ28.
- II. Minimální hodnota Ra byla naměřena 2,540 μm metodou dotykovou u vzorku BVZ29.
- III. Maximální hodnota Rz byla naměřena 9,980 µm metodou optickou u vzorku BVZ26.
- IV. Minimální hodnota Rz byla naměřena 8,250 µm metodou dotykovou u vzorku BVZ28.
- V. Maximální hodnota Rmr byla naměřena 52,745 % metodou optickou u vzorku BVZ28.
- VI. Minimální hodnota Rmr byla naměřena 43,256 % metodou dotykovou u vzorkuBVZ30.

	Epoxidová pryskyřice (prameny)										
Broušení	Dot	tyková met	oda		Or	Optická metoda					
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]				
BVZ26	2,684 ±0,060	8,365 ±0,615	44,085 ±6,202	BVZ26	2,715 ±0,056	9,980 ±0,430	46,581 ±7,305				
BVZ27	2,692 ±0,091	9,142 ±1,036	45,027 ±6,498	BVZ27	2,770 ±0,064	9,483 ±0,460	47,940 ±7,278				
BVZ28	2,754 ±0,081	8,250 ±0,585	49,811 ±6,417	BVZ28	2,989 ±0,086	9,374 ±0,429	52,745 ±7,077				
BVZ29	<mark>2,540</mark> ±0,118	8,858 ±0,609	45,547 ±6,553	BVZ29	2,871 ±0,115	9,422 ±0,414	48,694 ±7,127				
BVZ30	2,897 ±0,109	8,855 ±1,000	<mark>43,256</mark> ±6,353	BVZ30	2,922 ±0,122	9,601 ±0,432	46,159 ±7,358				

Tab. 4.18 Parametry drsnosti povrchu broušeného kompozitu-Recyklát

Níže jsou uvedeny dosažené výsledky. V grafech 4.16 - 4.18 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro kompozit epoxidové pryskyřice (ve formě pramenů).

Obr.4.17 Grafické znázornění průměrných hodnot výsledků Rz

Obr.4.18 Grafické znázornění průměrných hodnot výsledků Rmr

4.3 Ocel

4.3.1 Frézování oceli S355J2

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.19 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.19 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 2,562 μm metodou optickou u vzorku FVZ34.
- II. Minimální hodnota Ra byla naměřena 2,296 µm metodou dotykovou u vzorku FZV33.
- III. Maximální hodnota Rz byla naměřena 13,971 µm metodou optickou u vzorku FVZ32.
- IV. Minimální hodnota Rz byla naměřena 11,271 μm metodou dotykovou u vzorku FVZ35.
- V. Maximální hodnota Rmr byla naměřena 64,980 % metodou optickou u vzorku FVZ33.
- VI. Minimální hodnota Rmr byla naměřena 55,338 % metodou dotykovou u vzorku FVZ31.

Ocel S355J2								
Frézování	Dotyková metoda				Optická metoda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	
FVZ31	2,354 ±0,092	11,927 ±0,346	<mark>55,338</mark> ±2,838	FVZ31	2,502 ±0,081	13,507 ±0,232	59,264 ±4,422	
FVZ32	2,373 ±0,057	12,077 ±0,338	56,602 ±2,406	FVZ32	2,521 ±0,064	13,971 ±0,303	60,528 ±3,467	
FVZ33	<mark>2,296</mark> ±0,073	12,165 ±0,338	61,054 ±2,786	FVZ33	2,544 ±0,063	13,767 ±0,245	64,980 ±4,490	
FVZ34	2,414 ±0,081	12,189 ±0,334	59,615 ±1,250	FVZ34	<mark>2,562</mark> ±0,089	13,791 ±0,359	63,541 ±4,359	
FVZ35	2,435 ±0,096	<mark>11,271</mark> ±0,402	57,481 ±3,477	FVZ35	2,503 ±0,099	12,905 ±0,476	61,407 ±4,446	

Tab. 4.19 Parametry drsnosti povrchu frézované oceli-S355J2

4.3.2 Soustružení oceli S355J2

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.20 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.20 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 3,919 μm metodou optickou u vzorku SVZ34.
- II. Minimální hodnota Ra byla naměřena 3,283 μm metodou dotykovou u vzorku SVZ31.
- III. Maximální hodnota Rz byla naměřena 14,329 µm metodou optickou u vzorku SVZ34.
- IV. Minimální hodnota Rz byla naměřena 12,231 µm metodou dotykovou u vzorku SVZ32.
- V. Maximální hodnota Rmr byla naměřena 74,531 % metodou optickou u vzorku SVZ35.
- VI. Minimální hodnota Rmr byla naměřena 57,995 % metodou dotykovou u vzorku SVZ31.

Ocel S355J2								
Soustružení	Dotyková metoda				Optická metoda			
Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	Vzorek	Ra [µm]	Rz [µm]	Rmr [%]	
SVZ31	<mark>3,283</mark> ±0,076	12,374 ±0,326	<mark>57,995</mark> ±2,932	SVZ31	3,470 ±0,039	14,153 ±0,512	62,701 ±4,719	
SVZ32	3,575 ±0,393	<mark>12,231</mark> ±0,414	60,428 ±2,300	SVZ32	3,702 ±0,326	12,812 ±0,342	64,901 ±4,643	
SVZ33	3,690 ±0,430	12,646 ±0,514	63,556 ±2,758	SVZ33	3,815 ±0,340	14,103 ±0,367	68,189 ±4,743	
SVZ34	3,731 ±0,432	12,559 ±0,385	71,702 ±1,611	SVZ34	<mark>3,919</mark> ±0,352	14,329 ±0,419	75,072 ±4,463	
SVZ35	3,834 ±0,555	12,742 ±0,330	69,769 ±2,830	SVZ35	3,819 ±0,415	14,255 ±0,514	74,531 ±5,296	

Tab. 4.20 Parametry drsnosti povrchu soustružené oceli-S355J2

4.3.3 Broušení oceli S355J2

Každý vzorek byl podroben deseti měřením dotykovou a optickou metodou. Hodnoty uvedené v tabulce 4.21 jsou hodnoty průměrné.

Porovnání hodnot v tabulce 4.21 je patrné toto zjištění:

- I. Maximální hodnota Ra byla naměřena 0,860 μm metodou optickou u vzorku BVZ33.
- II. Minimální hodnota Ra byla naměřena 0,619 μm metodou dotykovou u vzorku BZ33.
- III. Maximální hodnota Rz byla naměřena 3,226 µm metodou optickou u vzorku BVZ32.
- IV. Minimální hodnota Rz byla naměřena 2,126 µm metodou dotykovou u vzorku BVZ33.
- V. Maximální hodnota Rmr byla naměřena 78,538 % metodou optickou u vzorku BVZ35.
- VI. Minimální hodnota Rmr byla naměřena 61,031 % metodou dotykovou u vzorku BVZ32.

Ocel S355J2								
Broušení	Dotyková metoda				Optická metoda			
Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	Vzorek	Ra [µm]	Rz [μm]	Rmr [%]	
BVZ31	0,628 ±0,035	2,154 ±0,541	61,812 ±6,630	BVZ31	0,718 ±0,056	2,685 ±0,393	64,864 ±7,307	
BVZ32	0,645 ±0,044	2,483 ±0,580	<mark>61,031</mark> ±7,134	BVZ32	0,736 ±0,063	<mark>3,226</mark> ±0,334	63,561 ±7,265	
BVZ33	<mark>0,619</mark> ±0,038	<mark>2,126</mark> ±0,603	64,052 ±6,491	BVZ33	0,860 ±0,048	3,053 ±0,411	67,201 ±7,042	
BVZ34	0,712 ±0,041	2,540 ±0,584	68,227 ±6,536	BVZ34	0,802 ±0,078	3,123 ±0,326	71,184 ±7,368	
BVZ35	0,799 ±0,088	2,567 ±0,613	75,696 ±6,597	BVZ35	0,854 ±0,063	3,180 ±0,425	78,538 ±7,305	

Tab. 4.21 Parametry drsnosti povrchu broušené oceli-S355J2

Níže jsou uvedeny dosažené výsledky. V grafech 4.20 - 4.22 jsou graficky zpřehledněny dosažené výsledky sledovaného parametru drsnosti povrchu pro ocel – S355J2.

Obr. 4.19 Grafické znázornění průměrných hodnot výsledků Ra

Obr. 4.20 Grafické znázornění průměrných hodnot výsledků Rz

Obr. 4.21 Grafické znázornění průměrných hodnot výsledků Rmr

5 DISKUZE

Hlavním cílem bakalářské práce bylo srovnat a posoudit možnosti dotykové a optické metody měření drsnosti povrchu materiálu. Principy dvou metod byly popsány v experimentální části práce. Během měření oběma metodami jsme získali údaje o drsnosti vzorků, které byly zhotoveny třískovým obráběním, konkrétně frézováním, broušením a soustružením.

Základní informace tykající se dané problematiky měření drsnosti povrchu jsou uvedeny v příloze číslo 2. Příloha obsahuje informace o dosavadních poznatcích týkající se drsnosti povrchu a jejího významu. Příloha dále udává informace o základních pojmech drsnosti povrchu. Nedílnou součástí kapitoly dvě jsou také informace o způsobech měření a měřících přístrojích.

Dosažení požadovaného cíle práce je věnována celá kapitola tři, která obsahuje informace o výrobě vzorků, popis podmínek a použití měřících přístrojů. Z rozsáhlého souboru měření a získaných výsledků uvedených v podkapitolách 4.1–4.3 je možno poukázat na následující:

V experimentální části byla aplikovaná dotyková i bezdotyková metoda měření hodnocení povrchu pro polotovary frézované, soustružené a broušené.

Nejvyšší a nejnižší hodnoty parametru Ra [µm]

V následující tabulce jsou uvedeny nejvyšší a nejnižší naměřené hodnoty. Tyto hodnoty byly získány pomocí optické a dotykové metody měření. Na každém vzorku bylo prováděno 10 měření, která se následně zapsala do tabulek viz příloha číslo 1 a výsledné průměrné hodnoty se zapsaly do tabulek číslo 4.1 – 4.21.

	Parametr drsnosti Ra [µm]	Frézování	Soustružení	Broušení	
	Dolyamid (Silan DA 6)	NVHO	1,377	2,502	2,865
	Folyanniu (Silon – FA 0)	NJOD	1,200	2,335	2,185
Diact	Dolycostal (DOM)	NVHO	1,721	2,771	2,356
Plast	Polyacetal (POW)	NJOD	1,519	2,311	1,777
		NVHO	1,391	2,746	0,872
	PE 1000 Recyklovally	NJOD	1,247	2,072	0,648
Kompozit		NVHO	1,474	2,141	1,537
		NJOD	1,011	1,312	0,844
	Tkonino	NVHO	1,452	2,316	3,165
	TKanina	NJOD	1,211	1,668	2,637
	Dooyldót	NVHO	1,415	2,220	2,989
	Recyklat	NJOD	1,250	1,455	2,540
Occl	Ocol \$255.12	NVHO	2,562	3,919	0,860
Ocel	Ocel 3335JZ	NJOD	2,296	3,283	0,619

Tab. 5.1 Shrnutí nejvyšších a nejnižších hodnot Ra [μ m]

NVHO-nejvyšší hodnota/optická metoda, NJOD-nejnižší hodnota/dotyková metoda

Nejvyšší a nejnižší hodnoty parametru Rz [µm]

V následující tabulce jsou uvedeny nejvyšší a nejnižší naměřené hodnoty. Tyto hodnoty byly získány pomocí optické a dotykové metody měření. Na každém vzorku bylo prováděno 10 měření, která se následně zapsala do tabulek viz příloha číslo 1 a výsledné průměrné hodnoty se zapsaly do tabulek číslo 4.1 – 4.21.

Parametr drsnosti Rz [µm]			Frézování	Soustružení	Broušení
	Delverrid (Silen DAG)	NVHO	8,817	13,396	19,243
	Polyamid (Silon – PA 6)	NJOD	7,135	12,316	22,785
Diret		NVHO	9,672	17,460	17,102
Plast	Polyacetal (POM)	NJOD	9,028	15,233	15,844
PE		NVHO	7,723	2,746	7,580
	PE 1000 Recyklovany	NJOD	5,035	2,072	4,760
Kompozit		NVHO	9,598	8,888	9,339
	Unlikove vlakno	NJOD	6,583	7,326	5,130
	Thering	NVHO	10,392	11,110	10,926
	Tkanina	NJOD	7,699	8,581	8,455
		NVHO	8,925	10,599	9,980
	Recyklat	NJOD	6,985	8,141	8,250
Oral	0	NVHO	13,971	14,329	2,126
Ocel	Ucel S355J2	NJOD	11,271	12,231	3,226

Tab.	5.2 Shrnutí	nejvyšších a	nejnižších	hodnot Rz [µm]
------	-------------	--------------	------------	----------------

NVHO-nejvyšší hodnota/optická metoda, NJOD-nejnižší hodnota/dotyková metoda

Nejvyšší a nejnižší hodnoty parametru Rmr [%]

V následující tabulce jsou uvedeny nejvyšší a nejnižší naměřené hodnoty. Tyto hodnoty byly získány pomocí optické a dotykové metody měření. Na každém vzorku bylo prováděno 10 měření, která se následně zapsala do tabulek viz příloha číslo 1 a výsledné průměrné hodnoty se zapsaly do tabulek číslo 4.1 – 4.21.

Parametr drsnosti Rmr [%]			Frézování	Soustružení	Broušení
	Delvemid (Silen DAG)	NVHO	74,869	64,668	60,702
	Polyanilu (Silon – PA 0)	NJOD	59,021	58,607	51,904
Direct	Delvesstel (DOM)	NVHO	44,191	69,181	61,093
Plast		NJOD	33,063	59,112	53,189
		NVHO	76,827	85,706	91,780
	PE 1000 Recyklovany	NJOD	60,093	80,894	74,964
Kompozit		NVHO	74,475	80,977	77,990
	Uniikove viakno	NJOD	66,975	74,648	68,802
	Thering	NVHO	80,665	84,374	81,530
	rkanina	NJOD	68,342	68,185	69,100
	Desuddét	NVHO	44,770	60,229	52,745
	Кесукіаі	NJOD	39,372	44,716	43,256
Oral	Occ1 0255 12	NVHO	64,980	74,531	78,538
Ocel	Ocel 232272	NJOD	55,338	57,885	61,031

Tab. 5.3 Shrnutí nejvyšších a nejnižších hodnot Rmr [%]

NVHO-nejvyšší hodnota/optická metoda, NJOD-nejnižší hodnota/dotyková metoda

Získaná data, zpracovaná do tabulek čísla 4.1 – 4.21, nám umožnily stanovit maximální a minimální hodnoty Ra, Rz, Rmr. Při jejich posouzení jsme došli k závěru, že měřením optickou metodou jsme získali vyšší hodnoty. Použití optické metody a ovládání příslušného měřícího přístroje je mnohem složitější (oproti dotykovému), tato metoda klade na obsluhu vysoké nároky, předpokládají se zde odborné znalosti ovládání přístroje a adekvátní zaškolení, což se mohlo na realizovaných měření částečně promítnout.

V porovnání oceli ku kompozitu a plastu vyšla ocel v bezdotykové metodě měření lépe. U oceli nedocházelo k problémům, které se vyskytovaly u kompozitu a plastu. Vyhodnocení hodnot u oceli bylo okamžité, kdežto u kompozitu plastu bylo potřeba vyhodnocení několikrát po sobě opakovat, jelikož některé výsledky opakovaně vycházely mylně. Důvodem těchto výsledků může být tmavá či bílá barva vzorků. Časová náročnost k vyhodnocení hodnot oceli byla náročnější než u ostatních vzorků.

Optická metoda

Z předchozího měření je zřejmé, že mnoho optických metod měření je založeno na zaostřování bodu na kontrolovaném povrchu. Struktura povrchu je odvozována z "průměrného" signálu, získaného z plochy zaostřeného bodu. Běžně má tento bod rozměr

několika mikrometrů a jeho šířka se mění s velikostí vertikálního rozsahu detektoru. V porovnání s dotykovou metodou je výsledným efektem uvedeného procesu "uhlazení" povrchu, které má za následek zmenšení šířky pásma dat pro zpracování. Tak je tomu skutečně v případech, kdy je datová rozteč optické techniky stejná jako u dotykového snímání.

Další odlišností, kterou přináší optická technika, je změna ve sklonech (šikmosti) profilu povrchu. Rozdíl spočívá v tom, že hrot, kterým je profil snímán, má tendenci rozšiřovat výstupky a zmenšovat šířku prohlubní, což ovlivňuje data pro hodnocení šikmosti. To lze upravit softwarem. Poněvadž u optických systémů tento způsob ovlivnění neexistuje, není tato "korekce snímacího hrotu" třeba.

Problémem použití optických měřicích přístrojů je to, že dochází k tzv. "ztrátě dat", a to v hraničních oblastech (na hranách) nebo v místech náhlých a rychlých změn tvaru profilu povrchu. V těchto místech se nemusí světelný paprsek správně odrážet zpět do detektoru a následně nemusí být hodnoty dat zaznamenány. Ztráta dat může být způsobována i velmi vysokou nebo nízkou odrazivostí kontrolovaného povrchu, případně v místech převýšení povrchů, především v závislosti na použitém bezdotykovém měřicím systému. Software, kterým je přístroj vybaven, tato data většinou vyloučí, zpravidla s využitím interpolace okolních dat. Samozřejmě menší počet ztracených datových bodů se projeví vyšší integritou výsledků měření povrchu. Je zřejmé, že u dotykových snímačů se tento problém nevyskytuje.

Dotyková metoda

V tradičním strojírenském prostředí mají dotykové metody proti optickým zřejmou výhodu ve větší toleranci vůči znečištění. Snímací hrot odsune malé nečistoty nebo mu nevadí olejová vrstva. Optická sonda vyžaduje skutečně čistý měřený povrch. V tomto prostředí je velmi důležité použití hodnoticích parametrů struktury povrchu, které jsou definovány ve standardech ISO.

Ve strojírenské praxi se zatím dává přednost dotykovým měřicím přístrojům. Mimo jiné i proto, že normované parametry struktury povrchu dosud nepočítají se ztracenými daty nebo proměnnou velikostí opticky snímaného bodu.

Je-li vyžadován klasický způsob hodnocení struktury povrchu, potom "správné" výsledky zajistí dotykový měřicí přístroj. Přesto praktické přednosti bezkontaktního měření často převáží tuto standardní správnost výsledku. To se projeví zejména při nasazení v kontrolních procesech, kde je velmi důležitá rychlost procesu a relativní měření je prakticky významnější než absolutní. Je třeba zdůraznit, že existuje řada povrchů, které nelze dotykovým měřidlem vůbec měřit a u nichž musí být použita bezdotyková metoda.

Patří mezi ně povrchy některých nových konstrukčních materiálů nebo moderní, tzv. technické povrchy, jako jsou např. sestavy mikrorozměrných čoček, součástky paměťových zařízení apod., kde velké rozměrové rozdíly profilu povrchu znemožňují použití snímacího hrotu.

58

S využitím široké nabídky různých systémů měření je potom možné zvažovat více variant řešení konkrétního metrologického problému.

Z hodnocení funkčních možností obou způsobů měření vyplývá, že bezdotykové systémy snímání a hodnocení získávají nezastupitelné místo v metrologii povrchu. Význam a praktické uplatnění dokumentuje i soustředěné úsilí výrobců měřicí techniky připravit a nabídnout uživatelům vhodné měřicí zařízení.

Porovnání použitých metod

Každá z použitých metod v této práci má svoje výhody i nevýhody pro daný účel měření. První a základní odlišnost spočívá ve způsobu snímání stavu povrchu. Nicméně obě metody, dotyková i bezdotyková, nám umožňují hodnotit stav povrchu (mikrogeometrii) zkoumaného dílu. Srovnání obou metod je zpracováno v tabulce.

Metoda	Rychlost analýzy dat	Rychlost měření	Typ dat	Množství dat	Znehodnocení povrchu	Cena
Dotyková metoda	Vysoká	Nízká	2D/3D	Nízká	Poměrné poškození	Nízká
Bezdotyková metoda	Nízká	Vysoká	2D/3D	Vysoká	Bez poškození	Vysoká

Tab. 5.4 Srovnání metod dotykového a bezdotykového měření

6 ZÁVĚR

Obě, v této práci použité měřící metody, se v praxi hojně využívají. Dotyková metoda, při které se měření drsnosti použil přístroj Mitutoyo SV-2000 N2, umožňuje rychlé, a přitom opakovatelné měření a hodnocení povrchu vzorku. Přesto bylo zjištěno a prokázáno, že při použití této metody hrozí poškození povrchu měřeného vzorku. Dotykové měření je velkou měrou ovlivněno i nečistotou povrchu nebo tou skutečností, kdy se měřící hrot nedostane do celé prohlubně povrchu. To v konečné fázi vyhodnocení vede k ne zcela dokonalým výsledkům měření a následně vyhodnocení stavu povrchu vzorku.

Bezdotyková metoda umožňuje měřit celou zvolenou plochu najednou, a tím se vylučuje faktor volby výběru profilu měření a zároveň vylučuje vliv nepřesností natočení vzorku s ohledem na směr měření. V laboratoři KOM, FS TUL byl pro měření použitý měřící přístroj KEYENCE VK – X1000. Tato metoda však vyžaduje pro kvalitní měření určité podmínky stavu plochy vzorku a tou je hlavně čistota. Pokud nedojde k dokonalému očištění povrchu vzorku, mohou být výsledky měření zkreslené. Pro použití zmíněného přístroje je potřeba přesné a vhodné nastavení, což vyžaduje zručnost a zkušenost obsluhy. Proto se mohlo stát, že je v souboru naměřených hodnot systematická chyba. Bezdotyková metoda umožňuje získat měřením velký počet hodnot a při kvalitním nastavení přístroje jsou velmi přesné. Nevýhodou je větší časová náročnost při jejich zpracování.

Volba metody měření drsnosti povrchu není proto z výše uvedených poznatků zcela jednoduchá. Pořizovací cena bezdotykového přístroje je značně vyšší, dále klade vysoké nároky na obsluhu jako je zkušenost a pečlivost. Kvalitním nastavením bezdotykového přístroje získáme mnohem větší rozsah možností měření s větší volbou funkcí. Tyto možnosti se ocení ve specifických aplikacích jako například při měření drsnosti povrchu obráběcích nástrojů, speciálních nástrojů nebo i náhrad v lékařství.

SEZNAM POUŽITÉ LITERATURY

[1] BUMBÁLEK, Bohumil, V. ODVODY a OŠŤÁDAL. *Drsnost povrchu.* Praha: Státní nakladatelství technické literatury, 1989.

[2] *Pokrokové trendy v hodnocení textury povrchu* [online]. Brno [cit. 2021-8-22]. Dostupné z: <u>http://gps.fme.vutbr.cz/STAH_INFO/44_Bumbalek_VUTBR.pdf</u>

[3] Integrita povrchu a její význam pro posouzení vhodnosti dané plochy pro její funkci [online]. Brno [cit. 2021-8-22]. Dostupné z: <u>http://gps.fme.vutbr.cz/stah_info/2512_bumbalek</u>

[4] AUTOR NEUVEDEN. Kontrola drsnosti povrchu [online], 2021. [cit. 2021-8-22]. Dostupné z: <u>https://eluc.kr-olomoucky.cz/verejne/lekce/1102</u>

[5] Bezkontaktní měření rozměrů – optické mikrometry [online]. [cit. 2021-8-22].
 Dostupné z: https://automa.cz/cz/casopis-clanky/bezkontaktni-mereni-rozmeru-opticke-mikrometry-2009_04_38860_05757/

 [6] VORBURGER, Ted. Optical Methods of Surface Measurement [online].[cit.2021-8-22].
 Dostupné z https://www.nist.gov/sites/default/files/documents/oles/3-Vorburger-Ted-OpticalMethods-of-Surface-Measurement-MSSFAA-10jul12.pdf

[7] AUTOR NEUVEDEN. *Principy konfokální mikroskopie* [online]. [cit. 2021-8-22]. Dostupné z: http://www.botanika.upol.cz/atlasy/confmicro/principles.php

[8] JURENA, Pavel. *Snímání a hodnocení jakosti broušeného povrchu kontaktním a bezkontaktním způsobem.* Zlín, 2011. Diplomová práce. UTB ve Zlíně. Vedoucí práce doc. Dr. Ing. Vladimír Pata.

[9] AUTOR NEUVEDEN. Confocal Microscopy [online]. [cit. 2021-8-22].Dostupné z: <u>https://frtmetrology.com/en/confocalmicroskopy/</u>

[10] AUTOR NEUVEDEN. Měření drsnosti povrchu [online]. [cit. 2021-8-22]. Dostupné z: https://eluc.kr-olomoucky.cz/verejne/lekce/1103

[11] AUTOR NEUVEDEN. Kontrola drsnosti povrchu [online]. [cit. 2021-8-22]. Dostupné z: https://eluc.kr-olomoucky.cz/verejne/lekce/1102 [12] GAJDOŠÍK, David. *Měření drsnosti povrchů se zaměřením na měřící techniku Mytutoyo SJ 210.* České Budějovice, 2013. Bakalářská práce. Jihočeská univerzita v Českých Budějovicích. Vedoucí práce PaedDr. Bedřich Veselý, Ph.D.

[13] FROLO, David. *Hodnocení jakosti povrchů na portfoliu polymerních výrobků pro automobilový průmysl*. Zlín, 2014. Bakalářská práce. UTB ve Zlíně. Vedoucí práce doc. Dr. Ing. Vladimír Pata.

[14] METELKOVÁ, Jitka. *Pokročilé metody vyhodnocování topografie povrchu*. Brno, 2013. Bakalářská práce. Vysoké učení technické v Brně. Fakulta strojního inženýrství. Vedoucí práce prof. Ing. Miroslav Píška, CSc.

[15] KLETEČKA, J., Fořt, P.: *Technické kreslení. Vyd. 1*. Brno: CP Books, 2005, 252 s. ISBN80-251-0498-2.

[16] ČSN EN ISO 4287: Geometrické požadavky na výrobky (GPS) – Struktura povrchu:
 Profilová metoda – Termíny, definice a parametry struktury povrchu, 1999 (014450)

[17] ČSN EN ISO 1302. Geometrické požadavky na výrobky (GPS) – Označování struktury povrchu v technické dokumentaci výrobků. Praha: ČNI, 2002.

[18] HOLADA, Jiří. *Problematika měření drsnosti povrchu.* Plzeň, 2013. Bakalářská práce.
 Západočeská univerzita v Plzni, Fakulta strojní. Vedoucí práce Ing. Ivana Česáková.

[19] KONEČNÝ, Jan. *Hodnocení struktury povrchu bezkontaktní metodou.* Bakalářská práce. Brno, 2013. Vysoké učení technické v Brně. Fakulta strojního inženýrství.

[20] AUTOR NEUVEDEN. *Confocal Microscopy* [online]. [cit. 2021-8-26]. Dostupné z: https://frtmetrology.com/en/confocalmicroskopy/

[21] AUTOR NEUVEDEN. *Principy konfokální mikroskopi*e [online]. [cit. 2021-8-26]. Dostupné z: http://www.botanika.upol.cz/atlasy/confmicro/principles.php

[22] ISO 25178-602:2010. Geometrická specifikace produktu (GPS) - Textura povrchu: Plocha – Část 602: Jmenovité charakteristiky bezdotykových přístrojů (konfokální chromatická sonda): ÚNMZ. 2010. Praha.

62

[23] TICHÁ Š., *Strojírenská metrologie část 1*, Vysoká škola báňská – Technická univerzita Ostrava, Ostrava, 2004

[24] FIALA, J., Kraus, I., 2009: *Povrchy a rozhraní.* Vyd. 1. Praha: ČVUT, 299 s.

[25] AUTOR NEUVEDEN. *Parametry drsnosti* [online]. [cit. 2021-8-26]. Dostupné z: https://www.jenoptik.cz/cz/technicke-informace/drsnost-povrchu-dle-din-en-iso/

[26] JENČÍK, Josef a Ludvík KUHN. Technická měření ve strojnictví. Praha: SNTL, 1982.

[27] AUTOR NEUVEDEN. *Polyamidy* [online]. [cit. 2022-01-03]. Dostupné z: <u>https://www.prumysloveplasty.cz/polyamidy/</u>

[28] AUTOR NEUVEDEN. *Polyacetaly* [online]. [cit. 2022-01-03].Dostupné z: <u>https://www.prumysloveplasty.cz/polyacetaly/</u>

[29] AUTOR NEUVEDEN. *PE 1000* [online]. [cit. 2022-01-03].Dostupné z: <u>https://www.prumysloveplasty.cz/pe-1000/</u>

[30] AUTOR NEUVEDEN. *Měření drsnosti povrchu injekčních jehel pomocí laserového skenovacího konfokálního mikroskopu* [online]. [cit. 2022-01-03] dostupné z: <u>https://www.olympus-ims.com/cs/applications/measuring-the-surface-roughness-of-medical-needles/</u>

SEZNAM PŘÍLOH

- Příloha 1 Tabulky hodnot měření (dotykovou a optickou metodou)
- Příloha 2 Teoretická část drsnosti
- Příloha 3 Tabulky průměrných hodnot + grafy (dotykovou a optickou metodou)