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Abstract
The presented thesis discusses vulnerabilities present in open-source projects, focusing on
source code adoption among the projects by code cloning. In the scope of this thesis, the
types of source-code clones and their detection procedures are discussed. Furthermore,
a tool allowing evaluation and execution of the discussed detection methods was designed
and implemented. The tool and detection methods were evaluated and tested on real-world
examples.

Abstrakt
Predkladaná práca sa zaoberá zraniteľnosťami v projektoch s otvoreným zdrojovým kódom,
so zameraním na šírenie zdrojového kódu medzi projektami klonovaním. V rámci tejto práce
sú diskutované typy klonov a postupy ich detekcie. Bol navrhnutý a implementovaný nástroj
umožňujúci vyhodnotenie a spustenie spomínaných detekčných metód. Nástroj a detekčné
metódy boli vyhodnotené a testované na príkladoch z reálneho sveta.
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Rozšířený abstrakt
Chyby a potencionálne zraniteľnosti v softvérových aplikáciách sú bežným problémom,

s ktorým sa vývojári softvéru stretávajú. Softvérové zraniteľnosti sú chyby alebo slabiny,
ktoré môžu byť zneužité útočníkmi k neoprávnenému prístupu, získaniu citlivých informácií,
spôsobeniu škody alebo narušeniu normálneho fungovania systému. Spolu s pridaním novej
funkcionality, či úpravou existujúceho kódu v projektoch, sa zraniteľnosti dostávajú do
aplikácií počas ich vývoja, pri ktorom sa stáva, že programátori môžu niektoré časti kódu
preberať z iných voľne dostupných projektov. Znovupoužívanie kódu vie významne urýchliť
prácu vývojára a umožňuje nadviazať či jednoducho rozšíriť existujúci projekt, avšak može
sa stať, že v preberanom alebo rozširovanom projekte sa vyskytujú chyby, ktoré vývojári
prevezmú spolu s vyžadovanou funkcionalitou. V tomto prípade sa jedná o klonované zra-
niteľnosti, ktorými sa zaoberá táto bakalárska práca a navrhuje nástroj na ich monitorovanie
a detekciu.

V úvode teoretickej časti sa práca zaoberá všeobecne zraniteľnosťami v softvérových
aplikáciách a spomína možnosti ako predísť ich šíreniu a zanášaniu. Ďalej rozoberá dôležité
pojmy a databázy, ktoré sa spájajú so zraniteľnosťami, vrátane CVE a NVD. Tieto databázy
poskytujú štandardizované identifikátory a informácie o známych zraniteľnostiach. Práca
tiež prezentuje príklad zneužitia chyby v systéme z reálneho sveta, čím ilustruje dôležitosť
zaoberať sa softvérovou bezpečnosťou.

V teoretickej časti práca rozoberá štyri rôzne typy klonov zdrojového kódu, ktoré sa
určujú podľa úrovne podobnosti. Prvým typom sú presné kópie, ktoré sa môžu líšiť len
v používaní bielych znakov alebo komentárov. Druhý typ v porovnaní s prvým navyše
obsahuje premenovanie premenných alebo zmenu ich dátových typov. Tretí typ výchádza
z predchádzajúceho, ale obsahuje zmenené, pridané alebo odstránené časti kódu. Prvé tri
typy spája syntaktická podobnosť, ale štvrtý sa v tomto odlišuje a s originálnym fragmentom
kódu ho spája len sémantická podobnosť. Ďalej sa v práci popisujú postupy detekcie klonov,
ktoré sa delia do štyroch tried: textové, lexikálne, syntakticé a sémantické postupy.

Nástroj navrhnutý v tejto práci implementuje dve metódy detekcie klonov, ktoré v zá-
vere porovnáva. Prvá metóda využíva nástroj Simian. Ako sa potvrdilo v experimentácii,
dokáže detegovať klony zdrojového kódu prvého typu. Druhá metóda, BlockScope, imple-
mentuje postup založený na textovej podobnosti zmien v zdrojovom kóde, ktoré opravujú
zraniteľnosť, a kódom v cieľovom projekte. Konkrétny zdrojový kód v cieľovom projekte sa
vyhľadáva na základe podobnosti jeho kontextu s kontextom opravného kódu. Pojem kon-
text označuje riadky kódu v okolí opravného kódu. Na základe predchádzajúceho výskumu
a experimentácie sa ukázalo, že tento prístup dokáže odhaliť prvé tri typy klonov. Spomí-
nané metódy navrhovaný nástroj sprístupňuje a umožňuje spúšťať cez rozhranie v príka-
zovom riadku a implementované webové rozhranie, ktoré uľahčuje jeho použitie a vizua-
lizuje výsledky. Nástroj taktiež ponúka možnosť konfigurovať automatické plánované mo-
nitorovanie vybraných projektov, ktoré môže odhaliť nové opravy chýb v ich repozitároch
a umožňuje zaslať notifikácie e-mailom, keď identifikuje podozrivé zmeny. Pokiaľ nie sú
identifikované zmeny rozsiahle, tak nástroj automaticky spustí detekciu klonu danej chyby
v projektoch, ktoré sú v internej databáze nástroja uložené ako klony monitorovaného pro-
jektu. Týmto spôsobom môže nástroj pomôcť včas informovať o potenciálnych nových
zraniteľnostiach.

Počas experimentácie sa ukázalo na danej dátovej sade z oblasti kryptomien, že nástroj
dokáže s mierou pravdivosti 80% identifikovať zraniteľnosti propagované preberaním zdro-
jového kódu vo forme klonov prvých troch typov. Štvrtý typ zostáva nepokrytý, a teda
ponúka možnosť rozšírenia tohto nástroja v budúcnosti.
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Chapter 1

Introduction

Vulnerabilities in software can have serious consequences, including reputation damage,
financial losses, or even loss of life in the case of critical infrastructure systems. Most of
them are introduced during the development process as a result of hidden errors, which
might not appear suspicious initially. The system and its users or their data are at risk
until the flaws are patched. That is the main reason and motivation why it is important to
constantly improve the security of products.

Cloned vulnerabilities are security weaknesses that are introduced into the software
system when code is copied or reused from another system that contains the vulnerability.
These vulnerabilities can be difficult to detect and fix because they are not necessarily
introduced by intention, instead, they are inherited from the source code that was copied
or reused. In software engineering, the approach of cloning similar functional parts already
implemented in other applications is usually applied. It makes the development of new
products or adding features to existing ones swifter.

Cryptocurrencies, which became very popular in recent years, are a good example of
this case. Namely, Bitcoin, an Open-Source peer-to-peer electronic cash system created by
Satoshi Nakamoto [24] inspired many new projects that joined the cryptocurrency market.
Lots of them were created as derivatives of Bitcoin with the idea to extend or improve its
features. Cloning helped to speed up the development of new coins by inheriting its base
infrastructure.

Although, neither a large-scale project developed by the community as Bitcoin is always
perfect. Plenty of vulnerabilities were discovered in its code base which were accordingly
documented and are stored and tracked in vulnerability databases. As there are many
other coins that share its code, it is possible that they also share the same vulnerabilities.
The question inspired this work to develop a monitoring tool with the goal of to analyse
the threat and help with the detection of vulnerable code and its occurrence in cloned
projects, as the identification is not an easy but rather costly and exhaustive process and
after identification yet also patching the issue is desired.

The prevalence of code reuse and the increasing complexity of software systems makes
cloned vulnerabilities an important issue to consider in software development and mainte-
nance. This thesis aims to study the characteristics and impacts of cloned vulnerabilities
and to identify effective approaches for detecting and mitigating them. The proposed tool in
this work considers disclosed vulnerabilities which means that the issue was already patched
in the project that was originally affected by it. Thanks to this fact the tool can identify an
issue, the affected code in the original project, and candidate projects with the probability
of vulnerability inheritance. Additionally, the tool can be configured to run in schedules and
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identify potential bugs in the monitored project. The identified bugs become candidates
for detection of their adoption in projects forked from the monitored project.

An existing tool, with the same goal described above, was implemented in a project
named CoinWatch [15] with an aim at vulnerabilities in cryptocurrencies. The CoinWatch
inspired this work with an idea to bring improvements, extensions, and a graphical user
interface for wider and simplified usage of the tool for detecting and mitigating cloned
vulnerabilities.

This thesis begins with a basic introduction to the problem and the motivation for why
it is relevant to deal with. Chapter 2 explains and takes a closer look at vulnerabilities and
the basic terminology connected with them. In Chapter 3, clones of source code, current
detection tools and approaches are described and analyzed. Afterwards, Chapter 4 describes
a draft of the tool built for detecting cloned vulnerabilities. The next two Chapters 5 and 6
contain implementation details and an evaluation of the developed product. The final
Chapter 7 concludes this work with potential improvements for future work.
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Chapter 2

Vulnerabilities in Software
Applications

Software vulnerabilities and exposures are weaknesses or flaws in software products that
are exploitable in a cyberattack. The exploitation of a vulnerability can allow an attacker
unauthorized access, elevation of privileges or denial of service [9]. Most of the known vul-
nerabilities are associated with dealing with input provided by a user of the application. For
instance, some frequent types of vulnerabilities include buffer overflows, cross-site scripting,
and SQL injections [16]. The mistakes causing these issues can be introduced during the
development process or by using insecure libraries and frameworks.

This chapter discusses general ways to improve the security of software applications
in the beginning. Subsequently, identifiers related to evaluating vulnerabilities and public
databases storing details about them are described. At the end of this chapter, a real-
world example of a cyberattack and its consequences are presented in order to introduce
the severity of this topic.

2.1 Prevention and Mitigation
Preventing and mitigating software vulnerabilities is crucial for ensuring the security and
reliability of developed software. This section presents some secure coding practices for
the prevention and mitigation of weaknesses being introduced during the development of
a product. Following subsections are based on [28].

Input Validation and Sanitizing

An input of an application or service can have different sources which can be divided
based on trustworthiness. For example, internal communication between services might be
considered a trusted source. On the other side, Input from a user is considered to be an
untrusted source because the data received can be anything. This makes it important to
validate it properly, so that malformed input will not harm the system or lead to unexpected
behaviour. An example of insufficient validation are SQL injections. To improve input
validation these points should be considered:

• check all inputs from untrusted sources

• check usage of proper character sets (UTF-8, ASCII, ...)
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• encode data to a common character set before validation

• validate all received data for type, length, format, and range

• validate received data against a “white” list of allowed characters, when possible

• process special and hazardous characters with increased precision to address double
encoding or other forms of obfuscation attacks

• all validation failures should result in input rejection

Output Encoding and Sanitization

When it comes to a trusted source of messages between services, some checks might be
omitted as internal communication can be performed through an internal interface. Omit-
ting some validations, in this case, could result in better performance of the system. To
achieve this goal it is essential to comply with all items mentioned in the previous sub-
section, so the exchanged messages should be correctly encoded and sanitized. Sanitizing
should be mainly done on data for operating system commands and queries for SQL, XML,
and LDAP.

Authentication and Password Management

Authentication is a process of validating the identity of a user, device, or system. It is used
for ensuring restricted access to private resources or certain actions. Some authentication
methods are:

• passwords – typically used in combination with a user name

• two-factor authentication (2FA) – this method requires two different forms of authen-
tication to validate identity

• biometric authentication – this type requires physical or behavioural actions, like face
recognition or fingerprint, for identification

By implementing strong authentication methods into the system, organizations can prevent
identity theft and provide protection against unauthorized access. These are some practices
on implementation, configuration and password management improvement:

• require authentication for all resources, except for those intended to be public

• authorization should be fail secure

• credentials should be stored only as cryptographically strong one-way salted hashes
of passwords and storage should be writeable only by the application

• validate authentication only on completion of all input fields, especially in case of
sequential authentication

• use only HTTP POST request for sending authentication data

• enforce higher password complexity – length, numeric and/or special characters
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• enforce account disabling after a number of failed login attempts, the duration should
be sufficient to discourage guessing credentials by brute-force attack, but not to allow
denial-of-service attack

• notify the user on password change

• allow next password change at least after one day from the last change

More advice on secure coding practices can be found in [28]. Nevertheless, mistakes
tend to slip into production versions of software. At this stage, other options are to use
vulnerability scanning tools, write automated tests or perform penetration testing to dis-
cover hidden weaknesses, before they are exploited. Scanning tools are a form of static
analysis. They work by searching the application’s code/binary for vulnerable patterns.
Details of such tools are analysed in the next Chapter 3. Automated tests and penetra-
tion testing are forms of dynamic analysis. They discover run-time issues in the built and
running application or its parts.

2.2 Identifiers Related to Security Vulnerabilities
This Section introduces identifiers which are used to evaluate and address vulnerabilities and
the most popular publicly available databases storing records about disclosed weaknesses.

CPE – Common Platform Enumeration

CPE refers to a standardized method for describing and identifying abstract classes of
software and hardware products present in an organization’s computing infrastructure. The
standard was created by the National Institute of Standards and Technology (NIST) as the
part of the Common Vulnerabilities and Exposures (CVE) program. The latest version of
CPE is 2.3 and is used to identify products in vulnerability databases. It is represented as
formatted string binding with colon-delimited list of components prefixed with the string
“cpe:2.3:” [10].

cpe:2.3: part : vendor : product : version : update : edition :
language : sw_edition : target_sw : target_hw : other

Item Description Example
part Class–applications, operating systems or hardware devices o

vendor Identifies manufacturer of the product microsoft
product Name of the product windows_10
version Affected release version 1.0
update Affected update beta
edition Edition-related terms applied by the vendor datacenter

language Localization of the product en-us
sw_edition Software edition professional
target_sw Software environment of the product django
target_hw Hardware environment of the product x64

other Custom or vendor-specific information attr:value

Table 2.1: Overview of CPE components.
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CWE – Common Weakness Enumeration

CWE is a community-developed formal list of common software and hardware weakness
types that have security ramifications, which was released in 2006. The CWE database
is maintained by the MITRE Corporation and as of 28th December 2022, it contains
933 records. The main goal of CWE is to stop vulnerabilities at the source by educat-
ing software and hardware architects, designers, programmers, and acquirers on how to
eliminate the most common mistakes before products are delivered [23].

The severity of weaknesses can be evaluated by Common Weakness Scoring System
(CWSS). It provides a method for prioritizing software weaknesses. It is a collaborative,
community-based effort that is addressing the needs of its stakeholders [21].
Current top three weaknesses are [22]:

• CWE-787 – Out-of-bounds Write

• CWE-79 – Improper Neutralization of Input During Web Page Generation (“Cross-
site Scripting”)

• CWE-89 – Improper Neutralization of Special Elements used in an SQL Command
(“SQL Injection”)

CVSS – Common Vulnerability Scoring System

CVSS captures technical characteristics of software, hardware and firmware vulnerabilities.
It attempts to assign severity scores to vulnerabilities. The score is in the range of 0.0 –
10.0, where higher numbers represent more severe vulnerabilities. The metric is composed of
three metric groups – base, temporal and environmental – and helps with the prioritization
of vulnerabilities [11, 14].

Figure 2.1: Three CVSS metric groups. Source: [11]

2.3 Vulnerability Databases
In 1989 the Computer Emergency Response Team (CERT) was established at the Soft-
ware Engineering Institute at Carnegie Mellon University to find, collect and publish all
information about known vulnerabilities. After CERT displayed all collected vulnerabilities
publicly, they started to appear in many new databases with different formats of weakness
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information. The most popular vulnerability databases were analysed in [4], but as of
December 2022, some of them are shut down or not maintained.

CVE – Common Vulnerabilities and Exposures

CVE is a list of publicly disclosed computer security flaws. It was released in 1999, at
a time when most cybersecurity tools used their own databases, names and evaluations of
weaknesses. Now, CVE provides a database and a unified standard for naming information
security vulnerabilities.

The process of creating a new CVE identifier begins with discovering and reporting
a potential security vulnerability. The information is accordingly assigned a unique CVE
identifier by a CVE Naming Authority (CNA) and posted to the list on the CVE website
by an editor. The MITRE Corporation functions as the editor and primary CNA [20].

Each entry in the list contains the following fields: CVE identifier number, brief descrip-
tion and references. The CVE identifier number format looks like “CVE–YYYY–NNNN”, where
“Y” refers to a year of creation and “N” is unique number assigned to the vulnerability. As of
29th December 2022, the database contains 191 855 CVE records1 and is synchronized with
the following database.

NVD – National Vulnerability Database

The NVD was established in 2005 to provide the U. S. government with a repository of
data about software vulnerabilities. It is a product of the National Institute of Standards
and Technology (NIST) to provide vulnerability management information. The NVD can
be used to prioritize the vulnerabilities to address in order to secure important systems.

The database is based on and synchronized with the CVE list and enhances the base
CVE scheme for vulnerability severity metrics and updates them when new information
about the vulnerability is provided. CVSS is used for evaluation and helps to understand the
potential severity of each vulnerability. NIST works directly with vendors and researchers
to assure the quality of published information and provide the public with accurate scoring
data [27].

Information about vulnerabilities is accessible to the public via the web page or REST
API provided by the organization. As of 29th December 2022, the database contains 203 312
records2 providing the following data:

• Base CVE Entry Schema – Identification, Description, References

• Source Identifier – Reporter

• Publication Time

• Last Modification Time

• Status

• Metrics – CVSS

• Weaknesses – contained CWEs

• Configurations – CPE
1https://cve.mitre.org
2https://nvd.nist.gov/general/nvd-dashboard
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2.4 Real-world Example of Exploitation
The consequences of vulnerabilities in software applications can be quite serious like data
breaches, theft of sensitive information, or damage to a product infrastructure. For instance,
consider vulnerability, in Microsoft Windows implementation of Server Message Block pro-
tocol, with an identifier CVE-2017-01443. An exploitation of this flaw, by sending crafted
packets, allows remote attackers to run arbitrary code on a target machine. This defect
facilitated the spreading of worm-like ransomware WannaCry through the network in 2017,
which affected many organizations, companies, and individuals [3]. Figure 2.2 depicts the
spread of WannaCry ransomware.

Ransomware is a type of malicious software, that locks up the victim’s data or device
and threatens to delete or keep it locked unless a ransom is paid to an attacker [25]. In
the case of WannaCry, the malware would encrypt files on the victim’s device and ask for
a ransom of value 300 USD in Bitcoin if paid within the first three days, otherwise, the
value would be doubled for the next four days and if not paid at all, the files would be lost
forever. [26]

Encryption RansomVictim

Infection

Distribution over
Network

Immune Device

Infection of
Vulnerable

Devices in the
Network

Figure 2.2: WannaCry ransomware distribution.

3https://nvd.nist.gov/vuln/detail/CVE-2017-0144

9

https://nvd.nist.gov/vuln/detail/CVE-2017-0144


Chapter 3

Cloned Vulnerabilities

Cloned vulnerabilities are weaknesses propagated by reusing source code. This can happen
by copy-pasting insecure code snippets, whole functions or even whole projects. For copying
the whole project version control system Git offers an easy option called a fork. This allows
developers to inherit the infrastructure of an existing project and afterwards they can
modify or start building on it their own features. Although, the inherited code base might
contain vulnerabilities.

In the beginning, this chapter will present an example of a vulnerability propagated by
cloning, followed by an overview of clone types based on the level of similarity to the origin
and methods for their detection. Afterwards, existing static analysis tools and approaches
for the detection of cloned vulnerabilities in the software will be analysed.

3.1 Real-World Example of a Cloned Vulnerability
A notable case of a flaw propagated by forking or fetching is CVE-2018-17144. On the 18th
of September 2018, the bug was patched in Bitcoin Core, the primary implementation of
the Bitcoin protocol. Besides a potential Denial of Service (DOS) attack, the vulnerability
allowed an attacker to double-spend the same input, which would create new bitcoins out
of nothing and cause inflation in this major cryptocurrency. The flaw was caused by an
unhandled assertion error in a code validating transactions and preventing double spending
of coins. [7, 34]

void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs,
                 CTxUndo &txundo, int nHeight) {
    // mark inputs spent
    if (!tx.IsCoinBase()) {
        txundo.vprevout.reserve(tx.vin.size());
        for (const CTxIn &txin : tx.vin) {
            txundo.vprevout.emplace_back();
            bool is_spent = inputs.SpendCoin(txin.prevout, &txundo.vprevout.back());
            assert(is_spent);
        }
    }
    // add outputs
    AddCoins(inputs, tx, nHeight);
}

Figure 3.1: Vulnerable code shared between Bitcoin and PigeonCoin. Source: [7]
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The bug was fixed in Bitcoin Core before it could have been exploited. Unfortunately,
in the case of PigeonCoin, one of many forks of Bitcoin, attackers took advantage and
generated 235 million coins worth of around 15,000 USD on 26th of September 2018, while
it was still vulnerable more than a week after the fix in Bitcoin Core. The propagated code
responsible for the vulnerability is visible in Figure 3.1. [13, 34]

3.2 Types of Code Clones
Clones of source code originate from copying and reusing code fragments with possible
modification is a common approach in software development. Such activity is an efficient
way in programming as similar code does not have to be written multiple times from
scratch. Depending on how similar the code clones are to their origins, they are divided
into four groups [30]. For an example of each type of clone consider the following code in
the programming language C as the original code:

if (a > b) { // comment
a = b + 1;

} else {
a = b + c;

}

Type I clones are identical code fragments with possible white space characters and com-
ment variations. Type I clone from the example original code could be:

if (a > b) {
a = b + 1; } // comment 1

else {
a = b + c; } // comment 2

Type II are Type I clones with additional possible variations in user-defined identifier
naming and types. An example could be:

if (x > y) {
x = y + 1; // comment

}
else { x = y + z; }

Type III clones in addition to Type I and Type II contain changed, added and/or deleted
statements. Type III clone might look like this:

if (x > y) {
x = y + 1;

} else { // comment
flag = 1; // addition
x = y + z;

}

11



Type IV are code fragments with different syntactical structures, but with the same se-
mantics. Unlike the previous types which were textually similar, this type of clone is defined
by functional similarity. An example of a Type IV clone might look accordingly:

x = x > y ? y + 1 : y + z;

3.3 Detection Methods
Detection techniques are divided into four classes: textual, lexical, syntactic and semantical.
This section will introduce each class and mention detection tools which are based on them.

Textual Approaches

Text-based approaches compare two code fragments and detect clones based on string com-
parison of lines. They are language-independent, easy to implement and generate fewer
false positive results. Before detection, they tend to use normalization like the removal of
white spaces and comments. This approach is able to detect Type I clones without fur-
ther post processing [32, 30]. Tools which are based on this approach include Dup [5] and
NICAD [31].

Lexical Approaches

In lexical or token-based approaches whole source code of the analysed project(s) is parsed
into a sequence of tokens. Then in the next step, the generated sequence of tokens is
scanned for duplicate subsequences which represent code clones in the end. CCFinder [17]
and CPMiner [29] are example tools utilizing this approach. They are able to detect clones
of various types and have higher precision than textual approaches, but they also have some
limitations. These techniques have higher time and space complexity and are dependent
on the order of the tokens and lines. When cloned code contains added or deleted tokens,
this approach will not detect it as clone [32, 30].

Syntactic Approaches

Syntactic approaches contain two types of techniques – tree-based and metric-based.
Tree-based approach parses the source code of the analysed project firstly into tokens

which are used to build an abstract syntax tree (AST). Then the clones are detected using
tree-matching algorithms rather than matching sequences of tokens in lines as in lexical
approaches. In this case, similar sub-trees represent duplicate code. Tools developed by
Baxter et al. [6] and by Wahler et al. [35] implement the tree-based approach.

The second type, the metric-based approach uses a number of different metrics gathered
from syntactic units like classes, methods, functions or statements in the target source code.
The metric vectors are then compared in order to detect clones instead of searching through
AST or comparing code directly. Some of the collected metrics in tools implementing this
approach can be numbers of loop, conditional and return statements [32, 30]. Implementa-
tions of metric-based approach are for example tools developed by Mayrand et al. [19] or
by Abdul-El-Hafiz et al. [1].
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Semantic Approaches

This type of approach is used to detect code fragments with similar semantics but different
code structures. There are two approaches connected with this technique – graph-based
and hybrid.

The graph-based approach utilizes a Program Dependency Graph (PDG) to represent
data and control the flow of the analysed source code. The detection is performed by an
isomorphic subgraph matching algorithm. For example, tool GPLAG [18] implements this
approach.

The hybrid detection technique combines multiple approaches which were mentioned
above [32, 30]. An approach developed by Agrawal et al. [2] uses this technique.

3.4 Detection Tools
Detection tools and approaches analysed in this section are tools designed for the automatic
identification of security vulnerabilities in software applications. Common types are static
analysis tools, dynamic analysis tools and penetration testing tools. Static analysis tools
scan software source code to identify potential weaknesses, while dynamic analysis tools
observe the behaviour of the system during run-time. Penetration testing tools are designed
to simulate attacks on the system to identify vulnerabilities, which might be exploited
during a cyberattack.

CoinWatch

This subsection is based on [15]. CoinWatch is a static analysis tool utilizing a clone-
based approach for detecting vulnerabilities in cryptocurrencies. Cryptocurrencies are an
attractive commodity for attackers because they can be anonymously sold on exchanges.
The fact, that many of them have their source code publicly available, makes it possible to
develop tools like CoinWatch. It was developed in 2020 and has achieved promising results,
but unfortunately, it is not available for public use.

In summary, CoinWatch reported 786 vulnerabilities in 384 cryptocurrencies to the
date, when the paper was written and achieved a true positive rate of 89.7%. To the date,
CoinWatch worked only with Type I clones, while Type II and Type III would need a more
sophisticated method of detection like analysis of decompiled binaries of projects. In future
work, creators want to investigate possibilities for how to detect also Type II and Type III
clones alongside automating the process of the manual code annotation.

A study connected with CoinWatch contains an analysis of the propagation of cloned
source code between cryptocurrencies. The analysis found that at the time 786 cryptocur-
rencies were directly or indirectly cloned from a version of Bitcoin. The percentage of
cloned code in projects forked from Bitcoin is displayed in Figure 3.2. In the majority of
these projects, the clone ratio was below 30%, however, some had the ratio even higher
than 50%. This fact implies the potential propagation of vulnerabilities among clones, once
they are discovered in the parent project. In the case of cryptocurrencies, neglecting the
maintenance of the adopted code may have a serious financial impact. Also, the number
of detected projects by the analysis is high, which makes maintenance a very costly and
repetitive task. CoinWatch is a solution for filtering only potentially vulnerable projects,
whose maintainers can be accordingly warned about the detected threat.
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Figure 3.2: Bitcoin v0.17.0 clone ratio in forked projects. Source: [15]

The overall workflow of CoinWatch is visualized in Figure 3.3. At the beginning of
the pipeline, the tool receives a target CVE assigned to the target project. Accordingly,
all publicly available details about the desired vulnerability are scraped and parsed from
vulnerability databases. These details are input for the next step – code evolution anal-
ysis. The analysis utilizes the version control system Git for traversing the versions of
the target project. Using the parsed CVE details, the analysis aims to identify fixing and
bug-introducing commits for the provided vulnerability in the repository of the project.
Identified fixing and bug-introducing commits create a time window, in which the target
project was affected by the vulnerability. This time window is used for the initial filtering
of potentially affected child projects, which were forked from the target project during this
period. The identified fixing and bug-introducing commits are additionally used for man-
ual annotation of the vulnerable code and transformation to a clone detection pattern. In
the end, the clone detection tool checks the occurrence of the pattern in the potentially
vulnerable projects forked in the time window. After clone detection, on the output of the
pipeline is a list of likely affected cryptocurrencies.

Figure 3.3: Overall workflow of tool CoinWatch. Source: [15]

CVE Parsing and Linking with Commits

In this step, CoinWatch scrapes and parses details of the selected vulnerability. Following
data is extracted from details about CVE in vulnerability databases:

• date of publishing
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• keywords from description

• references pointing to the version control system of the affected project

• the list of affected cryptocurrencies and their programming language

After parsing, the origin of the vulnerability is checked, and whether the issue is connected
with specific code as the threat may originate from using outdated versions of libraries,
frameworks and protocols. In case of code-specific weakness, the code evolution analysis
links patching and bug-introducing commits with the CVE.

Code Evolution Analysis – SZZ Algorithm

For the purpose of code evolution analysis, CoinWatch utilizes the SZZ algorithm. The
algorithm was proposed by Sliwerski, Zimmermann and Zeller [33] as an approach for
identifying bug-introducing commits. An open implementation of the algorithm is named
SZZ Unleashed [8]. It is written in Java programming language with supporting Python
scripts. SZZ Unleashed works in two phases. The first phase identifies bug-fixing commits
used in the second phase for tracking the bug-introducing changes. CoinWatch is built on
this algorithm and extended it for the tool’s specific purposes.

Firstly, using parsed details about the vulnerability, the bug-fixing commits are identi-
fied from the version control system in the affected project. In CoinWatch this is done by
matching regular expressions in issues which have been fixed, resolved, closed or labelled
as “bug”. The regular expression is built from keywords extracted from the description in
CVE details and keywords “CVE” and “CVE-ID”.

Secondly, for each discovered fixing commit the bug-introducing commits are tracked
utilizing the second phase of the SZZ algorithm. This phase leverages the command git-
blame and line number mapping to backtrack through the history of the analysed project.
This method maps only the lines affected by the analysed commit as shown in Figure 3.4.
In addition, this phase provides an option to select the desired depth of mapping the line
numbers over a variable number of versions, indicated by the depth parameter. In the
provided example, working with the depth option set to one would result in not identifying
the bug introduced by Commit 2, because it is in depth two and it is detectable only from
the annotation of commits 3, 4 and 5.

Identification of Vulnerable Code and Initial Filtering

Inputs for this part of the CoinWatch are bug-fixing and their matching bug-introducing
commits. For initial filtering of potentially vulnerable forks, CoinWatch selects the newest
bug-fixing commit and the oldest bug-introducing commit to form a time window. Mon-
itored forked projects are then filtered based on the timestamp of their fork. When it is
within the time window they are marked as potentially vulnerable candidates. The projects
around the time window are ignored.

Identification of vulnerable code is a one-time manual process per CVE. The goal of this
step is to extract the patch code and the vulnerable code from commits detected during code
evolution analysis. After the manual code annotation, it is transformed into a detection
test as input for the clone detection tool.
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Figure 3.4: An example of SZZ Unleashed mapping line numbers. Source: [8]

Clone Detection Process

Finally, CoinWatch triggers the clone detection tool Simian 3.3 with the detection test
on the list of potentially vulnerable candidates from the previous step. This filters the
projects that already patched the vulnerability or reimplemented the part of code, which
was vulnerable in the source project and returns the final list of likely vulnerable projects.

BlockScope

This subsection is based on [36]. BlockScope is a novel tool for detecting vulnerabilities
propagated by cloning blockchain projects like Bitcoin and Ethereum. It is a language-
agnostic tool capable of detecting multiple vulnerabilities from existing security patches.
BlockScope utilizes similarity-based code match and designs a new way of calculating code
similarity. Thanks to this approach it is able to detect Type I, Type II and Type III clones.
Additionally, it is capable of automatic extraction of security patch contexts in comparison
to CoinWatch.

Figure 3.5 presents the overall workflow of BlockScope. Initially, the tool receives a se-
curity patch and the affected project on the input. The security patch is accepted either
in the form of a commit ID from the source project or manually crafted patch contexts for
better accuracy. A patch context represents a surrounding of the code changes in the patch
commit. The component named Extractor serves for identifying patch context when the
commit ID of the security patch is provided. Subsequently, the component Searcher tries to
match the patch context in the analysed project which produces a candidate context. Then
Fetcher uses the contexts to extract patch code from the source project and potentially vul-
nerable candidate code from the target project. The similarity of the extracted codes is then
measured in Comparator, which determines whether the target project was patched. Addi-
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tionally, for the vulnerabilities that were already fixed in the target repository, BlockScope
performs the calculation of patch delay.

BlockScope

Security 
Patch

Extract Patch Context

Extractor

Patch 
Context

Fetcher

Searcher

Locate Candidate Clones

Candidate 
Context

Candidate Code

Patch Code

Source Project Target Project

Comparator

Calculator

Determine Patch Status

Detecting the Propagated
Vulnerabilities

Investigating the Discovered
Vulnerabilities

Figure 3.5: Overall workflow of tool BlockScope. Source: [36]

BlockScope achieved overall precision and recall both at the rate of 91.8%. It discovered
101 previously unknown vulnerabilities propagated via code cloning in 13 out of 16 analysed
projects forked from Bitcoin and Ethereum. Unfortunately, just like CoinWatch it is not
available for public use and is close sourced.

Patch Context Extraction

The initial step of BlockScope extracts the context of the given security patch on the input.
The patch context consists of two components – upper and lower. The extraction is depicted
in Figure 3.6 on a patch code on the left side and the process is following.

Firstly, the code surrounding the patch is tokenized. Tokenization considers both upper
and lower case characters and additionally includes some special characters such as “.”
and “!”. Then, in each context line, the longest token is selected as a keyword representing
the sentence. The keywords together identify the patch context in the next step in the
processing. In the example displayed in Figure 3.6, the selected keywords are marked by
a red font colour.

Localization of Candidate Code Clones

In this step, BlockScope searches for all candidate code clones in target repositories using
components Searcher and Fetcher. Figure 3.6 illustrates this process on patch commit
0e7c52dc in Bitcoin and a cloned code chunk present in Dogecoin, a fork of Bitcoin.

The localization begins with selecting key statements from each patch context in the
target repository. To determine key statements, the component Searcher firstly utilizes
a command git grep to find all code statements containing the patch keywords extracted
in the previous step. Finally, each found code statement is compared to the original code
statement in the patch context and the most similar one is selected as a key statement in
each context. For calculating the similarity, BlockScope uses the Normalized Levenshtein
edit distance metric with a threshold equal to 0.25.

The threshold is used to minimize misses and avoid false negative results in the rest of
the workflow. In the current step, the threshold is used to filter code statements with low
similarity to the original statement. Additionally, the tool uses here three other optimiza-
tions. The first excludes comments and test code from keyword search results. The second
filters search results based on the type of file affected by a patch and the third checks the
type of code statements.
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Once the key statements are identified, the goal of the next step is to extend the single
statement to multi-line candidate context. This is done by extracting the surrounding
code around the key statement until the candidate context contains the same number of
lines as the patch context, which is specified by a constant C_LINES. Then, the boundary is
determined by comparing each line in the candidate context to the start and end statements.
In the end, just like in the case of the key statement, the start and end statements in the
candidate context are specified by the highest similarity exceeding the threshold.

Finally, the candidate contexts are yet compared to the patch using the same evaluation
method as used for determination of patch application status 3.1. Candidate contexts with
similarity below the threshold are discarded and the others are forwarded to the component
Fetcher. As for the patch, so for candidate contexts, the component Fetcher extracts the
code between the upper and lower context, returning a patch code and a list of candidate
codes for further analysis.
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uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

    if (!fJustCheck)

Determine the boundary ss and es by similarity

2

2

Leverage git grep to find ks in target repo

UP context

DOWN context

Source patch code hunk from Bitcoin Target candidate code hunk from Dogecoin

start statement (ss)

end statement (es) & key statement (ks)

key statement (ks)

end statement (es)

(ss)

Figure 3.6: Visualization of context-based search of BlockScope for searching candidate
contexts in a target repository. Source: [36]

Determination of Patch Status

The last step of the workflow, the determination of the patch application status is performed
in components Comparator and Calculator. The Comparator measures the similarity be-
tween the patch and each candidate and evaluates, whether the target project applied the
patch, hence whether it is vulnerable or did not inherit that particular part of the code.
The projects, which applied the patch are further analysed by the component Calculator,
which calculates a patch delay.

BlockScope designs a new way of measuring the similarity between two code fragments,
which is capable of detecting the first three types of clones. The way is shown in the
following Equation 3.1, where 𝑆 stands for source and 𝑇 for target code fragment with 𝑝
and 𝑞 code statements. The similarity measure is defined as the weighted average of the
similarity of each sentence from 𝑆 and its most similar pair among 𝑇 . The function 𝑠𝑡𝑟𝑠𝑖𝑚
calculates the Normalized Levenshtein distance metric [37] of two strings, which returns
a value in the interval [0, 1]. To cover clones of Type III, as they contain inserted, deleted
and reordered statements, this way introduces parameter 𝑟 ∈ [0, 1] and 𝑟|𝑖−𝑗| to specify the
reward of the similarity result between 𝑆𝑖 and 𝑇𝑗 .

18



SIMILARITY(𝑆, 𝑇 ) =
1

𝑝

𝑝∑︁
𝑖=1

strsim(𝑆𝑖, 𝑇𝑗)𝑟
|𝑖−𝑗|

s.t. 𝑗 = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑘≤𝑞

strsim(𝑆𝑖, 𝑇𝑘)

(3.1)

To determine whether a patch (𝑃 ) was applied, it is compared to the candidate code
(𝐶) and BlockScope uses three rules for that evaluation. There are three possible types
of patches. One which contains only code additions (ADD type, 𝑃 = [𝑎𝑝]), a one with
code deletions only (DEL type, 𝑃 = [𝑑𝑝]) and the third, which contains both (CHA type, 𝑃 =
[𝑎𝑝, 𝑑𝑝]). Using the described similarity measure, each type has its own definition of applied
status. Consider variables 𝑠𝑎 = 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝐶, 𝑎𝑝) and 𝑠𝑑 = 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝐶, 𝑑𝑝)
for better readability in the following description of the rules for each type.

• ADD type: if 𝑠𝑎 ≥ 𝑡, it is evaluated, that 𝑃 was applied in 𝐶, else it was not.

• DEL type: if 𝑠𝑑 ≥ 𝑡, it is evaluated, that 𝑃 was not applied in 𝐶, else it was.

• CHA type: if 𝑠𝑑 ≥ 𝑡 and 𝑠𝑎 ≥ 𝑡 and 𝑠𝑑 ≥ 𝑠𝑎, it is evaluated that 𝐶 did not apply 𝑃 ,
otherwise if 𝑠𝑑 ≥ 𝑡 and 𝑠𝑎 ≥ 𝑡 and 𝑠𝑑 < 𝑠𝑎, it is evaluated that 𝐶 applied 𝑃

The components from the previous step can return more than one candidate context, and
so produce multiple candidate code fragments 𝐶𝑖 ∈ [𝐶1, 𝐶2, ..., 𝐶𝑛]. In this case, similarity of
each candidate, 𝑠𝑖 = 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝐶𝑖, 𝑃 ), and its patch application status, 𝑓𝑣𝑖 ∈ {0, 1},
is calculated, where 𝑓𝑖 = 1 indicated, that 𝐶𝑖 applied patch 𝑃 . To finalize the results, factor
𝑐𝑜𝑛𝑓𝑖 = 𝑠𝑖 − 𝑡 is introduced to measure the confidence of each result. In the end, the result
with highest confidence 𝑓𝑣𝑖, where 𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗 𝑐𝑜𝑛𝑓𝑗 , is selected as the final result of
application status.

Projects, which already applied the patch are additionally analysed by component Cal-
culator. Calculator leverages command git blame to extract the hash of the commit, which
patched the vulnerability in the target repository. The command returns additionally to
each line of code in the provided file the latest commit, which changed the line. Using
this information, the commits on the lines of candidate code are fetched. If the candidate
code was changed by multiple commits, the earliest one is considered as fixing. In the end,
the component Calculator calculates the delay between the patch commit in the original
repository and the extracted commit in the target repository.
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Chapter 4

Design

This chapter presents the design of the proposed tool which, aims to address the challenges
and requirements identified in the problem of detecting cloned vulnerabilities. It is orga-
nized into three main sections, each focusing on a key aspect of the tool: architecture,
workflow and user interface. These sections provide an overview of how the monitoring tool
is structured, how it works, and how to interact with it.

4.1 Architecture
In this section, the structural design of the tool is displayed. Presenting a clear and orga-
nized view of its architecture, this section aims to demonstrate how various elements in the
system work together to form a coherent whole.

Figure 4.1 depicts the parts of this tool and the communication between them. The core
of the application consists of the detection mechanism and its internal database. To interact
with the core, it has available a command line interface and a web interface. The command
line interface has direct access to the core of the tool, while the web is connected to the core
via the application programming interface. All together builds a tool offering two modes
for detecting cloned vulnerabilities. The first one detects the propagation of a specific
vulnerability among the clones of the project where it was discovered. The second method
discovers new flaws but is executable only from the command line.

Cloned
Vulnerabilities

Detection Methods

CLI

APIGUI

Database

Figure 4.1: Architecture of the tool.
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Database Schema of the Tool

The database consists of two primary and one secondary entity set represented by an entity
relation diagram in Figure 4.2. The primary entities contain configurations supporting the
automation rate and scope of the detection mechanism. The secondary entity is used as
a container for vulnerability detection results and has no effect on the performance of the
tool.

The entity Bug contains details about vulnerabilities like an identifier in case of CVE,
a commit responsible for the repair of the bug, a patch containing specific fix changes and
a code for particular methods for detecting clones. Depending on the configured method,
if available, the patch is used by integration of BlockScope described in Section 3.4. While
the value in attribute code would be used by an integrated clone detection tool Simian1.
Additionally, this entity contains attribute verified to inform about whether the bug was
reviewed by an administrator as all records in this table are created automatically during
the run of the detection method. Firstly, in the case of CVE records, the vulnerability
databases do not always refer explicitly to the specific fix commit or patch, but it is de-
tected by various scans which will be mentioned in the next Section 4.2. Secondly, the
application programming interface (API) of the National Vulnerability Database 2.3 has
a limited availability of five queries per rolling thirty seconds time window2. Storing and
reusing previously requested data prevents from reaching the query limit and allows to
subsequently further edit and specify particular details, so the tool can process them faster
and run smoother. Lastly, the attribute created contains a timestamp of record creation,
which represents scan times. The repositories can be updated over time and older scans
might not be relevant since new commits were released and the identified bugs could be
fixed. The relation discovered in binds a bug to the project where it was found. Over-
all, the attributes of this entity support the performance of the tool and allow it to run
automatically skipping the step of the manual selection of the relevant patch code.

On the other hand, the entity set Project not only offers performance benefits but also
contains important data related to the configuration of the workflows. The attribute url
contains a link used for initialization of the repositories by cloning to a fresh environment
of the tool, after adding a new project or basically when it is missing. Attribute name
and author are used mainly for easier referencing from user input and logs. The language
contains the programming language of the project for filtering the relevant files and code in
the repository. The value of attribute watch marks projects which are updated and checked
daily for potential vulnerability patching commits. Lastly, the timestamp in the attribute
added, informs about the time of registration. The relation forked by models the hierarchy
of parent and cloned projects which are used in the detection methods to decide which
projects are potentially affected by a cloned vulnerability. Accordingly, the detection is
performed only among them. The records in this table are created on demand during the
process of project registration.

Lastly, the entity set Detection represents only positive results of detection methods
which form a relation between bugs and forked projects. Additionally, it also provides
confidence in the result and the timestamp. Confidence is a number in the range of 0.0
– 2.0, which represents the similarity of patch code and target code. Information from
these entities does not affect the tool but serves as a storage of results from previous scans.

1https://devel.nuclex.org/external/svn/simian/trunk/index.html
2https://nvd.nist.gov/developers/start-here – rate limits
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Consequently, the results can be cross-checked, and the maintainers of affected projects can
be notified about the presence of the cloned vulnerability.
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cve_id

fix_commit
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code
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created
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PK ID
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name
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language

watch

added

Detection
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discovered in

forked by

has in
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Figure 4.2: Entity relation diagram.

4.2 Workflow of the Detection Mechanisms
As already mentioned in the previous section, the tool has two modes for detecting cloned
vulnerabilities. The process of the first mode is similar to the CoinWatch and BlockScope.
The second one performs periodic scans of parent repositories with an attempt to detect
new potential flaws from recent patch commits. This functionality extends the detection
options of the mentioned tools.

Targeted Detection

The workflow of the targeted detection is displayed in the Figure 4.3. It is executed on
demand and requires an input, which contains a reference to vulnerability and the name of
the project where it was discovered. It is mandatory for the project to be registered in the
database prior to the vulnerability detection scan, so the mechanism has available all the
required information about it.

If the requirements are met, the detection mechanism starts with collecting information
about the provided weakness and initializes the repository of the target project. Firstly, the
tool checks whether the provided reference to the vulnerability is available in the internal
database. Otherwise, if CVE ID was provided the tool fetches its data using a vulnerability
identifier from NVD using their API and stores the response in a cache. Consequentially,
based on the fetched data the patch commit is searched in the target repository. Afterwards,
if it was not in the internal database before, it is stored here. If the search found multiple
candidate commits or one is very extensive, the user is requested to specify the patch
commit and code that is responsible for fixing the vulnerability to reduce the number of
candidates. This input is accordingly stored in the created record in the database.

In the next step, all registered forks of the target project are initialized. That means
if their repositories are missing in the local storage of the tool, they will be cloned using
attribute url of entity Project. In case they are downloaded, they are updated by pulling
changes from their remote repository. It is also possible to configure the tool to downgrade
the repositories to an older version, which will be utilized in experimentation with the tool.
This can be achieved by providing a specific date in the input of the tool. In that case, the
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last commit before the provided date will be selected and the repository will be reverted to
that particular commit.

At this point, all potentially affected projects are prepared for further investigation
of possible propagation of the vulnerability during forking or preliminary fetching. In the
default setup, a detection method based on the approach presented in the research paper
about BlockScope is used [36]. Firstly, the surrounding code chunks – contexts are fetched
from fixing commit or directly from specific patch code present in attribute patch in the
database. The patch contexts are then searched for in the prepared set of repositories
based on the code similarity. The detected contexts and the code in between then produce
candidate code chunks, which are in the end compared to the patch code. In the end, based
on the similarity of the patch and candidate code, the tool determines whether the patch was
applied and so whether the weakness was fixed [36]. Alternatively, it is possible to configure
using the tool Simian for the detection of clones, but in this case, it is mandatory to specify
the code that should be detected among the forked repositories. Although, against the
default method, Simian lacks the ability to detect Type II and Type III clones. Finally,
after scanning a project the positive detection results are stored in the database in table
Detection.

Request Find Fix Commits
and Changes

Database

Prepare Cloned
Repositories Run Detection Results

User Input

NVD

Detection Mechanism

API

Figure 4.3: Basic workflow of the targeted detection scan.

Discovery Scan

The workflow of the discovery scan is visible in Figure 4.4. It is designed to run in schedules
mainly. The goal of this mode is to detect new suspicious commits in monitored repositories
which might imply new vulnerabilities in forked projects.

On execution, the watched projects are fetched from the database and their repositories
are updated to the latest version from the remote server using git. The messages of the
latest commits are then scanned for the presence of any keyword from a set containing
CWE names3. Secondly, a check of affected files by a commit is performed based on the
file extension and path. For example, changes in documentation, release notes and tests
are filtered out.

After applying the filters, the resulting list of commits is reported via e-mail notification
for each project, stored in the database and passed for further evaluation. The goal of the

3https://cwe.mitre.org/data/definitions/1387.html – top 25 most dangerous weaknesses in 2022
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evaluation is to determine the complexity of the patch from each commit based on its
granularity and spread. The complexity is represented by the number of extracted contexts
from a patch. The ones with low complexity can be processed automatically, so they are
passed to the detection mechanism. In the end, the results are stored in the database and
are observable in the logs or presented in the web interface.

Request

Prepare Watched
Repositories

Find Suspicious
Commits

Schedule

Notification

Evaluate Patch
Complexity

Run Detection
Mechanism Results

Database

Figure 4.4: Workflow of the scheduled vulnerability scan.

4.3 User Interface
To enhance the user experience and improve overall effectiveness, the tool offers a graphical
interface alongside the command line interface. This section will contain a graphical design
of both interfaces, explaining the design choices and describing their functionality and use
cases. Well designed user interface improves the overall experience with the tool, so it is
crucial to present the results conveniently.

Web

The graphical user interface (GUI) is accessible via a web that communicates with the core
of the tool using an application programming interface (API). The web page is organized
into three crucial pages. The initial page presents an overview of the current state of the
tool. Subsequently, a user can navigate to the second page to initiate and configure the
detection process. The third page showcases the detection results enabling the user to
efficiently analyse and interpret the outcome. Additionally, using the tab in the upper right
corner user can navigate to the documentation of the API.

The draft of the page containing an overview of the tool is displayed in Figure 4.5. It
allows a user to observe the state of the database, namely registered repositories and stored
vulnerability records. As was mentioned in the Subsection 4.2, only registered repositories
can be scanned by the detection method. Here it is possible to register new repositories
to the tool by providing an URL, the programming language and the parent of the project
in case it was forked from one of the already registered projects. In the second table,
the records of previously scanned vulnerabilities can be updated to improve the precision
and performance of the detection method. After updating a record of the vulnerability it
becomes marked as verified. This marking is visible in the last attribute of the entity.

Figure 4.6 displays the page, where the detection can be started after providing the re-
quired parameters – identification of the vulnerability and its source project for the targeted
detection. The identification of the vulnerability refers to the one stored in the internal
database. The parameter date is optional. The first step of the detection method is ex-
ecuted using the button Search. Accordingly, the results from the search of fix commits
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are shown below. The list of candidate fix commits is observable on the left side of the
page. After selecting a specific commit, the changes from the commit are displayed in the
adjacent text area. In order to start the clone detection, optionally the patch or code in the
middle of the page can be edited to contain only code relevant to the fix of the vulnerability.
Whether a patch or code segment is required depends on the method which should be used
for the detection of clone propagation. In case the search is done for a known and verified
vulnerability in the internal database, the stored values are pre-filled in the input fields.
The button Detect then starts the clone detection.

Registered Repositories Vulnerabilities

URL Language Parent Add ID Update

# Name Author Language Parent
1 bitcoin bitcoin cpp --

2 go-ethereum ethereum go --

3 dogecoin dogecoin cpp bitcoin

4 zcash zcash cpp bitcoin

5 optimism ethereum-optimism go go-ethereum

6 bsc bnb-chain go go-ethereum

# ID Fix commit Valid Show more
1 CVE-2021-41173 3a6fe69

2 CVE-2018-17144 d1dee20547

3 CVE-2021-3401 a2714a5c69 Y

4 CVE-2020-26240 d990df909d Y

PREPARE DETECTIONOVERVIEWDetection of Cloned Vulnerabilities DETECTION RESULT API DOCS

FixCommit Patch/Code Method

Figure 4.5: The design of the page displaying an overview of the state of the tool.

VulnID Source project Search

DateFix commit id Detect

Candidate commits Patch/code for clone detection

Method

commit_id_1

commit_id_2

...

commit_id_n

commit_id_2 diff/code, edit for detection

PREPARE DETECTIONOVERVIEWDetection of Cloned Vulnerabilities DETECTION RESULT API DOCS

Figure 4.6: The design of the page where the detection mechanism can be configured and
started.

After the detection is started, the logs and the preliminary results are visible on the
last page. The design of this page is pictured in Figure 4.7. The page is just informative
and does not affect the detection. The logs contain everything connected to the detection
algorithm and the actual results can be hardly visible. To improve the transparency of the
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results, a list containing a summary of the detected cloned vulnerabilities is located on the
right side. It provides the name of the affected project, the confidence of the result and
a reference to the location of the clone in the directory of the project.

PREPARE DETECTIONOVERVIEWDetection of Cloned Vulnerabilities

Logs Detections Results
Project Vulnerable Conf Location
BTCGPU 1.54 src/qt/bitcoin.cpp

2023-04-18 23:21:33 [info     ] git: grep: Command: git grep -n \bcatch\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:34 [info     ] git: grep: Command: git grep -n
\bhandleRunawayException\b -- **/*.cpp repo=BTCGPU
2023-04-18 23:21:34 [info     ] git: grep: Command: git grep -n \bcoreThread\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:34 [info     ] git: grep: Command: git grep -n \bm_node\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:35 [info     ] git: grep: Command: git grep -n \boptionsModel\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:35 [info     ] git: grep: Command: git grep -n \bclientModel\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:36 [info     ] git: grep: Command: git grep -n \bnullptr\b -- **/*.cpp
repo=BTCGPU
2023-04-18 23:21:36 [info     ] searcher: search: KS found
2023-04-18 23:21:37 [info     ] Searcher.search: Done.         pid=1
2023-04-18 23:21:37 [info     ] Patch part application statuses: [(False, 1.5396210149),
(False, 1.5396210149)]
2023-04-18 23:21:37 [info     ] BlockScope.run: Done.          pid=1
2023-04-18 23:21:37 [info     ] detection_result=[(False, 1.539621014964216)]
repo=BTCGPU

DETECTION RESULT API DOCS

Figure 4.7: The design of the page displaying the logs and positive detection results.

Command Line Interface

The command line interface (CLI) is a fundamental way to interact with the tool. In
comparison to the GUI, it offers advantages in terms of speed, customizing and automation.
The functionalities allow a user to:

• register new projects

• run the targeted detection

• configure schedule of the discovery scan

• run a discovery scan

• initialize the schema of the internal database

In addition to the GUI capabilities, the CLI offers configuration and execution of dis-
covery scan, initialization and execution of tests of the detection method. Unlike the GUI,
which relies on communication using API, the CLI interacts directly with the core of the
tool. This dual interface design caters to diverse user preferences, enhancing the overall
user experience and functionality of the tool.

26



Chapter 5

Implementation

This Chapter outlines the implementation of the tool designed to scan and detect cloned
vulnerabilities in open-source projects. The tool leverages a modern technology stack,
consisting of Python 31 for the backend and the API, Redis and PostgreSQL for databases
and ReactJS for the web interface. Additionally, the entire application is containerized
using Docker Compose2, which offers organized management of multiple services displayed
in Figure 5.1. By leveraging the mentioned technologies, the tool provides an efficient and
user-friendly solution for identifying cloned vulnerabilities in open-source software, thus
contributing to secure software development practices.

Services

Database

Redis

WorkerAPIGUI

Figure 5.1: An overview of the services constructing the tool and their mutual dependencies.

For the development of the major part of the tool, Python 3 was chosen, a versatile
and widely used programming language known for its readability and ease of use. As the
tool uses various technologies, the main benefit of this choice is versatility, which assures
compatibility between particular parts of the tool and communication with various external
APIs. In the transition from API to the backend and its detection methods, the choice of
Python as the development language plays a significant role in integrating key architectural

1https://www.python.org/downloads/
2https://docs.docker.com/compose/
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elements, such as the Redis3 and PostgreSQL4 database. Although, it could suffer from ex-
ecution speed in the case of detection methods in comparison to the programming language
C++ [12].

5.1 Storage
Overall, there are three types of storage used by the tool: the database, the local storage
and in-memory storage – Redis. This Section will describe the implementation and usage
of each type.

Database

The internal database is the first type of utilized storage, which is used for storing long-
term data, containing essential configurations for the tool and results of the detection
method. For the implementation of the schema designed in Section 4.1 an open-source
object-relational database management system PostgreSQL was selected for its great ability
to scale. PostgreSQL provides a docker image, which eases the integration to the tool thanks
to the usage of containerization via Docker Compose.

The connection to the database is established using a Python library psycopg25 an ef-
ficient, low-level PostgreSQL database adapter performing basic database operations. Ad-
ditionally, an Object Relational Mapper (ORM) library SQLAlchemy6 is used to simplify
access and operations with database objects. It provides a high-level, object-oriented in-
terface that abstracts the underlying database system and allows it to work during the
development with Python classes instead of raw SQL queries.

To access the features of the SQLAlchemy, the schema of tables in the database is
implemented in Python classes which inherit from DeclarativeBase class provided by
the library. That defines at once both, the Python object model and database metadata
that describe tables in the database. According to the designed database schema, the tool
implements classes Bug, Project and Detection this way.

To improve readability and developer experience, the tool implements an interface ab-
stracting all operations with the tables in the database. The interface is available in a CRUD
module, which implements all used variants of queries to Create, Read, Update and Delete
records in the database in one place.

Local Storage

The second type of storage used by the tool is its own local storage on the hosting file
system. It is used for storing clones of registered repositories and logs from the detection
method. During the execution of the detection method, all operations and commands with
the analysed projects are performed on the clones stored here. By fetching the log files
stored here, the API provides data for the page displaying detection results in the web
interface.

3https://redis.io/docs/about/
4https://www.postgresql.org
5https://www.psycopg.org/docs/
6https://www.sqlalchemy.org
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Redis

Redis is an open-source, in-memory data structure store used by this tool as a cache storing
a queue of scheduled requests for execution of detection method. As in-memory storage,
Redis provides very fast read and write actions, and it supports a wide variety of data
structures. Additionally, it is distributed also as a docker image, which allows easy integra-
tion of the service using Docker Compose. The connection and operations with Redis are
assured by a Python library redis7.

To initialize and manage the aforementioned queue in Redis a Python library rq8 is
used, which stands for Redis Queue. The purpose of this library is to schedule jobs for
processing in the background and extend the options of the tool in terms of scalability. In
the implementation of the tool, the jobs are queued by an API and processed by the worker
service.

5.2 Detection Mechanism and its Components
The detection mechanism is the core component of the tool developed in this project. It is
implemented using the programming language Python 3 and an object-oriented approach.
The mechanism requires on the input an identification of a bug and the name of the project
where it was discovered. Accordingly, at the beginning of the workflow, the mechanism
finds a fixing commit of the provided vulnerability, parses important details and creates an
object representing the bug.

FixCommitFinder Extractor

Simian

PatchCode.fetch

Searcher

Comparator

Patch
Context

Candidate
Code

Detection
ResultsLogs

Bug
Object

Detection
ResultsLogs

Bug
Object

Bug ID
+

Source Project

Patch
Code
Object

Patch

Figure 5.2: Workflow of the default detection method, with an optional alternative method
using tool Simian. Both methods process the same Bug Object created after processing the
detection request specifying the Bug ID and the project where it originated.

At this point, the mechanism offers two methods for detecting the propagation of the
bug among the forks of the source project. The first method utilizes a tool Simian, which
has great performance but is able to detect only clones of the first type. The second, default

7https://redis.io/docs/clients/python/
8https://github.com/rq/rq

29

https://redis.io/docs/clients/python/
https://github.com/rq/rq


method is inspired by the approach of the tool BlockScope, which is capable of detecting
clones of Type I, Type II and Type III.

The complete workflow of the mechanism and its components is displayed in Figure 5.2.
The components of the workflow and its implementation will be described in the following
subsections.

Component FixCommitFinder

Upon execution of the detection mechanism, the component FixCommitFinder is the first
functional part of the workflow. It is developed as a class implementing methods for finding
bug-fixing commits for both, the targeted detection and discovery scan.

Bug ID
+

Source Project
Bug

ObjectParse CVE Details

CVE Client

Get Bug-fixing
Commits

Git & GitHub Client

Create/Read Bug
Object

CRUD

FixCommitFinder

Figure 5.3: Workflow of the component FixCommitFinder in targeted detection. In the
case of CVE ID, the component parses and uses its details to find bug-fixing commit in the
source repository. The fix commits can be supplied from the internal database using the
CRUD interface.

The process of the component FixCommitFinder in targeted detection is described in
Figure 5.3. If the given bug ID is available in the internal database, the final bug object
is fetched from there using the CRUD interface and returned. Otherwise, if a CVE is
provided, a class CVEClient is used for parsing its details. The class utilizes a Python 3
library requests9 for retrieving the data from National Vulnerability Database API using
HTTP requests. Subsequently, the references to a fixing commit, pull request or release
notes in details about the vulnerability are parsed. If the references are not available
or recognized, the component additionally extracts keywords from the description of the
vulnerability using a library nltk10. All extracted details are then used for finding the bug-
fixing commits using commands of tool git11 and GitHub API12 available in a class Git.
In the end, if the bug ID was not available in the internal database before, the component
creates a new object Bug, stores it and returns. A visualisation of the returned object is
available in Figure 5.4.

For the discovery scan, a different method of the component is used and its workflow is
displayed in Figure 5.5. This method requires the on input only the object of the repository
which will be scanned for new bug-fixing commits for the past couple of days. In the end, this
process returns a list of suspicious commits which were detected by a keywords representing
a software weaknesses or a patch action in commit messages.

9https://docs.python-requests.org/en/latest/index.html
10https://www.nltk.org
11https://git-scm.com
12https://docs.github.com/en/rest
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Bug

+ ID: string

+ commits: List[string]

+ patch: string

+ code: string

Figure 5.4: Overview of the object Bug and its utilized attributes.

FixCommitFinder.scan_recent

Candidate
Code

Candidate
Code

Suspicious
Commits

Filter Based on
Keywords

Git client

CRUD

Watched
Project

Fetch Recent
Commits

Figure 5.5: Overview of a workflow of the component FixCommitFinder using method for
discovery scan.

Component BlockScope

The default method of the detection mechanism is based on the approach proposed in the
paper about a tool BlockScope, which was described in Section 3.4. The implementation of
particular components involved in this method slightly diverged as it is visible on the right
side of Figure 5.2.

The component Fetcher from the original design is omitted and its functionality was
inherited by the component Searcher and a method of the object PatchCode. It was
implemented this way to encapsulate every attribute and action related to the patch into
one object as during extraction of the patch code is done an additional analysis of structure,
thus type of the patch is. The component Searcher in this design implements both the
context-based search process for localization of candidate code in the target repository and
extraction of the candidate code.

Each part of the method produces logs, which can be observed on the web. In the end,
if the final result of the detection is that the analysed project did not apply the patch, the
result is additionally archived in the internal database.

Component Simian

Simian13 is a tool for detecting code duplicates. It is integrated into the detection mecha-
nism as an alternative method for analysing vulnerable code duplication between the source
project and its forks. Simian is implemented in the programming language Java, so for its
execution was implemented an interface as a separate component, which was named after

13https://www.harukizaemon.com/simian
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the tool. The interface also implements a parser for its output. An example output of the
tool and parsed information is displayed in Figure 5.6.

Similarity Analyser 2.5.10 - http://www.harukizaemon.com/simian
Copyright (c) 2003-2018 Simon Harris.  All rights reserved.
Simian is not free unless used solely for non-commercial or evaluation purposes.
{failOnDuplication=true, ignoreCharacterCase=true, ignoreCurlyBraces=true, ignoreIdentifierCase=true,
ignoreModifiers=true, ignoreStringCase=true, threshold=4}
Found 5 duplicate lines with fingerprint ec762ec3b2e2e23a1b569b7fe2e3d4a5 in the following files:
  Between lines 2 and 6 in /Users/matus/Documents/fit/test_file/test_file1
  Between lines 2 and 6 in /Users/matus/Documents/fit/test_file/test_file2
Found 10 duplicate lines in 2 blocks in 2 files
Processed a total of 10 significant (14 raw) lines in 2 files
Processing time: 0.027sec

Figure 5.6: Output from Simian with highlighted information that is parsed in the detection
mechanism.

5.3 Application Programming Interface
The application programming interface (API) is an important part of the tool as it controls
communication between the GUI and the core of the application. For the implementation of
the REST API was chosen Python web framework FastAPI14. It achieves great performance,
supports asynchronous programming and automatically generates API documentation. The
implementation of API endpoints will be described in the rest of the section.

API Endpoints

The implemented API contains overall 9 endpoints which deliver messages between the fron-
tend and backend, plus one additional which contains the documentation. In the following
subsections, each endpoint will be described. The documentation of all API endpoints that
will be mentioned is accessible via the endpoint /docs, in addition to the description, pro-
viding also example usage. In production, each endpoint has an additional prefix /api/v1
which contains a versioning. It labels a specific version of the software which helps with
referencing and tracking changes.

GET /ping

This endpoint performs a “health” check and informs about the status of the API, whether
it is running and responsive. If there is any issue it is propagated by the HTTP status code
representing failure, otherwise the endpoint returns the following response: {“pong”:true}

GET /project/fetch_all

The endpoint /project/fetch_all is used to fetch all registered projects in the internal
database. The possible responses when API is running are shown in Table 5.1.

GET /bug/fetch_all

This endpoint is used to fetch details about all bugs stored in the database, containing their
identification, fix commit, verification status, patch and code. The responses are listed in
Table 5.2.

14https://fastapi.tiangolo.com
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HTTP code Description
200 OK – returns the list of registered projects
503 Resource unavailable error – DB is not accessible

Table 5.1: Overview of responses from API endpoint /project/fetch_all.

HTTP code Description
200 OK – returns list of stored bugs
503 Resource unavailable error – DB is not accessible

Table 5.2: Overview of responses from API endpoint /bug/fetch_all.

POST /project/register

The /project/register endpoint is used to add a new repository to the database and clone
it to the local storage of the tool. In order to be able to perform detection in a repository,
firstly it needs to be registered using this endpoint. When a project is successfully registered
the API schedules a task in the Redis Queue (5.1) to clone the repository in the background
process by the service Worker.

Field Description
url CVS URL to clone the repository from

language programming language of the project
parent name of the parent project (optional as it might be the parent)

Table 5.3: Overview of request payload fields of API endpoint /project/register.

HTTP code Description
201 Created – returns details of the registered project
422 Validation error – some payload fields are missing or invalid
503 Resource unavailable error – DB is not accessible

Table 5.4: Overview of responses from API endpoint /project/register.

The payload of the request always needs to contain fields url, language and parent.
The description of the request payload fields is available in Table 5.3 and the responses
in Table 5.4. It is mandatory to specify the cloning url15 in the https:// form in order
to avoid the need to set up a password-protected SSH key in the worker service, which is
needed in case of cloning using an SSH URL. During the processing of the request, from
the url value is parsed name and owner of the project, which are stored in the database
using the CRUD interface defined in Section 5.1.

POST /bug/update

The endpoint /bug/update is used to specify details about bugs stored in the database,
namely the fix commits, patch and code attributes. In the case of the detection method
using the tool Simian, it is mandatory to specify the code to be used for the detection of
clones, while the default detection method using the approach of BlockScope can extract the

15https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories
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patch from the commit automatically. Although to increase the precision of this method,
the specifically crafted patch can be provided in this way.

The description of responses and payload fields of this endpoint is described in Table 5.6
and 5.5 respectively. In the payload it is mandatory to specify the field id, method and at
least one of fix_commit and patch.

Field Description
id ID of the bug in the database (e.g. CVE-2021-3401)

fix_commit commit hash to be specified as a bug-fixing commit
patch base64-encoded patch or code for the specified detection method
method method specifies whether column patch or code should be updated

Table 5.5: Overview of request payload fields of API endpoint /bug/update.

HTTP code Description
200 OK – returns details of the updated bug
404 Not found error – the bug with provided ID was not found in the DB
422 Validation error – some payload fields are missing or invalid
503 Resource unavailable error – DB is not accessible

Table 5.6: Overview of responses from API endpoint /bug/update.

POST /detection/search

This endpoint performs a search of bug-fixing commit candidates of the requested vulner-
ability in the provided source repository where it originated. If the bug is stored in the
internal database, the details about it are provided from there. Additionally, if the bug has
specified a patch, it is also provided in the response. The description of the payload fields
are shown in Table 5.7 and responses in Table 5.8.

Field Description
bug_id ID of the bug in the database (e.g. CVE-2021-3401)

project_name project where the bug was discovered

Table 5.7: Overview of request payload fields of API endpoint /detection/search.

HTTP code Description
200 OK – returns list of candidate commits and patch if available
422 Validation error – some payload fields are missing or invalid
500 Internal server error – failed repository initialization or search
503 Resource unavailable error – DB is not accessible

Table 5.8: Overview of responses from API endpoint /detection/search.

POST /detection/show_commit

The purpose of this endpoint is to provide the content of the given commit hash (SHA-1) in
the specified project. That is useful mainly when multiple candidate commits were found
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for a vulnerability, so the user can display the content of each candidate and so help with
specifying the correct one, which should be further analysed. The request payload and the
responses from this endpoint are shown in tables 5.9 and 5.10 respectively.

Field Description
project_name project where the commit should be searched

commit commit hash to search

Table 5.9: Overview of request payload fields of API endpoint /detection/show_commit.

HTTP code Description
200 OK – returns the content of the given commit
404 Not found error – the commit was not found in the given repository
422 Validation error – payload field missing or the project is not registered
500 Internal server error – project initialization or search of commit failed
503 Resource unavailable error – DB is not accessible

Table 5.10: Overview of responses from API endpoint /detection/show_commit.

POST /detection/execute

The endpoint /detection/execute schedules a detection method execution task to the
Redis Queue (5.1), which is processed in a background process by the service Worker.
Before the detection method is started, the run-time logs are forwarded to a log file located
in the local storage (5.1) of the tool.

Table 5.11 contains description of the required payload fields and Table 5.12 shows re-
sponses returned by this endpoint. In the case of the detection method based on BlockScope,
one of the fields commit and patch needs to be specified, while in the case of the detection
method using an integrated tool Simian strictly requires the code chunk to be detected.
The field patch is used for transferring both the patch for BlockScope and the code chunk
for Simian.

Field Description
bug_id investigated bug ID

project_name parent project of analysed cloned repositories
commit bug fixing commit
patch base64-encoded patch or code to be detected
method detection method to be used
date version of the project from the date which should be considered

Table 5.11: Overview of request payload fields of API endpoint /detection/execute.

HTTP code Description
201 Created – task successfully scheduled
422 Validation error – payload field missing
503 Resource unavailable error – Redis not available

Table 5.12: Overview of responses from API endpoint /detection/execute.
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GET /detection/status

This endpoint fetches the latest log file from the local storage (5.1) and provides its content.
Additionally, the specific detection results are parsed from the logs using regular expressions
from Python built-in library re16. a description of possible responses from the endpoint is
available in Table 5.13.

HTTP code Description
200 OK – returns log and parsed detection results
500 Internal server error – log parsing failed
503 Resource unavailable error – log file not available

Table 5.13: Overview of responses from API endpoint /detection/status.

5.4 User Interfaces
This Section provides an implementation overview of available user interfaces, designed in
the previous Chapter 4.3. The tool provides in total two user interfaces – web and command
line interface. In sections about each, the used technologies, libraries and a preview of the
results will be mentioned and displayed.

Web

The web is the first available user interface implemented to simplify the usage of the tool
in an intuitive manner. For implementation was chosen React17, an open-source JavaScript
library for building user interfaces from individual pieces called components. React is
free to use and has available a large number of open-source libraries which provide pre-
built components. For building the web interface was used the React component library
MaterialUI18, which accelerated and simplified the development.

The preview of the page which displays tables with lists of registered projects and
stored bugs in the internal database is available in Figure 5.7. Upon loading, the page
requests the lists of projects and bugs from the API endpoints /project/fetch_all and
/bug/fetch_all. In the meantime, the page is rendered and once the API provides the
requested data it is filled in the tables. To register a new project the form under the
table Projects is used and upon submitting, the inputs are processed by the API end-
point /project/register. Likewise, the bugs can be updated utilizing the API endpoint
/bug/update.

The second page prepares and executes the detection methods. The preview is available
in Figure 5.8. Providing the ID of vulnerability and source project name, clicking on
the button Search, the web utilizes the API endpoint /detection/search to retrieve
the list of candidate bug-fixing commits and the patch of the bug, if it is available in
the internal database. Otherwise, the backend tries to parse it from the details of the
given vulnerability. In case the list of candidate commits contains multiple results, their
contents can be displayed by selecting the desired commit. Accordingly, the content of
the commit is retrieved from API endpoint /detection/show_commit and displayed in the

16https://docs.python.org/3/library/re.html
17https://react.dev
18https://mui.com/material-ui/getting-started/overview/
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text area in the middle of the page, which can be manually edited to contain only relevant
changes. The fix commit in the input field at the bottom of the page is automatically
filed according to the selection in the list of candidate commits but can be also manually
edited. Optionally, the method and date of the repository inputs can be specified before
executing the detection method. Upon submitting the form using the button Detect, the
API endpoint /detection/execute is utilized to schedule the targeted detection task and
the user is automatically navigated to the page displaying the detection log and results.

Figure 5.7: Implemented overview web page.

Figure 5.8: Implemented prepare detection web page.

The preview of the third page is observable in Figure 5.9. The page displays log and
parsed results from detection method run-time. To fetch required data the web uses the
API endpoint /detection/results. The purpose of this page is informational and does
not affect the method.
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Figure 5.9: Implemented web page displaying detection logs and results of CVE-2021-3401.

Command Line Interface

Additionally to the web, the tool provides also a command line interface (CLI), which
benefits in terms of efficiency and lesser load on a machine as it depends only on the
database and Redis. Although, the output is not as clear as in the web interface and
requires an experience with the command prompt.

For implementation of the CLI a Python library click19 was used. Its syntax reminds
of the FastAPI as the commands and their arguments are defined using decorators. The
decorators take care of parsing arguments, which makes the code shorter and more clear in
comparison to other libraries, for example, Python built-in library argparse20.

The CLI implements the following commands, which are expecting the same values of
arguments as in API:

• register and clone a new project
$ cli register <URL> <language> [--parent <project>]

• run targeted detection
$ cli run <bug_id> <project> <method> [--date <date>]

• run discovery scan with the option to set a schedule for scans
$ cli scan [schedule]

• initialize the schema of the database
$ cli db-init

19https://click.palletsprojects.com/en/8.1.x/
20https://docs.python.org/3/library/argparse.html
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Chapter 6

Experimentation

This chapter presents and evaluates the capabilities of the implemented tool. The first
section describes the preparation steps, including system configuration and data set. Then
the results produced by the implemented tool are presented in the following section. Finally,
the last section summarizes the results, discusses shortcomings and provides suggestions for
possible improvements and next development.

6.1 Preparation
Initially, the open-source projects Bitcoin and Go-Ethereum were selected for experiments
because of their popularity, according to the list of cryptocurrencies from the website
CoinGecko1. The projects were then registered in the internal database as parent projects
and their repositories were cloned to the local storage. From the previously mentioned
list of cryptocurrencies and based on prior research, projects which adopted source code
from either Bitcoin or Go-Ethereum repositories were identified. Accordingly, the identi-
fied projects were registered in the internal database as their forks and cloned to the local
storage.

The data set used for experimentation consists of vulnerabilities with assigned CVE
identifiers, discovered in the selected parent projects Bitcon and Go-Ethereum. The vulner-
abilities were selected based on the availability of information about them, mainly references
to patches in order to work with verified data. Accordingly, the web interface was used to
create entities of the bugs in the internal database and attempt to find bug-fixing candidate
commits using the functionality of the component FixCommitFinder. The found candidate
commits were then manually validated and the bug-fixing code changes were extracted, in
order to use in the detection method only changes that address patch of the vulnerabil-
ity. The extracted code changes were then used to update the corresponding attributes of
the bug entity in the internal database, in order to allow this step to be omitted in the
subsequent repeated executions of the detection.

The docker environment was configured to use 4 CPU cores to take advantage of im-
plemented multiprocessing features which improve the speed of the algorithm and 8 GB of
memory for the experimentation. For particular evaluations, the web interface was used to
execute both detection methods for each vulnerability from the prepared data set. Conse-
quently, the detection results were noted and manually verified in the corresponding code

1https://www.coingecko.com
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bases in order to evaluate the precision of the implemented detection methods. Manual
verification is needed because the results might contain false detections.

6.2 Results
This section presents the detection results for the prepared list of vulnerabilities. Selected
vulnerabilities are closely analysed to address the capabilities and shortcomings of particular
implemented detection methods, while the others provide only numbers of positive/negative
results for the calculation of the success rate. The detailed results are compared to the
expected outcome of the tool and are presented in tables, where a check mark (✓) represents
detected patch, a cross (×) represents that patch was not applied but the vulnerable code
detected and an empty cell means that the clone was not found and vulnerability was not
propagated. The results, which do not correspond to reality (false positives/negatives) are
marked by the red color of the cell. The tables display results from the main detection
method, which is based on the approach of BlockScope.

Bitcoin-based vulnerabilities

A vulnerability with identifier CVE-2021-34012 was selected for the first experiment, as it
is the latest published vulnerability according to the list3 of weaknesses in Bitcoin. The
vulnerability was discovered in the project Bitcoin and might allow an attacker to execute
arbitrary code upon passing a malicious argument to the bitcoin-qt program. This was
caused by misuse of built-in arguments of GUI framework Qt4.

CVE-2021-3401 Patch application status over date
Project 21/02/04 22/05/06 23/05/03

bitcoin-abc ✓ ✓ ✓
bitcoin-sv
BTCGPU × × ×
dash × ✓ ✓
dogecoin × ✓ ✓
litecoin ✓ ✓ ✓
pigeoncoin × × ×
Ravencoin × × ✓
qtum ✓ ✓
zcash
zen

Table 6.1: Detection results for CVE-2021-3401 over various versions of the analysed
projects.

The results in Table 6.1 show that the vulnerability was propagated to some clones of
the project Bitcoin. It contains patch application status for three different states of the
projects according to the timeline of each project. The first, the 4th of February 2021 refers
to the date of CVE publishing, and the following display patching progress over time with

2https://nvd.nist.gov/vuln/detail/CVE-2021-3401
3https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
4https://www.qt.io
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the last date, the 3rd of May 2023, referring to the date of this experiment. The results
contain the detection of the first three types of clones – Type I, Type II and Type III.

Projects bitcoin-abc, dogecoin, pigeoncoin and Ravencoin contained clones of Type III.
Clones of Type II were found in projects dash, dogecoin and Ravencoin after applying
patch and the rest were Type I clones. Projects bitcoin-sv, zcash and zen did not adopt
the vulnerable code. Although, there was one miss in case of the project qtum in the most
recent version, where the upper candidate context was missing, thus the candidate code
was not identified, even when the lower context would be found.

The tool Simian was able to detect vulnerability only in the project BTCGPU containing
Type I clone, when run with code fragment containing the vulnerable version of the code on
version from 3rd of May 2023. With version from 4th of February 2021 it was additionally
able to detect the vulnerability only in project dash, still missing the other three affected
projects.

CVE-2018-17144 Patch application status over date
Project 18/09/14 18/09/19 23/05/03

bitcoin-abc
bitcoin-sv
BTCGPU × ✓ ✓
dash ✓
dogecoin × ✓ ✓
litecoin × ✓
pigeoncoin ×
Ravencoin × ✓
qtum ✓
zcash
zen

Table 6.2: Detection results for CVE-2018-17144 over various versions of the analysed
projects.

An Inflation bug was chosen for the second detailed experiment. The bug was discovered
alongside Denial-of-Service weakness in Bitcoin and was described in Section 3.1. The
vulnerability was assigned the identifier CVE-2018-171445. The experiments were done
with various versions of the projects and the most interesting are contained in Table 6.2.
The dates in the table refer to the date before publication of the CVE record, the date of
publication and the date of experimentation.

The results of the tool on this vulnerability are worse in comparison to the previous
vulnerability. The reason is that the projects where the clone was not detected used a version
where the context of the vulnerable code contained too many adjustments (d1dee20547)
despite the affected code being present. Simian detected additionally the flaw in projects
dash and pigeoncoin, although missed Ravencoin which contained a clone of Type III on
the 14th of September 2018. On the other side, projects bitcoin-abc and bitcoin-sv did not
clone the affected code.

To the 3rd of May 2023, most of the repositories already patched the vulnerability
using different solutions, thus syntactical clones were mostly not found, which makes the
original patch outdated. Additionally, the original patch contained a change only on a

5https://nvd.nist.gov/vuln/detail/CVE-2018-17144
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single line of code6, specifically changing value of parameter from true to false. In this
case, the similarity-based method would require more strict rules, to pay closer attention to
the specific changes. The lack of precision resulted in a false negative detection in project
pigeoncoin, as the vulnerability was patched here using different logic. Extended context
was used also in the case of qtum, zcash and zen.

Vulnerability Method TP TN FP FN Date

CVE-2019-15947

BS 4 7 1 23/05/03SA 4 8
BS 8 2 20/04/01SA 8 4

CVE-2018-17145

BS 1 7 23/05/03SA 11 1
BS 2 5 1 20/04/01SA 1 9 2

Table 6.3: Evaluation of both implemented detection methods on CVE-2019-15947 and
CVE-2018-17145.

Summarized detection results comparing the two implemented detection methods for
another two vulnerabilities are contained in Table 6.3. Column TP represents true positive
detections – the vulnerable code was correctly detected, column TN represents true negative
results – repository does not contain vulnerable code, and columns FP and FN represent
corresponding false results. The particular methods are marked as BS, which refers to the
BlockScope-based method, and SA which stands for Simian or similarity analyser.

In the case of vulnerability CVE-2019-15947, as all the detection were clones of Type I,
the tool Simian was able to perform slightly better. The one false positive result of the
BlockScope-based method was caused by stretched candidate code because of the upper
candidate context, which was not precisely matched. On the other hand, the code of
vulnerability CVE-2018-17145 contained clones of Type III as well in the forked repositories,
which were not detected by Simian, but by BlockScope were.

Go-Ethereum-based vulnerabilities

The third closely analysed vulnerability was present in project Go-Ethereum, which is
implemented in the programming language Go in contrary to previously analysed projects
written in the programming language C++. The selected vulnerability was assigned an
identification CVE-2022-291777 and its exploitation could make the affected node crash. It
was selected because it is the latest vulnerability in this project, which has a reference to
the patch and is an example of complex changes discussed in relation to the discovery scan.
The discovery scan would evaluate it as complex because the patch affects more than one
file.

The detection results can be found in Table 6.4. The first date corresponds to the fix
in Go-Ethereum, the second date indicates the CVE publication date, and the final date
represents the date of this experiment. This vulnerability was propagated to four of five
analysed projects as a clone of Type I and the main detection method was able to detect

6https://github.com/bitcoin/bitcoin/pull/14249/commits/d1dee20547
7https://nvd.nist.gov/vuln/detail/CVE-2022-29177
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it correctly, while Simian does not support this language, it needed to be configured for a
plain text comparison.

CVE-2022-29177 Patch application status over date
Project 22/03/07 22/06/20 23/05/03

bor × ✓ ✓
bsc × ✓ ✓
celo-blockchain × ✓ ✓
optimism × × ×
subnet-evm

Table 6.4: Detection results for CVE-2022-29177 over various versions of the analysed
projects.

6.3 Evaluation
The detection during experimentation was executed using the implemented web interface,
which was used initially to prepare repositories and the data set. The data set consisted of
five vulnerabilities discovered in either project Bitcoin or Go-Ethereum, which covered all
three types of patches – containing only additions, only deletions, and mixed changes.

Twelve projects which adopted code from Bitcoin and five from project Go-Ethereum
were selected for experiments. The experiments were designed to address each vulnerability
in the data set on various versions from the timeline of the forked projects, which was easily
possible thanks to the optional parameter specifying the version date in the forked projects.
Consequently, both available detection methods were executed and the BlockScope-based
method was able to detect also clones of Type II and Type III additionally to the clones of
Type I detected by the integrated tool Simian as well.

Although, the experimentation confirmed the expected shortcomings and advantages of
detection methods. Simian is limited to the detection of Type I clones which generated false
negative detection results. The higher types of clones were covered by the second method,
BlockScope, utilizing textual context-based candidate code search and textual similarity-
based comparison with a patch code for determining the vulnerability of candidate code
fragments. The second method would fail at finding the right candidate context in the
target project or due to using a relatively low threshold for the similarity between patches
with minor changes and candidate code. The experiments resulted in two false positives
and one false negative result on the prepared data set and over various versions from the
timeline of forked projects. The two false-positive results were identified on the date of the
experiment, which was employed for detecting all vulnerabilities. Consequently, this date
was chosen for the calculation, resulting in an 80% true positive rate of the implemented
detection method covering the first three clone types.

The possible improvements could be achieved by defining stricter rules for patches con-
taining specific changes as it was in the analysis of CVE-2018-17144, where the initial
patch changed only the boolean value in the function call. The Normalized Levenshtein
edit distance metric [37] evaluated the vulnerable boolean value false more similar to the
patched parameter with the boolean value in project pigeoncoin, resulting in false positive
detection. Additional extensions for the implemented tool could contain support for more
file extensions to the current .cpp and .go, which currently helps with filtering files and
comment lines.

43



Chapter 7

Conclusion

The primary goal of this thesis was to develop a tool for detecting and monitoring cloned
vulnerabilities in open-source projects. In the scope of this work, the detection tool was
designed, implemented, and evaluated on a set of real-world examples.

The introductory chapter of this thesis presented motivation and insights discussing
vulnerabilities in software applications, secure coding practices, identifiers used for describ-
ing weaknesses and databases storing them. The following chapter introduced clones of
source code, their types, methods and existing tools for their detection. Accordingly, the
design choices, the implementation details of a monitoring tool for the detection of cloned
vulnerabilities and its capabilities were presented.

The designed tool provides options to detect the propagation of specific vulnerabilities
and to set up periodic monitoring of selected open-source projects in user-friendly interfaces.
The tool currently supports two clone detection methods based on prior research. The first
method utilizes a tool Simian for detecting duplicate code fragments capable of detecting
only Type I clones, while the second method implements detection based on a textual
similarity between the target code and patch, which locates the target code based on its
context. The second method, BlockScope, is capable of detecting not only Type I clones
but also Type II and Type III clones. These represent syntactically similar code fragments
that differ through variable renaming or the addition or deletion of code statements. While
the first three types of clones were detected by the implemented tool with a sufficient rate
as discussed in the final evaluation, it does not cover Type IV. Clones of Type IV, which
are syntactically different but semantically similar fragments of code are not covered by
either of these methods, which might be the topic for future work and extension for the
implemented tool.

This thesis has provided insights into the issue of cloned vulnerabilities, and the pro-
posed monitoring tool demonstrates the potential for detecting and mitigating such vul-
nerabilities in a timely and efficient manner. The findings and the developed tool can
contribute to improving the security of software systems in the area of cloned vulnerability
detection and mitigation across open-source projects while providing a scalable architecture
for future extensions and related research.
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Appendix A

CD Content

• Dockerfile – instruction describing the docker image of the tool

• README.md – README containing installation and start-up manual

• cli – executable link to the CLI

• cloneguard/ – source code of API, CLI and detection mechanism

• db_data/ – file with dump of the database content

• docker-compose.yml – description of services

• docs/ – source files of the thesis text

• poetry.lock – lock file generated by the Poetry package manager for Python projects

• pyproject.toml – definitions of Python dependencies

• web/ – source code of web user interface
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