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Abstrakt 

Numerické řešení matematických modelů popisujících chování materiálů s jemnou struk

turou (kompozitní materiály, jemně perforované materiály, atp.) obvykle vyžaduje velký 
výpočetní výkon. Proto se při numerickém modelování původní materiál nahrazuje ekvi

valentním materiálem homogenním. 

V této práci je k nalezení homogenizovaného materiálu použita dvojškálová konvergence 
založena na tzv. rozvinovacím operátoru (anglicky unfolding operator). Tento operátor 
poprvé použil J. CasadoDíaz. V disertační práci je operátor definován jiným způsobem, 
než jak uvádí původní autor. To dovoluje pro něj dokázat některé nové vlastnosti. 
Analogicky je definován operátor pro funkce definované na perforovaných oblastech a 
jsou dokázány jeho vlastnosti. Na závěr je rozvinovací operátor použit k nalezení ho

mogenizovaného řešení speciální skupiny diferenciálních problémů s integrální okrajovou 
podmínkou. Odvozené homogenizované řešení je ilustrováno na numerických experi

mentech. 

Summary 

The numerical solving of mathematical models describing the mechanical behavior of ma

terials with a fine structure (composite materials, finely perforated materials etc.) usually 
requires huge computational performance. Hence in numerical modeling the original ma

terial is replaced by an equivalent homogeneous one. 

In this work a twoscale convergence based on a periodical unfolding operator is used to 
find the homogenized material. The operator was for the first time used by J. Casado

Díaz. In this Ph.D. thesis, the operator is defined in a slightly different way which allows 
us to prove some of its new properties. The unfolding operator for functions defined on 
a perforated domain is defined analogically and its properties are proved. Finally, this 
operator is used to find the homogenized solution of a special family of problems with an 
integral boundary condition; some numerical results are presented. 
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L i s t of used symbols a n d abbrev ia t ions 

N dimension of a space 

R, M.N real numbers, TV-dimensional real vector space 

Z, Z N integer numbers, TV-dimensional integer vector space 

c, C constants 

A x B Cartesian product of sets A, B 

1A characteristic function of a set A, 1A(X) = l f o r x € A , otherwise 0 

Q bounded domain (open connected set) in WLN with Lipschitz boundary 

Q , dfi closure and boundary of fl 

u • v scalar product of two vectors u and v in WLN 

V, V normed linear space and its dual space 

||-||y, \-\v norm and seminorm on V 

(u, v)v scalar product of u and v on a linear space V 

(•,-)Viy duality pairing between V and V 

E = {ek}^L0 scale; descending sequence of positive numbers, such that \ 0 as k —> oc 

{u£} sequence of functions {u£k}^L0 

un —> u sequence {un} converges strongly to u 

un —1 u sequence {un} converges weakly to u 

C°°(fl) space of infinitely differentiable functions u : Q —> M 

V{VL) space of functions from C°°(Q) with compact support 

LP(Q) Lebesgue space, see Definition 2.16 

W1,P{VL) Sobolev space, see Definition 2.27 

Hl{Q) Hilbert space W^2{Vt) 

HQ(Q) Hilbert space with zero trace on dfl 

V-u gradient of function u 

Vyu gradient of function u = u(xi,x2, • • •, UN, HI, VI • • •, UN) with respect to 
y-variable, i.e. (P-,P-,... 
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Y reference cell; TV-dimensional interval (0,/i) x (0,/2) x ••• x (0, IN), where 
li,..., IN are fixed positive numbers 

Y£
K e-scaled system of the cells Y£

K = e(Y + k), 

k e K = {k e R N \ k = £ • (lul2,...,lN),£ e Z N } 

tt£ cells inside ÍÍ, i.e. ^ U Y^j n ÍÍ, where E£ = [k e R N s.t. Y£
K C H} 

A e cells crossing boundary díl, i.e. fl \ fl£ 

% periodic unfolding operator, see Definition 3.2 

T reference hole, open bounded set in MN with a smooth boundary 

TÍ hole, see Section 4.1 

Y* perforated reference cell, i.e. Y \ T 

ÍŽ* part of fl occupied by material, see (29) 

Tj*t £ sets TÍ which are completely inside fl and do not intersect the boundary 

díl, i.e. the sets T | C fi 

7in t > e interior holes; i.e. U*l (? ^iit, e 

Text)£ holes crossing the boundary díl; i.e. (T£ \ T j n t i £ ) fl il, 

dextfl*£ exterior boundary of fl*£, i.e. dextfl*£ = dfl*£ \ <9Tintj£ 

ill í^e \ ^int,e 

a: n ; \ n ; 

7̂ * periodic unfolding operator for perforated domains, see Definition 4.1 

it extension by zero of finction u : il* —> K. into ÍŽ 

A4n mean value operator over fl, i.e. A'in(ti) = Jnu(x) dx 

Ai£ local average operator, see Definition 3.9 
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1. INTRODUCTION 

1. I n t r o d u c t i o n 

Theory of homogenization was developed for modeling media with a fine periodical struc
ture. In a physical setting, homogenization means replacing a heterogeneous material by 
an equivalent homogeneous one, in mathematical setting it means approximating equa
tions with highly oscillating coefficients by equations with constant ones. 

The mathematical approach consists of considering a sequence of problems with a material 
with a more and more refined structure. Hence, we get a sequence of solutions. The 
principal question is: How does the sequence behave? Does the limit, the so called 
homogenized solution, exists? If so, how can it be characterized? This approach was first 
introduced by J.B. Keller (1973) and developed by I. Babuska (1975). More about the 
homogenization can be found in the monograph [BLP78] or in the textbook [CD99]. 

Other problems for which a similar approach can be used are problems defined on period
ically perforated domains. Let Q be a domain in MN and let it be periodically perforated 
by holes. We shall construct a sequence of domains with an increasing number of holes 
and decreasing their volume. Again, we are interested in a behavior of the limit solution. 

When we try to find the homogenized solution several difficulties occur. Some of them 
are common for the case with and without holes. The following problem can illustrate 
the typical situation in the setting with no holes. 

For e — 1, Y 2 , Y 3 , . . . , let us assume a sequence of solutions {u£} to a problem 

| -V-(A£Vu£) = f in fl, 
\ u£ = 0 on dQ,, 

where A£(x) = ^ l( f) and A(y) is a F-periodic function satisfying 0 < a < A(y) < (3. 

Weak formulation of this problem is: 

Find u£ G HQ{VL) such that 
r r (2) 

/ AJx) V M £ ( I ) • Vv(x) dx = f(x) v(x) dx, Vv G HQ(Q). 
Jn Jn 

For A£ G L°°(Q), the domain fl with a "good" boundary and / G L2(fl), the unique weak 
solution u£ exists and satisfies | | w e | | H i ^ < C. Since the sequence {u£} is bounded in 
HQ(Q), it contains a weakly converging subsequence of gradients {Vu£}. 

When we are tending to the limit, it turns out that the left-hand side of (2) contains 
a product of two weakly converging sequences, {A£} and {Vu£}. In this case it is not 
possible to reach to the limit directly, since a limit of product need not to be a product 
of two weakly converging sequences. 

In the past, several approaches to overcome this problem were developed. 

• Multiple-scale method is summarized in monograph by A . Bensoussan, J.-L. Lions 
and G. Papanicolaou [BLP78]. The method uses the asymptotic expansion of the 
solution u£ to find the homogenized one. 
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• Local energy method (called also the oscillating test function method) was introduced 
by L. Tartar [Tar97] in the years 1977 and 1978. The method is based on a special 
choice of oscillating test functions in the weak formulation of the problem. 

• Two-scale convergence method introduced by G. Nguetseng [Ngu89] in 1989 and 
developed by G. Allaire [A1192] in 1992. In this method a new type of convergence 
is defined. The limit of two-scale convergent sequence has two variables, the second 
one describes local behavior. This method requires introducing a special space for 
test functions. 

• Periodic unfolding method is an alternative approach to the two-scale convergence. 
It was introduced by J. Casado-Díaz [CDOO] in 2000 and D. Cioränescu, A . Damla-
mian and G. Griso [CDG02], L. Nechvátal [Nec04] and J. Francu [FralO]. It removes 
problems with the choice of space for test functions, therefore it is more natural. 
A comprehensive survey of the application of this method to the problems in do
mains with holes is described by Cioränescu, Damlamian, Donato, Griso and Zaki 
[Cio+12]. 

Let us turn our attention back to the problems defined on the domain with holes. In 
this case, one more problem arises. Let ÍŽ* denotes a periodically perforated domain with 
period e Y. For e \ 0 the period is smaller and smaller and the domain is perforated by 
more and finer holes. 

A model situation looks as follows: For e = 1, y 2 , y 3 , . . . , let us assume a sequence {u£}, 
where u£ is a solution of the problem 

= / in O* 
(3) 

= 0 on dflt 
e' 

A weak formulation of the problem (3) is: 

Find u£ e H^(Q*£) such that 

r r , (4) 
/ Vu£(x) • Vv£(x)dx = / f(x)v£(x)dx, VveeH%(n* . 
Ja* Ja* 

The problem is that each solution u£ of problem (4) is defined on a different domain 
f2*. Hence, it is not clear in which sense the convergence of the sequence {u£} can be 
understood. Even if there existed some UQ for which \\u£ — uo\\Hi^n^ —> 0, as e \ 0, one 
could not speak about "convergence" (in a strong or weak sense) of the sequence {u£}. 

Several methods to avoid this issue have been developed over time: 

• Quite an intuitive approach is a construction of an uniformly bounded extension 
operator P£ from ifg(f2*) to HQ(Q). Then, we can transform our problem of finding 
a "limit" of {u£} by another one: Find a limit of the sequence {P£(u£)} in the fixed 
space HQ(Q). 
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1. INTRODUCTION 

This approach has a limitation. The existence of operator P£ depends on the bound
ary conditions of the problem (in the case that they are more complicated than in 
our model example) and also on the shape of the holes (for example they should 
have a sufficiently smooth boundary and should not intersect the boundary of Q). 

• Another approach is to use an unfolding operator to transform functions u£, resp. 
Vu£ defined on Q* to the fixed domain Q x Y. 

As we can see the periodic unfolding method is the technique which solves both problems 
mentioned above. This is the reason why the method is so suitable for problems defined 
on perforated domains. 

Goal and contribution of the thesis 

Let Q be a bounded set, and Y a reference cell in M.N. The unfolding operator % associates 
to any function in LP(Q) with a function in LP(Q x Y). 

The main disadvantage of an unfolding operator introduced in [CDOO], [CDG02] is that 
it does not conserve integrals. It means that in general for u G L°°(Vt) 

It can be shown that the left-hand side of (5), for u > 0, is always grater or equal than 
its right-hand side. The equality holds only in limit, i.e. for e —> 0. 

This issue was removed by redefining this operator. The operator was improved by J. 
Francu and N.Svanstedt in [FS12]. This change simplifies the proofs and removes sev
eral difficulties and necessity of introducing "unfolding criterion for integrals" (see e.g. 

This thesis aims to prove properties of this improved unfolding operator, mainly the con
vergence for the sequence of gradients and applying an analogical approach to perforated 
domains. Finally, our purpose is to use this new operator to find a homogenized solution 
of the special family of the problems with an integral boundary condition and present 
some numerical results. 

The thesis intents to be self-contained work suitable as the first reading for engineers and 
applied mathematicians. It is organized as follows: 

In Section 2 we review some results and concepts of functional analysis and variational 
elliptic problems that will be used in the sequel. 

Section 3 introduces the notation, defines the improved unfolding operator for the fixed 
domain (without holes), the definition is the same as in [FS12]. The properties are proved 
in detail. In the end of the chapter an important result for applications is shown - a 
convergence for sequences of gradients. The proofs in this section are new. Although they 
follow similar reasoning as the ones in [CDOO] or [CDG02], they make use of conservation 
of integrals which makes them simpler and more transparent. 

[CDG08]). 
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Section 4 is devoted to unfolding for perforated domains. There is a new definition of an 
unfolding operator for perforated domains. The operator is defined in such manner that 
it conserves integrals and it transforms functions from perforated domains f2* to the fixed 
domain Q x Y (which does not depends on e). Finally, the properties of the operator are 
proved. 

In Section 5 we apply the periodic unfolding method to a boundary value problem on a 
perforated domain which arises from the study of a torsion of an elastic bar or a distribu
tion of an electric field (we will call it Torsion boundary value problem). The problem is 
derived in [FNJ12] and [FR15]. Homogenization of the torsion problem has been studied 
by Rauch and Taylor [RT75] and Cioranescu and Paulin [CP79], but the usage of the 
periodic unfolding method to find a homogenized solution is new. 

Section 6 is a continuation of the previous one and it contains a numerical examples. 

Appendix describes some computational aspects of solving the homogenized problem and 
problem on perforated domain. 

Related works 

A homogenization on a periodically perforated domain for miscellaneous boundary value 
problems was treated by numerous authors. Let us mention some milestones in this area. 

The Laplace equation with a homogeneous Dirichlet condition in the domain where the 
holes are regularly distributed and the size of the holes decreases when the number of the 
holes increases was studied by Murat and Cioranescu [MC97]. They showed that even in 
this problem an interesting behavior of the limit solution occurs. 

In this problem we can identify three different situations. The first situation is when the 
size of holes decreases too quickly - quicker than the size of the cell period. Then ue 

converges to the solution of the Dirichlet problem in Q. The second situation is when the 
size of holes decreases too slowly. Then u£ converges to the zero function. Between these 
two cases there is the third one when the size of holes is critical, in that case an additional 
zero order term appears in the right-hand side of the limit equation. 

In [MC97] there are quite strict assumptions on the distribution and shape of the holes. 
This limitation has been removed by Dal Maso and Garroni [MG94]. This break through 
made possible the solving the general case of homogeneous Dirichlet problems without 
any geometrical assumptions. 

A problem with homogeneous Neumann boundary condition with some geometrical as
sumptions on holes was studied by Hruslov [Hru79]. 

Some assumptions on the size and shape of holes which are admissible for a periodic 
homogenization with Neumann boundary condition are given by Damlamian and Donato 
[DD02]. 

A classical situation is when the holes are distributed periodically and the ratio of material 
volume to the period volume is constant. This situation with a different type of boundary 
conditions has been described in numerous papers. Laplace equation with homogeneous 

4 



1. INTRODUCTION 

mixed (Dirichlet and Neumann) boundary conditions was studied by Cardone, D'Apice 
and Maio [CDM02], elliptic equations with linear Robin resp. with non-linear conditions 
were studied by Cioranescu, Donato and Zaki in [CDZ06] resp. in [CDZ07], elliptic 
equations with non-homogeneous mixed boundary conditions were studied by Esposito. 
D'Apice and Gaudiello [EDG02]. 

A problem on domains with holes which are distributed periodically and their size is 
diminishing with respect to the period (the so called small holes) was studied by Mu-
rat and Cioranescu in [MC97] (homogeneous Dirichlet boundary conditions), and also 
by Conca and Donato in [CD88] (non-homogeneous Neumann boundary condition), by 
Cioranescu and Ould Hammouda in [COH08] (elliptic equations with a non-homogeneous 
mixed boundary conditions), by Ould Hammouda in [OH11] (elliptic equations with non-
homogeneous Neumann boundary). 

A non-periodical behavior of the holes has been studied by Nguetseng in [Ngu04]. 
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2. P r e l i m i n a r i e s 

In this section we give a survey of some results and concepts of functional analysis that will 
be used in the sequel. Namely, we recall main properties of Banach and Hilbert spaces, 
especially Lebesgue and Sobolev spaces and weak convergence in them. In the end of the 
section we summarize the main results of elliptic problems and conditions under which 
these problems have a unique solution. 

A l l functional spaces are considered to be real. 

2.1. Banach and Hilbert spaces 
Let us begin by recalling the notations of Banach and a Hilbert spaces which are the 
functional spaces we work with. 
Let V be a linear space. A mapping \\-\\v : V —>• IRq is called a norm on a linear space V 
if it satisfies the three following properties: 

(i) separates points, i.e. \\u\\v = 0 45> u = 0, 

(ii) absolute homogeneity, i.e. ||o;M||y = \a\ \\u\\v, 

(hi) triangle inequality, i.e. -l-i^Hy < ll^illv + l l ^ l l v 

A seminorm on V is a mapping \ -\V : V —> RQ, which satisfies only properties (ii) and (hi). 

The linear space V is called a Banach space, if it is endowed with the norm and it is 
complete in this norm. 

A mapping (•, -)v : V x V —> M is called scalar product on V if it satisfies the following 

(i) symmetry, i.e. (u1,u2)v = ( M 2 , M I ) V , 

(ii) linearity in the first component, i.e. {a\U\ + a2U2,u)v = a\{u\,u)v + «2(^2,u) v , 

(hi) (u, u)v > 0 and (u, u)v = 0 4^ u = 0. 

A complete linear space V with scalar product is called a Hilbert space. Each Hilbert 
space is also a Banach space with the norm associated to this scalar product: 

Definition 2.1 (Bounded linear operator on Banach spaces). Let V,W be two Banach 
spaces. The operator A : V —> W is said to be linear, if ui,u2 G V and a G K. satisfies 
A{u\ + u2) = A(ui) + A{u2) and A(au\) = aA(ui). The operator A is bounded if there 
exists a constant C > 0 such that 

properties: 

\\A(u)\\w < C\\u v Vu G V. 
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2. PRELIMINARIES 

Proposition 2.2. Let A be a linear operator from V to W, then the following statements 
are equivalent: 

1. A is continuous at point UQ G V, i.e. Vu„ G V, un —> UQ =>- A{un) —> A{UQ), 

2. A is continuous, i.e. ~iun,u G V, un —> -u =>- A(-u„) —> 

5. A is bounded, i.e. 3C > 0 such that \\A(u)\\w < C| |u| |y Vu G V. 

For proof see [Rud91] p. 24-25. 

Proposition 2.3. Let V,W be a Banach spaces. The set of all continuous linear operators 
from V into W, denoted by C(V, W), with a norm 

U\\ctyw)= S U P ^ T I T ^ VAe£(V,W) uev\{o} \\u\\v 

is a Banach space. 

For proof see [Rud91] p. 92-93 or [Yos65] p. 111-112. From definition of the norm on 
C(V, W) one gets 

U{u)\\w<\\A\\c{VtW)\\u\\v Vu£V,AeV. 

Moreover, the linearity of A implies 

WMmw)= ^ p M * : = sup \\A(u)\\w. 
uev\{o} \\u\\v U G V , | | U | | = I 

Definition 2.4 (Dual space). Let V be a Banach space. The set C(V,M.) of all linear 
continuous functionals from V into K. is called the dual space of V and is denoted by V. 
For F G V, the image F{u) of u G V is denoted by (F,u)y, y. The bracket (•, -)y, y is 
called duality pairing between V and V. 

Remark. Since M. is complete the dual space is a Banach space with the norm 

= sup 

Moreover, one has 

(F,u)v>v < \\F\\y,\\u\\y Vli G V. 

The dual space V" = (V)' of the V is called bidual or second dual and it is also a Banach 
space. 

Proposition 2.5. Let V 6e a Banach space and let J : V —> V " 6e t/ie linear mapping 
defined by 

(J(u),u)y„y, = (it )U)yly Vli G V, Vli ' G V ' . 

TTien, J is an isometry, i.e.: 
\\J(u)\\y„ = \\u\\y. 
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For proof see [Rud91] p. 95 or [Yos65], p. 113. Thanks to this result V can be identified 
with a subspace J(V) C V". 

Definition 2.6 (Reflexive Banach space). Let V be a Banach space and J be the map 
defined by Proposition 2.5. V is said to be reflexive iff J(V) = V". 

If V is reflexive, we identify V and V". 

Proposition 2.7 (Riesz representation theorem). Let V be a Hilbert space. For each 
u' G V there exists a unique u G V such that 

(u',v)v,y = (u,v)v VveV. 

Moreover the mapping v! G V >->• u G V is an isometric isomorphism. 

For proof see [Yos65], p. 90. 

Proposition 2.8. Hilbert spaces are reflexive. 

Let us recall that a set S in a topological space V is called dense in a set M if the closure 
of S contains M. In other words for each u G M there exists a sequence {un} G S such 
that un —> u. 

Topological space having a countable dense subset is called a separable space. 

2.2. Weak convergence 
Definition 2.9 (Weak convergence). Let V be a Banach space and V its dual space. 
The sequence {un} in V is said to weakly converge to u G V if 

(u1, un)v,y -»• (u', u ) v , j V , Vu' G 1/'. 

Weak convergence will be denoted by 

«n —1 u weakly in V. 

Proposition 2.10. The limit of weak convergence is unique. 

Proposition 2.11. Strong convergence implies weak convergence. 

For proof see [Yos65], p. 120. 

Proposition 2.12. Every weakly converging sequence {un} is bounded in V, i.e. there 
exists a constant C such that 

\\un\\v <C, Vn G N . 

For proof see [Yos65], p. 120, or [KF75], p. 219-220. 
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2. PRELIMINARIES 

Proposition 2.13 (Compactness, Eberlein-Smulian). Let V be a reflexive Banach space. 
Then every bounded sequence {un} in V contains a weakly convergent subsequence, i.e. 
there exists a subsequence {unk} C {un} and u G V, such that unk —1 u weakly in V. 

For proof see [Yos65], p. 126. 

Proposition 2.14 (Eberlein-Smulian). Let V be a reflexive Banach space. If each weakly 
convergent subsequence of {un} in V has the same limit u, then the whole sequence {un} 
weakly converges to u. 

For proof see [Yos65], p. 124. 

Proposition 2.15. Let {un} be a sequence in V, and {vn} be a sequence in V such that 

vn —> v strongly in V, 
un —1 u weakly in V. (6) 

Then 
lim (vn, Un)y, y = (V, U)y, y. 

Proof. From the Remark below Definition 2.4 we get 

lim 
n—>oo 

\vmun)yi y (viu)v',V lim 
n—>oo 

(Vn ~ V, Un)y, y + (V, Un - U)y, y < 
< lim \\vn — v\\vl\\un\\v + lim (v,Un ~ U)y, V'V 

To pass to the limit in the first term we use the following: By assumptions, sequence {un} 
weakly converges, hence the sequence is bounded (see Proposition 2.12). Sequence {vn} 
strongly converges. Thus 

0. (7) lim \\vr, ^ IIV 11^™ IIV 

Both terms tend to the zero. Indeed, to pass to the limit in the second term we use 
definition 2.9. If un —1 u weakly converges in V then, by the definition, 

lim 
n—>oo 

(V,un-U)y,y 0. (8) 

Summing up (7) with (8) we get the result. • 

2.3. Lebesgue spaces 

We shell work with integrable functions. 

Definition 2.16 (Lebesgue spaces, LP spaces). Let Q be an open bounded set in RN, 
u : Q —> M. be a measurable function on fl and p G (1, oo). Let us denote 

for p G (1, oo) 

9 
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'x)f dx 



and for p = oc 

lullL°°(n) = esssup|-u(xj 

The spaces of integrable functions on Q are called Lebesgue spaces and are denoted by 
LP(Q), i.e. 

LP(VL) = j-u I u : Vt —> M, i i is measurable on and | M | L P ( Q ) < oo}. 

More precisely elements of Lebesgue spaces are the classes of functions which differ on at 
most zero measure set. 

Proposition 2.17. Let Q be an open bounded set in RN and p G (1, oo). The set Lp(fl) 
equipped with the norm \\u\\LP^ is a Banach space. 

Moreover, the space L2(Q) is a Hilbert space with the scalar product 

(u>v)i?(n) = jnu(x)v(x) áx. 

For proof see [AF03], Theorem 2.15, p. 29. 

Proposition 2.18. The space LP(Q) is separable for p G (l,oo) and reflexive for p G 
(l,oo). 

For the proof of separability see [AF03], Theorem 2.21, p. 32, and for reflexivity see 
[AF03], Theorem 2.46, p. 49. 

Proposition 2.19 (Holder inequality). Let u be in Lp{Vl) and v in Lp'(Vl), where p G 
(l,oo) and p' is its conjugate, i.e. 

ť = ^TT for p G ( l , o o ) , 

p' — 1 for p = oo, (9) 
p' — oo for p — 1. 

Then, 

u(x)v(x)dx= | | H | L i ( n ) < | | M | | L P ( n ) l l U l l L P ' ( n ) -

For p = 2 the inequality is called Cauchy-Schwartz inequality. 

For proof see [Yos65], p. 33, or [AF03], Theorem 2.4, p. 24. 

Definition 2.20. Let u be function ÍŽ —> M the support of u, denoted by supp-u 

suppw = {x 6 fl u{x) 7̂  0}. 

We denote by T)(Q) the set of infinitely differentiable functions whose support is a compact 
set contained in Q. 
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2. PRELIMINARIES 

Proposition 2.21 (Approximation by compactly supported smooth functions). For p G 
(l,oo), the space V(Q) is dense in LP(Q). 

For proof see [KJF77], Theorem 2.6.1, p. 73. 

Proposition 2.22 (Riesz Representation Theorem for LP(Q)). Let p G (l,oo) and p' be 
its conjugate. Further let F be a linear continuous functional on LP(Q) (i.e. it belongs to 
the [Lp(f2)]' - dual space of 1/(0)). Then for each F there exists unique f G LP''(Q) such 
that 

(Fiu)[Lv(n)]',Lv(n) = / f(x)u(x)dx V M G Lp[ß). 
Moreover 

\\F\ [LP(n)]' — \\J llLp'(n)-

For proof see [AF03], Theorem 2.44, p. 47. 
Remark. Due Riesz Representation Theorem, the space [Lp(f2)]' can be identified with 
Lp'(tt) for p G (l,oo). 

In Lp spaces the weak convergence is defined as follows. It is the special case of Defini
tion 2.9. 

Definition 2.23 (Weak convergence in Lp spaces). Let {un} be a sequence in LP(Q) with 
p G (1, 00) . The sequence {un} weakly converges to u in LP(Q), i.e. 

un —1 u weakly in LP(Q) 

iff 

/ un(x) v(x) dx —> / u(x) v(x) dx Vi> G Lp (Q), 

where p,p' are conjugate exponents. 
Proposition 2.24. Let {un} be a sequence in LP(Q) and u G LP(Q), 1 < p < 0 0 . Further 
let S(Q) be a dense subspace of Lp (Q), with 1/p + 1/p> = 1. Then the following properties 
are equivalent: 

(a) un —1 u weakly in Lp(fl). 

(b) (i) {un} is bounded in LP(Q), i.e. \\un\\LP^ < C independently of n, 

(ii) J (un(x) — u(x)^j (p(x) dx —> 0 \/ip G S(Q). 

Proof. Suppose that (a) holds then (i) follows from Proposition 2.12 and (ii) is obtained 
by testing the weak convergence for the function ip G S(Q) C Lp (Q). 

Assume now that (b) holds. Let ip G Lp (fi). Since S(Q) is dense subspace of Lp (Q), for 
any positive v there exists a function ipu G S(Q) such that 
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Then, 

(un(x) — u(x)Sjip(x) dx = 

= / (un(x) - u{x)^ipv{x)dx + / (un(x) - (i>{x) - ipv{x)} dx (10) 

Due to condition (ii) the first term converges to zero. From the (i), the definition of ipu 

and the Holder inequality, we derive 

/ n ( „ „ M - „ M ) ( ^ ) - ^ W ) d x < c , . 

Since \\ip — <^i/||iP'(Q) can be chosen arbitrary small, the property (a) follows from (10). • 

Proposition 2.25. Let {un}, {vn} be sequences in L2(Q) such that 

un —> u strongly in L2(fl), 

vn —1 v weakly in L2(Q). 

and further let {unvn} be bounded in L2(Q). Then, 

unvn —1 uv weakly in L2(Q). 

The proposition follows from the previous proposition and Proposition 2.15. 

Lemma 2.26 (The fundamental lemma of the calculus of variations, Du Bois-Reymond's 
lemma, Testing lemma). Let u G Lx(f2) and satisfy 

j^u(x)^(x)dx = 0 V^eV{Q). 

Then, u(x) = 0 almost everywhere in Q. 

For proof see [AF03], Lemma 3.31, p. 74. 

2.4. Sobolev spaces 

In this part we give a short presentation of W 1 , P , H 1 and HQ spaces. Let fl be a domain 
in MN with Lipschitz continuous boundary. 

Definition 2.27 (Sobolev spaces W1,p and H 1 ) . Let p G (l,oo). The Sobolev space 
Wlj,(Q) is defined by 

w1,p{yt) = j« | u, | ^ G Lp(n), i = I, ..., /Y|, 

where 1^- are taken in the sense of distribution. 
axi 

For p = 2 the space W1,2(fl) is denoted by if 1(f2), i.e. 

H\n) = L \ u , | ^ G L 2 ( f i ) , i = l , . . . , j v l . 
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2. PRELIMINARIES 

Proposition 2.28. The Sobolev space W1,P{VL) with the norm 

N 

\uWw1'P(n) ~ \\u\\LP(n) + E 
i=l 

du 
dxj LP(fi) 

is a Banach space. For p G (1, oo), this norm is equivalent to the following one 

tin 
u w1'P(n) 

N 

\U\ 
1 d x + 

where 

and 

i=l 

Vu 

dxi 

l du 

p \ p 
dx LP(Q) + V M [LP(n)Y N I ; 

du 

l ^ l l ^ n ) ] " 

dx\ 8XN 

du N 

E dxi LP (to) j 

Moreover, the space H1 (Q) is a Hilbert space with the scalar product 

N / 

(u>v)m(si) = + E 
i=l \ 

du dv \ 
dxi dxi J 

(«) 

For proof see [AF03], Theorem 3.3, p. 60 and Theorem 3.6, p. 61. 

Sobolev space with zero trace on dfl, HQ(Q), is the closure of C^°(Q) in 

Let us denote by M^w™ a semi-norm on the space 

\H1(Q) 

N 

E 
v»=l 

dv 
dxi L2(f7) / 

Proposition 2.29 (Approximation by smooth functions). For p G ( l ,oo) ; the space 
C°°(fi) n W^iSl) is dense in Wlj>(Q). 

For proof see [AF03] p. 65. 

Proposition 2.30. W1,p(fL) is separable for p G (l,oo) and reflexive for p G (l,oo). 

For proof see [AF03] Theorem 3.6, p. 61. 

Proposition 2.31 (Poincare inequality). For the domain Q there exists c = c(Q) > 0 
such that 

c\\u\\L2{n) < | |Vu | | [ L 2 ( n ) ] Ar = \ u \ H i ( n ) , W G H]{Q). 

For proof see [AF03], Theorem 6.30, p. 183. 

The last theorem implies the following one. 
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Proposition 2.32. On H%(Q) the seminorm \u\jji^ is equivalent to the norm \\U\\H1(Q)> 

i.e. there exists a constant c = c(Q) such that 

\u\m(n) — \\u\\m(n) — C\U\H1(Q) ^U
 e -^o(^)-

For that reason we set 
l l u l l/ f i (n) = \u\m(n)-

Notation 2.33 (Mean value operator over fi). The mean value operator over Q is denoted 
by J\4n(u) and defined by 

•Mn(u) = / u(x) dx. 
Jn 

Proposition 2.34 (Poincare-Wirtinger inequality). For a bounded domain Q and p G 
(1, oo) there exists a constant C = C(p, Q) > 0 such that 

\\u - Mn(u)\\LP{n) < C | | V « | | [ £ p ( n ) r Vu G W1*^). 

For proof see [Eva98], p. 275. 

Functions in W1,P(Q) are not in general continuous and are defined "only" almost every
where in Q. Since dQ has zero measure, uu restricted to dQ" is not defined. The notion 
of a trace operator resolves this problem. 

Proposition 2.35 (Trace theorem). Let p G (l,oo). Then, there exists unique linear 
continuous operator 

T : Wl,p(Q) Lp(dn), 

such that 
T{u) = u\sn for Vu G C(Cl). 

Furthermore there exists a constant C = C(p, Q) > 0 such that 

\\T(u)\\LP(m)<C\\u\\wUp{n) for u 6 ^ ' ( D ) . 

The operator T is called trace operator and T{u) is called the trace of u on dfl. 

For a proof of a slightly more general case of the trace theorem see [Eva98], p. 258. 

By Riesz representation theorem (Theorem 2.7), abstract definition of the weak conver
gence leads to the weak convergence in H1 spaces. 

Definition 2.36 (Weak convergence in H1 spaces). Let {un} be a sequence in if 1(f2). 
The sequence {un} weakly converges to u, i.e. 

un —1 u weakly in H1 (Q) 

if and only if {un} satisfies 
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2. PRELIMINARIES 

Theorem 2.37. Let {un} be a sequence in H1 (Q), such that 

u. u weakly in 

Then 
Un —y u strongly in L2 (n) 

dxi 
du 

weakly in L2 (il). 

Proof of the strong convergence is based on the Rellich-Kondrachov compact embedding 
theorem concerning Sobolev spaces (see [Eva98], §5.8.1). Proof of the weak convergence 
of derivatives follows form the definition of weak convergence in the space if 1(f2). 

2.5. Abstract linear problems 

In this section we consider an abstract linear problem which is a typical model for many 
applications. 

Definition 2.38 (Bilinear form). Let V be a Hilbert space and A be a mapping, A : 
V x V —> M.. A is called the bilinear form on V if it is linear in both variables, i.e.: for 
any Q i , a 2 E l and ui,U2,u,vi,V2,v G V there is 

Definition 2.39. Let A be a bilinear form on V. Then A is bounded on V if there exists 
C > 0, such that 

\A(u, v)\ < C \\u\\v \\v\\v, Wu,vEV. 

Proposition 2.40. Let A be a bilinear form on V. Then A is bounded if and only if A 
is continuous onVxV. 

Consider the abstract problem: Let V be a Hilbert space, A be continuous bilinear form 
on V, b be continuous linear form on V. 

The following theorem provides conditions under which the problem (11) admits unique 
solution and this solution has a stability property, namely the solution is controlled by 
the data. 

Proposition 2.41 (Lax-Milgram lemma). Let V be a Hilbert space with a scalar product 
(•, •) and a norm \\-\\v. Let A be a continuous bilinear form on V x V such that A is 
V-elliptic, i.e. there exists a constant a > 0, such that 

A(a1u1 + a2 u2,v) 
A(u, a1v1 + a2 v2) 

OLX A(ui, v) + a2 A{u2, v). 
OJI A(u, vi) + a2 A(u, v2). 

(11) 

A(u, u) > a \\u\\v, \/u G V. 
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Further, let b be a bounded linear functional on V, i.e. there exists a constant (3 > 0, such 
that 

\b(u)\ < (3\\u\\v, VueV. 

Then, the problem (11) has one and only one solution which satisfies a priori estimate 

II <r £ 
\U\\V < ~. 

a 
For proof see [Eva98], p. 297-299. 
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3. PERIODIC UNFOLDING 

3. P e r i o d i c unfo ld ing 

Let us introduce a notation and conventions which are used in homogenization, two-scale 
convergence and periodic unfolding. 

Definition 3.1 (Scale). A descending sequence E = {ek}^=0 of positive numbers, such 
that Ek \ 0 as k —> oo, is called the scale. 

In the following, as it is usual in the homogenization, all sequences will be denoted by the 
subscript £fc, for example {a£k}, or very often even only by the subscript e, for example 
K l 
in the periodic homogenization, Y denotes a reference cell in RN. Here, we will define it 
as the TV-dimensional interval 

Y = <0,Zi) x (0,Z2) x ••• x (0,lN), (12) 

where lly... ,lN are fixed positive numbers. 

Space RN can be written as a union of the disjoint cells Yk — Y + k, which are the cell Y 
shifted by vectors k, i.e. 

Rn= \J(Y + k), }C = {keRN | k = (£1lu£2l2,...,£NlN),£eZN} 

Periodic unfolding has appeared in [ADH90] and [CDOO]. First of all we define splitting 
of each point in RN in two parts. The idea is analogical to the following one: each real 
number x can be uniquely split to the integer part [x] and the fractional part {x} G (0,1). 
Since the disjoint cells Yk cover whole RN, for each point x G RN it holds x = [x]Y + {x}Y) 

where [x]Y denotes the shift of the cell Yk containing x, and {x}Y stands for the relative 
position of x with respect to the cell Yk, i.e. [x]Y G K. and it is such that x — [x]Y belongs 
to Y. Set {x}Y = x — [x]Y. See Figure 1. 

Let O be a bounded domain in RN with a Lipschitz boundary dfl and let e be a positive 
real number. Using e-scaled system of the cells Y^ = e(Y + k), k G /C, the domain fi can 
be split into two parts: Q£ and A £ . 

The set Q£ contains cells Y£

k lying inside Q, while the set A e is a strip on the boundary 
composed of cells Yk intersecting the boundary dQ, see Figure 2. More precisely: 

E£ = Ik G RN s.t. YF

k Ctt], tt£ = ( U YF

k) H tt, 
1 J' J (13) 

A e = n \ n£, so Q = Q£UA£ . 

Now, we define the unfolding operator. 

Definition 3.2 (Unfolding operator). For each function u : Q —> R and e > 0, the 
unfolding operator % is defined as follows: 

%(u)(x,y) = { U { £ p l + £y) for(x,y)Gaxy, 
( M ( X ) for (x,y) G A e x Y. 
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[X]y 
X 

{X}y Y {X}y 

(0,0) 

Figure 1: Decomposition x = [x]Y + {x} 

A e 

n 

\ 
1 

Figure 2: Domain Q is split into two disjoint parts: A£ (light) and Q£ (dark). 

This definition was firstly used by Francu in [Fra07] and [FralO]. The unfolding operator 
introduced in [CDG02], [Dam06] and [CDG08] is defined in a different way. It differs in 
values for points [x, y] G A£xY (incomplete cells), where in their definition %(w)(x, y) = 0. 

Our approach conserves integrals, see Theorem 3.3 (iii), which simplifies proofs, and 
removes several difficulties (for example introducing "unfolding criterion for integrals", 
see [CDG08], Proposition 2.6). 

A n example of unfolded functions is on Figures 4. 
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3. PERIODIC UNFOLDING 

3.1. Properties of unfolding operator 

Let us survey properties of the unfolding operator. 

Theorem 3.3. Let % be the unfolding operator and e > 0. Then 

(i) The operator % is multiplicative, i.e. for all u, v : Q —> K. it holds 

T£(uv) = %(u)%(v). 

(ii) The unfolding operator % is linear, i.e. for all a, (3 G K. and u,v : Q —> K. we /iave 

%(au + (5 v) = aT£(u) + (3%(v). 

(Hi) The unfolding operator % conserves the integral, i.e. for all u G L 1 ( f 2 ) we have 

J J %(u)(x, y) dx dy = \Y\ J u(x) dx. (15) 

Figure 3: Example of the unfolding of a function u(x) defined on domain ft. 
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(iv) The unfolding operator %, conserves the norm, i.e. for every u G Lp(íl), p G (1, 
it holds i 

\\Te(u)\\LP(nxY) = \Y\P \\u\\Lp(a)-
Thus the operator % is bounded and its norm satisfies 

\\^\\c{LP{Q),LP{QxY)) = \Y\P-

(v) Te is a continuous operator from LP(Q) to LP(Q x Y), where p G (1, oo). 

Proof. (i) The property follows directly from the Definition 3.2. 

(ii) The linearity of unfolding operator is obvious. 

(iii) From the Definition 3.2 one gets 

I = Jj%(u)(x,y) dxdy = J J T£(u)(x,y) dxdy + J J T£(u)(x,y) dxdy. 
QxY ^ Y AExY 

Figure 4-' Functions u£{x) = \ sin(27r | ) + x and its unfolding T£{u£), for e — 1, 1/ 2, 
domain fl = (0,2) and reference cell Y = (0,1). 
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3. PERIODIC UNFOLDING 

Using definition (13) of the Q£ the first integral can be split. Thus 

I — J J %(u)(x, y) dx dy + \Y\ J u{x)dx. 
k&Ejes(Y+k)xY 

The unfolded function %(u)(x,y) is constant in x on each e(Y + k) x Y. This yields: 

i = J2 \£(Y + k)\ J u(£(y + k)) dv + \Y\ J u(x) dx = 
fce=- Y 

eN\Y\ f u(e(y + k)) dy + \Y\ Íu(x) dx. 

After the change of variable e(y + k) — x in the integral and simple calculations we 
get 

I = \ Y \ ^2 J u(x) dx + \Y\ J u(x, y) dx = \Y\ J u(x) dx. 

(iv) Let us show that | |7^(w)| | i P/ n xy) is equal to \Y\p\\u\\LP,ny 

It follows directly from the property (iii). Indeed. 

J J Tf{u){x, y) dxdy — J J %(up)(x, y) dx dy = \Y\ J up(x)dx. 
/ \ILP(QXY) ~ 

QxY QxY 

Hence 
i 

\%(U)\\LP(QXY) = [\Y\ J up(x,y)dxdy) = |Y| í | |u | L P ( Í Í ) -

QxY 
Then the boundedness of linear operator is straightforward. 

NTH — H ê('U)llLP(nxy) _ | V , i 
II 'e\\c(LP(n),LP(nxY)) ~ S U P II,, II — |r |p < oo. 

(v) The continuity of linear operators is equivalent to its boundedness. 

• 

3.2. Two-scale convergence 

There exist two different ways for defining the two-scale convergence. The earliest ap
proach was introduced in [Ngu89] (for L2(f2)-space) and more developed in [A1192]. It 
was generalized for Lp(f2)-space, p G (l,oo), in [LNW02]. The unfolding operator de
fined by the Definition 3.2 enables us to introduce a new definition. Comparison of both 
approaches can be found in [FS12]. 
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Definition 3.4 (Two-scale convergence). Let T£ be the unfolding operator, E = {e} be 
a scale, {u£} be a sequence in LP(Q) and UQ G LP(Q x F ) , p G (1, oo). 

A sequence {-ue} is said to strongly two-scale converge to uo in Lp(f2) with respect to the 
scale E if the sequence {%{u£)} converges to UQ strongly in LP(Q x Y). 

A sequence {u£} is said to weakly two-scale converge to UQ in LP(Q) with respect to the 
scale E if the sequence {%{u£)} converges to UQ weakly in LP(Q x Y). 

Remark. In the definition above, the weak two-scale convergence in LP(Q) is transformed 
to the weak convergence in LP(Q x Y) of unfolded sequence. To check the weak convergence 
in the space LP(Q x Y) one has to use test functions from the dual space LP (Q x Y). 
Moreover for bounded sequence in LP(Q x Y) it is sufficient, due to the density property, 
to check this convergence only by smooth functions from T>(Q x Y). 

Now we investigate convergence properties related to the unfolding operator. The follow
ing results follow directly from the definition and also from the theory of Lp-spaces. 

Theorem 3.5. Let {u£} be a sequence in LP(Q) and u0 G LP(Q x Y), p G (l,oo). Then 

(i) Any constant sequence {u} G LP(Q) strongly two-scale converges to itself, 

%{u) —> UQ strongly in LP(Q x Y), 

where uo(x,y) = u(x). 

(ii) Any sequence {u£} two-scale converging (strongly or weakly) in LP(Q) is bounded in 
Lp(tt), i.e. \\u£\\LP(n) < C. 

(Hi) If a two-scale limit uo exists, then it is unique as an element of LP-spaces. 

(iv) If {u£} strongly converges to u*, i.e. 

u£ —> u* strongly in LP(Q). 

Then it strongly two-scale converges to uo(x,y) = u*(x), i.e. 

%{u£) —> uo strongly in LP(Q x Y). 

(v) If {u£} strongly two-scale converges to u0, 

%{u£) —> uo strongly in LP(Q x Y), 

Then it weakly two-scale converges to the same limit 

T£{u£) —1 UQ weakly in LP(Q x Y). 

(vi) For p G (l,oo). If {u£} weakly two-scale converges to uo, 

T£{u£) —1 UQ weakly in LP(Q x Y), 

Then it converges weakly 

u£ —1 u* weakly in LP(Q). 

where u*(x) = ̂  fY u0(x, y) dy = MY(u0)(x). 



3. PERIODIC UNFOLDING 

Proof. (i) First of all, let us show that for ip G V{VL) 

UmTe(<f)(x) = ip(x). (16) 

From the definition it follows %(ip)(x) = (p(x), for every e, on the boundary strip 

Since the term | | | is non-negative and bounded and e \ 0, we get 

l ime i — 1 =0. 

Using this result we derive 

lime 
£->0 

~x~ = lime 
( X (X) \ 

= lime -_e_ Y \e ~~ \e YJ 
lime — X. 

On Q£, finally, 
'X' \ 
— + ey 

\ e Y J 
ip{x) 

And thus we get the limit (16). 

Now, let ip G V{VL) and u G LP(Q). Adding and subtracting (%((p) — (p), using the 
Theorem 3.3 (ii), (iv) and the triangle inequality, one gets: 

\%(u) U\\LP(ÜXY) = -<P) + (%((p) -<P) + (<P- U)\\LP(ÜXY) < 

< \Y\p \\u — if \LP(n) + r r \\u fWLP(n) ^ W^if) VWLP^XY) 

< 2\Y\p \\u - if\\LP{n) + \\T£(ip) - if 

< 

LP(üxV)-

The space T>(Q) is dense in LP(Q), so for each e > 0 there exists if such that 
\\U-V\\LP(Q) < £-

Using (16), we conclude 

0 < l i m | | 7 M IIA LP(üxY) lim(2\Y\p \\u - <f\\LP{n) + \\%(<p) - ^ | | L P ( n x y ) 

i 
< lim (2 \Y\p e + \\%((p) - (p\ LP(QxY) 

< 

0. 

(ii),(iii) The properties follow from the fact that the weak two-scale convergence is by its 
definition equivalent to the weak convergence in LP(Q x Y). By the Proposition 2.10 
and 2.12 these two properties hold for the weak convergence in any Banach space. 

(iv) Adding and subtracting %(u*), using Theorem 3.3 (ii) and (iv), we get 

\\%(u£) - U o \ \ L P { n x Y ) = \\%(ue) ~ U0 + %(u*) - %(u*)\\LP{QxY) < 

< \\T£(U£) - T£(u*)\\LP(QxY) + \\Te{u*) - U 0 \ \ L P ( Q x Y ) = 

\%{u£-U*)\\Tp(awV, + \\%{U*) -UQ \LP(QXY) 
l 

- \Y\p \\uF u \LP(n) 

LP(QXY) — 

+ \\T£ (17) 
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Now, we can pass to the limit. Since the sequence {u£} converges to u* strongly in 
LP(Q), the first expression on the last line converges to zero. 

From the property (i) it follows that 

%{u*) -»• u0 strongly in LP(Q x Y). 

Thus, the second expression on the last line in (17) also converges to zero. 

Adding this together, we get 

\\%(ue) -u 0 \ \ L P { n x Y ) -»• 0. 

(v) Let ip G LP'(Q, x Y), where ^ + ^ — 1. Using the Proposition 2.19, the result is 
straightforward. 

(Te(ue)(x,y) -u0(x,y))ip(x,y) dxdy < 

< \\(P\\LP,(tlxY)\\Te(Ue)(X>y) -UO\\LP(QXY) ~> °-

(vi) Let (f G L p '(f2), where ^ + ^ — 1. From the Theorem 3.3 (i), (iii) we obtain: 

ue{x) Lp{x)dx = ff T£{u£){x,y) %{<p)(x,y) dxdy. 
\Y JJnxY 

By the assumption, {T£{u£)} converges weakly, and according (i), {%((p)} converges 
strongly. Thus, using the Proposition 2.15, we get 

TT77 /[ Te(ue)(x,y)Te((fi)(x,y)dxdy -»• // u0(x,y)ip(x)dxdy = 
\Y | JJnxY \Y | JJnxY 

= (^-^ J^u0(x,y)dySjip(x) dx = fQ
u*(x) <p(x)dx. 

• 

Relations between convergences above can be expressed by the following diagram: 

strong =>- two-scale strong =̂  two-scale weak =̂  weak. 

Examples Let us assume a domain Q = (0,1), a reference cell Y = (0,1) and scales 
E = {e} = {1,1/2, V3, V4, • • • }• Then the set A e defined by (13) is empty for every e and 
hence Q£ = Q for every e. 

Let f,g G L p ( f i ) and ip G L ^ r ( Y ) , such that jYi>(x)dx = 0. 
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3. PERIODIC UNFOLDING 

1. Let us assume a sequence where 

u£(x) = f(x)ip(^j + g(x). 

Then the sequence {u£} converges to g weakly in LP(Q), but not strongly (unless 
f(x) = 0 or i)(x) = 0 ). 

The unfolding %{u£) is 

%(u£)(x,y) = %(f)(x,y)ip(y) + %(g)(x,y) for e O x f . 

Due to the Theorem 3.5 (i), the sequence {T£{u£)} strongly two-scale converges with 
respect to the scale E in LP(Q) to 

u0(x,y) = f(x)ip(y) +g(x). 

The example shows that the local oscillations of u£, which are lost in the weak limit, 
are conserved in the strong two-scale limit. 

2. Modifying the function u£ to 

u£(x) = f(x)ip(^j +g(x), 

we get a sequence which converges also two-scale strongly with respect to E but the 
limit is 

u0(x, y) = f(x) ip(2y) + g(x). 

The weak limit is unchanged. 

3. Let us make another modification of the function u£. 

u£(x) = f(x)ip(j^J +g(x). 

The sequence {u£} again converges to g weakly in LP(Q). But its unfolding 

%(u£)(x,y) = T£{f){x,y)il>(y^ +T£(g)(x,y) for (x,y) e Q x Y. 

converge only two-scale weakly with respect to E to u0(x,y) = g(x) in LP(Q). In 
the limit the local oscillations are lost. 

4. Let us assume a function 

u£{x) = f(x) 4> (^j-^j + g(x)-

In general case the function ^(^f^) does not belong to L^ev(Y). The sequence 
{u£} converges only weakly in LP(Q) and neither converges two-scale strongly nor 
two-scale weakly with respect to E in Lp(fl). 
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Theorem 3.6 (Compactness). Let p G (l,oo) and {u£} be a bounded sequence in LP(Q). 
Then there exists a subscale E' = {e'}, a subsequence {u£i} in LP(Q) and uo G LP(Q x Y) 
such that {u£i} two-scale weakly converges with respect to subscale E' to uo in LP(Q), i.e. 

%>{u£i) —1 uo weakly in LP(Q x Y). 

Proof. If {u£} is bounded in LP(Q) then, thanks to Theorem 3.3 (ii), {%{u£)} is bounded 
in LP(Q x Y). Thus there exists subscale E', subsequence {%>{u£i)} and uo G LP(Q x Y) 
such that {%'(u£i)} weakly converges to u0 in Lp(fl x Y), which is equivalent to the 
two-scale weak convergence with respect to E' in LP(Q). • 

We will finish this section with two results which are fundamental in applications and 
homogenization theory. 

Theorem 3.7 (Limit of product of the sequences). Let p G (l,oo). Assume a scale 
E = {e}, a sequence {u£} G LP(Q) and {v£} G Lg(Q), where ̂  + ^ = £ < 1, such that 
{u£} converges two-scale strongly to u0 in LP(Q) and {v£} converges two-scale weakly to 
VQ in Lg(fl), both with respect to E. Then the product {u£v£} converges to the limit u0v0 

two-scale weakly in Lr(fl). 

Proof. For any tp G Lr' [Vt x Y), where - + -7 = 1, we have 

L = JJ T£(u£v£)(x,y) <p(x,y)dxdy = JJ %(u£)(x, y) %(v£)(x, y) ip(x,y) dxdy. 
QxY QxY 

Adding and subtracting the term ( M 0 %(V£) ip) in the integrand leads to 

(%(u£) -u0)(x,y) %(v£)(x,y) cp(x,y)dxdy + 

+ JJu0(x,y) T£{ve){x,y) <p{x,y)dxdy. (18) 
QxY 

For the first integral in (18) we have the estimate 

// (%(u£) -u0)(x,y) %(v£)(x,y) (p(x)dxdy < 

< ll^^e) — Mo||LP(Qxy) ||7^(w£)||i9(nxy) ll^ll^'^xy)-

As a weakly convergent sequence {%{v£)} is bounded and {%(u£)} converges to uo 
strongly, thus the integral tends to zero. 

Since, by assumption, {%{v£)} weakly converges in Lg(Q x Y), for the second integral in 
(18) we have 

QxY QxY 

• 
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3. PERIODIC UNFOLDING 

Theorem 3.8 (Limit of product of the sequences). Let p G (l,oo). Assume a scale 
E = {e}, a sequence {u£} G LP(Q) and {v£} G LP (Q), where ̂  + ^ — 1, such that {u£} 
converges two-scale strongly to UQ in LP(Q) and {v£} converges two-scale weakly to vo in 
LP (Q), both with respect to E. 

Then, 

/ u£(x) v£(x)dx^- TTTT / / u0(x,y) v0(x,y)dxdy. 
Jn \Y\ JJnxY 

Proof. Proof is analogical to the proof of the Theorem 3.7. • 

3.3. Two-scale convergence and gradients 

In many applications a sequence of gradients {Vu£} appears. From the definition of 
unfolding operator we derive, for u G W1,P{VL), 

{ ±VvT£(u) on tt£ x Y, 
%(Vu) = \ £ V V J (19) 

V M = VxT£(u) on A e x Y. 

The equality can be rewritten by means of the characteristic function l\s of a set A 

Te{Vu) = J VyTe{u) + VXT£{U) l A e . 

The main result shown in this part is: if a sequence {u£} converges weakly in W1,P(Q), 
then the sequence {Vu£} converges two-scale weakly in [Lp(fl)]N, see Theorem 3.11. 

The proof is based on a suitable splitting of the function u£ into two parts: u£ = u\ + eu2

£. 
The function u\ is designed to capture oscillations and in such a way that u\ = 0 on A e . 

In the first step, for a well chosen function u\, we show that {Vu].} converges two-scale 
weakly in [LP{VL)]N. 

In the second step we prove that {%{u2

£)} converges weakly in Lp(fl, W1,P(Y)). This and 
the equality 

VyT£{ul) =e%{V{ul)) = %{V{eu2

£)) (20) 

implies that the terms VyT£{u2

£) = %(V(eu2)) converge weakly in [Lp(fl x Y)]N. 

Finally, combining these two results gives %(Vul) + T£(V(eu2)) = %(Vu£) converge 
weakly in [Lp(fl x Y)]N and thus {Vu£} converges two-scale weakly in [Lp(fl)]N. 

The crucial part of the proof is the way of choosing the functions u\ and u2. For that 
reason let us introduce a local average operator A4£ and its properties. 

Definition 3.9 (Local average operator Ai£). The local average operator Ai£ : LP(Q) —> 
LP(Q) for p > 1 is defined by 

M£(u)(x) 
777771 / u(t) dt for X G Vt£ 

u(x) for x G A e 
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Let us remind that J\4Y(U)(X) = 4^ JYu(x,y)dy. 

Proposition 3.10 (Properties of the local average operator j\4£). For any u G LP(Q), 
where p> 1, it holds: 

(i) 
M£(U)(X)=MY(T£(U))(X). 

(ii) 
%(M£(u))(x,y) = M£(u)(x,y) = M£(u)(x). 

(Hi) Let v G Lp' {Vt), then 

M£(u)(x) v(x)dx = / M£(u){x) M£(v)(x) dx = / u(x) M£(v)(x)dx. 
n JQ JQ 

(iv) Let {u£} be a sequence in Lp(fl) for p G (1, oo) such that u£ —1 UQ weakly in LP(Q). 
Then 

M.£{u£) —1 uo weakly in LP(Q). 

Proof. (i) We prove the result separately on the domains Q£ and A £ . 

On fi£ by the usual change of variable cell by cell one obtains 

M£{u){x) =-^r JY%(u)(x,y) dy = MY(T£{u)){x). 

On A e we use the fact that %(u)(x,y) = u(x,y) = u(x). Hence 

1 f 1 f 

MY(T£(U))(X) = MY(u)(x) = — u{x) dy = — u{x) Jyldy = 

= u{x) \Y\ = u{x) = M£{u){x). 

(ii) It follows from the fact that M.£{u){x) is piecewise constant in fl£. 

(iii) Proof is obvious. 

(iv) Let (f G Lp'(Vl). Adding and subtracting Ai£(u0) we get: 

h 

= J [M£(u£)(x) - M£(u0)(x)}ip(x)dx + J [M£(u0)(x)-uo(x)](p(x)dx. (21) 
Q Q 
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3. PERIODIC UNFOLDING 

Let us show that the first integral on the previous line converges to zero. Using the 
linearity of operator Ai£ (which follows directly from its definition), the property 
(hi) and the weak convergence of the {u£} leads to: 

h= [M£{u£){x] - M£(u0)(x)] <p(x) dx = M£(u£ - u0)(x) <p(x) dx = 

J [u£(x) - u0(x)] Me(<p)(x) dx 0 . (22) 

The second integral on the last line of (21) also converge to the zero. Indeed, by 
using property (i) and Theorem 3.5 (i) we get: 

[M£(u0)(x) - u0(x)] ip(x) dx = / MY(TS{UO)){X) - u0(x) (p(x)dx^-

MY(u0)(x) - u0(x)} <p{x) dx = J [u0(x) - u0(x)] V(x) dx = 0 . (23) 

Summing up (22) and (23) provides the result. 

Theorem 3.11. Let a sequence {u£} be bounded in W1,P{VL), for p G (l,oo). i.e. 

< C. 

• 

u £\\wL'P(n) 

Then there exists a subsequence (still denoted {u£}) and functions uo G W1,P{VL) and 
u*0 G LP(Q;W^P{Y)) such that 

(i) %{u£) u0 weakly in L p ( f i ; W1'P(Y)), 

(ii) T£(Vu£) —1 VUQ + Vyu*Q weakly in [LP(Q x Y)]N, i.e. {Vu£} converges two-scale 
weakly in [LP(Q)} . 

Moreover, MY(UQ) = 0. 

Proof. Property (i) - To prove that there exists a subsequence of {%{u£)} weakly con
verging in LP(Q; W1,p(Yj) it is enough to show that the sequence {T£{u£)} is bounded in 
the same space (see Theorem 2.13). 

Using definitions of the norms of the spaces LP(Q; W1,P(Y)) and L P ( Q x Y) and in the 
last step equality (19) leads to 

\r£(u^ r£(u£)\\p

LP{Y) + \\vy%(u£)\\p

LP [LP(Y)Y 

p dx 

\Te{Ue)\\Lv(nxY) + \\^ y%{ue)\\[Lv{QxY)]N \Te{u£)\\LP{nxY) + \\eT£{Vu£ [LP^XY)]1 
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Using the Theorem 3.3, property (iv), gives us 

\%(UMLP(SIXY) + \\ £Te(Vu£ 

The last term is bounded for all e, since according to the assumptions the sequence {u£} 
is bounded in W1,P(Q) and e \ 0. 

Property (ii) - The proof is carried out in several steps. 

First step - splitting the function u£. Let us split the function u£. Set u£ = V}£ + EU2. 
where 

u\ = M£{u£) and thus u2

£ = - [u£ — M£{u£)]. 

Since v}£ is piecewise constant in Q£, and using the definition 3.2 of unfolding operator, 
we get 

0 for [x, y] EQ£ x F 
%(Vul

£)(x,y) 
Vu£(x) for [x,y] E A e x Y. 

Using (19) leads to 
VyT£{<) = e%(V(ui)) = T£(V(eui)). 

Summing up these results we get 

%(Vu£) = T£{Vu\) + %(e Vu2) = Vu£ lAe + %(Vu£ 1^) = Vu£ lAe + VyT£(u2). (24) 

Second step - convergence of %(Vul). For e —> 0 the terms Vu£ l\s converge to 
zero because {Vu£} is bounded in [Lp(fl)]N and | A e | —> 0, i.e. 

X7u£ 1A, - » • 0 strongly in [Lp(Q)]N. (25) 

Third step - convergence of %(Vu2). For u2 we get 

\ [T£(u£)(x,y) - M£(u£)(x,y)] for [x,y] E &£ x Y, 

0 for [x, y] E A£ x F. 
%{u2

£)(x,y) 

Let us denote by yc the vector function 

V = y1 ~ 2 , V 2 ~ 2' " ' ) V N 2 J' 

where l\, l2, • • •, IN are dimensions of the reference cell F , see (12). 

The function %{u2) — yc • V-Uo has mean value equals to zero. Indeed, 

-£{%{u£)-T£{M£{u£)) 

Vh(ih)-MAih)) - U = 1 

MY(T£(u2

£)-yc-Vu0) =MY 

Mi (r£(u£)-Me 

-MY(yc-Vu0) = 

MY(T£{u£)) — MY (Me , u. 
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3. PERIODIC UNFOLDING 

On Q£ x Y it is equal to 

1 
£ 

and on A e x Y it gives 
1 
s 

MY(re(u£))-MY(M£ 

M y ( r E ( M £ ) ) - M y ( M 
1 

[A< e (u e ) -A< e (u e ) ]=0 

[MY{u£) - MY{u£)] = 0. 

Applying the Poincare-Wirtinger inequality (see Proposition 2.34) in Y to the function 
%{u2

e) - yc • Vu0 we get 

%{u2

£)-yc-Vu, 
LP(üxY) 

< C VyT£{u2

£) - Vu0 

[LP(nxY)Y 

Since, due to assumptions, the term ||Vy%{u2) — ^7UO\\^LP^QXY^N is bounded, the in
equality above implies boundedness of {%{u2) — yc • V-Uo}- Terefore there exists UQ in 
LP(Q; W1,P{Y)) such that, up to a subsequence, 

%(u2) - yc • Vu0 ->> U*0 weakly in Lp(tt, WL'P{Y)). (26) 

In other words 

And thus 

%(u2) ->> yc • Vu0 + u*0 weakly in Lp{ß, WL'P{Y)). 

VyT£(u2) = T£(Vu£) -± Vu0 + Vyul weakly in [Lp(n x Y)]N. (27) 

From (24),(25) and (27) follows that {Vu£} converges two-scale weakly in [Lp(fl)]N. 

Fourth step - average of the function UQ. Since for the expression on the left-hand 
side in (26) holds A4Y(%(U2) — yc • V-Uo) — 0, the same holds for the right-hand side, i.e. 

MY{ul) = 0. 

Fifth step - V-periodicity of UQ. Since reference cell Y is a TV-dimensional cube, UQ 
must satisfies, in the sense of traces, 

ul(x, yi,..., yi-i, 0, yi+1,..., yN) = u*Q{x, yu ..., k, yi+1, ...,yN) for % = 1,..., N. 

Without lost of generality, assume % = N. Set y' — (yi,..., yN-i) and = (0 , . . . , 0,1). 
For any ip G T>(Q x Y') we have: 

%(u2

e)(x,(y',lN))-%(u2

e)(x, (y',0))) j,{x, y') dx dy' 
fixY' 

+ e(y',lN)) -u£(e + e(y',0) ip(x, y') dx dy'. 

nsxY' 
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By a change of variable one gets 

// + e (V, 0) - ip(x - e lNeN,y') dx dy' 
Y Je 

Q£-slNeN)xY' 

UA e 
x + e(y',0) - ip(x,y')dxdy' 

Y Je 
nexY' 

Te(u£)(x,(y',Ö)) - ip(x - £lNeN,y')dxdy' -
e 

Q£-elNeN)xY' 

T£(u£)(x,(y',0)) - ip(x,y')dxdy'. 
e 

nsxY> 

The sequence {%{u£)} converges weakly in Lp(fl; W1,P(Y)). By the trace Theorem 2.35. 
the trace of T£(u£) on Q x Y' converges weakly to UQ in LP(Q x Y'). Hence {I£} converges 
to 

- / / u0(x)^-(x,y')dxdy. (28) 
nxY> X n 

By similar arguments together with the fact that 

dur 
(yc • Vu0)(x, (y',lN)) - (yc • Vu0)(x, (y',0)) = —{x) 

OXN 

we obtain 

[(yc • Vu0)(x, (y', lN)) - (yc • Vu0)(x, (y', 0))] ̂ (x, y') dxdy' 
fixY' 

ö^-(x)il>(x,y') dxdy' = - jj uQ(x) (x, y') dxdy. 
nxY' N nxY' N 

This together with (28) yields 

(u*0(x, (y',lN)) - u*0(x, (y',0))) i>{x,y') dxdy' = 0 for ip G V(Q x Y'). 
fixY' 

By lemma 2.26, UQ(X, (y' ,IN)) = UQ(X, (y',0)) in the sense of traces, and thus UQ is yjq-
periodic. The same holds in the others directions. • 

Remark. The vector function yc = (y%, y%,..., yc

N) is designed in such a way to satisfy, for 
i = 1... N: 

1. ^ = 1 and 

2. MY(yf) = 0. 
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3. PERIODIC UNFOLDING 

To fulfill the first condition we suggest its components in the form yf — Hi — Ci, Ci G M. 

The constants q are estimated from the second condition 

Mviyt) = JYVi ~ Cidy = J^yidy - ^ J^ldy = J^yidy - a\Y\. 

So 
_ SY VJ DV 

which is the z-th coordinate of the centroid of the reference cell Y. For the cell Y defined 
in (12) we conclude that yc = (y\ — y , yi — y , . . . , y^ — y-
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4. P e r i o d i c unfo ld ing for per fora ted domains 

4.1. Domain with holes 

The aim of this chapter is to redefine the unfolding operator in such a way that it is 
suitable for periodically perforated domains. Let us begin with defining a domain with 
holes. 

As in the previous chapter, let ft be a bounded domain in MN with Lipschitz boundary. 
We consider scales E = {e^}, defined by the Definition 3.1. For each e let be a 
system of disjoint bounded domains in WLN representing the "holes". Let us suppose that 
they have Lipschitz boundary. 

Let ft* denote the part of ft occupied by material. It is defined as ft without holes Tg, i.e. 

™0) 
ft* = ft \ Te, where T£ = ( J Ti. (29) 

i = i 

We assume that ft* is a multiply connected set. Furthermore we denote by T ; * T E , i — 
1,..., m(e), the "interior holes", they are such sets T | which are completely inside ft and 
do not intersect the boundary <9ft, i.e. the sets Ti C ft. Their union is denoted by T I N T E , 

m(e) 

7int,e — [ J ^ i n t , £ -
i=l 

Let the sets T | which intersect the boundary be denoted by T E X T , E , i.e. 

^ext,e = (T£ \ Tmt^£^j Pi ft, 

and ^extftg denote the exterior boundary of ft*, 

dextQ*£ = dQ*£\dTintt£. 

4.1.1. Periodically perforated domain 

Ti l l now, the holes T | were distributed in a very general manner. For £j 7̂  e_j there was 
not, in general, any connection between T£. and T E . 

In sequel, we define periodically distributed holes. In this case, for e \ 0, there are more 
and more holes with a smaller and smaller volume. 

As in the previous chapter, let reference cell Y in ¥LN be A^-dimensional interval defined 
by (12). 

Let T C Y be an open bounded set with a smooth boundary. This set represents reference 
holes in Y. The part of the reference cell Y occupied by a material is denoted by Y*\ 

Y* = Y\T. 
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS 

Figure 5: Periodically perforated domain. Upper: domain Vt and reference cell; lower left: 
inner holes T ; * T £; lower right: part of Q occupied by material fi* (marked by cyan), with 
its exterior boundary dextQl and interior boundary <9T int ie. 

Let us introduce function r, which determines how fast the shrinking of holes is. Let r be 
a positive increasing function, such that 

limr(e) = 0. 

Then the sets Te (used in (29) to construct the perforated domain Q*) is defined as a 
translates and scaled images of T , so 

Te= U(r(e)(T + k)), 

where K, = [k e R N \ k = (6 h, 6 k, • • •, CAT IN), Z e % N}• 
It is necessary to choose the function r in such a way that ensures that the holes are 
always inside the cells, i.e. 

r{e)TdeY Ve. 

Furthermore, we suppose that, if the set T consists of more connected disjoint sets then 
these sets remain disjoint for all s. 

We can distinguish three typical kinds of behaviors of the holes. For that reason let us 
denote by 8£ the ratio of the volume of material in cell and the volume of cell, i.e. 

Q \eY-r{e)T\ 
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The case when r(e) = e is very classical, the ratio 9e is constant for all e . A case when 
— —> 0 as e —> 0 is called small holes. In such case the volume of holes goes to zero 
quicker than the volume of material in the cell, i.e. 9e —> 1 as e —> 0. In the last case 
9e —> 0, which means that the shrinking of the holes is slower than the shrinking of the 
cells. A n example of these three cases is on the Figure 6. 

4.2. Unfolding operator T* in perforated domains 

Analogically as for fixed domains, let us split the domain Q* in two parts. We define (see 
figure 7) 

n* = n£\Tint:£ and A* = n*\n*, (30) 

where Q£ is defined by (13). 

r(e) 

• • • • 
• • • • 
• • • • 

• • • • • • 

• • • • • • 

! • • • • 

• • • • 

• • • • 
• • • • 
• • • • 

• • • • 

• • • 
• • • 
• • • 
• • • 
• • • 
• • • 

• • • 
• • • 

• • • • • ! 

• n n • 
• • • • 
• • • • 
• • • • 
• • • • 

• • • • 
• • • • 

r(e) 

• • n • 
y • • • 
y y y y 
• • • • 

r(e) = 2e 

• • • • 
y y 

• • • • 
• • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

i T T T 

• • • • • • • • • • • [ 
• • • • • • • • • • • [ 

I I ii i • • • • • • • • • t i l Tlnnnnnnnnnr Tl innnn • • • • • • • • • • • [ •••••••••••[ I M M M M M 
Figure 6: Example of three different behaviors of the holes depending on the choice of 
function r. A case on the middle line belongs to the cases called small holes. 
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Figure 7: Domains A* (light) and VL* (dark). 

In the following part, we introduce an unfolding operator T* for perforated domains and 
we follow the same ideas as in Section 3. In sequel, we cover the case where the ratio of 
the volume of material to the volume of cell is constant for all e, i.e. the function r(s) = e. 

Definition 4.1 (Unfolding operator for perforated domains). A n operator T* maps a 
function u : Q*£ ^ R to T* (u) : Q x Y ^ R, and is defined as follows: 

T£*(u)(x,y) = { 
u(e 
u(x) 
0 

+ ey) for (x, y) G Vt£ x Y* 
for (x, y) G A* x Y. 
otherwise. 

(31) 

For u defined on Q* we denote its extension by zero into Q by u. The same notation will 
be used for functions defined on Q x Y* extended by zero into ( 1 x 7 . The relationship 
between T* and % is given by 

(32) T;(U) = %{ü). 

Theorem 4.2 (Properties of the unfolding operator for perforated domain). Let T* be 
the unfolding operator for perforated domains defined by (31). Then for all e G E we 
have: 

(i) The operator T* is multiplicative, i.e. for all u, v : fi* —> R we have 

T;(UV) = T;(U)T;(V). 

(ii) The unfolding operator T* is linear, i.e. for all a, (3 G R and u, v : fi* —>• R, 

T£*{au + (3v) = aT£*{u) + (3T£*{v). 

(Hi) The unfolding operator T* conserves the integral, i.e. for all u G L 1 ( f 2 * ) one has 

J J T*(u)(x,y)dxdy= \Y\ J u(x)dx. 
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Figure 8: Example of the unfolding of a function u(x) defined on periodically perforated 
domain Q*. 

(iv) The unfolding operator T* conserves the norm in the sense that for every u e 
LP(tt*£), p e (l,oo), it holds 

\\% (U)\\LP(QXY) = \Y\P \\U\\LP(Q*)-

Thus T* is bounded and its norm satisfies: 

\\T*\\ — \Y\p 
II 'e \\C(LP(a*),LP(axY)) — I1 I • 

(v) T* is continuous operator for LP(Q*) to LP(Q x Y), where p G (1, oo). 

Proof. (i) It follows directly from the Definition 4.1. 

(ii) The Linearity of operator T* is obvious. 

(iii) From the Definition 4.1 one gets 

1= J JT*(u)(x,y)dxdy = J J T*(u)(x, y) dx dy + J J T*(u)(x, y) dx dy. 
nxY n£xY* MxY 
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Using (13), the first integral can be split. In the second integral we use the equality 
T*(u)(x,y) = u(x) on A* x Y. Thus 

I — J J T*(u)(x, y) dx dy + \Y\ Ju(x)dx, 
k£~£e(Y+k)xY* A * 

where S e is given by (13). 

The unfolded function T*(u)(x,y) is constant in x on each e(Y + k) x F*. This 
yields: 

= e J V | y | £ ] J u(e(y+ k))dy+\Y\ J u(x)dx. 

The change of variable e(y + k) = x and simple calculations yields the result. 

^ = 1̂ 1 Yi J u(x)dx +1^1 J -u(x' v)dx = 1̂ 1 J u(x) 

(iv) Because the equality (32) holds, the operator T£ possesses properties which follow 
directly from the Theorem 3.3. 

Let us show, that the unfolding operator for perforated domains is bounded. For 
the norm of an unfolded function u it holds: 

l|7e*( u )l lLp(nxy) = l | 7 e W l l i p ( n x y ) = l ^ r INI.LP(n) = l ^ l p lp l l ip(n*)-

(v) The continuity of linear operator is equivalent to its boundedness. 

• 
Definition 4.3 (Two-scale convergence for perforated domains). Let T* be the unfolding 
operator for perforated domains defined by (31), E = {e} be a scale, {u£} be a sequence 
in LP(tt*£) and u0 G Lp{Vt xY),p£ (1, oo). 

A sequence {u£} is said to strongly two-scale converge to u0 in LP(Q) with respect to the 
scale E if the sequence {T*{u£)} converges to u0 strongly in LP(Q x Y). 

A sequence {u£} is said to weakly two-scale converge to u0 in LP(Q) with respect to the 
scale E if the sequence {T*{u£)} converges to UQ weakly in LP(Q x Y). 

Theorem 4.4. Let {u£} be a sequence in LP{VL*£) and u0 G LP(Q x Y), p G (1, oo). Then 

(i) Any constant sequence {u} G LP(Q) strongly two-scale converges to itself, i.e. 

T*{u) —> uo strongly in LP(Q x Y), 

where 

u0(x,y) = u(x) [x,y] edxY*, 
0 otherwise. 
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(ii) Any sequence {u£} G LP(Q*) two-scale converging (strongly or weakly) in LP(Q) is 
bounded in LP(Q£), i.e. 

\uz\\Lp(n*) — C-

(Hi) If a two-scale limit uo exists, then it is unique as an element of Lp-spaces. 

(iv) If {u£} strongly two-scale converges to u0 in LP(Q), i.e. 

T*{u£) —> UQ strongly in LP(Q x Y). 

Then it weakly two-scale converges to the same limit 

T£*(u£) —1 UQ weakly in LP(Q x Y). 

(v) For p G (l,oo), if {u£} weakly two-scale converges to uo in Lp{0), 

T£*(u£) —1 uo weakly in LP(Q x Y). 

Then its extension by zero converges weakly 

u~£ —1 u* weakly in LP(Q). 

where u*(x) = ^ fY* u0{x,y) dy = ^MY* (u0)(x). 

Proof. 

(i)-(iv) The proof is analogical to the proof of the Theorem 3.3. 

(v) Let if G LP' (Vt), where ^ + ^ = 1. From the Theorem 4.2 (i) and the equality (iii) 
we obtain: 

I u£{x) ip(x) dx = T ^ T / / T£(vT£)(x,y)%((p)(x,y)dxdy. 
Jn \Y I JJnxY 

Now, we can tend to the limit. Using the Theorem 4.4 (i) we obtain the result. 

Ue{x) ip(x) dx -»• [[ uQ(x,y)ip(x) dxdy = n \Y\ JJnxY 
( 1 uo(x, y) dy J ip(x) dx — / u*(x) <p(x) dx. 

• 
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS 

4.3. Unfolding operator T* and gradients 

Consider a function u G W1,P(Q*). As in the case without holes, it is straightforward that 

' \VyT£*{u) on a x Y*, 

T*{Vu) = I Vu = VT*(u) on A* x Y, (33) 

0 otherwise. 

Now we will state the main result about the convergence of an unfolded sequence of 
gradients {T*(Vu£)} in the same spirit as that of the Theorem 3.11. 

Theorem 4.5. Let a sequence {u£} be bounded in Wl,p(fll), for p G (l,oo). i.e. 

Il^e II ^ 

Then, there exists a subsequence (still denoted {u£}) and functions u0 G W1,P{Q) and 
u* G LP(Q;W^P(Y)) such that 

(i) %*{u£) -± u weakly in LP{Q; Wl>p(Y)), where 

u(x,y) UQ(X) [x,y}ettxY*, 
0 otherwise. 

(ii) T*(Vu£) —1 VUQ + Vyu*Q weakly in [Lp(fl x Y)]N, i.e. {Vu£} converges two-scale 
weakly in [LP(Q)} . 

Moreover, M.Y{UQ) = 0 and UQ = —yc • V-Uo on Q x T. 

Proof. The first two properties follow from the Theorem 3.11 and property of the unfolding 
operator on perforated domains, namely that T*{u) = %{u). 

The proof is analogical to the one of the Theorem 3.11. Instead of %, resp. A4£, we use 
T*, resp. M*e, where 

M'M(x) i 4 ^ 4 f ] y + v ) ^ ) d * f o r x e C l ~ " 
ip(x) for x G A*. 

It remains to prove that UQ = —yc • V«o on f 2 x T. By the same reasoning as in the proof 
of the Theorem 3.11 we can show that 

T£*{u2

£) -± yc • Vu0 + u*0 weakly in Lp(tt, Wl'p{Y)). 

Further from the definition of the unfolding operator for the perforated domains it follows 
that 

We can conclude that 
T£*(u2

£)=0 on fixT, Ve. 

yc • VUQ + u*0 = 0 on fixT. 
• 

41 



5. A p p l i c a t i o n 

5.1. Torsion problem 

Study of elastic torsion of a bar leads to a problem described in [FNJ12; FR15]. Here, a 
more general problem is studied and the case of elastic torsion is obtained as an applica
tion. 

Let us start with a definition: 

Definition 5.1. Let a, (3 6 M, such that 0 < a < (3. We say that a matrix function 
A(x) = (af^x)) e [L°°(n)]NxN belongs to a set M(a,/3,ft) if and only if 

(i) (A(x)X,X) > a\X\ 
(«) |A(x)A| < ß\X\, 

(ellipticity), 
(boundedness). 

(34) 

VA e W\ a.e. in ft. 

Now we can state a boundary problem: 

- V • (A£Vu£) 

Ue 

A£(x) ^7^{x) dx 
on 

f 
0 
const. 

in ft*, 

on <9extfte, 

on dT-L ,e; * 

/(x) dx 

where: 

,m(e), (35) 

• ft*, ^extf tg, TJnt e ^ c - a r e defined in the beginning of the Section 4.1. 

• / G # ( 0 ) , 

• A e (x) = (afj(x)) . ^ ^ is a matrix function from the set M(a, (3, ft*), 

• n is the outward-pointing unite normal (i.e. on the inner boundary, n is directed 
inward to the holes), 

• m(e) denotes number of interior holes. 

For f(x) = —2 and N = 2 we get a torsion problem derived in [FR15]. 

Let us introduce the linear space 

<S£(ft) = {ve Hi (ft), s.t. v = 0 in T( ext, €• const, in T ;* t e , i , m(e) 
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5. APPLICATION 

with the norm 

\\v\\se(si) = l |Vu | | [ L 2 ( n ; ) ] " - (36) 

Let us define the weak formulation of the problem (35): 

Find u£ G <S£(ft) such that 

JA£(X) VU£(X) • Vv(x) dx = Jf(x)v(x)dx, G <S£(ft). 
(37) 

Propos i t ion 5.2. Let A£ Vu£ G [Cl(Q*£)]N, u£ G Cl(Q*£) and u£ solves the problem (37), 
then it also solves the boundary problem (35). 

Proof. Let us suppose that (37) holds and let us choose v G Cx(ft*) D <S£(ft). 

Using integration by parts of the left-hand side of (37) we get 

LHS = iA£(x)VuJx) -Vv(x)dx = 

= — JV • (^A£(x) V M £ ( X ) J V(X) dx + J A£(x) Vu£{x) • n v(x) dx. 
n*e an* 

Since v is equal to zero on the exterior boundary <9extft* (it follows from the properties of 
the space Se(Q)), it results in 

r / x m { £ ) r 
L H S = - / V • [A£(x) VU£(X)) v{x)dx + ^ / A£{x)Vu£{x) • nv{x) dx. (38) 

1 8T.\ 
int, e 

Since v is equal to zero in T e x t ] £ , right-hand side of (37) can be rewritten to the form 

f f m { 6 ) f RHS = f(x)v(x)dx= f(x)v(x)dx+^2 / f{x)v(x)dx. (39) 
£ int,£ 

Let us choose in (38) and (39) v G ViVL*) extended by zero to Q. These functions are 
in S£(Q) and hence they can be used as a test functions and are equal to zero on all 
boundary <9f2*. Then, from (37) it follows 

- J V • [A£{x) V M £ ( X ) ) V(X) dx- J f(x) v(x) dx = 0. (40) 

By using the Lemma 2.26, from the equation (40) we get 

- V • (A£ VU£) - f = 0 a. e. in ft*. (41) 
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Now, let us choose v such that v = const, on hole T j * t £ (and let us denote this constant 
by Cj) and v = 0 on all other holes (i.e. on Q?e, for z 7̂  j ) Then, from (37), (38), (39) and 
(41), it follows 

Cj y A e (x) V M £ ( I ) • ndx = Cj ^ /(x) dx for z = 1,..., m(e). (42) 

int, £ int, £ 

Finally, from (40) and (42) together with the properties of the space S£(Q) it follows that 
u£ fulfill the problem (35). • 

To find the homogenized solution to problem (37) we will use as test functions rapidly 
oscillating functions. The following result concerns their two-scale convergence. 

Proposition 5.3 (Unfolding of rapidly oscillating function on perforated domain). Let 
v G Lp

eT(Y*), p G (l,oo). Furthermore, let {v£} be a sequence defined by 

v£(x) = 

Then, 

r;(v£)(x,y) = { 

Vx G ft*. 

' v(y) for (x,y) G fte x Y*. 
v(x) for (x,y) G A* x Y. 
0 otherwise. 

and the sequence {v£} strongly two-scale converges in LP(Q), i.e. 

T*{v£) -»• v0 strongly in LP{Q xY), (43) 

where vo(x,y) = v(y). 

Proof. The form of unfolded function T*(v£) follows directly from its definition. 

The convergence (43) can be deduced from the following 

\W(vs) -v0\\p

LP{nxY) = J J (T£*(v£)(x,y) - v0(x,y))P dxdy = 

= J J (v(y) — v(y)Y dx dy + J J (v(x) — v(x)Y dx dy + J J (0 — v(y)jP dx dy. 

The first and the second integral is equal to zero. The third one converges to zero since 
I Text, e x Y*\ —> 0 as e —> 0 and by assumption fY* up(y) dy < 00. • 

Theorem 5.4. Let u£ be the solution of the problem (37). Assume that 

T£*(A£) ->• A a.e. in QxY (44) 

for a matrix A = A(x, y) such that 

A = ( a i j \ j = l NeM(a,P,nxY). 
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5. APPLICATION 

Then, there exists u0 G HQ(Q) and UQ G L 2 ( Q , H^er(Yj) such that 

\K ~ U o \ \ L 2 m ->• 0, 

T*(u£) —1 u weakly in L2(Q, where 

v , y j [ 0 otherwise. K ' 

T*{S7ue) Vu0 + VyUl weakly in [L2{Vl x Y)]N, where 

MY(UQ)=0 and ul = -yc-VuQ on VtxT. 

The pair {UQ,UQ) is the unique solution of the problem: 

Find u0 G H^(Q) and u*Q G L2(Q, H*eT(Y)) such that 

J J A(x, y) [ V M 0 ( X ) + Vyu*0(x, y)\ • [ V * ( x ) + Vy$(x, y)\ dxdy = J f(x) V(x) dx, 
QxY* n 

G H*{n), 

V$ 6 L 2 ( i l , i f * e r (Y)) , snc/i t/iat $ + y c • V * is constant in y onVlxT. 
(46) 

Proof. The proof is divided into 3 steps. 

First step - existence and uniqueness of the homogenized solution. By Lax-
Milgram lemma, Problem (46) has a unique solution. Choosing v = ue and using (34) (i), 
(37) and the Holder inequality we can get the following estimate: 

l « e l l ! L ™ = l | V t l e | | i 2

r a , o „ M " = / Vu£(x) • Vu£(x) dx < 

v . .1...« 
L 2 ( n ) l l u e | l i 2 ( n ) -

"s\\Ss(n) ~ II v u e \ \ [ L 2 { n , T - v „ , v 

1 /• 1 /• 1 
< — / A e (x) V M £ ( I ) • V « £ ( x ) dx = — fix) uJx) dx < — 

a Jn* a Jn a 
Therefore 

K I U ( n ) < ^Wf\y{ay (47) 

As seen above, {u£} is bounded in S£(Q). Then the Theorem 4.5 implies convergences (45) 
at least for subsequences. 

Second step - identification of the limit. Let \1/ G ViVt) and cp1 G T>(Y) be period
ically extended to MN, such that ipi = 1 on T . We choose in (37) the test function 

- p i e ] + M e ( # ) ^ i e in Q£, 

V[l-<ple] in A e , 
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where (fie(x) = (/ ?i(f)- The function vs belongs to <Se(ft) since tpi vanishes on dY and is 
constant on the holes, M£(^) is piecewise constant and ^ vanishes on <9ft. 

For such function ve it holds: 

r;^)(x,y)[l-Vl(y)}+r;(M£m(xiy)Vl(y) in d £ x r , 
7T(t; e)(x,y) = ^ 9{x)[l-(ple{x)] in A* x F, 

0 otherwise. 

Since \V(Me(V)) ~ 7?(*)J l ^ x y , -> 0 uniformly on ft x F and |A* x Y\ -> 0 we 
conclude 

7^*(ue) -> strongly in L 2 (ft x F ) , where * 0(a;,y) = | 
*(x) [ x , y ] e f t x F * , 
0 otherwise. 

For the gradient of function v£ it holds 

f 7 T ( V * ) ( x , y ) [ l - ^ i ( y ) ] + 

+ i V w ^ ( y ) 7 7 ( - M e ( * ) - * ) ( x , i / ) in ft£xF*, 
7T(Vt; e)(s,y) 

V#(x) [ l - ^ i e ( x ) ] - i * ( x ) (V^ i ) 

0 

in A* x F, 

otherwise. 

Now, our goal is to find the strong limit of {T*(Vve)} in [L2(ft x Y)\ . First, we show 
that {\T*{M£{^) - *)} converges to V * • y c . Indeed, 

7 7 ( ^ e ( * ) - * ) - V * - y e 

and 

1 
7 T ( M e ( t t ) - t t ) - V t t - y e 

= [77(V*) - V * ] l s > x y . -> 0 strongly in [L 2(ft x Y ) ] " 

Hence, by Poincare-Wirtinger inequality, 

[77(V*) - V * ] l g y . -)• V * • y c strongly in L 2(ft x F ) 

Proving strong convergence on A* x F is not straightforward. Although |A* x F | —> 0, 
I * (V(^i)(-) is not bounded on A* x F . Let E £ = [k E R N , s.t. <9ft G F f c

e}. By change 
of variable - — k — t, we derive 
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5. APPLICATION 

e ' \e 
A * x y 

\Y\ £ j ( ^ ( x ) ( V v . i ) g ) ) 2 d x 

\y\ E / ( 
(c£S£y \ 

fceEs e(y+fc) 

TV W 

^-*(e(* + A;))(V¥»i)(* + A;)j dt. 

The function V</?i is F-periodic and bounded and since \1/ G X'(fi), + k)) —> 0 
uniformly on F . Thus, we get 

- J ( V < ^ i ) ( - ) x A | x y ->• 0 strongly in [L 2 (f i X F ) ] ^ . 

Using all this results above, we have 

T*(Vv£) -»• W - V \ , ( W • y c(^i) strongly in [L 2 (f i X F ) ] ^ . 

Using v£ as a test function in (37) we obtain for the left-hand side 

LHS = JA£(x) Vu£(x) • Vv£(x) dx = 

i ^ i JJr;(As)(x,y) r;(vUe)(x,y)- r;(vv£)(x,y) dxdy -> 

ypr JJA(x,y) [Vu0(x) + Vyu*0(x,y)}- [Vtt(s) - V y ( ^ i ( y ) y c • Vtt(s))] dsdy, (48) 

and for the right-hand side 

RHS = Jf{x)v£{x)dx = JJ%(f)(x,y)%(ve)(x,y)dxdy -> 

JJf(x^^dx = d*- ( 4 9 ) 

n x y 

1 /Y 

1*1 

n x y 

Now, taking in (37) as a test function 

£ ( * i ^ £ + X £ ( * i ) ^ C £ ) in ft£, 

£*i^> £ in A £ , 

where #i G X>(fi), ^ e <^ r (F) ^ e C ^ r ( F ) , such that ^ = 0 on T, and </? G £>(F), ^ c is 
constant on T and ^ ( x ) = V'(f) resp. tpCe{x) = Vc(f)-
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7?(Vve)(x,y) = l 

The unfolding of gradient of v£ has a form 

' eT;(W1)(x,y)i>(y)+T;(y1)(x,y)Vyi>(y) + 

+ r;(M£(^1))(x,y)Vycfc(y) in Q*£ x F* 

£ V f i ( x ) 4 ( x ) + * i ( i ) ( V ^ ) ( f ) in A* x F 

0 otherwise. 

Since |A* x F | —> 0, and further 

e7T(V*i)(a;,y) l ^ x y * ^ 0 strongly in [L 2(ft x F ) 

7T(*i) l ^ x y * * i strongly in L2(Cl x Y), 

N 

and also 

we conclude that 

7?(Me(*i)) lfrxY. #i strongly in L 2 (ft x F ) , 

7;*(Vv e ) -»• * i Vy(V> + <pc) strongly in L2(ü x F ) 
iV 

Using t>e as a test function in (37) we get 

LHS = JA£(x) Vu£(x) • Vv£(x) dx = 

= W\ JJre(A£)(x,y) r;(v«e)(x,y) • r;(vv£)(x,y) dxdy -> 

~*W\ JJA^x'y) [ V m ° ( x ) + v ^o(^> i/)] • *i0*0 v y [^(y) + ^c(y)] dy, (50) 
S l x F 

and 
Ä ^ S " = Jf(x)v£(x) dx^O. (51) 

Third step - Conclusion. Let us denote by $ the function 

$(x,y) = ^ i (x ) foKy) + ¥>c(y)] -<pi(v)vc- V * ( x ) . 

The results (48), (49), (50) and (51) imply 

J J A(x, y) [WuQ(x) + Vyu*0{x, y)\ • + Vy$(x, y)\ dx dy = J f(x) (52) 
s i x y 

Now, every function, which belongs to the space V(fl) <g> C™(Y) and is constant in y 
on T can be written as a product [f/>(y) + Vc(y)], furthermore 2/c • V\l/(x) e 
D(fi) (8) C ~ r ( y ) . By the density of X>(fi) <8> C™T(Y) in L 2 (ft , ^ ( F ) ) the results (52) is 
valid for every \1> e #o(ft) a n c l * e ^ 2(^>-^per(D)> such that $ + y c • V * is constant in 
y on Q x T. • 
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6 . N u m e r i c a l e x a m p l e s 

6. NUMERICAL EXAMPLES 

We present numerical example for dimension N = 2. 

Let x = (xi,X2) G fi and y = (2/1,2/2) G F , where Q is a simple domain in R2 and 
F = (0,/i) x (0, Z2), Zi, Z2 are real positive numbers. Vector function y c has the form 
yc — (2/i> 2/2) - Furthermore, let us suppose that A is a function only in variable y, i.e. 
A(x,y)=A(y). 

We would like to solve the problem, derived in the Theorem 5.4: 

' Find u0 G H%(Q) and u*0 G L 2 ( f t , #* e r(F)) such that 

/ / ^(y) [ V M O ( X ) + V ^ * ( x , y)\ • [ V * ( x ) + V y $ ( x , y)] dx dy = | / (x) (x) dx, 
QxY* n 

Vtf G H*(Q), V$ G L 2 ( f i , #* e r(F)), s. t. $ + y c • W is constant in y on 0 x T, 

MY(u*0) = 0, 

MQ = —yc • V«o on flxT. 
(53) 

We will look for u0, UQ in two steps. At first, we will compute auxiliary functions denoted 
Xi,X2 and subsequently, using them, we will find homogenized solutions UQ,UQ. 

Let us choose \l/(x) = 0 as a test function in (53). We suggest function UQ in the form 

Then, (53) takes the form 

A 
s i x y * 

duo 0$ 9«o 9$ 
öxi dyi 9 x 2 <9t/2 

4 

dx dy 

nxY* 

dxi du0 <9$ 9 x 2 <9M0 «9$ <9xi <9M0 «9$ 8x2 du0 <9$ 

(9t/i <9xi dyi dyi dx2 dyi dy2 dx\ dy2 dy2 dx2 dy2 
dx dy. 

From this we see that the problem (53) is fulfilled when the auxiliary function Xi, i — 1, 2, 
satisfies 

/
<9$ r 

A — dy = / AVxi • V $ dy, V $ G L2(Q, i ^ e r ( F ) ) , s. t. $ is constant in y on T. 
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Rewriting this, we derive the following problem 

Find Xi G HpEI(Y) such that 

J AV{xi - Vi) • V $ d y = 0, V $ G L 2 ( f i , i ^ e r ( Y ) ) , s. t. $ is constant in y on T, 

M y f e ) =0, 

k Xi = -yf on T. 

Now, let us choose as a test function in (53) a function 

$(x,y) = -(pi(y) yc-^{x)., 

where \& G 2?(fi) and 99 is V-periodic function which < î|y G 2?(Y), </?i = 1 on T. 

Then, (53) takes the form 

(54) 

1 
W\ 

A 
1 QxY* 

(9X2 
[ V * - Vy{ipiyc • *)] dxdy = Jf^dx. 

Simple computations yield the problem 

Find Uo G HQ(Q) such that 

jAVu0-Wdxdy = Jf^dx, V# G ifj(ft). 
I y * I (55) 

1*1 
1 1 n 

Where matrix A is given by A = (aij)i . = 1 2 

A an 

an 

« 2 1 

Ö 2 2 

4 

dyi / V öj/i / dy2 dy2 \ 

' x dxi\ % 2 ^ i ) { dxi L d{yc
2tpiY 

dyi I dyi dy2 dy2 

A \ dxA d(yj<pi) 8x2 L ditäViY 

dy2 J dy2 dyx dyi 

dy, 

<±y, 

A \ _ d*A (1 _ ^MiiA + ^Mih 
dy2 ) \ dy2 J dyi dyi 

dy. 

(56) 

(57) 

(58) 

(59) 

In the sequel, we present results of the homogenization of torsion problem derived in 
[FR15]. We assume Q = (0,1) x (0,1), reference cell Y = (0,1) x (0,1), reference hole 
^ = ( i > | ) x ( l > f ) - Torsion problem is obtained for A(y) = 1, f(x) = —2. 

According to the behavior of the holes, we distinguish three cases. They were described 
in Section 4.1.1. 
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6. NUMERICAL EXAMPLES 

1 o 

Figure 9: Auxiliary function Xi • 

• First, let us present results for r(e) = e, as for this case the Theorem 5.4 and 
all results in this chapter were derived. The sequence of domains is shown on the 
upper line on Figure 6. In the first step, by solving problem (54) we get two auxiliary 
functions Xi ( o n Figure 9) and Xi-

In the second step the problem (55) is solved to obtain the homogenized solution. 
A comparison of functions ue and homogenized solution UQ is on Figure 11. Graph 
of function ui/4 is on Figure 10. 

In the following two cases we only present numerical results without any theoretical result. 

• For r(e) = e2 (so called small holes), the results are on Figure 12. The sequence of 
domains is on the middle line on Figure 6. 

• For r(e) = e(2 — e), the results are on Figure 13. The sequence of domains is on the 
lower line on Figure 6. 

The numerical results are obtained by finite element method implemented in M A T L A B . 
Some aspects of implementation are described in Appendix A. 
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0 0 

Figure 10: Graph of function ui/A 



6. NUMERICAL EXAMPLES 

5 3 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 12: Diagonal cuts of functions ue, for e = and solution UQ of 
torsion problem on domain without holes (simply connected domain), the behavior of holes 
is described by r(e) = e2. 
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6. NUMERICAL EXAMPLES 



7. C o n c l u s i o n 

In problems which are set on perforated domains Q*, where the shape and distribution 
of holes depends on the parameter e, it may be difficult to define convergence for the 
sequence of solutions {u£}. There exist some approaches to solve this difficulty but their 
usage is usually limited. Limiting factors are usually the shape of the perforations or 
boundary conditions on inner boundaries. 

The two-scale convergence, the approach presented in this thesis, is based on periodic 
unfolding operator for perforated domains T*. This method is suitable for periodically 
distributed holes. The unfolded sequence {T*{ue)} is defined on fixed domains which 
removes difficulties with the convergence. 

This technique was applied to the problem describing torsion of the bar (and its more 
general version). We derived a homogenized equation defined on a simply connected do
main (without holes). We also presented numerical aspect of solving such a homogenized 
problem and in the last section there are some numerical examples. 

Moreover, we proved some interesting properties which make it suitable for more general 
situations than that presented here. Unfolding operator T*, used in this thesis, is slightly 
different than the one used in e.g. [CDOO], [CDG02]. This change in definition allowed us 
to prove some properties in a more elegant way. 
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Appendices 

A . I m p l e m e n t a t i o n of n u m e r i c a l exper iments 

Algorithms producing the numerical examples presented in Chapter 6 were implemented 
in M A T L A B . Here, we shortly describe some aspects of implementation. 

A . l . Homogenized problem 

Solving of problem (53) consists of three steps: firstly, two auxiliary cell problem (54) 
are solved in order to find Xi,Xz- Secondly, these functions are used in (56) to evaluate 
the elements of matrix A. Finally, using A, the homogenized solution is found by solving 
problem (55). 

Auxiliary cell problem and homogenized problem are solved by finite element method 
implemented in M A T L A B . The domain is decomposed into conforming unstructured tri
angular mesh. Basis and test functions are piecewise linear. Hence, all integrals resulting 
from finite element formulation can be precomputed analytically. 

Periodic boundary conditions prescribed in the formulation (54) can be replaced, 
in our case, by Dirichlet and homogenous Neumann condition. Let us remind that in our 
model problem the reference cell Y = (0, l\) x (0, I2) and reference hole T = ( ^ p , x 

(^i^j 1j22^)I w r i e r e 0 < a < li and 0 < b < I2. So perforated reference cell Y* is symmetric 
with respect to axes y2 — \ and y\ — \ . 

If a function xi(2/1,2/2) is a solution of the problem (54), then also the function — Xi(h ~ 
2/1,2/2) is a solution of the same problem. Indeed, if a function w = 10(2/1,2/2) belongs to 
L2(Q, i fp e r (y)) then also the function —w(li — 2/1,2/2) belongs to the same space. Let us 
choose it in (54) as a test function $. If a function xi solves the problem (54), then we 
can derive: 

h rl 

0 JO 
V ( x i ( 2 / i , 2 / 2 ) - 2 / 1 ) • V[-iw(Zi - 2 / 1 , 2 / 2 ) ] l y*dy idy 2 

h-yi = t 
— dyi = dt 
y1 = 0^t = h 

y i = l 1 = > t = Q 

t [\(xi(h-t,y2)-(h-t))-Vw(t,y2) lY*dtdy2 Jo Ju 
h rl 

0 ^0 
V ( x i ( / i - t, y2) + t) • Vw(t, y2) dt 1Y. dy2 

h rl 

0 JO 
V ( - X i ( / i - *, 2/2) - t) • Vw{t, y2) dt 1Y. dy2 = 0. 
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Thus, the function — Xi(h — 2/1,2/2) also solves the problem (54). From the uniqueness of 
the solution of the problem (54) we get Xi(2/1,2/2) = — Xi(h — 2/1,2/2), which means that xi 
"odd in variable y\ with respect to point y\ = y " . Finally, since this symmetry holds and 
the function xi £ H^er{Y) w e c a n prescribe to the boundary yi = 0 and y\ = l\ Dirichlet 
conditions. 

Similar reasoning leads to Neumann conditions on the boundary y2 — 0 and y2 = l2. 
Indeed, let us choose in (54) as a test function $ = w(yi,l2 — y2), which belongs to 
L2(fl, i fp e r (y)) . If a function xi solves the problem (54), then we can derive: 

0 Jo 
V(xi(2/1,2/2) - 2/i) • Viw(yi,Z 2 - 2/2) ly* dy2dy1 

h-yi = t 
— dy2 = dt 

2/2 = 0 =>• t = / 2 

y2 = l 2 ^ t = 0 

t / ° V ( x i ( 2 / i , / 2 - t ) -2/1) • Vw(2 / i , t) l y . d t d 2 / 2 

/0 J Z 2 

r / Z 2 V ( x i ( 2 / i , / 2 - t ) - 2 / i ) - V w ( 2 / i , t ) l y . d t d 2 / 2 

Thus, the function Xi(2/1^2 — 2/2) also solves the problem (54). Since the solution of (54) 
is unique it means that Xi(2/15 2/2) = Xi(2 / i , h — 2/2), i-e. the function xi is "even in variable 
2/2 with respect to axis y2 

12» . Finally, because this symmetry holds and the function 
Xi £ HpeT(Y) we can prescribe to the boundary 2/2 = 0 and y2 = l2 homogenous Neumann 
conditions. 

So, the boundary conditions for function x a r e : 

Xi (2/i,0) = c, 

dxi 
dtj: 

^ 0 , 2 / 2 ) = 0, 

xi (yi,h) = c, 

dxi 
i ( / 2 , 2 / 2 ) = 0, 

where constant c is determined from the condition A4y(x«) = 0. For the function x2 the 
reasoning is analogical. 

Due to the symmetry it would be possible to solve the auxiliary problems on one quarter 
of period. 

Matrix A : Integrals in the formula (56) for matrix A are computed numerically element 
by element by using 2D quadrature rule of order 1, which is sufficient because X i , X2 are 
approximated only by piecewise linear functions. Since the formula for matrix A contains 
partial derivatives of functions x i , X2 to achieve better accuracy it would be useful to use 
higher polynomial basis in finite element formulation at least for the cell problem. 
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A. IMPLEMENTATION OF NUMERICAL EXPERIMENTS 

Figure 14-' Basis function associated with vertices on the boundary of an inner hole T ;* t e . 

A.2. Problem on perforated domain 

Problem (37) formulated in Chapter 5 is also solved by finite element method on triangular 
mesh. 

Basis and test functions are piecewise linear and belong to the space <Se(f2) (defined by 
(36)). To fulfill conditions required by definition of this space (especially requirement that 
functions in S£ equal constant on each inner hole) we chose slightly different basis functions 
than is usual. The basis function associate with a vertex which is not on the boundary 
(neither outer nor inner) is a classical hat function, which equals one at its associated 
vertex and zero at all other vertices. For all vertices belonging to the boundary of a inner 
hole Tj*t £ there is the only one basis function, which equals one in all these vertices and 
zero at all others, see Figure 14. 

A.3. Meshes 

Decomposition of domains for all problems mentioned above were generated by using 
toolbox MESH2D - Automatic Mesh Generation by Darren Engwirda. The code is covered 
by the BSD Licence. 

MESH2D is a toolbox of 2D meshing routines that allows for the automatic generation 
of unstructured triangular meshes for general 2D geometry. The resulting mesh achieves 
high quality. 

Mesh2D is suitable for domain with holes and also for domain with multiple connected 
faces. In addition to the fully automatic settings, MESH2D allows the user to specify 
sizing information, allowing for varying levels of mesh resolution within the domain. 
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Figure 15: Mesh used to solve auxiliary cell problem (54). 
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