
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

MONITORING AND REPORTING TOOL FOR CLONED
VULNERABILITIES ACROSS OPEN-SOURCE PROJECTS
MONITOROVACÍ A REPORTOVACÍ NÁSTROJ PRO KLONOVANÉ ZRANITELNOSTI NAPŘÍČ OPEN-

SOURCE PROJEKTY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

MATUS ŘEMEN

Ing. PATRIK HOLOP

BRNO 2023

T BRNO FACULTY I

UNIVERSITY OF INFORMATION |

OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment |||||||||||||||||
145021

Institut: Depar tment of Intell igent Sys tems (UITS)

Student : R e m e ň M a t ú š

P rog ramme: Information Techno logy

Specia l izat ion: Information Techno logy

Tit le: M o n i t o r i n g a n d R e p o r t i n g T o o l f o r C l o n e d V u l n e r a b i l i t i e s a c r o s s O p e n - S o u r c e

P r o j e c t s

Category : Securi ty

A c a d e m i c year: 2022/23

Ass ignment :

1. Get famil iar wi th code clone types and f rameworks that automat ize their detect ion.

2. S tudy exist ing solut ions for detect ion o f vulnerabi l i t ies in open-source projects; analyze their

propert ies and achieved results.

3. Get acquainted wi th vulnerabi l i ty da tabases and their notat ions, such as C V E and C P E .

4. Propose a tool for semi -au tomated scann ing of the set o f moni tored open-source projects using

vulnerabi l i ty intel l igence and code-deve lopment analys is .

5. Implement and evaluate the proposed tool on the set of open-source projects selected by the

supervisor.

Li terature:

• H u m , Qingze, et a l . "Co inWatch : A c lone-based approach for detect ing vulnerabi l i t ies in

cryptocurrencies." 2020 IEEE International Conference on Blockchain (Blockchain). IEEE, 2020 .

• Al iyev, Rashad and Pealver, Lourdes. "Analyz ing Vulnerabi l i ty Databases. " 2016 10th IEEE

International Conference on Application of Information and Communication Technologies. IEEE,

2016.

Requ i rements for the semest ra l de fence :

The first three i tems f rom the ass ignment .

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor :

Consul tant :

Head of Depar tment :

Beginning of work :

Submiss ion deadl ine:

Approva l date:

H o l o p Pa t r i k , I n g .

Ing. Ivan Homol iak, Ph.D.

Hanáček Petr, doc. Dr. Ing.

1.11.2022

10.5.2023

3.11.2022

Faculty of Information Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
The presented thesis discusses vulnerabili t ies present i n open-source projects, focusing on
source code adoption among the projects by code cloning. In the scope of this thesis, the
types of source-code clones and their detection procedures are discussed. Furthermore,
a tool al lowing evaluation and execution of the discussed detection methods was designed
and implemented. The tool and detection methods were evaluated and tested on real-world
examples.

Abstrakt
P r e d k l a d a n á p r á c a sa z a o b e r á z ran i teľnosťami v projektoch s o t v o r e n ý m zd ro jovým k ó d o m ,
so z a m e r a n í m na š í renie zdro jového k ó d u medzi projektami k lonovan ím. V r á m c i tejto p ráce
sú d i sku tované typy klonov a postupy ich detekcie. B o l n a v r h n u t ý a i m p l e m e n t o v a n ý n á s t r o j
umožňu júc i vyhodnotenie a spustenie s p o m í n a n ý c h de t ekčných m e t ó d . N á s t r o j a de tekčné
m e t ó d y bol i v y h o d n o t e n é a t e s t o v a n é na p r ík l adoch z r eá lneho sveta.

Keywords
cybersecurity, vulnerabilit ies, detection, eve, source code clones, coinwatch, szz, open-
source, git, blockscope

Klíčová slova
k y b e r n e t i c k á bezpečnosť , z rani teľnos t i , detekcia, cve, klony zdro jového k ó d u , coinwatch,
szz, open-source, git, blockscope

Reference
R E M E Ň , M a t ú š . Monitoring and Reporting Tool for Cloned Vulnerabilities across Open-
Source Projects. Brno , 2023. Bachelor's thesis. Brno Universi ty of Technology, Facul ty of
Information Technology. Supervisor Ing. Pa t r ik Holop

Rozšířený abstrakt
Chyby a p o t e n c i o n á l n e zranitelnosti v sof tvérových ap l ikác iách sú b e ž n ý m p r o b l é m o m ,

s k t o r ý m sa vývojář i sof tvéru s t r e t áva jú . Softvérové zrani teľnos t i sú chyby alebo slabiny,
k to ré m ô ž u byť zneuž i t é ú t o č n í k m i k n e o p r á v n e n é m u p r í s t u p u , z í skaniu c i t l ivých informáci í ,
spôsoben iu škody alebo n a r u š e n i u n o r m á l n e h o fungovania s y s t é m u . Spolu s p r i d a n í m novej
funkcionality, či ú p r a v o u ex is tu júceho k ó d u v projektoch, sa z rani teľnos t i dos t áva jú do
apl ikáci í p o č a s ich vývoja , p r i k torom sa s táva , že p r o g r a m á t o r i m ô ž u n i ek to ré čas t i k ó d u
p rebe rať z iných voľne d o s t u p n ý c h projektov. Znovupouž ívan ie k ó d u vie v ý z n a m n e urýchliť
p r á c u vývo já r a a umožňu je nadv iazať či jednoducho rozšíriť exis tu júci projekt, avšak može
sa s tať , že v preberanom alebo rozš i rovanom projekte sa v y s k y t u j ú chyby, k t o r é vývojář i
p r evezmú spolu s v y ž a d o v a n o u funkcionalitou. V tomto p r í p a d e sa j e d n á o k lonované zra
ni teľnost i , k t o r ý m i sa z a o b e r á t á t o b a k a l á r s k a p r á c a a navrhuje n á s t r o j na ich monitorovanie
a detekciu.

V ú v o d e teoretickej čas t i sa p r á c a z a o b e r á všeobecne z ran i teľnosťami v sof tvérových
ap l ikác iách a s p o m í n a m o ž n o s t i ako predísť ich š í reniu a z a n á š a n i u . Ďalej r ozobe rá dôleži té
pojmy a d a t a b á z y , k t o r é sa spá ja jú so z ran i teľnosťami , v r á t a n e C V E a N V D . Tie to d a t a b á z y
p o s k y t u j ú š t a n d a r d i z o v a n é ident i f iká tory a informácie o z n á m y c h z ran i teľnos t iach . P r á c a
t iež prezentuje p r ík l ad zneuž i t i a chyby v s y s t é m e z r eá lneho sveta, č ím ilustruje dôležitosť
zaoberať sa softvérovou bezpečnosťou .

V teoretickej čas t i p r á c a r o z o b e r á š tyr i rôzne typy klonov zdro jového k ó d u , k t o r é sa
u rču jú podľa ú rovne podobnosti . P r v ý m typom sú p r e s n é kópie, k t o r é sa m ô ž u líšiť len
v použ ívan í bielych znakov alebo k o m e n t á r o v . D r u h ý typ v p o r o v n a n í s p r v ý m navyše
obsahuje premenovanie p r e m e n n ý c h alebo zmenu ich d á t o v ý c h typov. T re t í typ v y c h á d z a
z p r e d c h á d z a j ú c e h o , ale obsahuje z m e n e n é , p r i d a n é alebo o d s t r á n e n é čas t i kódu . P r v é t r i
typy spá ja s y n t a k t i c k á podobnosť , ale š t v r t ý sa v tomto odl išuje a s o r ig iná lnym fragmentom
k ó d u ho spá ja len s é m a n t i c k á p o d o b n o s ť . Ďalej sa v p rác i pop i su jú postupy detekcie klonov,
k to ré sa delia do š ty roch tr ied: t ex tové , lexikálne, s y n t a k t i c é a s éman t i cké postupy.

N á s t r o j n a v r h n u t ý v tejto p rác i implementuje dve m e t ó d y detekcie klonov, k t o r é v zá
vere po rovnáva . P r v á m e t ó d a využ íva n á s t r o j Simian. A k o sa potvrdi lo v expe r imen tác i i ,
dokáže detegovať klony zdro jového k ó d u p rvého typu. D r u h á m e t ó d a , BlockScope, imple
mentuje postup za ložený na textovej podobnosti zmien v zdrojovom kóde , k t o r é op ravu jú
zrani teľnosť, a k ó d o m v cieľovom projekte. K o n k r é t n y zdro jový kód v cieľovom projekte sa
vyhľadáva na zák l ade podobnosti jeho kontextu s kontextom o p r a v n é h o kódu . Pojem kon
text označuje r iadky k ó d u v okolí o p r a v n é h o kódu . N a zák l ade p r e d c h á d z a j ú c e h o v ý s k u m u
a e x p e r i m e n t á c i e sa ukáza lo , že tento p r í s t u p dokáže odhal iť p rvé t r i typy klonov. Spomí
n a n é m e t ó d y n a v r h o v a n ý n á s t r o j sp r í s t upňu je a u m o ž ň u j e spúšťať cez rozhranie v pr íka
zovom r iadku a i m p l e m e n t o v a n é webové rozhranie, k t o r é uľahčuje jeho použ i t i e a vizua-
lizuje výsledky. N á s t r o j t ak t i ež p o n ú k a možnosť konfigurovať a u t o m a t i c k é p l ánované mo
nitorovanie v y b r a n ý c h projektov, k t o r é môže odhal iť nové opravy chýb v ich r e p o z i t á r o c h
a umožňu je zaslať notif ikácie e-mailom, ked identifikuje podoz r ivé zmeny. Pokiaľ nie sú
identif ikované zmeny rozsiahle, tak n á s t r o j automaticky s p u s t í detekciu klonu danej chyby
v projektoch, k t o r é sú v internej d a t a b á z e n á s t r o j a u ložené ako klony m o n i t o r o v a n é h o pro
jektu. T ý m t o s p ô s o b o m môže n á s t r o j pomôcť včas informovať o po t enc i á lnych nových
zrani teľnos t iach .

P o č a s e x p e r i m e n t á c i e sa ukáza lo na danej dá tove j sade z oblasti kryptomien, že n á s t r o j
dokáže s mierou pravdivosti 80% identifikovať z ran i teľnos t i p r o p a g o v a n é p r e b e r a n í m zdro
jového k ó d u vo forme klonov p r v ý c h troch typov. Š t v r t ý typ zos táva nepokry tý , a teda
p o n ú k a možnosť rozš í renia tohto n á s t r o j a v b u d ú c n o s t i .

Monitoring and Reporting Tool for Cloned Vul
nerabilities across Open-Source Projects

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Pa t r ik Holop . I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

M a t ú š R e m e ň
M a y 10, 2023

Acknowledgements
Firs t and foremost, I would like to thank my supervisor Ing. Pa t r ik Holop for his professional
guidance and patience during my work on this thesis. Secondly, I thank to consultant Ing.
Ivan Homoliak, P h . D . for his motivat ion. Last but not least, I would like to thank my
family, friends and colleagues for their support.

Contents

1 Introduction 2

2 Vulnerabilities in Software Applications 4
2.1 Prevention and Mi t i ga t i on 4
2.2 Identifiers Related to Security Vulnerabil i t ies 6
2.3 Vulnerabi l i ty Databases 7
2.4 Real-world Example of Exp lo i t a t ion 9

3 Cloned Vulnerabilities 10
3.1 Rea l -Wor ld Example of a Cloned Vulnerabi l i ty 10
3.2 Types of Code Clones 11
3.3 Detect ion Methods 12
3.4 Detect ion Tools 13

4 Design 20
4.1 Architecture 20
4.2 Workflow of the Detect ion Mechanisms 22
4.3 User Interface 24

5 Implementation 27
5.1 Storage 28
5.2 Detect ion Mechanism and its Components 29
5.3 Appl i ca t ion Programming Interface 32
5.4 User Interfaces 36

6 Experimentat ion 39
6.1 Preparat ion 39
6.2 Results 40

6.3 Evaluat ion 43

7 Conclusion 44

Bibl iography 45

A C D Content 49

1

Chapter 1

Introduction

Vulnerabil i t ies in software can have serious consequences, including reputation damage,
financial losses, or even loss of life in the case of cr i t ica l infrastructure systems. Most of
them are introduced during the development process as a result of hidden errors, which
might not appear suspicious ini t ia l ly. The system and its users or their data are at risk
unt i l the flaws are patched. That is the ma in reason and motivat ion why it is important to
constantly improve the security of products.

Cloned vulnerabilit ies are security weaknesses that are introduced into the software
system when code is copied or reused from another system that contains the vulnerabili ty.
These vulnerabili t ies can be difficult to detect and fix because they are not necessarily
introduced by intention, instead, they are inherited from the source code that was copied
or reused. In software engineering, the approach of cloning similar functional parts already
implemented in other applications is usually applied. It makes the development of new
products or adding features to existing ones swifter.

Cryptocurrencies, which became very popular in recent years, are a good example of
this case. Namely, B i t co in , an Open-Source peer-to-peer electronic cash system created by
Satoshi Nakamoto [24] inspired many new projects that joined the cryptocurrency market.
Lots of them were created as derivatives of B i t co in w i th the idea to extend or improve its
features. C lon ing helped to speed up the development of new coins by inheri t ing its base
infrastructure.

Al though , neither a large-scale project developed by the community as B i t co in is always
perfect. P lenty of vulnerabilit ies were discovered in its code base which were accordingly
documented and are stored and tracked in vulnerabi l i ty databases. A s there are many
other coins that share its code, it is possible that they also share the same vulnerabilities.
The question inspired this work to develop a monitor ing tool w i t h the goal of to analyse
the threat and help wi th the detection of vulnerable code and its occurrence i n cloned
projects, as the identification is not an easy but rather costly and exhaustive process and
after identification yet also patching the issue is desired.

The prevalence of code reuse and the increasing complexity of software systems makes
cloned vulnerabilit ies an important issue to consider in software development and mainte
nance. This thesis aims to study the characteristics and impacts of cloned vulnerabilit ies
and to identify effective approaches for detecting and mit igat ing them. The proposed tool in
this work considers disclosed vulnerabilit ies which means that the issue was already patched
in the project that was originally affected by it . Thanks to this fact the tool can identify an
issue, the affected code in the original project, and candidate projects w i th the probabil i ty
of vulnerabi l i ty inheritance. Addi t ional ly , the tool can be configured to run i n schedules and

2

identify potential bugs in the monitored project. The identified bugs become candidates
for detection of their adoption i n projects forked from the monitored project.

A n existing tool , w i t h the same goal described above, was implemented i n a project
named CoinWatch [15] w i th an a im at vulnerabili t ies i n cryptocurrencies. The CoinWatch
inspired this work wi th an idea to br ing improvements, extensions, and a graphical user
interface for wider and simplified usage of the tool for detecting and mit igat ing cloned
vulnerabilities.

This thesis begins wi th a basic introduct ion to the problem and the motivat ion for why
it is relevant to deal wi th . Chapter 2 explains and takes a closer look at vulnerabili t ies and
the basic terminology connected wi th them. In Chapter 3, clones of source code, current
detection tools and approaches are described and analyzed. Afterwards, Chapter 4 describes
a draft of the tool buil t for detecting cloned vulnerabili t ies. The next two Chapters 5 and 6
contain implementat ion details and an evaluation of the developed product. The final
Chapter 7 concludes this work wi th potential improvements for future work.

3

Chapter 2

Vulnerabilities in Software
Applications

Software vulnerabili t ies and exposures are weaknesses or flaws i n software products that
are exploitable in a cyberattack. The exploitat ion of a vulnerabi l i ty can allow an attacker
unauthorized access, elevation of privileges or denial of service [9]. Mos t of the known v u l
nerabilities are associated wi th dealing wi th input provided by a user of the applicat ion. For
instance, some frequent types of vulnerabilit ies include buffer overflows, cross-site scripting,
and S Q L injections [16]. The mistakes causing these issues can be introduced during the
development process or by using insecure libraries and frameworks.

This chapter discusses general ways to improve the security of software applications
in the beginning. Subsequently, identifiers related to evaluating vulnerabili t ies and public
databases storing details about them are described. A t the end of this chapter, a real-
world example of a cyberattack and its consequences are presented i n order to introduce
the severity of this topic.

2.1 P r e v e n t i o n and M i t i g a t i o n

Preventing and mit igat ing software vulnerabilit ies is crucial for ensuring the security and
rel iabil i ty of developed software. Th is section presents some secure coding practices for
the prevention and mit igat ion of weaknesses being introduced during the development of
a product. Following subsections are based on [28].

Input Validation and Sanitizing

A n input of an applicat ion or service can have different sources which can be divided
based on trustworthiness. For example, internal communicat ion between services might be
considered a trusted source. O n the other side, Input from a user is considered to be an
untrusted source because the data received can be anything. Th is makes it important to
validate it properly, so that malformed input w i l l not ha rm the system or lead to unexpected
behaviour. A n example of insufficient val idat ion are S Q L injections. To improve input
val idat ion these points should be considered:

• check a l l inputs from untrusted sources

• check usage of proper character sets (U T F - 8 , A S C I I , ...)

4

• encode data to a common character set before val idat ion

• validate a l l received data for type, length, format, and range

• validate received data against a "white" list of allowed characters, when possible

• process special and hazardous characters w i t h increased precision to address double
encoding or other forms of obfuscation attacks

• a l l val idat ion failures should result i n input rejection

Output Encoding and Sanitization
W h e n it comes to a trusted source of messages between services, some checks might be
omit ted as internal communicat ion can be performed through an internal interface. Omi t
t ing some validations, i n this case, could result i n better performance of the system. To
achieve this goal it is essential to comply wi th a l l items mentioned i n the previous sub
section, so the exchanged messages should be correctly encoded and sanitized. Sanit izing
should be mainly done on data for operating system commands and queries for S Q L , X M L ,
and L D A P .

Authentication and Password Management
Authent icat ion is a process of val idat ing the identity of a user, device, or system. It is used
for ensuring restricted access to private resources or certain actions. Some authentication
methods are:

• passwords - typical ly used i n combination wi th a user name

• two-factor authentication (2FA) - this method requires two different forms of authen
t icat ion to validate identity

• biometric authentication - this type requires physical or behavioural actions, like face
recognition or fingerprint, for identification

B y implementing strong authentication methods into the system, organizations can prevent
identity theft and provide protection against unauthorized access. These are some practices
on implementation, configuration and password management improvement:

• require authentication for a l l resources, except for those intended to be public

• authorizat ion should be fail secure

• credentials should be stored only as cryptographical ly strong one-way salted hashes
of passwords and storage should be writeable only by the applicat ion

• validate authentication only on completion of a l l input fields, especially i n case of
sequential authentication

• use only H T T P P O S T request for sending authentication data

• enforce higher password complexity - length, numeric and /or special characters

5

• enforce account disabling after a number of failed login attempts, the durat ion should
be sufficient to discourage guessing credentials by brute-force attack, but not to allow
denial-of-service attack

• notify the user on password change

• allow next password change at least after one day from the last change

More advice on secure coding practices can be found i n [28]. Nevertheless, mistakes
tend to slip into product ion versions of software. A t this stage, other options are to use
vulnerabi l i ty scanning tools, write automated tests or perform penetration testing to dis
cover hidden weaknesses, before they are exploited. Scanning tools are a form of static
analysis. They work by searching the application's code/binary for vulnerable patterns.
Details of such tools are analysed in the next Chapter 3. Automated tests and penetra
t ion testing are forms of dynamic analysis. They discover run-time issues in the buil t and
running applicat ion or its parts.

2.2 Identifiers Re la ted to Security Vulnerabi l i t ies

This Section introduces identifiers which are used to evaluate and address vulnerabilit ies and
the most popular publ ic ly available databases storing records about disclosed weaknesses.

CPE — Common Platform Enumeration

C P E refers to a standardized method for describing and identifying abstract classes of
software and hardware products present in an organization's computing infrastructure. The
standard was created by the Nat iona l Institute of Standards and Technology (NIST) as the
part of the C o m m o n Vulnerabil i t ies and Exposures (C V E) program. The latest version of
C P E is 2.3 and is used to identify products i n vulnerabi l i ty databases. It is represented as
formatted string binding wi th colon-delimited list of components prefixed wi th the string
"cpe:2.3:" [10].

cpe:2.3: part : vendor : product : version : update : edition :
language : sw_edition : target_sw : target_hw : other

Item Descript ion Example
part Class-appl icat ions , operat ing systems or hardware devices o

vendor Identifies manufacturer of the product microsoft
product Name of the product windows_10
version Affected release version 1.0
update Affected update beta
edit ion Edit ion-related terms applied by the vendor datacenter

language Loca l iza t ion of the product en-us
sw_edi t ion Software edit ion professional
target_sw Software environment of the product django
target_hw Hardware environment of the product x64

other Cus tom or vendor-specific information attr:value

Table 2.1: Overview of C P E components.

(i

CWE — Common Weakness Enumeration
C W E is a community-developed formal list of common software and hardware weakness
types that have security ramifications, which was released i n 2006. The C W E database
is maintained by the M I T R E Corpora t ion and as of 28th December 2022, it contains
933 records. The main goal of C W E is to stop vulnerabili t ies at the source by educat
ing software and hardware architects, designers, programmers, and acquirers on how to
eliminate the most common mistakes before products are delivered [23].

The severity of weaknesses can be evaluated by C o m m o n Weakness Scoring System
(C W S S) . It provides a method for pr ior i t iz ing software weaknesses. It is a collaborative,
community-based effort that is addressing the needs of its stakeholders [21].
Current top three weaknesses are [22]:

. C W E - 7 8 7 - Out-of-bounds Wri te

• C W E - 7 9 - Improper Neutra l iza t ion of Input D u r i n g Web Page Generat ion ("Cross-
site Scripting")

• C W E - 8 9 - Improper Neutra l iza t ion of Special Elements used i n an S Q L C o m m a n d
("SQL Injection")

CVSS — Common Vulnerability Scoring System
C V S S captures technical characteristics of software, hardware and firmware vulnerabilit ies.
It attempts to assign severity scores to vulnerabili t ies. The score is i n the range of 0.0 -
10.0, where higher numbers represent more severe vulnerabilit ies. The metric is composed of
three metric groups - base, temporal and environmental - and helps wi th the pr ior i t izat ion
of vulnerabili t ies [11, 14].

Base Metric Group

Impact metrics Exploitability
metrics

Attack Vector J (^ ^ r t " ^)

^| f Integrity ^
J I Impact J G Attack Complexity

C Privileges j f Availability |
Required J I Impact J

^ User Interaction ^

^ Scope ^

Temporal

Metric Group

Exploit Code
Maturity

Remediation Level

Report Confidence J

Environmental

Metric Group

Modified Base
Metrics

[Confidentiality j
I Requirement J C Integrity |

Requirement J
[Availability j
I Requirement J

Figure 2.1: Three C V S S metric groups. Source: [11]

2.3 V u l n e r a b i l i t y Databases

In 1989 the Computer Emergency Response Team (C E R T) was established at the Soft
ware Engineering Institute at Carnegie M e l l o n Univers i ty to find, collect and publ ish a l l
information about known vulnerabilit ies. After C E R T displayed a l l collected vulnerabili t ies
publicly, they started to appear i n many new databases wi th different formats of weakness

7

information. The most popular vulnerabi l i ty databases were analysed in [4], but as of
December 2022, some of them are shut down or not maintained.

C V E — Common Vulnerabilities and Exposures

C V E is a list of publ ic ly disclosed computer security flaws. It was released i n 1999, at
a t ime when most cybersecurity tools used their own databases, names and evaluations of
weaknesses. Now, C V E provides a database and a unified standard for naming information
security vulnerabilities.

The process of creating a new C V E identifier begins w i t h discovering and reporting
a potential security vulnerabil i ty. The information is accordingly assigned a unique C V E
identifier by a C V E Naming Au tho r i t y (C N A) and posted to the list on the C V E website
by an editor. The M I T R E Corpora t ion functions as the editor and pr imary C N A [20].

Each entry i n the list contains the following fields: C V E identifier number, brief descrip
t ion and references. The C V E identifier number format looks like "CVE-YYYY-NNNN", where
" Y " refers to a year of creation and " N " is unique number assigned to the vulnerabili ty. A s of
29th December 2022, the database contains 191 855 C V E records 1 and is synchronized wi th
the following database.

NVD — National Vulnerability Database

The N V D was established i n 2005 to provide the U . S. government w i th a repository of
data about software vulnerabilit ies. It is a product of the Nat iona l Institute of Standards
and Technology (NIST) to provide vulnerabi l i ty management information. The N V D can
be used to priorit ize the vulnerabilit ies to address i n order to secure important systems.

The database is based on and synchronized wi th the C V E list and enhances the base
C V E scheme for vulnerabi l i ty severity metrics and updates them when new information
about the vulnerabi l i ty is provided. C V S S is used for evaluation and helps to understand the
potential severity of each vulnerabil i ty. N I S T works directly w i th vendors and researchers
to assure the quali ty of published information and provide the public w i th accurate scoring
data [27].

Information about vulnerabilit ies is accessible to the public v ia the web page or R E S T
A P I provided by the organization. A s of 29th December 2022, the database contains 203 312
records 2 providing the following data:

• Base C V E E n t r y Schema - Identification, Descript ion, References

• Source Identifier - Reporter

• Publ ica t ion T ime

• Last Modif ica t ion T ime

• Status

. M e t r i c s - C V S S

• Weaknesses - contained C W E s

• Configurations - C P E
1https://eve.mitre.org
2https: / / nvd.nist.gov/general/nvd-dashboard

8

https://eve.mitre.org
http://nvd.nist.gov/general/nvd-dashboard

2.4 R e a l - w o r l d E x a m p l e of E x p l o i t a t i o n

The consequences of vulnerabili t ies i n software applications can be quite serious like data
breaches, theft of sensitive information, or damage to a product infrastructure. For instance,
consider vulnerabili ty, i n Microsoft Windows implementat ion of Server Message Block pro
tocol, w i th an identifier CVE-2017-0144^. A n exploitat ion of this flaw, by sending crafted
packets, allows remote attackers to run arbi trary code on a target machine. Th is defect
facilitated the spreading of worm-like ransomware WannaCry through the network i n 2017,
which affected many organizations, companies, and individuals [3]. Figure 2.2 depicts the
spread of WannaCry ransomware.

Ransomware is a type of malicious software, that locks up the v ic t im's data or device
and threatens to delete or keep it locked unless a ransom is paid to an attacker [25]. In
the case of WannaCry, the malware would encrypt files on the v ic t im's device and ask for
a ransom of value 300 U S D in B i t co in i f pa id wi th in the first three days, otherwise, the
value would be doubled for the next four days and i f not pa id at a l l , the files would be lost
forever. [26]

mmune Device y
— — • — > • I
Infection

Ransom
J Distribution over

Network

y
Figure 2.2: W a n n a C r y ransomware dis tr ibut ion.

3https://nvd.nist.gov/vuln/detail/CVE-2017-0144

9

https://nvd.nist.gov/vuln/detail/CVE-2017-0144

Chapter 3

Cloned Vulnerabilities

Cloned vulnerabilit ies are weaknesses propagated by reusing source code. Th is can happen
by copy-pasting insecure code snippets, whole functions or even whole projects. For copying
the whole project version control system G i t offers an easy option called a fork. This allows
developers to inherit the infrastructure of an existing project and afterwards they can
modify or start bui ld ing on it their own features. Al though , the inherited code base might
contain vulnerabilit ies.

In the beginning, this chapter w i l l present an example of a vulnerabi l i ty propagated by
cloning, followed by an overview of clone types based on the level of s imilar i ty to the origin
and methods for their detection. Afterwards, existing static analysis tools and approaches
for the detection of cloned vulnerabilit ies i n the software w i l l be analysed.

3.1 R e a l - W o r l d E x a m p l e of a C l o n e d V u l n e r a b i l i t y

A notable case of a flaw propagated by forking or fetching is CVE-2018-17144. O n the 18th
of September 2018, the bug was patched in B i t co in Core, the pr imary implementat ion of
the B i t co in protocol. Besides a potential Denia l of Service (DOS) attack, the vulnerabi l i ty
allowed an attacker to double-spend the same input, which would create new bitcoins out
of nothing and cause inflation in this major cryptocurrency. The flaw was caused by an
unhandled assertion error in a code validating transactions and preventing double spending
of coins. [7, 34]

v o i d U p d a t e C o i n s (c o n s t C T r a n s a c t i o n S t x , CCoinsViewCacheS i n p u t s ,
CTxUndo &txundo, i n t nHeight) {

// mark i n p u t s spent
i f (! t x . I s C o i n B a s e ()) {

t x u n d o . v p r e v o u t . r e s e r v e (t x . v i n . s i z e ()) ;
f o r (const CTxIn & t x i n : t x . v i n) {

txundo.vprevout.emplace b a c k () ;
b o o l i s spent = i n p u t s . S p e n d C o i n (t x i n . p r e v o u t , & t x u n d o . v p r e v o u t . b a c k ()) ;
a s s e r t (i s spent) ;

}

}

// add o u t p u t s
A d d C o i n s (i n p u t s , t x , n H e i g h t) ;

}

Figure 3.1: Vulnerable code shared between B i t co in and P igeonCoin . Source: [7]

10

The bug was fixed in B i t co in Core before it could have been exploited. Unfortunately,
in the case of P igeonCoin , one of many forks of B i t co in , attackers took advantage and
generated 235 mi l l ion coins worth of around 15,000 U S D on 26th of September 2018, while
it was s t i l l vulnerable more than a week after the fix i n B i t co in Core. The propagated code
responsible for the vulnerabi l i ty is visible i n Figure 3.1. [13, 34]

3.2 Types of C o d e Clones

Clones of source code originate from copying and reusing code fragments w i th possible
modification is a common approach i n software development. Such act ivi ty is an efficient
way in programming as similar code does not have to be wri t ten mult iple times from
scratch. Depending on how similar the code clones are to their origins, they are divided
into four groups [30]. For an example of each type of clone consider the following code in
the programming language C as the original code:

i f (a > b) { // comment
a = b + 1;

} else {
a = b + c;

}

T y p e I clones are identical code fragments w i th possible white space characters and com
ment variations. Type I clone from the example original code could be:

i f (a > b) {
a = b + 1; } // comment 1

else {
a = b + c ; } // comment 2

T y p e II are Type I clones wi th addi t ional possible variations i n user-defined identifier
naming and types. A n example could be:

i f (x > y) {
x = y + 1; // comment

}
else { x = y + z; }

T y p e III clones i n addi t ion to T y p e I and Type II contain changed, added and/or deleted
statements. Type III clone might look like this:

i f (x > y) {
x = y + 1;

} else { // comment
fl a g =1; // addition
x = y + z;

}

11

T y p e I V are code fragments w i th different syntactical structures, but w i t h the same se
mantics. Unl ike the previous types which were textually similar, this type of clone is defined
by functional similari ty. A n example of a Type I V clone might look accordingly:

x = x > y ? y + l : y + z ;

3.3 Detec t ion M e t h o d s

Detection techniques are divided into four classes: textual , lexical , syntactic and semantical.
Th is section w i l l introduce each class and mention detection tools which are based on them.

Textual Approaches

Text-based approaches compare two code fragments and detect clones based on string com
parison of lines. They are language-independent, easy to implement and generate fewer
false positive results. Before detection, they tend to use normalizat ion like the removal of
white spaces and comments. Th is approach is able to detect Type I clones without fur
ther post processing [32, 30]. Tools which are based on this approach include D u p [5] and
N I C A D [31].

Lexical Approaches

In lexical or token-based approaches whole source code of the analysed project(s) is parsed
into a sequence of tokens. Then i n the next step, the generated sequence of tokens is
scanned for duplicate subsequences which represent code clones in the end. C C F i n d e r [17]
and C P M i n e r [29] are example tools u t i l iz ing this approach. They are able to detect clones
of various types and have higher precision than textual approaches, but they also have some
l imitat ions. These techniques have higher t ime and space complexity and are dependent
on the order of the tokens and lines. W h e n cloned code contains added or deleted tokens,
this approach w i l l not detect it as clone [32, 30].

Syntactic Approaches

Syntactic approaches contain two types of techniques - tree-based and metric-based.
Tree-based approach parses the source code of the analysed project firstly into tokens

which are used to bu i ld an abstract syntax tree (A S T) . Then the clones are detected using
tree-matching algorithms rather than matching sequences of tokens i n lines as i n lexical
approaches. In this case, similar sub-trees represent duplicate code. Tools developed by
Baxter et a l . [6] and by Wahler et a l . [35] implement the tree-based approach.

The second type, the metric-based approach uses a number of different metrics gathered
from syntactic units like classes, methods, functions or statements i n the target source code.
The metric vectors are then compared i n order to detect clones instead of searching through
A S T or comparing code directly. Some of the collected metrics i n tools implementing this
approach can be numbers of loop, condit ional and return statements [32, 30]. Implementa
tions of metric-based approach are for example tools developed by M a y r a n d et a l . [19] or
by A b d u l - E l - H a f i z et a l . [1].

12

Semantic Approaches

This type of approach is used to detect code fragments w i t h similar semantics but different
code structures. There are two approaches connected wi th this technique - graph-based
and hybr id .

The graph-based approach utilizes a P rogram Dependency G r a p h (P D G) to represent
data and control the flow of the analysed source code. The detection is performed by an
isomorphic subgraph matching algori thm. For example, tool G P L A G [18] implements this
approach.

The hybr id detection technique combines mult iple approaches which were mentioned
above [32, 30]. A n approach developed by Agrawal et a l . [2] uses this technique.

3.4 Detec t ion Tools

Detection tools and approaches analysed in this section are tools designed for the automatic
identification of security vulnerabili t ies i n software applications. C o m m o n types are static
analysis tools, dynamic analysis tools and penetration testing tools. Static analysis tools
scan software source code to identify potential weaknesses, while dynamic analysis tools
observe the behaviour of the system during run-time. Penetrat ion testing tools are designed
to simulate attacks on the system to identify vulnerabilit ies, which might be exploited
during a cyberattack.

CoinWatch

This subsection is based on [15]. Co inWatch is a static analysis tool u t i l iz ing a clone-
based approach for detecting vulnerabili t ies in cryptocurrencies. Cryptocurrencies are an
attractive commodi ty for attackers because they can be anonymously sold on exchanges.
The fact, that many of them have their source code publ ic ly available, makes it possible to
develop tools like CoinWatch . It was developed in 2020 and has achieved promising results,
but unfortunately, it is not available for public use.

In summary, CoinWatch reported 786 vulnerabili t ies in 384 cryptocurrencies to the
date, when the paper was wri t ten and achieved a true positive rate of 89.7%. To the date,
CoinWatch worked only wi th Type I clones, while Type II and Type III would need a more
sophisticated method of detection like analysis of decompiled binaries of projects. In future
work, creators want to investigate possibilities for how to detect also Type II and Type III
clones alongside automating the process of the manual code annotation.

A study connected wi th CoinWatch contains an analysis of the propagation of cloned
source code between cryptocurrencies. The analysis found that at the t ime 786 cryptocur
rencies were direct ly or indirect ly cloned from a version of B i t co in . The percentage of
cloned code i n projects forked from Bi t co in is displayed i n Figure 3.2. In the majority of
these projects, the clone ratio was below 30%, however, some had the ratio even higher
than 50%. This fact implies the potential propagation of vulnerabilit ies among clones, once
they are discovered i n the parent project. In the case of cryptocurrencies, neglecting the
maintenance of the adopted code may have a serious financial impact . A l so , the number
of detected projects by the analysis is high, which makes maintenance a very costly and
repetitive task. CoinWatch is a solution for filtering only potential ly vulnerable projects,
whose maintainers can be accordingly warned about the detected threat.

13

600

500-

£ 400

300-

200-

100

20
jÜ r-n, r

40 60
Clone Ratio

80 100

Figure 3.2: B i t co in vO.17.0 clone ratio i n forked projects. Source: [15]

The overall workflow of CoinWatch is visualized in Figure 3.3. A t the beginning of
the pipeline, the tool receives a target C V E assigned to the target project. Accordingly,
a l l publ ic ly available details about the desired vulnerabi l i ty are scraped and parsed from
vulnerabi l i ty databases. These details are input for the next step - code evolution anal
ysis. The analysis utilizes the version control system G i t for traversing the versions of
the target project. Us ing the parsed C V E details, the analysis aims to identify fixing and
bug-introducing commits for the provided vulnerabi l i ty in the repository of the project.
Identified fixing and bug-introducing commits create a t ime window, i n which the target
project was affected by the vulnerabil i ty. Th is t ime window is used for the in i t i a l filtering
of potential ly affected chi ld projects, which were forked from the target project dur ing this
period. The identified fixing and bug-introducing commits are addi t ional ly used for man
ual annotat ion of the vulnerable code and transformation to a clone detection pattern. In
the end, the clone detection tool checks the occurrence of the pattern i n the potential ly
vulnerable projects forked i n the t ime window. After clone detection, on the output of the
pipeline is a list of l ikely affected cryptocurrencies.

Bug Introducing
& Bug Fixing

Commits

List of (Likely)
Affected

Cryptocurrencies

Identification of Vulnerable Code Detection Process

Figure 3.3: Overa l l workflow of tool CoinWatch . Source: [15]

C V E Parsing and Linking with Commits

In this step, CoinWatch scrapes and parses details of the selected vulnerabili ty. Fol lowing
data is extracted from details about C V E i n vulnerabi l i ty databases:

• date of publishing

14

• keywords from description

• references point ing to the version control system of the affected project

• the list of affected cryptocurrencies and their programming language

After parsing, the origin of the vulnerabi l i ty is checked, and whether the issue is connected
wi th specific code as the threat may originate from using outdated versions of libraries,
frameworks and protocols. In case of code-specific weakness, the code evolution analysis
links patching and bug-introducing commits w i th the C V E .

Code Evolut ion Analysis — S Z Z A l g o r i t h m

For the purpose of code evolution analysis, Co inWatch utilizes the S Z Z algori thm. The
algori thm was proposed by Sliwerski, Z immermann and Zeller [33] as an approach for
identifying bug-introducing commits. A n open implementat ion of the a lgori thm is named
SZZ Unleashed [8]. It is wr i t ten i n Java programming language wi th support ing P y t h o n
scripts. S Z Z Unleashed works i n two phases. The first phase identifies bug-fixing commits
used in the second phase for t racking the bug-introducing changes. CoinWatch is buil t on
this a lgori thm and extended it for the tool 's specific purposes.

Firs t ly , using parsed details about the vulnerabili ty, the bug-fixing commits are identi
fied from the version control system i n the affected project. In CoinWatch this is done by
matching regular expressions in issues which have been fixed, resolved, closed or labelled
as "bug". The regular expression is buil t from keywords extracted from the description in
C V E details and keywords " C V E " and " C V E - I D " .

Secondly, for each discovered fixing commit the bug-introducing commits are tracked
ut i l iz ing the second phase of the S Z Z algori thm. This phase leverages the command git-
blame and line number mapping to backtrack through the history of the analysed project.
Th is method maps only the lines affected by the analysed commit as shown in Figure 3.4.
In addit ion, this phase provides an option to select the desired depth of mapping the line
numbers over a variable number of versions, indicated by the depth parameter. In the
provided example, working wi th the depth option set to one would result in not identifying
the bug introduced by C o m m i t 2, because it is in depth two and it is detectable only from
the annotat ion of commits 3, 4 and 5.

Identification of Vulnerable Code and Initial Fi l ter ing

Inputs for this part of the CoinWatch are bug-fixing and their matching bug-introducing
commits. For in i t i a l filtering of potential ly vulnerable forks, CoinWatch selects the newest
bug-fixing commit and the oldest bug-introducing commit to form a t ime window. M o n
itored forked projects are then filtered based on the t imestamp of their fork. W h e n it is
wi th in the t ime window they are marked as potential ly vulnerable candidates. The projects
around the t ime window are ignored.

Identification of vulnerable code is a one-time manual process per C V E . The goal of this
step is to extract the patch code and the vulnerable code from commits detected during code
evolution analysis. After the manual code annotation, it is transformed into a detection
test as input for the clone detection tool .

15

Figure 3.4: A n example of S Z Z Unleashed mapping line numbers. Source: [8]

Clone Detection Process

Final ly , Co inWatch triggers the clone detection tool S imian 3.3 wi th the detection test
on the list of potential ly vulnerable candidates from the previous step. This filters the
projects that already patched the vulnerabi l i ty or reimplemented the part of code, which
was vulnerable i n the source project and returns the final list of l ikely vulnerable projects.

BlockScope

This subsection is based on [36]. BlockScope is a novel tool for detecting vulnerabili t ies
propagated by cloning blockchain projects like B i t co in and Ethereum. It is a language-
agnostic tool capable of detecting mult iple vulnerabilit ies from existing security patches.
BlockScope utilizes similarity-based code match and designs a new way of calculat ing code
similarity. Thanks to this approach it is able to detect Type I, Type II and Type III clones.
Addi t ional ly , it is capable of automatic extraction of security patch contexts in comparison
to CoinWatch .

Figure 3.5 presents the overall workflow of BlockScope. Initially, the tool receives a se
curity patch and the affected project on the input . The security patch is accepted either
in the form of a commit ID from the source project or manually crafted patch contexts for
better accuracy. A patch context represents a surrounding of the code changes i n the patch
commit . The component named Ext rac tor serves for identifying patch context when the
commit ID of the security patch is provided. Subsequently, the component Searcher tries to
match the patch context i n the analysed project which produces a candidate context. Then
Fetcher uses the contexts to extract patch code from the source project and potential ly vu l
nerable candidate code from the target project. The s imilar i ty of the extracted codes is then
measured in Comparator , which determines whether the target project was patched. A d d i -

16

tionally, for the vulnerabili t ies that were already fixed i n the target repository, BlockScope
performs the calculation of patch delay.

BlockScope

Extract Patch Context Locate Candidate Clones

Patch
Context H i

0 Searcher
K

Candidate^

Candidate Code
V

Determine Patch Status

Comparator

Calculator

Source Project Target Project

Detecting the Propagated
Vulnerabilities

Investigating the Discovered
Vulnerabilities

Figure 3.5: Overa l l workflow of tool BlockScope. Source: [36]

BlockScope achieved overall precision and recall bo th at the rate of 91.8%. It discovered
101 previously unknown vulnerabilit ies propagated v i a code cloning in 13 out of 16 analysed
projects forked from Bi t co in and Ethereum. Unfortunately, just like CoinWatch it is not
available for public use and is close sourced.

Patch Context Extract ion

The in i t i a l step of BlockScope extracts the context of the given security patch on the input.
The patch context consists of two components - upper and lower. The extraction is depicted
in Figure 3.6 on a patch code on the left side and the process is following.

Firs t ly , the code surrounding the patch is tokenized. Tokenization considers both upper
and lower case characters and addi t ional ly includes some special characters such as "."
and "!". Then, i n each context line, the longest token is selected as a keyword representing
the sentence. The keywords together identify the patch context i n the next step i n the
processing. In the example displayed in Figure 3.6, the selected keywords are marked by
a red font colour.

Localization of Candidate Code Clones

In this step, BlockScope searches for a l l candidate code clones i n target repositories using
components Searcher and Fetcher. Figure 3.6 illustrates this process on patch commit
0e7c52dc i n B i t co in and a cloned code chunk present i n Dogecoin, a fork of B i t co in .

The local izat ion begins wi th selecting key statements from each patch context i n the
target repository. To determine key statements, the component Searcher firstly utilizes
a command g i t grep to find a l l code statements containing the patch keywords extracted
in the previous step. F ina l ly , each found code statement is compared to the original code
statement i n the patch context and the most s imilar one is selected as a key statement in
each context. For calculat ing the similarity, BlockScope uses the Normal ized Levenshtein
edit distance metric w i t h a threshold equal to 0.25.

The threshold is used to minimize misses and avoid false negative results in the rest of
the workflow. In the current step, the threshold is used to filter code statements w i t h low
similar i ty to the original statement. Addi t ional ly , the tool uses here three other opt imiza
tions. The first excludes comments and test code from keyword search results. The second
filters search results based on the type of file affected by a patch and the th i rd checks the
type of code statements.

17

Once the key statements are identified, the goal of the next step is to extend the single
statement to mult i- l ine candidate context. Th is is done by extracting the surrounding
code around the key statement unt i l the candidate context contains the same number of
lines as the patch context, which is specified by a constant C_LINES. Then, the boundary is
determined by comparing each line in the candidate context to the start and end statements.
In the end, just like i n the case of the key statement, the start and end statements i n the
candidate context are specified by the highest s imilar i ty exceeding the threshold.

Final ly , the candidate contexts are yet compared to the patch using the same evaluation
method as used for determination of patch applicat ion status 3.1. Candidate contexts w i th
s imilar i ty below the threshold are discarded and the others are forwarded to the component
Fetcher. A s for the patch, so for candidate contexts, the component Fetcher extracts the
code between the upper and lower context, returning a patch code and a list of candidate
codes for further analysis.

Source patch code hunk from Bitcoin

1 As ertLockHeldfcs main); start statement (ss) •

2 as er t (p index) ;

3 as er t ((pindex->phashBlock == nu l l p t r) |l

4 (*pindex->phashBlock == block.GetHash()));

5 64 t nTimeStart = GetTimeMicros () ; end Statement (e) & key statement (ks)-

\

6 - i f (ICheckBlock(block, state,* s^ainparams . Get Con sens

! f JustCheck, ! f Jus£cketj£))

-isf) ,

7 + i f (ICheckBlock (block, s tate, chainparams . Get Cons ells!

!fJustCheck, !fJustCheck)| (

5s+) r .

B +

9 +

i f (state.CorruptionPossibleO) {

return AbortNode(state, "Corrupt block found

Target candidate code hunk from Dogecoin

1 bool ConnectBlockfConst CBlockfi block, CValidationState Estate

2 CCoinsViewCacheS view, const CChainParamsS chainparams, bool

I AssertLockHeldf

. GetConfnsus (pind.
k #3 AssertLockHe.

If, const Co„ = e n !

I5 int64_t nTim. Sta. s 0 t ©
6 i f (!CheckBlock(block^-s

Determine the boundary ss and ei

!fJustCheck, !fJustCheck)]

fJustcheck)

x->nHeight) ,-

s by similarity

Leverage g i t grep to find ks in target repo

- - * „
10 return error("%s: Consensus : : Ch^kBlock: %s " , _ f u n c _ , . . .) ; (ss).

\
7 return error("%s: Consensus::CheckBlock: % " func__,

11 uint2S6 hashPrevBlock = pindex->pp"rev == n u l l p t r
/

assert(hashPrevBlock == view.GetBestBlock());

? uint256() : . . L 8 uint256 hashPrevBlock = pindex-l^pprev == NULL

12

uint2S6 hashPrevBlock = pindex->pp"rev == n u l l p t r
/

assert(hashPrevBlock == view.GetBestBlock()); key statement (ks) 9 assertfhashPrevBlock == view.GetBestBlock());

13 i f (block.GetHash() == chainparams.GetConsensus(] .hashGenesisBlock) (L0 i f (block.GetHash() == Params().GetConsensus(0 .haBiGenesisBlock) (

14 i f (!fJustCheck) end statement (es) .) : t l i f (!fJustCheck) W

DOWN context

Figure 3.6: Visua l iza t ion of context-based search of BlockScope for searching candidate
contexts in a target repository. Source: [36]

Determination of Patch Status

The last step of the workflow, the determination of the patch applicat ion status is performed
i n components Comparator and Calculator . The Comparator measures the s imilar i ty be
tween the patch and each candidate and evaluates, whether the target project applied the
patch, hence whether it is vulnerable or d id not inherit that part icular part of the code.
The projects, which applied the patch are further analysed by the component Calculator ,
which calculates a patch delay.

BlockScope designs a new way of measuring the s imilar i ty between two code fragments,
which is capable of detecting the first three types of clones. The way is shown i n the
following Equa t ion 3.1, where S stands for source and T for target code fragment wi th p
and q code statements. The s imilar i ty measure is defined as the weighted average of the
similar i ty of each sentence from S and its most similar pair among T. The function strsim
calculates the Normal ized Levenshtein distance metric [37] of two strings, which returns
a value i n the interval [0,1]. To cover clones of Type III, as they contain inserted, deleted
and reordered statements, this way introduces parameter r G [0,1] and r ' * _ J ' to specify the
reward of the s imilar i ty result between Si and Tj.

18

S I M I L A R I T Y (S , T)
1 p

- ^ s t r s i m (5 i , T i) r | l - j |

(3.1)
s.t. j arg max s t rs im(5i , Tk)

l<k<q

To determine whether a patch (P) was applied, it is compared to the candidate code
(C) and BlockScope uses three rules for that evaluation. There are three possible types
of patches. One which contains only code additions (ADD type, P = [ap]), a one wi th
code deletions only (DEL type, P = [dp]) and the th i rd , which contains both (CHA type, P =
[ap, dp]). Us ing the described s imilar i ty measure, each type has its own definition of applied
status. Consider variables sa = SIMILARITY\C,ap) and sd = SIMILARITY\C,dp)
for better readabili ty i n the following description of the rules for each type.

• ADD type: i f sa > t, it is evaluated, that P was applied i n C, else it was not.

• DEL type: i f sd > t, it is evaluated, that P was not applied in C, else it was.

• CHA type: i f sd > t and sa > t and sd > sa, it is evaluated that C d id not apply P,
otherwise i f sd > t and sa > t and sd < sa, it is evaluated that C applied P

The components from the previous step can return more than one candidate context, and
so produce mult iple candidate code fragments C j G [C\, C2, Cn]. In this case, s imilar i ty of
each candidate, Si = SIMILARITY{C{, P), and its patch applicat ion status, fvi G {0,1},
is calculated, where /« = 1 indicated, that C j applied patch P. To finalize the results, factor
confi = Si —t is introduced to measure the confidence of each result. In the end, the result
w i th highest confidence fvi, where i = arg maxj confj, is selected as the final result of
application status.

Projects, which already applied the patch are addi t ional ly analysed by component C a l
culator. Calcula tor leverages command g i t blame to extract the hash of the commit , which
patched the vulnerabi l i ty i n the target repository. The command returns addi t ional ly to
each line of code i n the provided file the latest commit , which changed the line. Using
this information, the commits on the lines of candidate code are fetched. If the candidate
code was changed by mult iple commits, the earliest one is considered as fixing. In the end,
the component Calcula tor calculates the delay between the patch commit i n the original
repository and the extracted commit in the target repository.

19

Chapter 4

Design

This chapter presents the design of the proposed tool which, aims to address the challenges
and requirements identified in the problem of detecting cloned vulnerabilit ies. It is orga
nized into three main sections, each focusing on a key aspect of the tool: architecture,
workflow and user interface. These sections provide an overview of how the monitor ing tool
is structured, how it works, and how to interact w i t h i t .

4.1 A r c h i t e c t u r e

In this section, the structural design of the tool is displayed. Presenting a clear and orga
nized view of its architecture, this section aims to demonstrate how various elements i n the
system work together to form a coherent whole.

Figure 4.1 depicts the parts of this tool and the communicat ion between them. The core
of the applicat ion consists of the detection mechanism and its internal database. To interact
w i th the core, it has available a command line interface and a web interface. The command
line interface has direct access to the core of the tool , while the web is connected to the core
v i a the appl icat ion programming interface. A l l together builds a tool offering two modes
for detecting cloned vulnerabili t ies. The first one detects the propagation of a specific
vulnerabi l i ty among the clones of the project where it was discovered. The second method
discovers new flaws but is executable only from the command line.

GUI API GUI API

Cloned

Vulnerabi l i t ies

Detect ion Methods

< >
Cloned

Vulnerabi l i t ies

Detect ion Methods

< >
Cloned

Vulnerabi l i t ies

Detect ion Methods

Database

Figure 4.1: Archi tecture of the tool .

20

Database Schema of the Tool
The database consists of two pr imary and one secondary entity set represented by an entity
relation diagram i n Figure 4.2. The pr imary entities contain configurations support ing the
automation rate and scope of the detection mechanism. The secondary entity is used as
a container for vulnerabi l i ty detection results and has no effect on the performance of the
tool .

The entity Bug contains details about vulnerabilit ies like an identifier i n case of C V E ,
a commit responsible for the repair of the bug, a patch containing specific fix changes and
a code for part icular methods for detecting clones. Depending on the configured method,
if available, the patch is used by integration of BlockScope described in Section 3.4. Whi l e
the value in at tr ibute code would be used by an integrated clone detection tool S i m i a n 1 .
Addi t ional ly , this entity contains at tr ibute v e r i f i e d to inform about whether the bug was
reviewed by an administrator as a l l records i n this table are created automatical ly during
the run of the detection method. Fi rs t ly , i n the case of C V E records, the vulnerabi l i ty
databases do not always refer expl ic i t ly to the specific fix commit or patch, but it is de
tected by various scans which w i l l be mentioned i n the next Section 4.2. Secondly, the
application programming interface (A P I) of the Na t iona l Vulnerabi l i ty Database 2.3 has
a l imi ted availabil i ty of five queries per rol l ing th i r ty seconds t ime window 2 . Storing and
reusing previously requested data prevents from reaching the query l imi t and allows to
subsequently further edit and specify part icular details, so the tool can process them faster
and run smoother. Last ly, the at tr ibute created contains a t imestamp of record creation,
which represents scan times. The repositories can be updated over t ime and older scans
might not be relevant since new commits were released and the identified bugs could be
fixed. The relation discovered i n binds a bug to the project where it was found. Over
al l , the attributes of this entity support the performance of the tool and allow it to run
automatical ly skipping the step of the manual selection of the relevant patch code.

O n the other hand, the entity set Project not only offers performance benefits but also
contains important data related to the configuration of the workflows. The at tr ibute u r l
contains a l ink used for in i t ia l iza t ion of the repositories by cloning to a fresh environment
of the tool , after adding a new project or basically when it is missing. At t r ibu te name
and author are used mainly for easier referencing from user input and logs. The language
contains the programming language of the project for filtering the relevant files and code in
the repository. The value of at tr ibute watch marks projects which are updated and checked
daily for potential vulnerabi l i ty patching commits. Lastly, the t imestamp in the attribute
added, informs about the t ime of registration. The relation forked by models the hierarchy
of parent and cloned projects which are used in the detection methods to decide which
projects are potential ly affected by a cloned vulnerabil i ty. Accordingly, the detection is
performed only among them. The records i n this table are created on demand dur ing the
process of project registration.

Lastly, the entity set Detection represents only positive results of detection methods
which form a relation between bugs and forked projects. Addi t ional ly , it also provides
confidence i n the result and the t imestamp. Confidence is a number i n the range of 0.0
- 2.0, which represents the s imilar i ty of patch code and target code. Information from
these entities does not affect the tool but serves as a storage of results from previous scans.

1https: / / devel.nuclex.org/external/svn/simian/trunk/index.html
2https://nvd.nist.gov/developers/start-here - rate limits

21

http://devel.nuclex.org/
https://nvd.nist.gov/developers/start-here

Consequently, the results can be cross-checked, and the maintainers of affected projects can
be notified about the presence of the cloned vulnerability.

Bug

PK IP.

cve_id

fix_commit

patch

code

verified

created

discovered in

Detection

PK IP-

created

confidence

Project

PK ID

url

name

author

language

watch

added

Figure 4.2: En t i t y relation diagram.

4.2 W o r k f l o w of the Detec t ion Mechanisms

A s already mentioned i n the previous section, the tool has two modes for detecting cloned
vulnerabilit ies. The process of the first mode is s imilar to the CoinWatch and BlockScope.
The second one performs periodic scans of parent repositories w i th an attempt to detect
new potential flaws from recent patch commits. Th is functionality extends the detection
options of the mentioned tools.

Targeted Detection

The workflow of the targeted detection is displayed i n the Figure 4.3. It is executed on
demand and requires an input, which contains a reference to vulnerabi l i ty and the name of
the project where it was discovered. It is mandatory for the project to be registered in the
database prior to the vulnerabi l i ty detection scan, so the mechanism has available a l l the
required information about i t .

If the requirements are met, the detection mechanism starts w i th collecting information
about the provided weakness and initializes the repository of the target project. Fi rs t ly , the
tool checks whether the provided reference to the vulnerabi l i ty is available i n the internal
database. Otherwise, i f C V E I D was provided the tool fetches its data using a vulnerabi l i ty
identifier from N V D using their A P I and stores the response i n a cache. Consequentially,
based on the fetched data the patch commit is searched in the target repository. Afterwards,
if it was not i n the internal database before, it is stored here. If the search found multiple
candidate commits or one is very extensive, the user is requested to specify the patch
commit and code that is responsible for fixing the vulnerabi l i ty to reduce the number of
candidates. This input is accordingly stored i n the created record i n the database.

In the next step, a l l registered forks of the target project are ini t ia l ized. That means
if their repositories are missing i n the local storage of the tool , they w i l l be cloned using
attr ibute u r l of entity Project. In case they are downloaded, they are updated by pul l ing
changes from their remote repository. It is also possible to configure the tool to downgrade
the repositories to an older version, which w i l l be ut i l ized i n experimentation wi th the tool .
Th is can be achieved by providing a specific date i n the input of the tool . In that case, the

22

last commit before the provided date w i l l be selected and the repository w i l l be reverted to
that part icular commit .

A t this point, a l l potential ly affected projects are prepared for further investigation
of possible propagation of the vulnerabi l i ty dur ing forking or prel iminary fetching. In the
default setup, a detection method based on the approach presented i n the research paper
about BlockScope is used [36]. F i rs t ly , the surrounding code chunks - contexts are fetched
from fixing commit or direct ly from specific patch code present i n at tr ibute patch i n the
database. The patch contexts are then searched for i n the prepared set of repositories
based on the code similarity. The detected contexts and the code i n between then produce
candidate code chunks, which are i n the end compared to the patch code. In the end, based
on the s imilar i ty of the patch and candidate code, the tool determines whether the patch was
applied and so whether the weakness was fixed [36]. Alternat ively, it is possible to configure
using the tool S imian for the detection of clones, but i n this case, it is mandatory to specify
the code that should be detected among the forked repositories. A l though , against the
default method, S imian lacks the abi l i ty to detect T y p e II and Type III clones. F ina l ly ,
after scanning a project the positive detection results are stored i n the database i n table
Detection.

NVD Database

Figure 4.3: Basic workflow of the targeted detection scan.

Discovery Scan
The workflow of the discovery scan is visible i n Figure 4.4. It is designed to run i n schedules
mainly. The goal of this mode is to detect new suspicious commits i n monitored repositories
which might imply new vulnerabilit ies i n forked projects.

O n execution, the watched projects are fetched from the database and their repositories
are updated to the latest version from the remote server using git. The messages of the
latest commits are then scanned for the presence of any keyword from a set containing
C W E names 3 . Secondly, a check of affected files by a commit is performed based on the
file extension and path. For example, changes i n documentation, release notes and tests
are filtered out.

After applying the filters, the resulting list of commits is reported v ia e-mail notification
for each project, stored i n the database and passed for further evaluation. The goal of the

3https://ewe.mitre.org/data/definitions/1387.html - top 25 most dangerous weaknesses in 2022

23

https://ewe.mitre.org/data/definitions/1387.html

evaluation is to determine the complexity of the patch from each commit based on its
granularity and spread. The complexity is represented by the number of extracted contexts
from a patch. The ones wi th low complexity can be processed automatically, so they are
passed to the detection mechanism. In the end, the results are stored in the database and
are observable i n the logs or presented in the web interface.

Database

Request

Prepare Watched
Repositories

Find Suspicious
Commits

^| Evaluate Patch
Complexity

Run Detection
Mechanism

Results

Figure 4.4: Workflow of the scheduled vulnerabi l i ty scan.

4.3 User Interface

To enhance the user experience and improve overall effectiveness, the tool offers a graphical
interface alongside the command line interface. This section w i l l contain a graphical design
of bo th interfaces, explaining the design choices and describing their functionality and use
cases. W e l l designed user interface improves the overall experience wi th the tool , so it is
crucial to present the results conveniently.

Web

The graphical user interface (GUI) is accessible v i a a web that communicates w i th the core
of the tool using an applicat ion programming interface (A P I) . The web page is organized
into three crucial pages. The in i t i a l page presents an overview of the current state of the
tool . Subsequently, a user can navigate to the second page to init iate and configure the
detection process. The th i rd page showcases the detection results enabling the user to
efficiently analyse and interpret the outcome. Addi t ional ly , using the tab i n the upper right
corner user can navigate to the documentation of the A P I .

The draft of the page containing an overview of the tool is displayed in Figure 4.5. It
allows a user to observe the state of the database, namely registered repositories and stored
vulnerabi l i ty records. A s was mentioned i n the Subsection 4.2, only registered repositories
can be scanned by the detection method. Here it is possible to register new repositories
to the tool by providing an U R L , the programming language and the parent of the project
in case it was forked from one of the already registered projects. In the second table,
the records of previously scanned vulnerabili t ies can be updated to improve the precision
and performance of the detection method. After updat ing a record of the vulnerabi l i ty it
becomes marked as verified. Th is marking is visible in the last at tr ibute of the entity.

Figure 4.6 displays the page, where the detection can be started after providing the re
quired parameters - identification of the vulnerabi l i ty and its source project for the targeted
detection. The identification of the vulnerabi l i ty refers to the one stored i n the internal
database. The parameter date is optional . The first step of the detection method is ex
ecuted using the but ton Search. Accordingly, the results from the search of fix commits

24

are shown below. The list of candidate fix commits is observable on the left side of the
page. After selecting a specific commit, the changes from the commit are displayed i n the
adjacent text area. In order to start the clone detection, opt ional ly the patch or code in the
middle of the page can be edited to contain only code relevant to the fix of the vulnerabili ty.
Whether a patch or code segment is required depends on the method which should be used
for the detection of clone propagation. In case the search is done for a known and verified
vulnerabi l i ty in the internal database, the stored values are pre-filled i n the input fields.
The but ton Detect then starts the clone detection.

Detection of Cloned Vulnerabilities OVERVIEW PREPARE DETECTION DETECTION RESULT API DOCS

Registered Repositories

Name Author Language Parent

1 bitcoin bitcoin cpp

2 go-ethereum ethere urn 90

3 dogecoin dogecoin cpp bitcoin

4 zcash zcash cpp bitcoin

5 optimism eth ere urn- optimism 90 go-ethereum

6 bsc bnb-chain 90 go-ethereum

: i n

CVE-2021-41173

CVE-2018-17144

CVE-2021-3401

CVE-2020-26240

Vulnerabilities

J iFixCommit ||P; || lethod | | Update"

Figure 4.5: The design of the page displaying an overview of the state of the tool .

Detection of Cloned Vulnerabilities

| | | Search j

Candidate commits Patch/code for clone detection

commit id 2 diff/code, edit for detection

OVERVIEW PREPARE DETECTION DETECTION RESULT API DOCS

Fix commit id

Figure 4.6: The design of the page where the detection mechanism can be configured and
started.

After the detection is started, the logs and the prel iminary results are visible on the
last page. The design of this page is pictured in Figure 4.7. The page is just informative
and does not affect the detection. The logs contain everything connected to the detection
algori thm and the actual results can be hardly visible. To improve the transparency of the

25

results, a list containing a summary of the detected cloned vulnerabilit ies is located on the
right side. It provides the name of the affected project, the confidence of the result and
a reference to the location of the clone i n the directory of the project.

Detection of Cloned Vulnerabilities OVERVIEW PREPARE DETECTION DETECTION RESULT API DOCS

Logs Detections Results

2023-04-18 23:21:33 [info
repo=BTCGPU
2023-04-18 23:21:34 [info
\bhandleRunawayException\b
2023-04-18 23:21:34 [info
repo=BTCGPU
2023-04-18 23:21:34 [info
repo=BTCGPU
2023-04-18 23:21:35 [info
repo=BTCGPU
2023-04-18 23:21:35 [info
repo=BTCGPU
2023-04-18 23:21:36 [info
repo=BTCGPU

:36 [info
:37 [info
:37 [info

2023-04-18 23:21: ;
2023-04-18 23:21: ;
2023-04-18 23:21: ;
(False, 1.5396210149)]
2023-04-18 23:21:37 [info
2023-04-18 23:21:37 [info
repo=BTCGPU

grep: Command: git grep -n \bcatch\b - **/*.cpp

git: grep: Command: git grep -n
) - **/*.cpp repo=BTCGPU
git: grep: Command: git grep -n \bcoreThread\b - **/*.cpp

git: grep: Command: git grep -n \bm_node\b - **/*.cpp

git: grep: Command: git grep -n \boptionsModel\b - **/*.cpp

git: grep: Command: git grep -n \bclientModel\b - **/*.cpp

git: grep: Command: git grep -n \bnullptr\b - **/*.cpp

searcher: search: KS found

Searcher.search: Done. pid=1
Patch part application statuses: [(False, 1.5396210149),

BlockScope.run: Done. pid=1
detection_result=[(False, 1.539621014964216)]

Project Vulnerable Conf Location
src/qt/bitcoin.cpp

Figure 4.7: The design of the page displaying the logs and positive detection results.

Command Line Interface
The command line interface (CLI) is a fundamental way to interact w i th the tool . In
comparison to the G U I , it offers advantages in terms of speed, customizing and automation.
The functionalities allow a user to:

• register new projects

• run the targeted detection

• configure schedule of the discovery scan

• run a discovery scan

• ini t ial ize the schema of the internal database

In addi t ion to the G U I capabilities, the C L I offers configuration and execution of dis
covery scan, in i t ia l izat ion and execution of tests of the detection method. Unl ike the G U I ,
which relies on communicat ion using A P I , the C L I interacts direct ly wi th the core of the
tool . Th i s dual interface design caters to diverse user preferences, enhancing the overall
user experience and functionality of the tool .

26

file:///bhandleRunawayException/b
file:///bcatch/b
file:///bcoreThread/b
file:///bm_node/b
file:///boptionsModel/b
file:///bclientModel/b
file:///bnullptr/b

Chapter 5

Implementation

This Chapter outlines the implementat ion of the tool designed to scan and detect cloned
vulnerabilit ies in open-source projects. The tool leverages a modern technology stack,
consisting of P y t h o n 3 1 for the backend and the A P I , Redis and Pos tgreSQL for databases
and ReactJS for the web interface. Addi t ional ly , the entire appl icat ion is containerized
using Docker Compose 2 , which offers organized management of mult iple services displayed
in Figure 5.1. B y leveraging the mentioned technologies, the tool provides an efficient and
user-friendly solution for identifying cloned vulnerabilit ies i n open-source software, thus
contr ibuting to secure software development practices.

Services

Database

Figure 5.1: A n overview of the services constructing the tool and their mutual dependencies.

For the development of the major part of the tool , P y t h o n 3 was chosen, a versatile
and widely used programming language known for its readabili ty and ease of use. A s the
tool uses various technologies, the main benefit of this choice is versatility, which assures
compat ibi l i ty between part icular parts of the tool and communicat ion wi th various external
A P I s . In the transi t ion from A P I to the backend and its detection methods, the choice of
P y t h o n as the development language plays a significant role i n integrating key architectural

1https://www.python.org/downloads/
2https://docs.docker.com/compose/

27

https://www.python.org/downloads/
https://docs.docker.com/compose/

elements, such as the R e d i s 3 and P o s t g r e S Q L 1 database. Al though , it could suffer from ex
ecution speed in the case of detection methods in comparison to the programming language
C + + [12].

5.1 Storage

Overal l , there are three types of storage used by the tool: the database, the local storage
and in-memory storage - Redis . Th is Section w i l l describe the implementat ion and usage
of each type.

Database

The internal database is the first type of ut i l ized storage, which is used for storing long-
term data, containing essential configurations for the tool and results of the detection
method. For the implementat ion of the schema designed in Section 4.1 an open-source
object-relational database management system Pos tgreSQL was selected for its great abi l i ty
to scale. Pos tgreSQL provides a docker image, which eases the integration to the tool thanks
to the usage of containerization v ia Docker Compose.

The connection to the database is established using a P y t h o n l ibrary psycopg2 5 an ef
ficient, low-level Pos tgreSQL database adapter performing basic database operations. A d
ditionally, an Object Rela t ional Mapper (O R M) l ibrary SQLAlchemy6 is used to simplify
access and operations wi th database objects. It provides a high-level, object-oriented in
terface that abstracts the underlying database system and allows it to work during the
development w i th P y t h o n classes instead of raw S Q L queries.

To access the features of the SQLAlchemy, the schema of tables i n the database is
implemented in P y t h o n classes which inherit from DeclarativeBase class provided by
the library. Tha t defines at once both, the P y t h o n object model and database metadata
that describe tables i n the database. Accord ing to the designed database schema, the tool
implements classes Bug, Project and Detection this way.

To improve readabili ty and developer experience, the tool implements an interface ab
stracting a l l operations wi th the tables in the database. The interface is available i n a C R U D
module, which implements a l l used variants of queries to Create, Read, Update and Delete
records i n the database in one place.

Local Storage

The second type of storage used by the tool is its own local storage on the hosting file
system. It is used for storing clones of registered repositories and logs from the detection
method. Dur ing the execution of the detection method, a l l operations and commands wi th
the analysed projects are performed on the clones stored here. B y fetching the log files
stored here, the A P I provides data for the page displaying detection results i n the web
interface.

3https://redis. io/docs/about/
4https://www.postgresql.org
5https://www.psycopg.org/docs/
6https://www.sqlalchemy.org

28

https://redis
https://www.postgresql.org
https://www.psycopg.org/docs/
https://www.sqlalchemy.org

Red is
Redis is an open-source, in-memory data structure store used by this tool as a cache storing
a queue of scheduled requests for execution of detection method. A s in-memory storage,
Redis provides very fast read and write actions, and it supports a wide variety of data
structures. Addi t ional ly , it is dis tr ibuted also as a docker image, which allows easy integra
t ion of the service using Docker Compose. The connection and operations wi th Redis are
assured by a P y t h o n l ibrary redis'.

To init ial ize and manage the aforementioned queue i n Redis a P y t h o n l ibrary rq is
used, which stands for Redis Queue. The purpose of this l ibrary is to schedule jobs for
processing i n the background and extend the options of the tool i n terms of scalability. In
the implementat ion of the tool , the jobs are queued by an A P I and processed by the worker
service.

5.2 Detec t ion M e c h a n i s m and its Components

The detection mechanism is the core component of the tool developed i n this project. It is
implemented using the programming language P y t h o n 3 and an object-oriented approach.
The mechanism requires on the input an identification of a bug and the name of the project
where it was discovered. Accordingly, at the beginning of the workflow, the mechanism
finds a fixing commit of the provided vulnerabili ty, parses important details and creates an
object representing the bug.

Bug ID L \

Source Project
FixCommitFinder

Bug
Object

Bug
Object

Bug
Object

Extractor
Patch ^

Context
Searcher

Patch J Patch > PatchCode.fetch

Patch
Code

Object

Candidati

Code

Simian

Logs
Detection

Results

Comparator

Logs
Detection

Results

Figure 5.2: Workflow of the default detection method, w i th an optional alternative method
using tool Simian. B o t h methods process the same B u g Object created after processing the
detection request specifying the B u g ID and the project where it originated.

A t this point, the mechanism offers two methods for detecting the propagation of the
bug among the forks of the source project. The first method utilizes a tool Simian, which
has great performance but is able to detect only clones of the first type. The second, default

7https: //redis. io/docs/clients/python/
8https://github.com/rq/rq

29

https://github.com/rq/rq

method is inspired by the approach of the tool BlockScope, which is capable of detecting
clones of Type I, Type II and Type III.

The complete workflow of the mechanism and its components is displayed in Figure 5.2.
The components of the workflow and its implementat ion w i l l be described i n the following
subsections.

Component FixCommitFinder

U p o n execution of the detection mechanism, the component FixCommitFinder is the first
functional part of the workflow. It is developed as a class implementing methods for finding
bug-fixing commits for both, the targeted detection and discovery scan.

FixCommitFinder

Bug ID N
+

Bug ID N
+

Parse CVE Details
Get Bug-fixing Create/Read Bug

Object
Bug

Object Source Project
Parse CVE Details

Commits
Create/Read Bug

Object p
Bug

Object

>

CVE Client Git &GitHub Client CRUD

Figure 5.3: Workflow of the component FixCommitFinder in targeted detection. In the
case of C V E ID , the component parses and uses its details to find bug-fixing commit in the
source repository. The fix commits can be supplied from the internal database using the
C R U D interface.

The process of the component FixCommitFinder i n targeted detection is described in
Figure 5.3. If the given bug ID is available i n the internal database, the final bug object
is fetched from there using the C R U D interface and returned. Otherwise, if a C V E is
provided, a class CVEClient is used for parsing its details. The class utilizes a P y t h o n 3
l ibrary requests 9 for retrieving the data from Nat iona l Vulnerabi l i ty Database A P I using
H T T P requests. Subsequently, the references to a fixing commit , pu l l request or release
notes i n details about the vulnerabi l i ty are parsed. If the references are not available
or recognized, the component addi t ional ly extracts keywords from the description of the
vulnerabi l i ty using a l ibrary n l t k 1 0 . A l l extracted details are then used for finding the bug-
fixing commits using commands of tool g i t 1 1 and G i t H u b A P I 1 2 available in a class Git.
In the end, i f the bug I D was not available i n the internal database before, the component
creates a new object Bug, stores it and returns. A visualisation of the returned object is
available in Figure 5.4.

For the discovery different method of the component is used and its workflow is
displayed in Figure 5.5. Th is method requires the on input only the object of the repository
which w i l l be scanned for new bug-fixing commits for the past couple of days. In the end, this
process returns a list of suspicious commits which were detected by a keywords representing
a software weaknesses or a patch action i n commit messages.

9https://docs.python-requests.org/en/latest/index.html
1 0https://www. nltk. org
nhttps://git-scm.com
12https://docs.github.com/en/rest

30

https://docs.python-requests.org/en/latest/index.html
https://www
https://git-scm.com
https://docs.github.com/en/rest

Bug

+ ID: string

+ commits: List[string]

+ patch: string

+ code: string

Figure 5.4: Overview of the object Bug and its ut i l ized attributes.

CRUD

Git client

FixCommitFinder.scan recent

Watched
Project

Watched
Project

A

Fetch Recent
Commits

Filter Based on
Keywords

Suspicious
Commits

Suspicious
Commits

Figure 5.5: Overview of a workflow of the component FixCommitFinder using method for
discovery scan.

C o m p o n e n t BlockScope

The default method of the detection mechanism is based on the approach proposed i n the
paper about a tool BlockScope, which was described i n Section 3.4. The implementat ion of
part icular components involved in this method slightly diverged as it is visible on the right
side of Figure 5.2.

The component Fetcher from the original design is omit ted and its functionality was
inherited by the component Searcher and a method of the object PatchCode. It was
implemented this way to encapsulate every attr ibute and action related to the patch into
one object as during extraction of the patch code is done an addi t ional analysis of structure,
thus type of the patch is. The component Searcher in this design implements bo th the
context-based search process for local izat ion of candidate code in the target repository and
extraction of the candidate code.

Each part of the method produces logs, which can be observed on the web. In the end,
if the final result of the detection is that the analysed project d id not apply the patch, the
result is addi t ional ly archived i n the internal database.

C o m p o n e n t Simian

Simian 1 '^ is a tool for detecting code duplicates. It is integrated into the detection mecha
nism as an alternative method for analysing vulnerable code dupl icat ion between the source
project and its forks. S imian is implemented i n the programming language Java, so for its
execution was implemented an interface as a separate component, which was named after

1 3https: / / www.harukizaemon.com/simian

31

http://www.harukizaemon.com/simian

the tool . The interface also implements a parser for its output. A n example output of the
tool and parsed information is displayed i n Figure 5.6.

S i m i l a r i t y A n a l y s e r 2.5.10 - http://www.harukizaemon.com/simian
Co p y r i g h t (c) 2003-2018 Simon H a r r i s . A l l r i g h t s r e s e r v e d .
Simian i s not f r e e u n l e s s used s o l e l y f o r non-commercial or e v a l u a t i o n purposes.
{ f a i l O n D u p l i c a t i o n = t r u e , i g n o r e C h a r a c t e r C a s e - t r u e , i g n o r e C u r l y B r a c e s - t r u e , i g n o r e I d e n t i f i e r C a s e = t r u e ,
i g n o r e M o d i f i e r s = t r u e , i g n o r e S t r i n g C a s e - t r u e , t h r e s h o l d s)
Found 5 d u p l i c a t e l i n e s w i t h f i n g e r p r i n t ec762ec3b2e2e23alb569b7fe2e3d4a5 i n the f o l l o w i n g f i l e s :

Between l i n e s 2 and 6 i n / U s e r s / m a t u s / D o c u m e n t s / f i t / t e s t _ f i l e / t e s t _ f i l e l
Between l i n e s 2 and 6 i n / U s e r s / m a t u s / D o c u m e n t s / f i t / t e s t _ f i l e / t e s t _ f i l e 2

Found 10 d u p l i c a t e l i n e s i n 2 b l o c k s i n 2 f i l e s
P rocessed a t o t a l of 10 s i g n i f i c a n t (14 raw) l i n e s i n 2 f i l e s
P r o c e s s i n g time: 0.027sec

Figure 5.6: Output from Simian wi th highlighted information that is parsed i n the detection
mechanism.

5.3 A p p l i c a t i o n P r o g r a m m i n g Interface

The appl icat ion programming interface (A P I) is an important part of the tool as it controls
communicat ion between the G U I and the core of the applicat ion. For the implementat ion of
the R E S T A P I was chosen P y t h o n web framework Fast A P I . It achieves great performance,
supports asynchronous programming and automatical ly generates A P I documentation. The
implementation of A P I endpoints w i l l be described in the rest of the section.

API Endpoints

The implemented A P I contains overall 9 endpoints which deliver messages between the fron-
tend and backend, plus one addi t ional which contains the documentation. In the following
subsections, each endpoint w i l l be described. The documentat ion of a l l A P I endpoints that
w i l l be mentioned is accessible v i a the endpoint /docs, in addi t ion to the description, pro
v id ing also example usage. In production, each endpoint has an addi t ional prefix /api/vl
which contains a versioning. It labels a specific version of the software which helps wi th
referencing and tracking changes.

GET /ping

This endpoint performs a "health" check and informs about the status of the A P I , whether
it is running and responsive. If there is any issue it is propagated by the H T T P status code
representing failure, otherwise the endpoint returns the following response: {"pong" :true]-

GET /project/fetch_all

The endpoint /project/fetch_all is used to fetch a l l registered projects i n the internal
database. The possible responses when A P I is running are shown in Table 5.1.

GET /bug/fetch_all

This endpoint is used to fetch details about a l l bugs stored i n the database, containing their
identification, fix commit , verification status, patch and code. The responses are listed in
Table 5.2.

14https://fastapi.tiangolo.com

32

http://www.harukizaemon.com/simian
https://fastapi.tiangolo.com

H T T P code Descr ipt ion
200
503

O K - returns the list of registered projects
Resource unavailable error - D B is not accessible

Table 5.1: Overview of responses from A P I endpoint /project/fetch_all.

H T T P code Descr ipt ion
200
503

O K - returns list of stored bugs
Resource unavailable error - D B is not accessible

Table 5.2: Overview of responses from A P I endpoint /bug/f etch_all.

POST /project/register

The /project/register endpoint is used to add a new repository to the database and clone
it to the local storage of the tool . In order to be able to perform detection i n a repository,
firstly it needs to be registered using this endpoint. W h e n a project is successfully registered
the A P I schedules a task i n the Redis Queue (5.1) to clone the repository i n the background
process by the service Worker.

F i e l d Descr ipt ion
u r l

language
parent

C V S U R L to clone the repository from
programming language of the project
name of the parent project (optional as it might be the parent)

Table 5.3: Overview of request payload fields of A P I endpoint /project/register.

H T T P code Descr ipt ion
201
422
503

Created - returns details of the registered project
Val ida t ion error - some payload fields are missing or inval id
Resource unavailable error - D B is not accessible

Table 5.4: Overview of responses from A P I endpoint /project/register.

The payload of the request always needs to contain fields u r l , language and parent.
The description of the request payload fields is available in Table 5.3 and the responses
in Table 5.4. It is mandatory to specify the cloning u r l 1 5 i n the https:// form i n order
to avoid the need to set up a password-protected S S H key i n the worker service, which is
needed i n case of cloning using an S S H U R L . Dur ing the processing of the request, from
the u r l value is parsed name and owner of the project, which are stored i n the database
using the C R U D interface defined i n Section 5.1.

POST /bug/update

The endpoint /bug/update is used to specify details about bugs stored in the database,
namely the fix commits, patch and code attributes. In the case of the detection method
using the tool Simian, it is mandatory to specify the code to be used for the detection of
clones, while the default detection method using the approach of BlockScope can extract the

1 5https: / / docs.github.com/en/get-started/getting-started-with-git / about-remote-repositories

33

http://docs.github.com/en/get-started/getting-started-with-git

patch from the commit automatically. A l though to increase the precision of this method,
the specifically crafted patch can be provided i n this way.

The description of responses and pay load fields of this endpoint is described i n Table 5.6
and 5.5 respectively. In the payload it is mandatory to specify the field id, method and at
least one of f ix_commit and patch.

F i e l d Descr ipt ion
i d

fix_commit
patch
method

I D of the bug in the database (e.g. CVE-2021-3401)
commit hash to be specified as a bug-fixing commit
base64-encoded patch or code for the specified detection method
method specifies whether column patch or code should be updated

Table 5.5: Overview of request payload fields of A P I endpoint /bug/update.

H T T P code Descr ipt ion
200
404
422
503

O K - returns details of the updated bug
Not found error - the bug wi th provided I D was not found i n the D B
Val ida t ion error - some payload fields are missing or inval id
Resource unavailable error - D B is not accessible

Table 5.6: Overview of responses from A P I endpoint /bug/update.

POST /detection/search

This endpoint performs a search of bug-fixing commit candidates of the requested vulner
abil i ty i n the provided source repository where it originated. If the bug is stored i n the
internal database, the details about it are provided from there. Addi t ional ly , i f the bug has
specified a patch, it is also provided i n the response. The description of the payload fields
are shown in Table 5.7 and responses in Table 5.8.

F i e l d Descr ipt ion
bug_id

project_name
ID of the bug i n the database (e.g. CVE-2021-3401)
project where the bug was discovered

Table 5.7: Overview of request payload fields of A P I endpoint /detection/search.

H T T P code Descr ipt ion
200
422
500
503

O K - returns list of candidate commits and patch i f available
Val ida t ion error - some payload fields are missing or inval id
Internal server error - failed repository in i t ia l iza t ion or search
Resource unavailable error - D B is not accessible

Table 5.8: Overview of responses from A P I endpoint /detection/search.

POST /detection/show_commit

The purpose of this endpoint is to provide the content of the given commit hash (SHA-1) in
the specified project. Tha t is useful mainly when mult iple candidate commits were found

34

for a vulnerabili ty, so the user can display the content of each candidate and so help wi th
specifying the correct one, which should be further analysed. The request payload and the
responses from this endpoint are shown in tables 5.9 and 5.10 respectively.

F i e l d Descr ipt ion
project_name

commit
project where the commit should be searched
commit hash to search

Table 5.9: Overview of request payload fields of A P I endpoint /detection/show_commit.

H T T P code Descr ipt ion
200 O K - returns the content of the given commit
404 Not found error - the commit was not found i n the given repository
422 Val ida t ion error - payload field missing or the project is not registered
500 Internal server error - project in i t ia l iza t ion or search of commit failed
503 Resource unavailable error - D B is not accessible

Table 5.10: Overview of responses from A P I endpoint /detection/show_commit.

POST /detection/execute

The endpoint /detection/execute schedules a detection method execution task to the
Redis Queue (5.1), which is processed i n a background process by the service Worker.
Before the detection method is started, the run-time logs are forwarded to a log file located
i n the local storage (5.1) of the tool .

Table 5.11 contains description of the required payload fields and Table 5.12 shows re
sponses returned by this endpoint. In the case of the detection method based on BlockScope,
one of the fields commit and patch needs to be specified, while i n the case of the detection
method using an integrated tool S imian s tr ic t ly requires the code chunk to be detected.
The field patch is used for transferring both the patch for BlockScope and the code chunk
for Simian.

F i e l d Descr ipt ion
bug_id

project_name
commit
patch
method
date

investigated bug ID
parent project of analysed cloned repositories
bug fixing commit
base64-encoded patch or code to be detected
detection method to be used
version of the project from the date which should be considered

Table 5.11: Overview of request payload fields of A P I endpoint /detection/execute.

H T T P code Descr ipt ion
201
422
503

Created - task successfully scheduled
Val ida t ion error - payload field missing
Resource unavailable error - Redis not available

Table 5.12: Overview of responses from A P I endpoint /detection/execute.

35

GET /detection/status

This endpoint fetches the latest log file from the local storage (5.1) and provides its content.
Addi t ional ly , the specific detection results are parsed from the logs using regular expressions
from P y t h o n bui l t - in l ibrary r e 1 6 , a description of possible responses from the endpoint is
available in Table 5.13.

H T T P code Descr ipt ion
200
500
503

O K - returns log and parsed detection results
Internal server error - log parsing failed
Resource unavailable error - log file not available

Table 5.13: Overview of responses from A P I endpoint /detection/status.

5.4 User Interfaces

This Section provides an implementation overview of available user interfaces, designed in
the previous Chapter 4.3. The tool provides i n total two user interfaces - web and command
line interface. In sections about each, the used technologies, libraries and a preview of the
results w i l l be mentioned and displayed.

Web

The web is the first available user interface implemented to simplify the usage of the tool
in an intuit ive manner. For implementat ion was chosen R e a c t 1 7 , an open-source JavaScript
l ibrary for bui ld ing user interfaces from ind iv idua l pieces called components. React is
free to use and has available a large number of open-source libraries which provide pre-
buil t components. For bui ld ing the web interface was used the React component l ibrary
MaterialUI 1 8, which accelerated and simplified the development.

The preview of the page which displays tables w i th lists of registered projects and
stored bugs in the internal database is available i n Figure 5.7. U p o n loading, the page
requests the lists of projects and bugs from the A P I endpoints /project/f etch_all and
/bug/fetch_all. In the meantime, the page is rendered and once the A P I provides the
requested data it is filled i n the tables. To register a new project the form under the
table Projects is used and upon submit t ing, the inputs are processed by the A P I end-
point /project/register. Likewise, the bugs can be updated u t i l iz ing the A P I endpoint
/bug/update.

The second page prepares and executes the detection methods. The preview is available
in Figure 5.8. P rov id ing the I D of vulnerabi l i ty and source project name, cl icking on
the but ton Search, the web utilizes the A P I endpoint /detection/search to retrieve
the list of candidate bug-fixing commits and the patch of the bug, if it is available in
the internal database. Otherwise, the backend tries to parse it from the details of the
given vulnerabili ty. In case the list of candidate commits contains mult iple results, their
contents can be displayed by selecting the desired commit . Accordingly, the content of
the commit is retrieved from A P I endpoint /detection/show_commit and displayed i n the

1 6https://docs, python.org/3/library/re. html
17https://react.dev
1 8https: / / mui.com / material-ui/getting-started / overview/

36

https://docs
https://react.dev
http://mui.com

text area i n the middle of the page, which can be manually edited to contain only relevant
changes. The fix commit i n the input field at the bo t tom of the page is automatical ly
filed according to the selection i n the list of candidate commits but can be also manually
edited. Optional ly, the method and date of the repository inputs can be specified before
executing the detection method. U p o n submit t ing the form using the but ton Detect, the
A P I endpoint /detection/execute is u t i l ized to schedule the targeted detection task and
the user is automatical ly navigated to the page displaying the detection log and results.

Detection of Cloned Vulnerabilities

J gibytc Dig I Byte-Co re

dashpay

CVE-2020-26264

bcc[7co4bo";

42656ea2e5"]

Bloc... '

Figure 5.7: Implemented overview web page.

Detection of Cloned Vulnerabilities]AflE DETECTION DETECTION RESULT API DOCS

Candidate commits Path/code for clone detection

in ntxl» appSiiuMcwii)

cJ^Luu'l « I ric: « Sliulriown liriislitK)'
G EMIT shutdnwrRcsult:!

[-,i:ch icorst s:d r-xrflotifinfc pi ;
h.ird eRunawavExcepticn(&r).

} catch | |
h.ird o^unjw.iyExi M l : r(-i. pf

3itrmApphr.it cn Gitco r Application rtoit.iror, Nodc& rndc. x ia*qc. cl*.ir ".irqv'l
- QApplication(argc, argv],
+static int qt_argc = 1;
+static const char' qt_argu = "bitcoin-qt":

+BitcoinApplication::BitcoinApplicatiQn(interfaces::NodeS, node):
+ QApplication(qt_argc, const_cast<char **>(&qt_argv)|

coreThread(nullptr),

m_node(node|:
optionsModel(nullptr).
clientModel(nullptr).
window(nullptr}:

pollShutdownTimer(nullptr).

Figure 5.8: Implemented prepare detection web page.

The preview of the th i rd page is observable in Figure 5.9. The page displays log and
parsed results from detection method run-time. To fetch required data the web uses the
A P I endpoint /detection/results. The purpose of this page is informational and does
not affect the method.

37

http://itrmApphr.it

Project name Vulnerable Confidence Location "/'.cpp repo=pigeoncoi
2023-05-07 20:02: 4 [inlo] git: grep: Command: git grep n \bcoreThread\b -- *7'.cpp
repo=pigeoncoin
2023-05-07 20:02: 5 [inlo] git: grep: Command: git grep n \bm_node\b - "7* .cpp
repo=pigeoncoin
2023-05-07 20:02: 6 [inlo] git: grep: Command: git grep n \boptionsModel\b - * T .cpp
repo=pigeoncoin
2023-05-07 20:02: 6 [inlo] git: grep: Command: git grep n \bclientModel* -- *7*.cpp
repo-pigeoncoin
2023-05-07 20:02: 7 [info] git: grep: Command: git grep n \bnullptr\b -- *7'.cpp
repo-pigeoncoin
2023-05-07 20:02: 8 [info] searcher: search: KS found
2023-05-07 20:02: 8 [info] S e arc her. search: Done, pid =23679
2023-05-07 20:02: 8 [info] Patch part application statuses: [(False. 1.3900814692608772,

'src/qt/pigeon.cpp:358')] epo-pigeoncoin
2023-05-07 20:02: 8 [info [Applied patch: [(False, 1.3900814692608772.

'src/ql/pigeon.cpp:358')] epo-pigeoncoin
2023-05-07 20:02: 3 [inlo] BlockScope.run: Done. pid=23679
2023-05-07 20:02: 3 [inlo] Detection method finished.

1

5rc/qt/bitcoin.cpp:282

src/qt/raven.cpp:364

5rc/qt/bitcoin.cpp:214

s rc/qt/B itcoi n. cpp: 198

s rc/qt/d i g i By te. cpp :282

s rc/qt/B itcoi n. cpp :313

s rc/qt/B itcoi n. cpp: 194

5rc/qt/pigeon.cpp:358

Figure 5.9: Implemented web page displaying detection logs and results of CVE-2021-3401.

Command Line Interface
Addi t iona l ly to the web, the tool provides also a command line interface (C L I) , which
benefits i n terms of efficiency and lesser load on a machine as it depends only on the
database and Redis . Al though , the output is not as clear as i n the web interface and
requires an experience wi th the command prompt.

For implementat ion of the C L I a P y t h o n l ibrary c l i c k 1 9 was used. Its syntax reminds
of the Fast A P I as the commands and their arguments are defined using decorators. The
decorators take care of parsing arguments, which makes the code shorter and more clear in
comparison to other libraries, for example, P y t h o n bui l t - in l ibrary argparse 2 0.

The C L I implements the following commands, which are expecting the same values of
arguments as i n A P I :

• register and clone a new project
$ c l i register <URL> <language> [—parent <project>]

• run targeted detection
$ c l i run <bug_id> <project> <method> [—date <date>]

• run discovery scan wi th the option to set a schedule for scans
$ c l i scan [schedule]

• ini t ial ize the schema of the database
$ c l i db-init

'https://click.palletsprojects.com/en/8.1.x/
'https://docs, python.org/3/library/argparse. html

38

file:///bcoreThread/b
file:///bm_node/b
file:///boptionsModel/b
file:///bclient
file:///bnullptr/b
https://click.palletsprojects.com/en/8.1.x/
https://docs

Chapter 6

Experimentation

This chapter presents and evaluates the capabilities of the implemented tool . The first
section describes the preparation steps, including system configuration and data set. Then
the results produced by the implemented tool are presented i n the following section. F ina l ly ,
the last section summarizes the results, discusses shortcomings and provides suggestions for
possible improvements and next development.

6.1 P r e p a r a t i o n

Initially, the open-source projects Bitcoin and Go-Ethereum were selected for experiments
because of their popularity, according to the list of cryptocurrencies from the website
CoinGecko1. The projects were then registered i n the internal database as parent projects
and their repositories were cloned to the local storage. F r o m the previously mentioned
list of cryptocurrencies and based on prior research, projects which adopted source code
from either Bitcoin or Go-Ethereum repositories were identified. Accordingly, the identi
fied projects were registered i n the internal database as their forks and cloned to the local
storage.

The data set used for experimentation consists of vulnerabilit ies w i th assigned C V E
identifiers, discovered i n the selected parent projects Bitcon and Go-Ethereum. The vulner
abilities were selected based on the availabil i ty of information about them, mainly references
to patches i n order to work wi th verified data. Accordingly, the web interface was used to
create entities of the bugs i n the internal database and attempt to find bug-fixing candidate
commits using the functionality of the component FixCommitFinder. The found candidate
commits were then manual ly validated and the bug-fixing code changes were extracted, in
order to use i n the detection method only changes that address patch of the vulnerabil
ity. The extracted code changes were then used to update the corresponding attributes of
the bug entity in the internal database, i n order to allow this step to be omit ted i n the
subsequent repeated executions of the detection.

The docker environment was configured to use 4 C P U cores to take advantage of im
plemented multiprocessing features which improve the speed of the a lgori thm and 8 G B of
memory for the experimentation. For part icular evaluations, the web interface was used to
execute both detection methods for each vulnerabi l i ty from the prepared data set. Conse
quently, the detection results were noted and manually verified i n the corresponding code

1https://www. coingecko.com

39

https://www
http://coingecko.com

bases i n order to evaluate the precision of the implemented detection methods. M a n u a l
verification is needed because the results might contain false detections.

6.2 Resul ts

This section presents the detection results for the prepared list of vulnerabili t ies. Selected
vulnerabilit ies are closely analysed to address the capabilities and shortcomings of part icular
implemented detection methods, while the others provide only numbers of positive/negative
results for the calculat ion of the success rate. The detailed results are compared to the
expected outcome of the tool and are presented i n tables, where a check mark (/) represents
detected patch, a cross (x) represents that patch was not applied but the vulnerable code
detected and an empty cell means that the clone was not found and vulnerabi l i ty was not
propagated. The results, which do not correspond to reality (false positives/negatives) are
marked by the red color of the cell . The tables display results from the ma in detection
method, which is based on the approach of BlockScope.

Bitcoin-based vulnerabilities

A vulnerabi l i ty w i th identifier CVE-2021 -3401 2 was selected for the first experiment, as it
is the latest published vulnerabi l i ty according to the l i s t 3 of weaknesses in Bitcoin. The
vulnerabi l i ty was discovered i n the project Bitcoin and might allow an attacker to execute
arbitrary code upon passing a malicious argument to the bitcoin-qt program. This was
caused by misuse of bu i l t - in arguments of G U I framework Q t 1 .

CVE-2021-3401 Pa tch applicat ion status over date
Project 21/02/04 22/05/06 23/05/03

bitcoin-abc / / /
bitcoin-sv
B T C G P U X X X

dash X / /
dogecoin X / /
l i tecoin / / /
pigeoncoin X X X

Ravencoin X X /
q tum / /
zcash
zen

Table 6.1: Detect ion results for CVE-2021-3401 over various versions of the analysed
projects.

The results in Table 6.1 show that the vulnerabi l i ty was propagated to some clones of
the project B i t co in . It contains patch applicat ion status for three different states of the
projects according to the timeline of each project. The first, the 4th of February 2021 refers
to the date of C V E publishing, and the following display patching progress over t ime wi th

2https://nvd.nist.gov/vuln/detail/CVE-2021-3401
3https: / / en.bitcoin.it / wiki/Common Vulnerabilities and Exposures
4littps://www.qt.io

40

https://nvd.nist.gov/vuln/detail/CVE-2021-3401
http://en.bitcoin.it
http://www.qt.io

the last date, the 3rd of M a y 2023, referring to the date of this experiment. The results
contain the detection of the first three types of clones - Type I, Type II and Type III.

Projects bitcoin-abc, dogecoin, pigeoncoin and Ravencoin contained clones of Type III.
Clones of Type II were found i n projects dash, dogecoin and Ravencoin after applying
patch and the rest were Type I clones. Projects bitcoin-sv, zcash and zen d id not adopt
the vulnerable code. Al though , there was one miss i n case of the project qtum in the most
recent version, where the upper candidate context was missing, thus the candidate code
was not identified, even when the lower context would be found.

The tool S imian was able to detect vulnerabi l i ty only in the project BTCGPU containing
Type I clone, when run wi th code fragment containing the vulnerable version of the code on
version from 3rd of M a y 2023. W i t h version from 4th of February 2021 it was addi t ional ly
able to detect the vulnerabi l i ty only in project dash, s t i l l missing the other three affected
projects.

CVE-2018-17144 Pa tch applicat ion status over date
Project 18/09/14 18/09/19 23/05/03

bitcoin-abc
bitcoin-sv
B T C G P U X / /
dash /
dogecoin X / /
l i tecoin X /
pigeoncoin X

Ravencoin X /
q tum /
zcash
zen

Table 6.2: Detect ion results for CVE-2018-17144 over various versions of the analysed
projects.

A n Inflation bug was chosen for the second detailed experiment. The bug was discovered
alongside Denial-of-Service weakness i n Bitcoin and was described i n Section 3.1. The
vulnerabi l i ty was assigned the identifier CVE-2018-17144 0 . The experiments were done
wi th various versions of the projects and the most interesting are contained in Table 6.2.
The dates i n the table refer to the date before publ icat ion of the C V E record, the date of
publicat ion and the date of experimentation.

The results of the too l on this vulnerabi l i ty are worse i n comparison to the previous
vulnerabil i ty. The reason is that the projects where the clone was not detected used a version
where the context of the vulnerable code contained too many adjustments (dldee20547)
despite the affected code being present. S imian detected addi t ional ly the flaw in projects
dash and pigeoncoin, al though missed Ravencoin which contained a clone of Type III on
the 14th of September 2018. O n the other side, projects bitcoin-abc and bitcoin-sv d id not
clone the affected code.

To the 3rd of M a y 2023, most of the repositories already patched the vulnerabi l i ty
using different solutions, thus syntactical clones were mostly not found, which makes the
original patch outdated. Addi t ional ly , the original patch contained a change only on a

5https://nvd.nist.gov/vuln/detail/CVE-2018-17144

41

https://nvd.nist.gov/vuln/detail/CVE-2018-17144

single line of code , specifically changing value of parameter from true to false. In this
case, the similarity-based method would require more strict rules, to pay closer attention to
the specific changes. The lack of precision resulted i n a false negative detection in project
pigeoncoin, as the vulnerabi l i ty was patched here using different logic. Extended context
was used also i n the case of qtum, zcash and zen.

Vulnerabi l i ty M e t h o d T P T N F P F N Date

CVE-2019-15947

B S
S A

4
4

7
8

1
23/05/03

CVE-2019-15947
B S
S A

8
8

2
4

20/04/01

CVE-2018-17145

B S
S A

1 7
11 1

23/05/03
CVE-2018-17145

B S
S A

2
1

5
9

1
2

20/04/01

Table 6.3: Evalua t ion of both implemented detection methods on CVE-2019-15947 and
CVE-2018-17145.

Summarized detection results comparing the two implemented detection methods for
another two vulnerabilit ies are contained in Table 6.3. C o l u m n TP represents true positive
detections - the vulnerable code was correctly detected, column TN represents true negative
results - repository does not contain vulnerable code, and columns FP and FN represent
corresponding false results. The part icular methods are marked as BS, which refers to the
BlockScope-based method, and SA which stands for S imian or s imilar i ty analyser.

In the case of vulnerabi l i ty CVE-2019-15947, as a l l the detection were clones of T y p e I,
the tool S imian was able to perform slightly better. The one false positive result of the
BlockScope-based method was caused by stretched candidate code because of the upper
candidate context, which was not precisely matched. O n the other hand, the code of
vulnerabi l i ty CVE-2018-17145 contained clones of Type III as well i n the forked repositories,
which were not detected by Simian, but by BlockScope were.

Go-Ethereum-based vulnerabilities

The th i rd closely analysed vulnerabi l i ty was present i n project Go-Ethereum, which is
implemented i n the programming language G o in contrary to previously analysed projects
wri t ten i n the programming language C + - h The selected vulnerabi l i ty was assigned an
identification CVE-2022-29177 ' and its exploitat ion could make the affected node crash. It
was selected because it is the latest vulnerabi l i ty in this project, which has a reference to
the patch and is an example of complex changes discussed in relation to the discovery scan.
The discovery scan would evaluate it as complex because the patch affects more than one
file.

The detection results can be found in Table 6.4. The first date corresponds to the fix
in Go-Ethereum, the second date indicates the C V E publ icat ion date, and the final date
represents the date of this experiment. This vulnerabi l i ty was propagated to four of five
analysed projects as a clone of Type I and the main detection method was able to detect

6https: / / github.com/bitcoin/bitcoin/pull /14249/ commits / dldee20547
7https://nvd.nist.gov/vuln/detail/CVE-2022-29177

42

http://github.com/bitcoin
https://nvd.nist.gov/vuln/detail/CVE-2022-29177

it correctly, while S imian does not support this language, it needed to be configured for a
plain text comparison.

CVE-2022-29177 Pa tch applicat ion status over date
Project 22/03/07 22/06/20 23/05/03

bor X / /

bsc X / /

celo-blockchain X / /

opt imism X X X

subnet-evm

Table 6.4: Detect ion results for CVE-2022-29177 over various versions of the analysed
projects.

6.3 E v a l u a t i o n

The detection during experimentation was executed using the implemented web interface,
which was used in i t ia l ly to prepare repositories and the data set. The data set consisted of
five vulnerabilit ies discovered i n either project Bitcoin or Go-Ethereum, which covered a l l
three types of patches - containing only additions, only deletions, and mixed changes.

Twelve projects which adopted code from Bitcoin and five from project Go-Ethereum
were selected for experiments. The experiments were designed to address each vulnerabi l i ty
in the data set on various versions from the timeline of the forked projects, which was easily
possible thanks to the opt ional parameter specifying the version date i n the forked projects.
Consequently, bo th available detection methods were executed and the BlockScope-based
method was able to detect also clones of Type II and Type III addi t ional ly to the clones of
Type I detected by the integrated tool S imian as well.

Al though , the experimentation confirmed the expected shortcomings and advantages of
detection methods. S imian is l imi ted to the detection of Type I clones which generated false
negative detection results. The higher types of clones were covered by the second method,
BlockScope, u t i l iz ing textual context-based candidate code search and textual s imilari ty-
based comparison wi th a patch code for determining the vulnerabi l i ty of candidate code
fragments. The second method would fail at finding the right candidate context i n the
target project or due to using a relatively low threshold for the s imilar i ty between patches
wi th minor changes and candidate code. The experiments resulted i n two false positives
and one false negative result on the prepared data set and over various versions from the
timeline of forked projects. The two false-positive results were identified on the date of the
experiment, which was employed for detecting a l l vulnerabilit ies. Consequently, this date
was chosen for the calculation, resulting in an 80% true positive rate of the implemented
detection method covering the first three clone types.

The possible improvements could be achieved by defining stricter rules for patches con
taining specific changes as it was in the analysis of CVE-2018-17144, where the in i t i a l
patch changed only the boolean value i n the function cal l . The Normal ized Levenshtein
edit distance metric [37] evaluated the vulnerable boolean value false more similar to the
patched parameter w i t h the boolean value in project pigeoncoin, resulting in false positive
detection. A d d i t i o n a l extensions for the implemented tool could contain support for more
file extensions to the current .cpp and .go, which currently helps w i t h filtering files and
comment lines.

43

Chapter 7

Conclusion

The pr imary goal of this thesis was to develop a tool for detecting and monitor ing cloned
vulnerabili t ies i n open-source projects. In the scope of this work, the detection tool was
designed, implemented, and evaluated on a set of real-world examples.

The introductory chapter of this thesis presented motivat ion and insights discussing
vulnerabilit ies in software applications, secure coding practices, identifiers used for describ
ing weaknesses and databases storing them. The following chapter introduced clones of
source code, their types, methods and existing tools for their detection. Accordingly, the
design choices, the implementation details of a monitor ing tool for the detection of cloned
vulnerabilit ies and its capabilities were presented.

The designed tool provides options to detect the propagation of specific vulnerabili t ies
and to set up periodic monitor ing of selected open-source projects i n user-friendly interfaces.
The tool currently supports two clone detection methods based on prior research. The first
method utilizes a tool Simian for detecting duplicate code fragments capable of detecting
only Type I clones, while the second method implements detection based on a textual
s imilar i ty between the target code and patch, which locates the target code based on its
context. The second method, BlockScope, is capable of detecting not only Type I clones
but also Type II and Type III clones. These represent syntactically s imilar code fragments
that differ through variable renaming or the addi t ion or deletion of code statements. Whi l e
the first three types of clones were detected by the implemented tool w i th a sufficient rate
as discussed in the final evaluation, it does not cover Type I V . Clones of T y p e I V , which
are syntactically different but semantically similar fragments of code are not covered by
either of these methods, which might be the topic for future work and extension for the
implemented tool .

This thesis has provided insights into the issue of cloned vulnerabilit ies, and the pro
posed moni tor ing tool demonstrates the potential for detecting and mit igat ing such vu l
nerabilities in a t imely and efficient manner. The findings and the developed tool can
contribute to improving the security of software systems i n the area of cloned vulnerabi l i ty
detection and mit igat ion across open-source projects while providing a scalable architecture
for future extensions and related research.

44

Bibliography

[1] A B D E L H A F I Z , S. K . A Metr ics-Based D a t a M i n i n g Approach for Software Clone
Detection. In: 2012 IEEE 36th Annual Computer Software and Applications
Conference. 2012, p. 35-41. D O I : 1 0 . 1 1 0 9 / C O M P S A C . 2 0 1 2 . 1 4 .

[2] A G R A W A L , A . and Y A D A V , S. A hybrid-token and textual based approach to find
similar code segments. In: 2013 4th International Conference on Computing,
Communications and Networking Technologies (ICCCNT). Ju ly 2013, p. 1-4. D O I :
10.1109/ICCCNT.2013.6726700. I S B N 978-1-4799-3926-8.

[3] A K B A N O V , M . , V A S S I L A K I S , V . G . and L O G O T H E T I S , M . D . WannaCry Ransomware:
Analysis of Infection, Persistence, Recovery Prevention and Propagation Mechanisms
[online]. 2019 [cit. 2022-12-26]. Available at:
https://www.il-pib.p1/czasopisma/JTIT/2019/l/113.pdf.

[4] A L I Y E V , R . and P E A L V E R , L . A n a l y z i n g Vulnerabi l i ty Databases. In: I E E E . 2016
10th IEEE International Conference on Application of Information and
Communication Technologies. 2016.

[5] B A K E R , B . O n finding dupl icat ion and near-duplication in large software systems.
In: Proceedings of 2nd Working Conference on Reverse Engineering. 1995, p. 86-95.
D O I : 10.1109/WCRE.1995.514697.

[6] B A X T E R , I. D . , Y A H I N , A . , M O U R A , L . M . de, S A N T ' A N N A , M . and B I E R , L . Clone
detection using abstract syntax trees. Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272). 1998, p. 368-377.

[7] B I T C O I N C O R E . CVE-2018-17144 Full Disclosure
[https://bitcoincore.org/en /2018/09/20/notice/]. September 2018 [cit.
2023-04-24].

[8] B O R G , M . , S V E N S S O N , O. , B E R G , K . and H A N S S O N , D . S Z Z unleashed: an open
implementation of the S Z Z algori thm - featuring example usage i n a study of
just-in-time bug prediction for the Jenkins project. Proceedings of the 3rd ACM
SIGSOFT International Workshop on Machine Learning Techniques for Software
Quality Evaluation. 2019.

[9] C E N C I N I , A . , Y U , K . and C H A N , T . Software Vulnerabilities: Full-, Responsible-, and
Non-Disclosure [online]. 2005 [cit. 2022-12-26]. Available at:
https: / / courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/
software_vulnerabilities_by_cencini_yu_chan.pdf.

45

https://www.il-pib.p1/czasopisma/JTIT/2019/l/113.pdf
http://bitcoincore.org/en/2018/09/20/notice/
http://courses.cs.washington.edu/

[10] C H E I K E S , B . A . , W A L T E R M I R E , D . and S C A R F O N E , K . Common Platform
Enumeration: Naming Specification Version 2.3 [online]. 2011 [cit. 2022-12-28].
Available at: h t t p s : / / nv lpubs .n i s t .gov / n i s t pubs/Legacy / IR /n i s tir7695.pdf.

[11] F i R S T . Common Vulnerability Scoring System v3.1: Specification Document [online].
2019 [cit. 2022-12-29]. Available at:
h t tp s : //www.fir s t .org/ c v s s/v3 - l / c v s s-v31 - s p e c i f i c a t i o n_rl.pdf.

[12] G O E L , A . Python vs C++: Difficulty, Popularity, and Career Options. 2022.
Available at: h t t p s : / / hack r . i o/blog / py thon -vs - cpp .

[13] H E R T I G , A . 'B i t co in B u g ' Exp lo i t ed on Cryp to Fork as At tacker Pr in ts 235 M i l l i o n
Pigeoncoins. August 2018. Available at:
h t tp s : //www. coindesk.com/markets/2018/ 10/02 /bit coin-bug- e x p l o i t e d - on- c ryp to -
fork- a s - a t t a c k e r - p r i n t s-235 - m i l l i o n - p i g e o n c o i n s / .

[14] H O R V A T H , A . , E R D Ö S I , P . M . and K i s s , F . The C o m m o n Vulnerabi l i ty Scoring
System (C V S S) generations - usefulness and deficiencies. In: K i s s , F . and H O R V A T H ,

A . , ed. IT es hälozati serülekenysegek tärsadalmi-gazdasägi hatäsai. 1st ed. Infota,
January 2016, p. 137-153. I S B N 978-615-80061-5-6.

[15] H U M , Q. , T A N , J . W . , T E Y , Y . S., L E N U S , L . , H O M O L I A K , I. et a l . CoinWatch: A
Clone-Based Approach for Detect ing Vulnerabil i t ies i n Cryptocurrencies. In: 3rd
IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN
2020). Institute of Elec t r ica l and Electronics Engineers, 2020, p. 17-25. D O I :
10.1109/Blockchain50366.2020.00011. I S B N 978-0-7381-0495-9. Available at:
h t tp s : //www.fit.vut.cz/research/publication/12363.

[16] J I M E N E Z , W . , M A M M A R , A . and C A V A L L I , A . Software Vulnerabil i t ies, Prevention
and Detect ion Methods: A Review 1. Ju ly 2010.

[17] K A M I Y A , T . , K U S U M O T O , S. and I N O U E , K . C C F i n d e r : A mult i l inguist ic token-based
code clone detection system for large scale source code. Software Engineering, IEEE
Transactions on. August 2002, vol . 28, p. 654-670. D O I : 10.1109/TSE.2002.1019480.

[18] L i u , C , C H E N , C , H A N , J . and Y u , P . S. G P L A G : Detect ion of Software Plagiar i sm
by Program Dependence G r a p h Analys is . In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York , N Y ,
U S A : Associat ion for Comput ing Machinery, 2006, p. 872-881. K D D '06. D O I :
10.1145/1150402.1150522. I S B N 1595933395. Available at:
h t tp s : //doi.org/10.1145/1150402.1150522.

[19] M A Y R A N D , J . , L E B L A N C , C . and M E R L O , E . Experiment on the Automatic Detection
of Function Clones in a Software System Using Metrics. January 1996. D O I :
10.1109/ICSM.1996.565012.

[20] M I T R E . Common Vulnerabilities and Exposures — CVE [online]. 2016 [cit.
2022-12-29]. Available at: https://cve.mitre.org/docs/cve-intro-handout.pdf.

[21] M I T R E . Scoring System (CWSS) [online]. 2018 [cit. 2022-12-28]. Available at:
h t tp s : / / cwe.mitre.org/ cwss/cwss_vl.0.1.html.

46

http://www.fir
https://hackr.io/blog/python-vs-cpp
http://coindesk.com/markets/2018/
http://www.fit.vut.cz/research/publication/12363
https://cve.mitre.org/docs/cve-intro-handout.pdf
http://cwe.mitre.org/

[22] M I T R E . 2022 CWE Top 25 Most Dangerous Software Weaknesses [online]. 2022 [cit.
2022-12-28]. Available at:
https: //ewe. mitre.org/top25/archive/2022/2022_cwe_top25. html.

[23] M I T R E . About - CWE Overview [online]. 2022 [cit. 2022-12-28]. Available at:
https: / / cwe.mitre.org/ about/index.html.

[24] N A K A M O T O , S. Bitcoin: A Peer-to-Peer Electronic Cash System [online]. 2008 [cit.
2022-12-11]. Available at: https://bitcoin.org/bitcoin.pdf.

[25] N A M A N Y A , A . P. , C U L L E N , A . , A W A N , I. U . and D i s s o , J . P . The W o r l d of Malware:
A n Overview. In: 2018 IEEE 6th International Conference on Future Internet of
Things and Cloud (FiCloud). 2018, p. 420-427. D O I : 10.1109/FiCloud.2018.00067.

[26] N E W M A N , L . H . WannaCry explained: A perfect ransomware storm. September 2017.
Available at: https: //www.csoonline.com/article/3227906/wannacry-explained-a-
perfect-ransomware-storm.html.

[27] N I S T . The National Vulnerability Database (NVD): Overview [online]. 2013 [cit.
2022-12-29]. Available at: https://csrc.nist.gov/CSRC/media/Publications/Shared/
documents/itl-bulletin/itlbul2013-12.pdf.

[28] O W A S P . Secure Coding Practices Quick Reference Guide [online]. 2010 [cit.
2022-12-27]. Available at:
https: //owasp.org/www-pdf-archive/OWASP_SCP_Quick_Ref erence_Guide_v2.pdf.

[29] P A T E N A U D E , J . -F . , M E R L O , E . , D A G E N A I S , M . and L A G U E , B . Ex tend ing software
quali ty assessment techniques to Java systems. In: Proceedings Seventh International
Workshop on Program Comprehension. 1999, p. 49-56. D O I :
1 0 . 1 1 0 9 / W P C . 1999.777743.

[30] R O Y , C . and C O R D Y , J . A Survey on Software Clone Detect ion Research. School of
Computing TR 2007-541. January 2007.

[31] R O Y , C . K . and C O R D Y , J . R . N I C A D : Accurate Detect ion of Near-Miss Intentional
Clones Us ing Flexible P re t ty -Pr in t ing and Code Normal iza t ion . In: 2008 16th IEEE
International Conference on Program Comprehension. 2008, p. 172-181. D O I :
10.1109/ICPC.2008.41.

[32] S H E N E A M E R , A . and K A L I T A , J . A Survey of Software Clone Detect ion Techniques.
International Journal of Computer Applications. M a r c h 2016, vol . 137, p. 1-21. D O I :
10.5120/ijca2016908896.

[33] S L I W E R S K I , J . , Z I M M E R M A N N , T . and Z E L L E R , A . W h e n D o Changes Induce Fixes?
In: Proceedings of the 2005 International Workshop on Mining Software Repositories.
New York , N Y , U S A : Associa t ion for Comput ing Machinery, 2005, p. 1-5. M S R '05.
D O I : 10.1145/1083142.1083147. I S B N 1595931236. Available at:
https://doi.org/10.1145/1083142.1083147.

[34] T H A K U R , N . B i t co in Core B u g CVE-2018-17144: A n Analys is . Hackernoon.
September 2018. Available at: https:
//hackernoon. com/bit coin- core-bug- eve-2018-17144- an-analysis-f 80d9d373362.

47

http://mitre.org/top25/archive/2022/2022_cwe_top25
http://cwe.mitre.org/
https://bitcoin.org/bitcoin.pdf
http://www.csoonline.com/article/3227906/wannacry-explained-a-
https://csrc.nist.gov/CSRC/media/Publications/Shared/
https://doi.org/10.1145/1083142.1083147

[35] W A H L E R , V . , S E I P E L , D . , W O L F F , J . and F I S C H E R , G . Clone detection in source code
by frequent itemset techniques. October 2004. D O I : 10 .1109/SCAM.2004.6 .

[36] Y i , X . , F A N G , Y . , W u , D . and J I A N G , L . BlockScope: Detecting and Investigating
Propagated Vulnerabilities in Forked Blockchain Projects. M a r c h 2023 [cit. 2023-04-10].
Available at: https:
/ / www.ndss- sjraiposium.org/wp- content/uploads/2023/02/ndss2023_f 222_paper.pdf.

[37] Y U J I A N , L . and B o , L . A Normal ized Levenshtein Distance Met r i c . IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2007, vol . 29, no. 6,
p. 1091-1095. D O I : 10.1109/TPAMI.2007.1078.

18

http://www.ndss-
http://sjraiposium.org/

Append i x A

C D Content

• Dockerfile - instruct ion describing the docker image of the tool

• R E A D M E . m d - R E A D M E containing instal lat ion and start-up manual

• cli - executable l ink to the C L I

• c loneguard/ - source code of A P I , C L I and detection mechanism

• db da ta / - file w i th dump of the database content

• docker-compose.yml - description of services

• docs / - source files of the thesis text

• poetry.lock - lock file generated by the Poet ry package manager for P y t h o n projects

• pyproject .toml - definitions of P y t h o n dependencies

• web / - source code of web user interface

49

