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Abstrakt 
Ačkoliv m ů ž e m e v l i t e r a t u ř e na léz t ř a d u p ř í k l a d ů prezentu j íc ích evoluční n á v r h j a k o ž t o 

za j ímavou a sl ibnou al ternativu k t r a d i č n í m n á v r h o v ý m t e c h n i k á m p o u ž í v a n ý m v oblasti 

číslicových obvodů , p r a k t i c k é n a s a z e n í je č a s to p r o b l e m a t i c k é ze jména v d ů s l e d k u tzv. 

p r o b l é m u šká lovate lnos t i , k t e r ý se projevuje n a p ř . tak, že evoluční algoritmus je schopen 

poskytovat uspoko j ivé výs ledky pouze pro m a l é instance řešeného p r o b l é m u . V á ž n ý p r o b l é m 

p ředs t avu je tzv. p r o b l é m šká lova te lnos t i evaluace fitness funkce, k t e r ý je m a r k a n t n í ze jména 

v oblasti syn tézy kombinačn í ch obvodů , kde doba p o t ř e b n á pro o h o d n o c e n í k a n d i d á t n í h o 

řešení typicky roste exponenc iá lně se zvyšuj íc ím se p o č t e m p r i m á r n í c h v s t u p ů . 

Tato d i s e r t a č n í p r á c e se z a b ý v á n á v r h e m někol ika metod umožňuj íc ích redukovat prob­

lém šká lova te lnos t i evaluace v oblasti evolučního n á v r h u a optimalizace číslicových s y s t é m ů . 

Cí lem je p o m o c í někol ika p ř í p a d o v ý c h s t u d i í u k á z a t , že s v y u ž i t í m v h o d n ý c h akceleračních 

technik jsou evoluční techniky schopny automaticky navrhovat i n o v a t i v n í / k o m p e t i t i v n í 

řešení p r a k t i c k ý c h p r o b l é m ů . 

A b y bylo m o ž n é redukovat p r o b l é m šká lova te lnos t i v oblasti evolučního n á v r h u čísl icových 

filtrů, by l n a v r ž e n d o m é n o v ě specifický akce le rá to r na báz i F P G A . Tato problematika 

reprezentuje p ř í p a d , kdy je n u t n é ohodnotit velké m n o ž s t v í t r énovac ích dat a současně 

provés t mnoho generac í . P o m o c í n a v r ž e n é h o akce le rá to ru se poda ř i l o objevit efekt ivní im­

plementace r ů z n ý c h ne l ineárn ích ob razových filtrů. S v y u ž i t í m evolučně n a v r ž e n ý c h filtrů 

by l v y t v o ř e n r o b u s t n í ne l ineá rn í filtr i m p l u s n í h o š u m u , k t e r ý je c h r á n ě n u ž i t n ý m vzorem. 

N a v r ž e n ý filtr vykazuje v p o r o v n á n í s konvenčn ími řešen ími vysokou kval i tu filtrace a n ízkou 

i m p l e m e n t a č n í cenu. 

S p o j e n í m evolučního n á v r h u a technik z n á m ý c h z oblasti formáln í verifikace se poda ř i l o 

vy tvo ř i t s y s t é m umožňu j í c í v ý r a z n ě redukovat p r o b l é m šká lova te lnos t i evoluční syn tézy 

kombinačn ích o b v o d ů na ú rovn i hradel. N a v r ž e n á metoda dovoluje produkovat komplexn í 

a p ř e s t o kva l i tn í řešení , k t e r á jsou schopna konkurovat k o m e r č n í m n á s t r o j ů m pro logickou 

syn tézu . N a v r ž e n ý algoritmus b y l e x p e r i m e n t á l n ě ověřen na s adě někol ika b e n c h m a r k o v ý c h 

obvodů v č e t n ě tzv. ob t í žně syn te t i zova te lných obvodů , kde dosahoval v p r ů m ě r u o 25% 

lepších výs ledků než d o s t u p n é akademické i k o m e r č n í ná s t ro j e . 

Pos l edn í d o m é n o u , kterou se p r á c e z a b ý v á , je akcelerace evolučního n á v r h u l ineárn ích 

s y s t é m ů . N a p ř í k l a d u evolučního n á v r h u násob iček s v í c e n á s o b n ý m i k o n s t a n t n í m i koefi­

cienty bylo u k á z á n o , že čas p o t ř e b n ý k evaluaci k a n d i d á t n í h o řešení lze v ý r a z n ě redukovat 

(defacto na o h o d o c e n í j ed iného t es tovac ího vektoru), je- l i b r á n v potaz charakter řešeného 

p r o b l é m u (v tomto p ř í p a d ě linearita). 
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Abstract 
Al though many examples showing the merits of evolutionary design over conventional de­

sign techniques ut i l ized i n the field of d ig i ta l circuits design have been published, the evo­

lutionary approaches are usually hardly applicable i n practice due to the various so-called 

scalabili ty problems. The scalabili ty problem represents a general problem that refers to 

a s i tuat ion i n which the evolutionary algori thm is able to provide a solution to a small 

problem instances only. For example, the scalabili ty of evaluation of a candidate digi ta l 

circuit represents a serious issue because the t ime needed to evaluate a candidate solution 

grows exponentially w i th the increasing number of pr imary inputs. 

In this thesis, the scalabili ty problem of evaluation of a candidate d igi ta l circuit is ad­

dressed. Three different approaches to overcoming this problem are proposed. O u r goal is 

to demonstrate that the evolutionary design approach can produce interesting and human 

competitive solutions when the problem of scalabili ty is reduced and thus a sufficient num­

ber of generations can be ut i l ized. 

In order to increase the performance of the evolutionary design of image filters, a do­

main specific F P G A - b a s e d accelerator has been designed. The evolutionary design of image 

filters is a k ind of regression problem which requires to evaluate a large number of training 

vectors as well as generations in order to find a satisfactory solution. B y means of the pro­

posed F P G A accelerator, very efficient nonlinear image filters have been discovered. One 

of the discovered implementations of an impulse noise filter consisting of four evolutionary 

designed filters is protected by the Czech u t i l i ty model. 

A different approach has been introduced i n the area of logic synthesis. A method 

combining formal verification techniques w i th evolutionary design that allows a significant 

acceleration of the fitness evaluation procedure was proposed. The proposed system can 

produce complex and simultaneously innovative designs, overcoming thus the major bottle­

neck of the evolutionary synthesis at gate level. The proposed method has been evaluated 

using a set of benchmark circuits and compared wi th conventional academia as well as com­

mercial synthesis tools. In comparison w i t h the conventional synthesis tools, the average 

improvement i n terms of the number of gates provided by our system is approximately 25%. 

Final ly , the problem of the mult iple constant mult ipl ier design, which belongs to the 

class of problems where a candidate solution can be perfectly evaluated in a short t ime, 

has been investigated. We have demonstrated that there exists a class of circuits that 

can be evaluated efficiently i f a domain knowledge is u t i l ized (in this case the l inearity of 

components). 

Keywords 
digi tal circuit design, evolutionary opt imizat ion, evolutionary design, mult ipl ier w i th con­

stant coefficients, image filtering, nonlinear filter, opt imizat ion of combinational circuits, 

F P G A acceleration 
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Chapter 1 

Introduction 

The electronic manufacturing industry, especially electronic circuit production, is an area 

that has gone through a substantial development i n the recent fifty years. In the second half 

of the 20th century, innovations i n electronic computer systems made the personal com­

puter a reality. Each new generation of computers was cheaper to purchase, more powerful 

and easier to operate. Thus the computers shortly became universal computing machines 

that spread not only among the scientific community but also among the common users. 

The progress achieved by the 21st century causes the electronic products had transformed 

the way that people live, work, and communicate. A common cellular phone has been su­

perseded wi th the devices having the performance comparable wi th the personal computers 

and the personal computers are gradually replaced wi th very popular portable devices. 

Compar ing the current requirements to the requirements formulated a few years ago, 

significantly more complex circuits and behaviors are demanded today. This demand is 

caused by the relentless improvements of the available technologies. W h i l e the current 

advance is driven mainly by the necessity to minimize the overall power consumption of the 

produced systems, i n the 1990s the goal was a relative simple - doubling of the performance 

of the computer systems and keeping up wi th the Moore 's law. The current s i tuat ion is 

much complicated and requires discovering and applying new approaches as the power 

consumption requirements are generally i n contrast w i th the performance requirements. 

One of the main bottlenecks that has been identified by scientific community is a low 

efficiency of circuit design [54]. Tradi t ional circuit design methodologies rely on rules and 

design techniques that have been developed over many decades. However, the need for 

human input to the increasingly complex design process means that the circuit design 

has to be simplified by imposing greater and greater abstraction to the design space. A n 

example of this approach is the introduct ion of the hardware description languages. This 

abstraction allows designers to significantly reduce the t ime needed to design and produce 

the intended system. O n the other hand, it also results in waste of potential circuit behavior 

since the conventional design methodologies do not offer too many ways to benefit from the 

physical dynamics available from the silicon medium [175]. 

One of crucial parts of the design process is the efficient logic synthesis and opt imizat ion. 

A s a part of computer theory, the logic synthesis and opt imizat ion have been developed 

for more than 50 years. Despite the fact that the logic synthesis and opt imizat ion are 
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C H A P T E R 1. INTRODUCTION 

considered to be very difficult problems, many companies provide commercial tools that 

allow processing even the systems of the contemporary complexity i n a reasonable time. 

However, the recent work i n the area of conventional synthesis has shown that the available 

synthesis algorithms produce solutions that are far from op t imum for many circuit classes 

[35]. 

In the beginning of nineties, a new field applying evolutionary techniques to hardware 

design and synthesis has been established. Th is field is referred to as Evolvable Hardware 

[65]. The evolvable hardware draws inspirat ion from three main fields - biology, computer 

science and electronic engineering. The a im is to provide (1) electronic systems exhibi t ing 

a degree of self-adaptive and self-repair behavior and/or (2) a robust design approach that 

could even replace a human designer in some cases. T y p i c a l application domains include 

design of digi ta l circuits, analog circuits, antennas, opt ical systems and M E M S [107, 78, 83]. 

In the context of the circuit design, the evolvable hardware is very attractive approach 

as it provides another option to the t radi t ional design methodology - to use evolution to 

design circuits for us. Moreover, the key strength of the evolvable hardware approach is 

that it can be applied for designing of the circuits that cannot be fully specified a pr ior i , 

but where the desired behavior is known. In fact, the search-based approaches seem to be 

the only viable option i n this case. Another often emphasized advantage of this approach 

is that the circuits can be adopted for a part icular environment. 

Dur ing the last two decades, the evolvable hardware community has demonstrated that 

very efficient (and sometimes also patentable) implementations of physical designs can be 

obtained using evolutionary computat ion. For example, John K o z a , the pioneer of the 

field, dealing pr imar i ly w i th the evolutionary design of analog circuits, has reported tens 

of human-competit ive results i n various areas of science and technology. The results were 

obtained automatical ly using evolutionary techniques, i n part icular using genetic program­

ming [102] that has mainly been adopted for analog circuit design [121, 38]. In case of 

digi ta l logic synthesis, the evolutionary synthesis has also led to several innovative designs 

[127, 9, 164]; however the obtained results belong to the category of relatively smal l circuits. 

A l though the evolutionary design has been shown to be a promising and general-purpose 

design method, there exist several problems that make the evolutionary approach problem­

atic i n some applications [69]. The scalabili ty problem has been identified as one of the 

most difficult problems the researchers are faced wi th i n the evolvable hardware field. The 

scalabili ty problem means such si tuation in which the evolutionary algori thm is able to 

provide a solution to a smal l problem instance; however, only unsatisfactory or even none 

solutions can be obtained for larger problem instances i n a reasonable time. Another prob­

lem related to this issue is enormous computat ional power which evolutionary algorithms 

usually need for obtaining innovative results for some applications. 

The scalabili ty problem can pr imar i ly be seen from two perspectives: scalabili ty of 

representation and scalabili ty of fitness evaluation. F r o m the viewpoint of the scalabili ty 

of representation, the problem is that long chromosomes (a set of genes which defines a 

candidate solution) which are usually required to represent complex solutions imp ly large 

search spaces that are typical ly difficult to search. Another issue is the scalabili ty of fitness 

evaluation, i.e. the problem that complex candidate solutions might require a lot of t ime to 

be evaluated. For example, i n the case of the evolutionary design of combinational circuits, 
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1.1. GOALS OF THE THESIS 

the evaluation t ime of a candidate circuit grows exponentially w i th the increasing number 

of inputs (assuming that 2™ test vectors are generated for n-input circui t ) . Th is represents 

the main weakness of the evolutionary approach. It also causes that real-world applications 

of evolutionary circuit design are not able to compete w i th conventional design. 

1.1 Goals of the Thesis 

It w i l l be argued in this thesis that the fitness scalabili ty issue can be el iminated by seeking 
for new sophisticated evaluation methods. We w i l l solely deal w i t h evolvable hardware as 
the method for automated design, i.e. the scenario i n which the evolutionary algori thm is 
used only i n the design phase of a product. The thesis postulates two main objectives. 

The first goal is to propose problem-specific methods that w i l l allow designers to reduce 
the scalabili ty problem i n the area of d ig i ta l system design. A s the scalabili ty problem 
represents a general problem, we w i l l consider only a very narrow but important subarea -
the scalabili ty of evaluation of a candidate digi ta l circuit . 

The second goal is to evaluate the impact of the proposed methods and show that 
by means of the proposed methods it is possible to evolve innovative solutions i n various 
problem domains. In the context of evolutionary circuit design, we mean by the term 
innovative that a solution exhibits better features w i th respect to existing designs of the 
same category. 

Thesis Organization 

The thesis is organized as follows. The first two chapters contain theoretical background 

that outlines the basic concepts and ideas ut i l ized i n the following chapters. In addi t ion 

to that, this introductory part also clarifies the motivat ion of this work. The next three 

chapters contain three case studies that demonstrate three approaches to el iminat ion of 

the scalabili ty problem of evolutionary circuit design. F ina l ly , an evolutionary platform 

designed to accelerate the evolutionary design of d ig i ta l circuits is introduced. To be more 

specific: 

Chapter 2 provides the necessary background of evolvable hardware which represents the 

essential concept t ight ly connected wi th this thesis. Th is overview covers the principles and 

basic concepts of evolutionary algorithms. The chapter is divided into three sections. The 

first section contains a description of relevant evolutionary techniques, especially Cartesian 

Genetic Programming that have been ut i l ized in the experiments. The next section sum­

marizes reconfigurable devices that have been used i n the evolvable hardware field. The last 

section comprises of a literature survey of evolvable hardware which represents the research 

area i n which the presented thesis belongs to. 

Chapter 3 is devoted to the evolutionary design of digi ta l and analog circuits. The 

first two sections contain a summary of the electronic circuits designed at various levels 

of abstraction that have been published i n literature. The goal of this chapter is to make 

an insight to the complexity of the design problems that have been solved so far. The 

next section discusses the pract ical aspects of the evolutionary design of digi ta l circuits 
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C H A P T E R 1. INTRODUCTION 

by means of Cartesian Genetic Programming. In the th i rd section, the shortcomings and 

bottlenecks of the evolutionary design are discussed. This part deals w i th the issue of 

scalabili ty of evolutionary design and the approaches that have been proposed to mitigate 

or even remove various scalabili ty problems. 

The first case study, which is presented i n Chapter 4, deals w i th the evolutionary design 

of linear transforms. We have identified a class of problems for which a candidate solution 

can be perfectly evaluated i n a very short t ime. This chapter is d ivided into four sections. 

The first section covers the theoretical background related to the linear transforms i n gen­

eral, and mult iple constant mult ipl ier blocks in part icular. The next three sections contain 

the description of the proposed method and experimental evaluation of this method. 

In Chapter 5, the second case study related to the evolutionary synthesis of complex 

digi ta l circuits is introduced. The goal of this chapter is to present a new approach to 

the fitness function implementat ion which is based on a formal verification algori thm. The 

proposed method significantly eliminates the scalabili ty problem of fitness function evalu­

ation which has been known from the very beginning of d ig i ta l evolvable hardware. This 

part is d ivided into five sections. The first section describes the problem of combinational 

equivalence checking and the process of conventional logic synthesis. The proposed method 

followed by its extensive experimental evaluation is described i n the second and th i rd sec­

t ion respectively. The fourth and fifth section describe the improved version of the proposed 

approach and its evaluation using a set of real-world benchmark circuits. 

The case study devoted to the evolutionary design of nonlinear image filters is presented 

in Chapter 6. Th is chapter consists of three sections. The first section defines the problem to 

be solved and introduces the necessary theoretical background connected wi th the fi l tration 

of impulse noise. The second section discusses the evolutionary design of image filters using 

Cartesian Genetic Programming. F ina l ly , experimental results are summarized in the last 

section. 

A common feature of Chapters 4-6 is that firstly the discussed problem is introduced. 

Afterwards, the proposed evolutionary design approach followed by experimental evaluation 

is given. F ina l ly , the obtained results are presented and summarized. The introduct ion 

includes not only the description of the problem, but also an overview of the best-known 

conventional methods that are usually ut i l ized to solve a given problem. 

Chapter 7 describes a new hardware accelerator for Cartesian Genetic Programming im­

plemented using F P G A . T w o types of application-specific accelerators are i n fact proposed. 

The first one is devoted for symbolic regression problems over the fixed point representation. 

The second one is designed for evolution of logic circuits. 

Chapter 8 summarizes the results obtained in this thesis and outlines directions for the 

future research. 
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Chapter 2 

Prom Evolutionary Algorithms to 
Evolvable Hardware 

The purpose of this chapter is briefly introduce the key concepts behind the evolutionary 

algorithms, reconfigurable devices and evolvable hardware. 

2.1 Evolutionary Algorithms 

Several decades ago, researchers started to explore how some ideas taken from nature could 

be employed for solving hard computing problems. Evolu t ionary algorithms inspired by 

biological evolution represent one of the most successful examples. 

The evolutionary algorithms (EAs) [11] are stochastic search algorithms inspired by 

Darwin 's theory of evolution. The common feature of evolutionary algorithms is that they 

util ize mechanisms that are inspired by principles of biological evolution, namely reproduc­

t ion, mutat ion, recombination and selection. In contrast w i th common search algorithms, 

such as random search or h i l l c l imbing, the E A s are population-based algorithms. It means 

that they work wi th more candidate solutions (i.e. individuals) i n the same time. B y a 

candidate solution we mean a point i n the search space, the space that contains a l l possible 

considered solutions to a given problem. 

Every new populat ion is formed using genetic operators such crossover and mutat ion 

and through a selection pressure. The selection pressure together w i th the fitness function, 
sometime referred to as objective function, is responsible for guiding the evolution towards 

better areas of the search space. The guidance is received from the fitness function that 

assigns so called fitness value to each candidate solution. The fitness value indicates how 

well a candidate solution fulfills the problem objective; i n other words, it indicates how 

a part icular candidate solution meets the specification. A better fitness value implies a 

greater chance that a candidate solution w i l l remain for a longer while and produce offspring, 

which inherit parental genetic information. A well-designed evolutionary algori thm should 

converge to a populat ion containing desired solutions. 

Each member of the populat ion (i.e. a candidate solution) consists of a string of param­

eters, so called genes. Th is string is usually referred to as an ind iv idua l or chromosome. A 

part icular value of a gene i n chromosome is called allele. Thus, the alleles are the small-
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est information units in a chromosome. In nature, alleles exist pair wise, whereas i n the 

evolutionary algorithms, an allele is usually represented by only one symbol . Because the 

objects i n the search space can generally represent arbitrary structure (a vector of real val­

ues, d igi ta l circuit , antenna, and so on), we distinguish between a search space (or genotype 

space) and representation space (phenotype space). W h i l e the fitness function is applied to 

evaluate phenotypes, the genetic operators manipulate w i th genotypes. A smal l change i n 

the genotype should produce a smal l change i n the phenotype otherwise the evolutionary 

algori thm is not efficient [15]. 

The evolutionary algorithms are t radi t ional ly divided into four distinct branches: ge­
netic algorithm [62], genetic programming [100], evolutionary strategies [156] and evolution­
ary programming [55]. The algorithms mainly differ i n the mechanism of the candidate 

solutions encoding, implementat ion of the evolutionary operators applied to the candidate 

solutions and finally, ut i l ized search strategy that guides the E A through the search space. 

2.1.1 G e n e t i c A l g o r i t h m s 

Genetic algori thm ( G A ) was introduced by John Hol l and i n 1973 and made famous by 

D a v i d Goldberg [62, 82]. 

Researchers have proposed many different variants of genetic algorithms i n the litera­

ture. For the i l lustrat ion, we w i l l use the t radi t ional simple genetic algori thm (the simplest 

form of G A ) defined by Goldberg. Th is canonical a lgori thm uses two genetic operators, 

crossover as the main operator and mutat ion which serves only as background noise. The 

structure of a canonical genetic algorithm, as it has been described by D a v i d Goldberg i n 

[62], is captured i n the following pseudo code. 

set time t=0 
randomly create initial population P(t) 
while (termination condition is false) 

evaluate each individual in P{t) 
if acceptable solution found then 

break 
reproduce individuals according to their fitnesses into mating pool 
(higher fitness implies more copies o f individual in mating pool) 
t = t+l 
while P(t) is not filled with new offspring do 

randomly take two individuals from mating pool 
use probabilistic random crossover to generate two offspring 
apply probabilistic random mutation to the offspring 
place offspring into population P{t) 

A l g o r i t h m 2.1: Canonica l Genetic A l g o r i t h m 

The simple genetic algori thm uses a populat ion of individuals having the constant size. 

The individuals are encoded using a vector (or string) of fixed size. G A tradi t ional ly oper­

ates w i t h binary, integer, real-valued or character-based string. The genetic operators such 
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as one-point, uniform or n-point crossover are directly applied to the genotypes. In many 

implementations, crossover produces two new offspring from two parents by exchanging 

substrings. The mutat ion operator slightly changes the genotype of an indiv idual . 

The basic functionality of a t radi t ional simple G A is relatively simple. After randomly 

creating and evaluating an in i t i a l populat ion, the algori thm iteratively creates new genera­

tions. New generations are created by recombining the selected highly fit individuals using 

a crossover operator and applying mutat ion to the obtained offspring. Crossover is often 

used about 70% of the t ime to generate offspring, for the remaining 30% offspring are sim­

ply clones of their parents. Muta t ions occur rarely and usually modify value of a randomly 

selected gene of the indiv idual . The selection is typical ly implemented as a probabilist ic 

operator that is based solely on the fitness value. The genetic algori thm terminates when 

a sufficient solution is found or a given t ime l imi t (or a given number of generations) is 

exhausted. 

For pract ical problems, the simple genetic algori thm is often considered as a basis for 

many enhancements, including: heuristic generation of the in i t i a l populat ion, mult i-point or 

more complicated crossover, el i t ism preserving the best ind iv idua l for the next generation, 

more realistic selection, etc. 

2.1.2 G e n e t i c P r o g r a m m i n g 

Genetic Programming ( G P ) was introduced by John K o z a i n late eighties as an extension 

to genetic algorithms i n order to enrich the chromosome representation [100, 101, 105, 107]. 

Instead of fixed-length strings, G P evolves pieces of code wri t ten over a specified alphabet 

consisting of a set of functions and a set of terminals. The chromosome encoding can be 

directly executed by the system or compiled (interpreted) to produce a machine executable 

code. Genetic programming allows automatic programming and program induct ion (i.e. 

automatical ly developing of computer programs). Unl ike genetic algorithms, genetic pro­

gramming does not dist inguish between phenotype and genotype. A s genetic programming 

is able to effectively evolve symbolic expressions, the problem of symbolic regression became 

the most popular applicat ion of G P . 

The evolved programs are usually represented either as tree structures or i n a linear form 

using a list of machine-language instructions. S imi la r ly to the G A , crossover is considered 

as a major genetic operator. A typica l crossover interchanges randomly chosen subtrees of 

parents' trees without the disruption of the syntax. A typica l mutat ion, another genetic 

operator, selects a random subtree and replaces it w i t h a randomly generated one. Selec­

t ion is typical ly implemented as a probabil ist ic operator, using the relative fitness, which 

determines the selection probabil i ty of an indiv idual . 

In order to improve the efficiency in G P , John K o z a introduced the concept of auto­

matical ly defined functions ( A D F s ) [101]. Au tomat i ca l ly defined functions enable genetic 

programming to define useful and reusable subroutines (subtrees) dynamical ly during evo­

lut ion. Accord ing to the obtained results, genetic programming w i t h A D F s produces so­

lutions that are simpler and smaller than the solutions obtained without automatical ly 

defined functions. 

The G P representation has also its own pitfalls. A n evolved program may contain 

7 



C H A P T E R 2. F R O M EVOLUTIONARY ALGORITHMS TO E V O L V A B L E HARDWARE 

segments which do not alter the result of the program execution when they are removed 

from it . A typica l t r iv i a l example is the expression x = x • 1 + 0 where the addit ion as well 

as the mul t ip l ica t ion represent redundant operations that can be omit ted. The redundant 

segments are referred to as introns. Another well-known issue of G P is that the program 

size can grow uncontrollably un t i l it reaches the tree-depth maximum, while the fitness 

remains unchanged. This effect is called a bloat. These pitfalls and their relations are 

discussed, for example, i n [8, 12]. 

2.1.3 E v o l u t i o n a r y Strategies 

Evolut ionary strategies proposed by Bienert , Rechenberg and Schwefel have been developed 

for opt imizat ion purposes i n industr ia l applications [156, 11]. S imi lar ly to the genetic pro­

gramming, evolutionary strategies do not dist inguish between a genotype and phenotype. 

Each ind iv idua l is represented as a real-valued vector. Evo lu t ion strategies use pr imar i ly 

mutat ion and selection. Unl ike the previous approaches, the mutat ion operator, which mu­

tates each vector element, is considered as a major genetic operator. M u t a t i o n aggregates 

a normal-distr ibuted random variable and a preselected standard deviat ion value which are 

applied on every gene of a candidate vector. 

The simplest evolutionary strategy operates on a populat ion of size of two consisting 

of the current solution (parent) and the result of its mutat ion (offspring). The selection 

strategy is s tr ict ly deterministic. O n l y if the offspring's fitness is at least as good as the 

parent's one, it becomes the parent of the next generation. Otherwise the offspring is 

disregarded. T h i s basic strategy is known as a (1 + 1)-ES. More generally, A offspring 

can be generated. The strategy i n which the offspring compete wi th /j, parents is called 

+ A) -ES . Another selection scenario (//, A) -ES picks the best fx individuals from the both 

child and parent populations. In the simplified (1,1)-ES variant, the offspring becomes the 

parent of the next generation while the current parent is always disregarded. 

2.1.4 E v o l u t i o n a r y P r o g r a m m i n g 

Evolut ionary programming was introduced by Lawrence Fogel in sixties i n order to use sim­

ulated evolution as a learning process [56, 55]. He has used the evolutionary programming 

for the design of finite state machines working as predictors. Evolu t ionary programming 

exhibits a number of similarities w i th evolutionary strategies and is becoming harder to dis­

t inguish from that paradigm. Important features of advanced evolutionary programming 

systems typical ly include a problem-specific representation, self-adaptation and tournament 

selection. M u t a t i o n operator is considered as the only genetic operator, crossover or similar 

recombination operators are not usually used at a l l . The search space and the representation 

space are not distinguished explicit ly. 

2.1.5 C a r t e s i a n G e n e t i c P r o g r a m m i n g 

Cartesian genetic programming ( C G P ) , introduced by Ju l i an M i l l e r and Peter Thomson i n 

2000, is a variant of genetic programming where the genotype is represented as a list of 

integers that are mapped to directed oriented graphs rather than trees [131]. The motivat ion 
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for this representation came from the previous analysis covering the effectiveness of this 

approach in learning Boolean functions where the C G P has been proved to be considerably 

more efficient than any other variant of G P . 

Cartesian genetic programming encodes a candidate solution (typically a circuit or a 

program) using an array consisting of nc x nr programmable nodes. The nc parameter 

determines the number of columns whereas nr determines the number of rows. E a c h pro­

grammable node has the fixed number of inputs, n e j , and outputs neo; i n most cases TZĝ  — a 
and n e o = 1. The main feature of C G P is that a l l the parameters including the number 

of programmable nodes, node inputs and outputs and program inputs, rtj, and program 

outputs, n0, are fixed. E a c h node input can be connected either to the output of a node 

placed in the previous I columns or to one of the program inputs. The parameter I (referred 

to as £-back parameter) defines the level of connectivity and thus reduces or extends the 

search space. For example, if £=1 only neighboring columns may be connected; i f nr = 1 

and nc = I, full connectivity is enabled. Because of the complicated evaluation, feedback 

is not allowed i n the standard version of C G P . Each node can be programmed to perform 

one of n e i - inpu t functions defined i n the set T. Let n / = Thus, every ind iv idua l can be 

encoded using nc x nr x (n e j + neo) + n0 integers. 

; 1 _ 1 3 2 _ 0 5 1 _ 0 7 

o o — i 2 _ \ o o — i 2 _ / 

1 o—I 

2 0 1 ° - 1 4 0 6 0 _ 1 8 

i °— i °— 

1 _ 

Figure 2.2: Example of a candidate circuit encoded using C G P wi th the following parame­
ters: nc = 4, nr = 2, m = 3, nQ = 2, I = 2, nei = 2, neo = 1, T = { A N D (0), O R ( l ) , X O R 
(3) }. Chromosome: 1, 2, 1, 0, 0, 1, 2, 3, 0, 3, 4, 0, 1, 6, 0, 0, 6, 1, 1,3, 0, 6, 8, 0, 6, 10. 
Functions of elements are typed i n bold . The first 24 integers encode the interconnection of 
the C G P elements and function of each element. The last two integers indicate the output 
of the circuit . Elements 5, 7 and 9 are not ut i l ized. 

Figure 2.2 shows a digi ta l circuit encoded using C G P representation. The figure also 

demonstrates the main feature of C G P encoding - while the genotype (i.e. chromosome) is 

of fixed length, the phenotype is of variable length depending on the number of unexpressed 

genes. In this example, three nodes do not contribute to the phenotype. The ut i l ized 

representation also significantly reduces the bloat which is inevitable i n G P [126]. Th is fact 

has been confirmed by M i l l e r in [129] who claimed that it cannot occur i n the genotype just 

because it is bounded. 

Due to the presence of redundancy, there are many genotypes that are mapped to 

identical phenotypes. The simplest form of redundancy is caused by the presence of genes 

or nodes that are inactive. These genes influence neither the phenotype nor the fitness value. 

This k ind of redundancy is very high at the beginning of the evolution as many nodes are 
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not connected i n the early populations. W i t h the increasing number of generations, the 

node redundancy gradually reduces to a level that is determined by the average number of 

nodes required to obtain a satisfactory solution and the m a x i m u m allowed number of nodes 

[131]. 

The phenomenon indicat ing the presence of genotypes w i th the same fitness is often 

referred to as neutrality. The role of neutrali ty has been investigated i n detail i n several 

papers [198, 129, 34]. For example, it was discovered that the most evolvable representations 

occur when the chromosome is extremely large and contains over ninety percent of inactive 

genes [129]. O n contrary, it has been also shown that for some specific problems, the 

neutrality based search is not the best approach [34]. 

In C G P , the search is performed using a mutation-based evolutionary strategy (1 + A)-

E S that does not uti l ize crossover as it has been discussed i n the previous chapters. The 

influence of the crossover operator has been intensively studied in literature, however, it 

has been confirmed that crossover does not improve the search [128, 183]. C G P operates 

wi th the populat ion of 1 + A individuals , where A is typical ly from 1 to 15. In case of 

the evolutionary design, the in i t i a l populat ion is usually generated randomly whereas i n 

case of the evolutionary opt imizat ion the in i t i a l populat ion can be constructed by means 

of mapping of a known conventional solution to the C G P representation. 

The search strategy works as follows. The in i t i a l populat ion has to be evaluated using 

a fitness function and the fittest ind iv idua l becomes the new parent. Then , every new 

populat ion consists of the best ind iv idua l of the previous populat ion and its A mutated off­

spring. The offspring are created by a point mutat ion operator which modifies m randomly 

selected genes of the parental ind iv idua l where m is a user-defined value. The mutat ion 

operator usually modifies up to 5% of genes of the chromosome. The implementat ion of 

the muta t ion operator has to ensure that the modifications are legal and lead to a valid 

phenotype. The moment the populat ion is created, the fitness value of each offspring is 

calculated. The fittest ind iv idua l in the populat ion is selected and forms the new parent. 

In case when two or more individuals have received the same fitness score, the ind iv idua l 

which has not served as the parent i n the previous populat ion has to be selected as the new 

parent. This strategy is important because it ensures the diversity of populat ion and allows 

so called neutral search [129]. The evolution is terminated when the m a x i m u m number of 

generations is exhausted. 

The C G P became the routinely used approach i n the area of evolutionary-based digi ta l 

circuit synthesis and opt imizat ion. The main advantage of C G P is that it generates very 

compact solutions, i.e. it can effectively reduce the total number of gates i n the case of 

circuit evolution [127]. Even i f the C G P was originally defined for gate-level evolution, it can 

easily be extended for function-level evolution [157]. C G P has been successfully ut i l ized i n 

many applications [125, 91, 131, 127, 182, 157, 4, 57, 186, 223]. In addi t ion to the standard 

C G P , several extensions have been proposed i n recent years; for example, self-modifying 

C G P [74], modular C G P [188, 92], developmental C G P [164] or multi-chromosome C G P 

[204]. Some authors have also ut i l ized C G P wi th a relative encoding of the solution instead 

of the absolute encoding introduced by M i l l e r [70]. 
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2.2 Reconfigurable Devices 

In recent years, we could observe a boom i n the area of reconfigurable devices and reconfig­

urable computing [181]. In comparison to fixed architectures, the structure and parameters 

of reconfigurable chips can be modified by wr i t ing configuration data to the configuration 

memory. The reconfigurable devices usually consist of configurable blocks whose functions 

and interconnections are controlled by the configuration bitstream. W h i l e the first pro­

grammable devices such as Programmable Logic Arrays ( P L A s ) used hundreds of bits to 

store the configuration and relatively simple reconfigurable structure, recent devices such 

as F i e l d Programmable Gate Arrays ( F P G A s ) require tens of megabytes to store their 

configuration bitstream. Due to its potential to accelerate a wide variety of applications, 

reconfigurable computing has become a subject of intensive research. Its key feature is the 

abil i ty to perform computations i n hardware to increase performance, while retaining much 

of the flexibili ty of a software solution. 

The possibil i ty of reconfiguration is typica l for digi ta l architectures. However, reconfig­

urable devices are now available i n the areas of analog circuits, antennas, mirrors, molecular 

electronics and others. This short survey introduces the concept and basic principles be­

hind the F P G A s as well as other reconfigurable devices that have been used in the evolvable 

hardware field. 

2.2.1 Reconf igurab i l i t y a n d Its Benefits 

There are several reasons for using reconfigurable hardware. The reconfiguration can extend 

the lifespan of a system due to the possibil i ty to update the firmware. For example, when 

a new driver or peripheral device is introduced to a system, existing hardware could have a 

problem to communicate w i th i t . However, i f the system is implemented i n a reconfigurable 

chip, the hardware can be updated by simple reprogramming the configuration memory. 

In this case, the reconfiguration is performed occasionally and only when the applicat ion is 

suspended. 

Another common scenario is to use a reconfigurable chip i n order to increase the func­

t ional density. The goal is to perform a complex task on a smal l chip and thus reduce 

the power consumption, size or weight of the application, even reduce the cost. The ap­

plicat ion has to be divided into modules whose configurations alternate on the chip. The 

reconfiguration is performed dynamical ly at runtime. 

The reconfigurability also gives the chance to create an adaptive hardware. In this case, 

the goal is to dynamical ly create electronic circuits that are opt imized for a given task, time 

and locat ion of the chip. 

A n d finally, the typ ica l reason why reconfigurable devices are used is shortening the 

design t ime. Creat ing a configuration for a reconfigurable device usually takes much less 

t ime than bui ld ing a new application-specific chip. 

2.2.2 D i g i t a l Reconf igurab le Dev ices 

In order to control the routing among the configurable blocks, a k ind of configurable switch 

matr ix is used. To establish the routing on a reconfigurable chip, a passgate structure is 
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typical ly employed. M o d e r n digi ta l reconfigurable devices such as X i l i n x F P G A s contain 

a r ich routing fabric consisting of mil l ions of routing choice points. The configuration 

bits directly control the configurable switches, selection signals of multiplexers, contents 

of lookup tables ( L U T s ) and some bits used as control signals for computat ional unit . A 

single chip can implement many different functions depending on its configuration. The 

main disadvantage of this approach is that the c i rcui t ry established i n order to allow the 

configurability occupies a considerable area on the chip and make the whole system slower 

i n comparison wi th applicat ion specific integrated circuits. Since the F P G A s represent the 

mainstream i n the area of digi ta l reconfigurable devices, we w i l l restrict ourselves to these 

devices only. 
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Figure 2.3: The hierarchical architecture of F P G A V i r t e x II P r o which contains two Pow­
e r P C processors, embedded multipliers and memories. 

Fie ld Programmable Gate Arrays 

Figure 2.3 shows a typica l architecture of a modern X i l i n x F P G A [192]. F P G A consists of 
a two-dimensional array of reconfigurable resources that include configurable logic blocks 
( C L B ) , programmable interconnect blocks (P IB) and reconfigurable I / O blocks ( I O B ) . The 
configuration bitstream configuring a l l these elements is stored in the configuration S R A M 
memory. A C L B consists of several smaller elements referred to as slices. Each slice contains 
two function generators implemented using k-bit L U T s , flip-flops and some addi t ional logic. 
The number of bits k is usually between 3 and 6 depending on the F P G A family. Each 
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function generator can be programmed into one of the three modes. In the first mode, it 

can implement a combinational function. In the second mode, it can implement a fast k-bit 
shift register. A n d finally, the last mode enables to configure the L U T as a fast synchronous 

R A M wi th the to ta l capacity of 2 f c bits. 

A typ ica l structure of an F P G A logic block consisting of 4-input L U T s is depicted i n 

Figure 2.4. W h i l e the L U T s provide some k ind of generic logic, the flip-flops can be used 

for pipel ining, registers, stateholding functions for F in i te State Machines, or any other sit­

uations where clocking is required. Note that the flip-flops typical ly include programmable 

set/reset lines and clock signals. These signals may come from global signals routed on 

special resources, or could be routed v ia the standard interconnect structures from another 

input or logic block. The fast carry logic is a special resource provided i n the cell to speed 

up carry-based computations, such as addit ion, parity, wide bit-wise operations, and other 

functions. These resources bypass the general routing structure i n order to directly connect 

neighboring C L B s in the same column. Since there are very few rout ing choices i n the 

carry chain, and thus less delay on the computat ion, the inclusion of these resources can 

significantly speed up the carry-based computations. 

carry 
logic 

r 

Figure 2.4: A typica l structure of an F P G A logic block. 

The F P G A s differ i n the amount and type of resources available on the chip. The most 

advanced F P G A s based on 6-input lookup tables contain more than 100 thousands C L B s 

and integrate, i n addit ion to C L B s , various embedded hard cores such as S R A M memories, 

fast multipliers, gigabit interfaces, P C I interfaces or even processors (PowerPC or A R M ) . 

Because the existence of these cores has been identified as important to designers i n the past, 

it is reasonable to integrate them as hard cores on the chip instead of implementing them 

using C L B s and other resources. Current F P G A s can compete wi th application specific 

integrated circuits (ASICs) i n many domains, for example, in applications of advanced 

signal processing or embedded systems. 

Mos t F P G A s support a dynamic par t ia l reconfiguration which means that some parts 

of the F P G A can be reconfigured while remaining parts of the F P G A are performing some 

computat ion. A s it w i l l be mentioned later, the possibil i ty of the par t ia l reconfiguration is 

crucial for evolvable hardware. F P G A s can be configured either externally or internally. In 
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the case of external reconfiguration, the configuration bit stream is copied to the configu­

ration memory from an external memory, typical ly F L A S H . The internal reconfiguration is 

available i n X i l i n x V i r t e x F P G A s v ia the Internal Configurat ion Access Por t ( I C A P ) which 

allows for reading and modifying the F P G A configurations by circuits created directly i n 

the same F P G A . 

The goal of d ig i ta l circuit design is to provide such implementat ion of a target circuit 

which satisfies the user specification and which is available in a reasonable time. A s the con­

ventional circuit design process w i th F P G A s is very similar to programming, the resultant 

system can be obtained relatively quickly. Designer has to describe the circuit structure or 

behavior using a hardware description language (such as V H D L , Veri log, Catapul t C , etc.). 

Then, the source code is automatical ly transformed into the configuration bit stream for a 

part icular F P G A . The transformation, which includes the synthesis, placement and routing 

is performed by C A D tools. Th is process can be constrained using various requirements, 

e.g. the m a x i m u m delay of the circuit can be specified. Also , it is possible to simulate 

intermediate results of the transformation, modify the original source code when needed 

and optimize the design. 

In most cases, the format of the configuration bit stream is not fully documented for 

the designer. The reason is that the manufacturers protect their know-how and prevent 

the designers from potential ly dangerous attempts to configure the F P G A without a C A D 

tool . In case of X i l i n x chips, the only exception was the X C 6 2 0 0 family which is nowadays 

obsolete. The X C 6 2 0 0 family was very popular as it allowed to carry out intrinsic E H W ex­

periments at the lowest possible level of abstraction. Compar ing to the modern F P G A s , the 

basic bui ld ing block of X C 6 2 0 0 was very simple as it contained several 2-input multiplexers 

instead of lookup tables. Thus, each programmable logic element could be programmed to 

implement a common 2-input Boolean functions such as A N D , O R , X O R , etc. or 2-input 

multiplexer. 

2.2.3 A n a l o g Reconf igurable Dev ices 

Reconfigurable analog circuits allow, in fact, a software control of analog circuits. In com­

parison wi th F P G A s , reconfigurable analog circuits contain fewer configurable blocks and 

operate at lower frequencies. The reconfiguration is usually based either on configurable 

transistor switches, analog multiplexers, switching capacitors or operational transconduc-

tance amplifiers. Reconfigurable analog chips have been introduced much later than F P ­

G A s . Examples of analog reconfigurable circuits are given i n the following sections. 

Fie ld Programmable Transistor Arrays 

Fie ld Programmable Transistor A r r a y ( F P T A - 2 ) developed at N A S A J P L employs transis­

tor switches to implement the reconfiguration [170]. The F P T A - 2 can implement analog, 

digi ta l and mixed signal circuits. The architecture of the F P T A consists of an 8x8 array of 

re-configurable cells. E a c h cell contains a set of transistors and programmable resources, 

including programmable resistors and static capacitors. The reconfigurable c i rcui t ry con­

sists of 14 transistors connected through 44 switches i n each cell . In contrast w i th F P G A s , 

only several thousands of bits are used to program the whole chip only. The pat tern of 
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interconnection among cells is similar to the one used i n commercial F P G A s . Every cell 

can be interconnected wi th its northern, southern, eastern and western neighbors. 

Another F P T A was developed at the Universi ty of Heidelberg [110]. Th is chip enables 

developing circuits directly at the transistor level. Designer can select the transistor type 

( P M O S or N M O S ) , its parameters such as channel length and size, and interconnection. 

Fie ld Programmable Analog Arrays 

The reconfiguration of F i e l d Programmable Ana log Ar rays ( F P A A ) is typical ly based on 

either switched capacitors or operational transconductance amplifiers. 

Switched capacitors perform the function of configurable resistors. F P A A s use the 

following principle. A capacitor C is connected between two switches controlled by two 

signals. The switches are implemented using unipolar transistors and the control signals are 

non-overlapping clocks. The charge Q over one clock period transferred to the capacitor C is 

given by equation Q = C{V\ — V2) representing a discrete version of a well-known differential 

equation. The average current associated to this charge is Ia = C ( V i — V~2)/T, where T 
denotes the clock period. A p p l y i n g both equations, the value of an equivalent resistor can 

be calculated as R = (V i — V2)/Ia = T/C. Thus, the value of a corresponding resistor can 

be controlled by the switching frequency / = 1/T. In comparison to conventional resistors, 

switching capacitors are advantageous i n terms of linearity, dynamic range, precision and 

size on the chip. A s / can be controlled from software, analog circuits (such as filters and 

oscillators) can be easily tuned. A disadvantage might be that circuits containing switched 

capacitors operate in discrete domain, i.e. there is a l imi t i n the possible operation frequency 

which is determined by / . 

The commercial ly available A n a d i g m A N 2 2 1 E 0 4 F P A A [5], developed using switching 

capacitors, is an array of four configurable analog blocks ( C A B ) , each of which containing 

two operational amplifiers, a comparator, and an 8-bit analog-to-digital converter. The 

device also contains one programmable lookup table that can be used to store information 

for the generation of arbitrary waveforms. The table is shared amongst the C A B s . The 

configuration bit stream is stored i n S R A M and the m a x i m u m switching frequency is 16 

M H z . 

Another approach to software control of analog circuits is based on operational transcon­

ductance amplifiers. A typica l operational transconductance amplifier ( O T A ) produces a 

current output Ia that is l inearly depending on an input voltage present at bo th invert­

ing input ( V I ) and non-inverting input (V+). The output current can be expressed as 

I0 = —gm(V+ — V _ ) , where gm is the transconductance of the circuit . The transconduc­

tance can be predefined using an external biasing current input . Bias ing currents for O T A s 

are generated using D / A converters. Ideally, the circuit has infinite values for both the in ­

put and output impedances. O T A s are the main bui ld ing blocks of continuous t ime filters 

in which the transconductance (and thus the frequency characteristics) can be controlled 

externally. 

A n example of F P A A which utilizes configurable O T A s is the F P A A developed at the 

Universi ty of Freiburg [76]. 
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2.3 Evolvable Hardware 

A massive application of evolutionary principles to hardware design and self-configuration 

has led to a new concept called Evolvable Hardware ( E H W ) . The growth of this interest has 

been caused by emerging a new class of programmable devices, i n particular F P G A s . The 

main idea is to accomplish the whole process of circuit design by evolutionary algorithms. 

Evolvable hardware refers to a hardware that a) has been created using E A or b) embeds 

a variant of E A i n order to either adapt the system to changing environments, or repair 

the system autonomously during its lifetime. W h i l e the first scenario is usually called 

evolutionary design, only the second approach can be, according to the [201], referred to 

as evolvable hardware. The evolutionary design uses evolutionary algorithms to evolve a 

system that meets a predefined specification. E A is employed only i n the design phase. In 

contrast w i th this approach, the adaptive systems reconfigure a part or whole existing design 

to repair the faults or adapt to a changed operational environment. Thus the evolutionary 

algori thm is an integral part of the adaptive system. A l t h o u g h the terminology has been 

successively evolved, some literature, e.g. [65], does not dist inguish between evolutionary 

hardware design and evolvable hardware. 

The field of evolvable hardware originates from the intersection of three sciences: elec­

tronic engineering, biology and computer science. E H W belongs to the area of bioinspired 

hardware which combines the ideas from biology and electronic engineering. A l though 

evolvable hardware as a research area has been established two decades ago, its roots can 

be traced to the sixties, when Gordon Pask constructed several electrochemical devices 

having the abi l i ty to adaptively construct their own sensors [141]. In addi t ion to that, 

evolutionary strategies were used to perform parameter optimizations for a variety of elec­

tronic designs. The first experiment which expl ic i t ly speaks about evolvable hardware was 

conducted by Higuchi and his team in 1993 [79]. They ut i l ized a genetic algori thm to find 

a configuration of a simple programmable logic chip ( G A L ) . The a im of this work was to 

rediscover an implementat ion of a common 6-input multiplexer only on the basis of a behav­

ioral specification given i n the form of t ru th table. Because the number of reconfigurations 

of a G A L chip was l imi ted, a G A L simulator calculated the fitness value of each member 

of populat ion. A t the end of evolution, the best solution was verified using a real G A L 

chip. Th is experiment demonstrated that the evolutionary approach is able to synthesize 

an electronic circuit without being expl ic i t ly to ld how to do i t . Since that, the evolvable 

hardware has been successfully applied in many different areas. The following results are 

usually mentioned as the most successful applications of E H W : evolutionary designed high­

speed robust classifiers [77], high-performance high-quality adaptive hardware compression 

systems based on the predictive coding [153, 154], adaptive fault-tolerant system w i t h au­

tonomous recovery [58], evolutionary designed antennas opt imized for space missions [83] 

or innovative image filters [158]. 

2.3.1 B a s i c P r i n c i p l e of E H W 

E H W typical ly utilizes a reconfigurable hardware, par t icular ly programmable logic devices 

such as F P G A s . The programmable logic devices allow the candidate solutions to be 
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tested in si tu which is well suited to embedded applications such as adaptive image filters 
or adaptive controllers. Figure 2.5 shows the basic principle of the evolvable hardware 
approach. 

Genetic 
Engine 

specification Fitness 
Unit 

Transformation 
chromosome 

stimuli 

responses 

configuration 

Reconfigurable 
Device 

Figure 2.5: The basic principle of the evolvable hardware approach. 

The objective of evolutionary algori thm is to design a circuit that meets the specifica­

t ion given by designer. In order to evaluate a candidate circuit , a new configuration of a 

reconfigurable device is created on the basis of the information stored i n the corresponding 

chromosome. This step usually involves some k ind of transformation as the chromosome 

encoding and configuration string can be generally different. The configuration is uploaded 

into the reconfigurable device and evaluated for a chosen set of input s t imul i . The fit­

ness function, which reflects the problem specification, can include behavioral as well as 

non-behavioral requirements. For example, the correct functionality is a typica l behavioral 

requirement. A s a non-behavioral requirement, we can mention the requirement for min i ­

m u m power consumption or m i n i m u m area occupied on the chip. Once the evaluation of 

the populat ion of candidate circuits is complete, a new populat ion can be produced. That 

is typica l ly performed by applying genetic operators (such as mutat ion and crossover) on 

existing circuit configurations. High-scored candidate circuits have got a higher probabil i ty 

that their genetic mater ial (configuration bitstreams) w i l l be selected for next generations. 

The process of evolution is terminated when a perfect or satisfactory solution is obtained 

or when a certain number of generations is evaluated. 

2.3.2 E v a l u a t i o n of C a n d i d a t e C i r c u i t s 

Several schemes have been developed for classifying the evolvable hardware, e.g. [65, 177, 

200, 81]. In this section, we w i l l focus on one key feature that is usually considered by the 

mentioned classifications - hardware evaluation process. 

T w o scenarios are usually applied for evaluation of candidate circuits. E a r l y evolvable 

hardware experiments used circuit simulators i n order to calculate a fitness value of each 

member of the populat ion. This approach has been known as extrinsic evolution. If a l l 

candidate solutions are evaluated i n reconfigurable hardware, then the approach is called 

intrinsic evolvable hardware. The off-the-shelf F P G A s represent the most popular intrinsic 

reconfigurable chips due their availabil i ty and outstanding performance. 
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The importance of intrinsic evolution has been recognized by Thompson who has carried 

out the first intrinsic experiment using F P G A at the lowest level of abstraction possible 

[175]. The task was to evolve a circuit that discriminates between 1 k H z and 10 k H z 

signals. Evo lu t ion was able to find a very smal l circuit , i.e. to perform a task that would 

require human designers to project larger and clocked circuits, or use passive components, 

such as capacitors and inductors. In fact, evolution used a digi ta l programmable device i n 

the analog mode to perform this task. However, i n spite of the high effort of Thompson 

involving the usage of analog simulators, the nature of some of the mechanisms used by the 

evolutionary designed circuit has not been completely understood. This is probably caused 

by the presence of feedbacks that can not be easily simulated, since they are dependent 

on the propagation delay of each cell . Thompson's impressive results st imulated other 

scientists to investigate the field of E H W . 

2.3.3 E v o l v a b l e H a r d w a r e as D e s i g n T o o l 

Using evolution to design electronics brings a number of benefits. Some of the most im­

portant areas where evolutionary electronics can successfully be applied include: automatic 

design of low cost hardware, automatic design of hardware systems for poorly specified 

problems, innovation in poorly understood design spaces, design of adaptive systems, or 

design of fault tolerant systems. The abil i ty to generate solutions to poorly specified prob­

lems can be considered as a form of creativity which is one of the features of evolutionary 

processes. In case of the adaptive and fault tolerant system, the evolvable hardware is usu­

ally used due to its potential of autonomous adaption to changes in its environment (e.g. 

noise level i n case of adaptive image filters, or presence of faults i n case of fault-tolerant 

adaptive systems). The advantageous feature of the evolutionary approach is that it can not 

be necessary constrained to the well-known topologies that usually prevent from achieving 

novel solutions. 

O n the contrary, the evolutionary design approach has some drawbacks. Evolu t ionary 

methods are sometimes cri t icized that they do not produce robust and trustworthy designs. 

The evolved circuits are usually different from the well-known and proven structures which 

complicates their analysis and verification. Another discussed problem is enormous compu­

tat ional power which is usually needed for obtaining a satisfactory result. In some real-time 

applications (e.g. adaptive and fault tolerant systems), slow convergence or even stuck i n 

a local extreme may represent an issue. 
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Chapter 3 

Evolutionary Design of Analog and 
Digital Circuits 

After reading the previous chapter, the evolutionary circuit design might seem to be sub­

stantially ineffective i n comparison wi th conventional approaches. In many cases it is even 

true; however, there are applications where the evolutionary design brings a number of 

benefits unattainable by means of conventional design. 

Initialize a 
population of 

circuits 

Evaluate the 
circuits 

Sort the circuits 
based on their 

fitness 

Make new circuits using 
the recombination 

operators 

Is the best circuit 
acceptable? 

yes >. apply 
circuit 

no 

Figure 3.1: The basic principle of the evolutionary design of analog and digi ta l circuits. 

The basic principle of the evolutionary design of analog and digi ta l circuits is depicted 

in Figure 3.1. The evolutionary design approach works as follows. Fi rs t ly , a populat ion 

of in i t i a l solutions (circuits) is created. Th is populat ion is usually generated randomly. 

Then, the behavior of each circuit is evaluated. In this step, a fitness value determining 

degree of correspondence wi th the in i t i a l specification is assigned to each circuit . If the 

fittest solution is acceptable, the algori thm is terminated. Otherwise, the best circuits are 

combined to generate new circuits and the algori thm continues w i th evaluation of newly 

generated circuits. After a number of iterations, the fittest circuit should behave according 

to the given specification. 

This chapter surveys the most important approaches proposed mainly to extrinsic evo­

lutionary design of analog and digi ta l circuits. 
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3.1 Evolutionary Design of Analog Circuits 

The first technique of analog circuit design automation has been reported i n the seventies 

[174]. Since that, several other methods have been published, e.g. [75, 139]. Nevertheless, 

these methods ut i l ized the approaches known from the area of artificial intelligence (e.g. 

expert systems, some k ind of heuristics, or simulated annealing) rather than the evolution­

ary techniques. In contrast w i th the evolutionary design, these systems were very l imi ted as 

they usually restricted the search space to well-known circuit topologies. A typica l task was 

the opt imizat ion of a set of parameters. In the first applications dealing wi th the synthesis 

of passive filters, evolutionary approaches were used to perform the selection of topologies, 

or the simple determination of components' values for fixed topologies [67, 84]. 

The first t ru ly analog circuit evolution was performed by Genetic Programming. The 

research group led by John K o z a published pioneering methods solving this task, where a l l 

the steps necessary to design an analog circuit were handled by G P [103]. The objective was 

to find not only the values of ut i l ized passive components but also the topology of the circuit . 

The first results published by Koza ' s team motivated researchers to deeply investigate this 

area. Tens of competitive analog circuits designed by means of the evolutionary algorithms 

have been reported up to now [99]. 

3.1.1 Synthesis of A n a l o g C i r c u i t s U s i n g G P 

Passive filters are electronic circuits that consist of an arrangement of resistors, capacitors, 

and inductors. In order to implement an analog filter w i t h required characteristics, one of 

the known polynomia l filter structures might be used. The filters differ i n the construction, 

complexity of corresponding circuit implementat ion and the parameters of the frequency 

response. For example, the But te rwor th response is the one that is closer to the ideal 

frequency response. However, the But te rwor th filters require more components than the 

other ones. A s there is a wide range of different aspects that has to be considered, the 

conventional design of analog filters represents a nontr iv ia l task. The main filter character­

istics that have to be reflected include: amplitude of the frequency response, phase of the 

frequency response, group delay, impulse response, and response to the step function. 

In order to evolve analog circuits, K o z a came up wi th a developmental approach to 

perform a nontr iv ia l mapping between circuit topologies and tree structures [103]. He used 

G P to find a tree that encodes a program to bu i ld a circuit from an in i t i a l circuit called 

the embryonic circuit . The in i t i a l circuit structure contains fixed and modifiable part. The 

fixed part includes the source resistance, output load, source signal and ground. It other 

words, it covers the essential features of the target circuit that has to be preserved. The 

modifiable part usually consists of pieces of wires that can be modified by the instructions 

encoded i n the tree. Figure 3.2 depicts an example of a typ ica l embryonic circuit used i n 

Koza ' s applications. 

The nodes of G P trees can be divided into functional and terminal nodes. The functional 

nodes may either create a component (component-creating functions) or modify a connec­

t ion (connection modifying functions). Component-creating functions point to a modifiable 

part of the circuit , and create a part icular component i n this part of the circuit . In the 
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Figure 3.2: a) The in i t i a l circuit consisting of two modifiable wires denoted as ZO and Z l . 
These wires provide some k ind of place holder for inserting addi t ional components, b) 
The analog circuit that has been created by the applicat ion of a candidate program, c) 
Candidate program encoded using a G P tree [104]. 

part icular case of passive filters, we can have tree functions (R, C or L ) which create re­
sistors, capacitors, and inductors, respectively. The value of the corresponding component 
is determined by the expression which is encoded i n the children nodes. The simplest case 
of expression is represented by a node containing a constant value. Connect ion Modi fy ing 
Functions alter the topology of the modifiable parts of the circuit . There are four basic 
operations - Series (S), Para l le l (P) , F l i p (F) and G r o u n d (G) . A l l these operations point 
to a part icular wire or component i n the modifiable part of the circuit . Series and Para l le l 
operations create a series or a parallel connection of a part icular component. F l i p operation 
flips the corresponding component. Th is operation is intended for the components where 
the polari ty plays important role (e.g. diodes). F ina l ly , the G r o u n d operation connects a 
given node to the ground potential . A p a r t from the functional nodes, two special terminal 
nodes are defined. Terminal N O P (N) which represents a no-operation and terminal E n d 
(E) which terminates the development i n the corresponding branch. The example of this 
approach is i l lustrated in Figure 3.2. 

In case of the evolutionary design of analog filters, the fitness function has to consider 
the circuit behavior i n the frequency domain. In order to evaluate the quali ty of a candidate 
filter, K o z a ut i l ized A C signal analysis provided by the S P I C E simulator. The fitness value 
has been calculated according to the following expression: 

F(t) = J2[W(d(fi),fi)-d(fi)}, (3.1) 
i. 

where i denotes the index of a fitness case (i.e. the index of a frequency response point that 
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is included and considered by the fitness function), / j is the frequency of the fitness case i, 
d(x) is the difference between the target and the observed values at frequency x, and W(y, x) 
is the weight function for a difference y at frequency x. T h e task of setting the weights 

is the most serious problem i n this fitness equation as it can significantly influence the 

performance of evolutionary algori thm. Thus it is usually determined by experimentation. 

This scheme provides a very flexible approach enabling to capture a wide range of different 

design tasks. Since W depends on the frequency, it allows to specify more or less important 

bands or even to define don't care bands. Moreover, it depends also on the calculated 

difference which gives the chance to smooth the search space. 

A l though the evolutionary synthesis of analog circuits is a t ime consuming process (a 

cluster consisting of more than 2000 P C s have been uti l ized), K o z a has reported tens of 

human-competit ive analog circuits automatical ly designed by means of this evolutionary 

approach up to now. In addi t ion to the passive circuits, he has evolved circuits contain­

ing transistors, circuits w i th operational amplifiers, regulators or logic circuits. A similar 

method has been applied also to the evolutionary design of antennas, opt ical systems, clas­

sifiers, predictors and another nontr iv ia l design task [106, 114, 83, 101, 105]. 

The evolutionary designed analog circuits are sometimes cri t icized that they are not 

trustworthy because they have not been verified i n sil icon and hence they can not be 

ut i l ized by designers as bui ld ing blocks. In order to address this issue, McConaghy et al . 

proposed EA-based system for a s tructural synthesis of trustworthy analog blocks that can 

be easily combined i n order to create complex analog circuits [122]. 

Other approaches have been surveyed in [201]. 

3.2 Evolutionary Design of Digi tal Circuits 

T y p i c a l goals of a synthesis algori thm include the min imiza t ion of the to ta l number of gates 

(the area required to implement a circuit on a chip) and the minimiza t ion of the number of 

levels affecting the circuit propagation delay. Even i f there exists a completely mechanical 

procedure of designing a correct circuit for any Boolean function represented by a t ru th 

table or as the sum of products, the conventional approaches provide subopt imal solutions 

in many cases. Th is is caused by the fact that various assumptions and simplifications have 

to be applied i n order to manage the enormous complexity of current circuits i n reasonable 

time. 

In the rest of this chapter, three possible levels of abstraction are investigated i n the 

context of evolutionary design. Even if the representations only differ i n the degree of com­

plexity of the basic bui ld ing blocks, this detail can have significant impact not only on the 

performance of evolutionary algorithm, but also on the quali ty and novelty of evolved solu­

tions. The goal of this survey is to show how these representations affect the performance 

of evolutionary algori thm, representation and fitness function implementation. 

3.2.1 T r a n s i s t o r L e v e l R e p r e s e n t a t i o n 

Transistor level representation is considered to be the lowest level of abstraction of digi ta l 

circuits in this thesis. Nevertheless, conventional design approaches do not synthesize elec-
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tronic circuits at this level due to a huge and s t i l l increasing complexity of circuits. Instead 

of this, a circuit designed at gate-level is mapped to transistor-level circuit . The process of 

mapping is straightforward; the gates are s imply replaced by their transistor-level imple­

mentations which are available i n a part icular fabrication technology. In order to reflect the 

implementation costs, the conventional synthesis tools do not optimize only the number of 

gates but also the to ta l number of transistors expressed i n terms of relative implementat ion 

area. For example, while the N O T gate occupies the smallest area, the X O R gate occupies 

approximately three times larger area depending on the ut i l ized technology. 

Even if the occupied area is taken into account, the resulting circuits can be far from 

opt imal solutions. For example, i f a simple logic expression Y = A • B + C • D is considered, 

the op t imal gate-level representation requires two A N D gates, consuming six transistors 

in ordinary C M O S technology each, and a single N O R gate consuming four transistors. 

After technology mapping, this circuit w i l l ut i l ize 16 transistors i n total . However, the 

same function can be implemented using 8 transistors only when a special A N D - O R - I n v e r t 

circuit is employed [186]. It is likely, that impl ic i t redundancy w i l l exists for a wide range 

of other and more complex circuits. 

The evolutionary design of d ig i ta l circuits at the transistor level is s imilar to the evo­

lutionary design of analog circuits. However, it is useful to restrict the search space to 

meaningful topologies i n order to reduce the search space. For example, the following 

constraints should be reflected: a l l the transistor's inputs are required to be connected; 

the C M O S circuits should contain bo th complementary branches, there should be a strong 

driver at the output (e.g. an inverter that restores the full voltage levels at the outputs) 

etc. Besides the use of a developmental approach proposed by K o z a , there are also other 

approaches that uti l ize a form of direct encoding similar to C G P , e.g [186, 201]. 

The fitness value is typical ly calculated using a simulator, e.g. S P I C E , which is able 

to accomplish the transient analysis. The following scheme is usually recommended. Let 

T is the to ta l period of transient analysis. Then, for a circuit w i th n inputs, the per iod T 
is d ivided into 2 n slices of t ime as there exists 2™ input combinations. E a c h t ime slice is 

sampled using k discrete samples. The fitness value can be calculated using the following 

equation: 

fc(2"-l) 

F(t) = - \d(iTs) - v(iTs)\ (3.2) 
i=0 

In fact, this equation computes the sum of the absolute deviations between the desired 

voltage, d(t), and real output voltages, v(t), over 2 n fitness cases using k2n discrete samples 

acquired every Ts = Tj(k2n) seconds . The negative sign is used because the fitness should 

be higher for smaller deviations. 

In comparison wi th the gate-level and function-level evolution, only relatively simple 

circuits were evolved directly at the transistor level. For example, Keane et a l . evolved 

a N A N D gate using a developmental genetic programming [107]. Zaloudek and Sekanina 

proposed a direct representation loosely inspired by the Cartesian genetic programming 

that has been ut i l ized for the evolutionary design of elementary two-input gates, smal l 

multiplexers and adders [186]. Walker et a l . proposed evolutionary system that is able to 
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design variabili ty-tolerant designs for future technology nodes [187]. The unconventional 

designs of inverter, two A N D gates, and an O R gate more tolerant to variabi l i ty than the 

conventional designs have been reported. A p a r t from the extrinsic approaches, various 

intrinsic experiments were performed on various reconfigurable platforms, including F P T A , 

F P T A - 2 and P A M A [201, 110]. 

The main l imi ta t ion of the evolutionary design at this level is p r imar i ly caused by an 

extremely t ime consuming fitness calculation and the problem of scalabili ty of representa­

t ion. W h e n the extrinsic evolution is carried out, precise simulations of a candidate circuit 

must be performed (simulators of the S P I C E family are usually used) i n order to avoid 

possible malfunctions such as incorrect transient response, insufficient d r iv ing capabilities 

or incorrect operation at different timescales [171]. O n top of that, the number of test-cases 

increases exponentially wi th the increasing number of pr imary inputs. 

3.2.2 G a t e L e v e l R e p r e s e n t a t i o n 

The gate-level representation represents the most used approach to evolve digi ta l circuits. 
The literature contains several direct as well as indirect approaches to the gate level encod­
ing. 

terminals: a , b, c chromosome: 
functions: A N D , O R , X O R A N D ( c , X O R ( A N D ( a , b ) , O R ( a , b ) ) ) 

Figure 3.3: The combinational circuit specified by the t ru th table and its encoding using 
G P representation. 

One can uti l ize tree representation of genetic programming. However, this approach 

is suitable only for a subclass of combinational circuits. The tree-based G P is not able 

to represent sequential circuits as the tree structure does not allow establishing a feedback 

loop necessary to implement sequential circuits. C o m m o n G P does not even allow to encode 

circuits w i th mult iple outputs as only one root node exists. W h i l e the latter drawback can 

be removed by introducing more root nodes where each root corresponds wi th one output 

(e.g. M u l t i Expression Programming [140]), the efficient representation of the sequential 

circuits remains unaddressed. Figure 3.3 depicts an example of a combinational circuit 

specified by the t ru th table and its encoding using a G P tree. 

Another scheme suitable for encoding of combinational circuits is linear genetic pro­

gramming ( L G P ) . In contrast w i th tree-based genetic programming, L G P uses an indirect 
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encoding. The genotype individuals have the form of a linear list of instructions encoded 

as binary strings [13]. E a c h instruction consists of the operation code and indexes of regis­

ters that store the operands. The program execution is performed using a simple register 

machine. A s soon as the program is terminated, preselected registers contain the computed 

values. The structure of a linear G P ind iv idua l is depicted i n Figure 3.4. The sequence of 

instructions can be transformed into an equivalent functional representation i n the form of 

a directed acyclic graph using the algori thm described in [20]. P rov id ing that the instruc­

tions evaluate basic Boolean functions, the resulting acyclic graph represents a gate-level 

combinational circuit . 

Genotype 

1000101011 
0101101010 
0010101010 
1101010101 
1010101010 
1101001010 
0101K10101 
1001001001 
1110110 
0001010010 
1001010010 
1100101001 
1101011110 
0011011101 

Registers 

1000101011 
1010100111 
0010101010 

Operand(s) 

Op code 

Program 
{ R; = reg is ter at i ndex i) 

Graph 

R i 

R 3 

R i 

R 3 

R 2 

[ — R 3 + R-2 

:= R 2 * R 2 

:= R3 + 1 
:= R i * R 3 

:= R i / R 2 

:= R x + R 3 

: = R2 + R3 

Constant 
3 I Sinks 

Variable 
Sinks 

Figure 3.4: Representation of a L G P ind iv idua l [191] 

One advantage of linear G P is that the evolved program can be a binary machine code 

that can be executed during the fitness evaluation directly without interpretation [138]. 

Thus L G P is faster i n evaluation than the tree-based G P . In [20], Bramier claimed that 

programs wi th a linear representation are more suitable to be varied i n smal l steps than in a 

tree structure. O n top of that, the programs in the linear structure are generally more com­

pact due to mult iple usages of register contents and an impl ic i t parsimony pressure by the 

structurally non-effective code. However, the execution of linear G P programs is generally 

sequential, thus more work is needed i n order to find a way to implement repetitions easily 

in this linear structure. Moreover, programs represented by binary machine code cannot 

be understood as easily as those i n tree-based G P . In the context of evolutionary design of 

digi tal circuits, there is also another pitfall ; some effort is needed i n order to restrict the 

resulting circuits to the combinational ones. 

Iba et al . u t i l ized a form of variable length direct encoding in order to find a configura­

t ion of a programmable logic array ( P L A ) implementing basic combinational functions such 

as pari ty circuit and multiplexer [87]. The authors presented this approach as a gate-level 

E H W , because the P L A components are i n fact A N D , O R and N O T gates. The chromo-
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some consists of one or more alleles containing two integers. The first integer encodes the 

posit ion of the allele i n the P L A fuse array while the second integer defines a connection type 

(direct and inverted). The inverted connection can be applied only for the A N D array, as 

the O R array does not contain inverters. Figure 3.5 shows an example of a configured P L A 

array having 14 fuse locations and the corresponding chromosome. W h i l e the GP-based 

approaches are able to encode arbi trary combinational circuit , the P L A - b a s e d encoding is 

l imi ted to the evolutionary design of two-level Boolean functions. 

Io I, h 

-<>-p Q-0 0-0 

-0-0 IK? 0-0 

OR array 

A N D ^ -

A N D ^ -

A N D ^ -

A N D array 

O 0 O , 
Allele: 

(connection index, connection type) 

Chromosome: 
(0,1)(4,1)(8,2)(9,1)(13,1)(14,1) 

connection AND OR 
type array array 

1 t t 
2 

OR array 

o 0 o , 

Figure 3.5: A n example of a variable length encoding designed for evolutionary design of 
P L A configuration. 

Figure 3.6: R i n g oscillator composed of three 
approach presented in [175]. The chromosome 
gates. The output of oscillator is connected to 

node dir/len/mode dir/len/mode 

NAND 1  

[•NOT 2 " 
NOT 3 

J N O R 4 

fwd/1/rel 
fwd/2/rel 
rev/1/re I 
fwd/1/rel 

rev/3/rel 
rev/1/rel 
fwd/3/rel 
rev/3/end 

inverting gates and its encoding using the 
consists of four 24-bit segments encoding 4 
the last segment. 

Another form of direct encoding for d ig i ta l circuits has been proposed i n [33] and 

adopted for gate-level evolution i n [175]. In this scheme, the genotype forms a bit-str ing 

consisting of a fixed number of segments, each of which directly encodes the function of 

a part icular gate and the sources of its inputs. The source of each input is specified by 

counting forwards or backwards along the genotype for a certain number of segments. The 

counting direction is specified by means of the direction bit , the number of segments is 

determined by the length field. The counting starts either from the current segment or 
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from the last segment according to the addressing mode bi t . The counting wraps around 

the boundaries. Th is scheme is suitable for the evolutionary design of combinational as well 

as sequential circuits. Figure 3.6 shows an example of a r ing oscillator encoded using this 

approach. The example illustrates the ma in feature of the encoding - the relative order of 

gates encoded in genotype is different from phenotype. 

In [225], a developmental approach for synthesis of combinat ional circuits based on 

enhanced cellular automata ( C A ) has been proposed. The goal of this work was to demon­

strate, that the evolutionary algori thm is capable of creating a cellular automaton that is 

able to construct a d ig i ta l circuit as it develops. Each rule of C A ' s local t ransi t ion func­

t ion is connected w i t h an action that creates a gate of a given type. The developmental 

approach is demonstrated i n Figure 3.7. Even if the resulting circuit is relative simple, the 

proposed C A demonstrates the compactness of developmental encoding. The evolved C A 

has to apply only ten rules i n order to generate a circuit consisting of 12 gates. 

Utilized CA rules 

0 0 1 + 1 : A N D 1,2 

0 2 1 + 1 : X O R 2 . 3 

1 0 2 + 2 : B U F 0,1 

2 1 1 + 1 : B U F 1,0 

0 1 1 + 0 : A N D 2 , 3 

1 0 0 + 1 : A N D 3 ,0 

1 1 0 + 2 : A N D 0,1 

: ' V i 2 + 2 V x O R ' 3 , 0 : 
1—>—' ' , 1 

rewrite generative 
rule part 

Figure 3.7: Example of the development of a 2x2-bit mult ipl ier using a cellular automaton. 
The mult ipl ier has been developed from the in i t i a l state 1100. A part of local t ransi t ion 
function of the C A applied to development of the mult ipl ier is shown on the right-hand 
side. 

If we summarize the mentioned representations, none of the presented approaches could 

be considered as universal encoding scheme. The genetic programming can not capture 

asynchronous circuits and according to Koza ' s experiments it does not scale well probably 

due to the existence of bloat effect and ineffective representation. The linear genetic pro­

gramming can represent both sequential and combinational circuits however an addit ional 

effort is needed in order to restrict the resulting circuits to the combinational ones due to 

the indirect instruction-based approach. The encoding used by Thompson has the similar 

problem due to the variable order of gates i n the phenotype that can be changed wi th each 

mutation. 

In Chapter 2, we have introduced a variant of genetic programming called Cartesian 
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Genetic Programming that has been pr imar i ly designed for evolutionary synthesis of digi ta l 

circuits at the gate-level. The C G P representation has a number of interesting features. 

Firs t ly , as only some nodes are ut i l ized i n the genotype, there is a degree of redundancy 

which has been shown to be very useful [129]. Secondly, as the genotype encodes a graph, 

some nodes can be reused, which makes the representation very compact and also dis­

t inct from the tree based G P . Al though C G P is very similar to the linear G P , there is 

one important difference - the restriction of the feed-forward connectivity. W h i l e the C G P 

restricts connectivity using the £-back parameter, L G P ' s connectivity is impl ic i t and under 

evolutionary control as a component of the genotype. In other words, the C G P enables 

to specify whether combinational or sequential behavior should be evolved whereas L G P 

does not. This fact significantly complicates the fitness evaluation because asynchronous 

or sequential circuits have to be evaluated i n a different way. The £-back parameter also 

determines the max ima l length of a combinational path and thus it can be used to restrict 

the propagation delay of a combinational circuit . Similarit ies of C G P and L G P have been 

investigated i n [191]. A l so a variant of C G P allowing the feedback loops has been investi­

gated there. However, the results are hardly interpretable as the authors have used only 

two instances of regression benchmarks that give questionable results. We can conclude 

that C G P can be considered as the best-available method for digi ta l circuit evolution. 

Evaluation of Candidate Circuits 

In case of combinational circuit evolution, the fitness function measures the quali ty of a 

candidate solution through the number of correct output bits (i.e. the number of hits), 

compared to the specified (i.e. target) t ru th table. W h e n a circuit w i th n inputs and m 
outputs ought to be designed, the objective is to find a solution that can at ta in m1n hits, 

corresponding to the size of the t ru th table and the number of outputs. The fitness value 

of a candidate circuit that reflects the implementat ion cost can be defined as [91]: 

where b is the number of correct output bits obtained as response for a l l possible assignments 

to the inputs, z denotes the number of gates ut i l ized in a part icular candidate circuit and 

fimax is the total number of available gates (nmax = ncnr i n terms of C G P ) . It can be 

seen that the last term n m a x — z is considered only i f the circuit behavior is perfect, i.e. 

b = b m a x = m2n. T h i s scheme is referred to as a two-stage fitness strategy. Alternat ively, 

we can replace the number of ut i l ized gates by the number of ut i l ized transistors which is 

a more precise measure as implementat ion costs of gates are different [57]. We can observe 

that the evolution has to discover a perfectly working solution firstly while the size of 

circuit is not important . Then, the number of gates is opt imized. Similarly, delay or power 

consumption may be optimized. A multi-objective formulation of the circuit evolution 

problem was also proposed, but evaluated using smal l benchmark problems only [80]. 

Assume that the objective is to find a circuit that implements function y = .F(x) speci­

fied i n the form of a t ru th table where x = ( x i , . . . , xn) G {0, l } n is the vector corresponding 

wi th the circuit 's inputs and y = (yi, • • • ,ym) £ {0) l } m is the vector corresponding wi th 

when 
otherwise 

(3.3) 
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the required output defined by t ru th table. The number of correct output bits b can be 
calculated according to the following equation: 

2 n - l 

b = m2n - © G([x])) (3.4) 
x=0 

where Q is the response of a candidate solution to the input vector x = [x], Q is a function 

that counts the number of bits set to 1, [x] is a binary representation of x at n bits and ® 

is a binary exclusive-or operator. A s it w i l l be shown i n Chapter 3.3, this equation can be 

effectively implemented on a common processor. In fact, the sum calculates the H ammi ng 

distance between the response and required output value for each test case. 

Even i f there are circuits that need not to be specified by a complete t ru th table, e.g. 

4-bit pr ior i ty encoder which can fully be defined using a t ru th table containing only one 

quarter of a l l input combinations, it is clear that this method is not applicable for design or 

opt imizat ion of large circuits because of the t ime consuming fitness evaluation that increases 

exponentially w i th the increasing number of pr imary inputs. A common solution applied, 

for example for t ra ining neural networks, is to use only some representative inputs vectors. 

However, it has been shown that the evolved digi ta l circuits do not usually work correctly 

for some of the remaining input vectors [130]; it is just because it was not required to do 

that. 

In order to overcome this disadvantage and evolve large designs, a k ind of decompo­

sition strategy can be employed. For example, Torresen introduced a divide-and-conquer 
approach for the evolution of d ig i ta l circuits [176]. Kalganova applied a k ind of incremental 

evolution that is able to semi-automatically divide a complex task into simpler subtasks 

[90]. Th is method has been extended by Stomeo and referred to as generalized disjunction 

decomposition [172]. However, the scalabili ty problem has been eliminated only partially. 

If a synchronous sequential circuit ought to be evolved, the same scheme can be ut i l ized 

as for the combinational circuits. The objective of the evolutionary algori thm is to find a 

combinational circuit that determines the next state and the output value according to the 

knowledge of the actual state and the current inputs. T h e memory that keeps the current 

state is modeled using a set of registers. In case of the asynchronous circuits, it is necessary 

to evaluate the stabil i ty of the circuit because the asynchronous circuits contain feedback 

loops. Th is represents an addi t ional evaluation time. Since the evaluation of sequential 

circuits requires the comparison of a sequence of circuit outputs or internal circuit states 

against the desired sequence, the evolutionary design of asynchronous sequential circuits is 

tractable for t r i v i a l circuits only. 

Survey of Circuits Evolved at Gate Level 

Let us conclude this section wi th the overview of the circuits reported i n literature evolved 

at the gate level. The first results i n the area of d ig i ta l circuit synthesis were reported by 

K o z a , who investigated the evolutionary design of the even-parity problem i n his extensive 

discussions of the standard G P paradigm [100] and A D F s [101]. A l t h o u g h the construction 

of an op t imal pari ty circuit using X O R gates is a straightforward process, the pari ty circuits 

are considered to be appropriate benchmark problem when the A N D , O R , N O T gate set is 
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allowed. Unsurprisingly, solving the pari ty problems using standard G P without A D F s is 

computat ional ly expensive and K o z a was unable to obtain any result for the pari ty circuits 

having more than five inputs. Us ing A D F s , K o z a reported greater success; the pari ty 

circuits up to 11 inputs have been successfully evolved. K o z a was unable to design larger 

pari ty circuits not because G P w i t h A D F s was failing to find a solution, but because the 

combination of the large populat ion sizes and the increasing number of fitness cases to be 

evaluated was becoming computat ional ly extremely expensive. P o l i et al . extended Koza ' s 

G P approach by introducing new search operators and a novel node representation [144]. 

The goal was to smooth the fitness landscape i n order to solve large instances of pari ty 

problem. Even if the proposed method does not use A D F s , the authors were able to design 

pari ty circuits having up to 22 inputs. However, while K o z a ut i l ized only four gates ( A N D , 

O R , N A N D , N O R ) , they used a complete set of Boolean functions including X O R . 

Thompson used a form of direct encoding i n his intrinsic E H W experiment [175]. His 

goal was to evolve a square wave oscillator (i.e. asynchronous sequential circuit) w i th in a 

small F P G A (up to 100 gates can be utilized) that oscillates at a much slower timescale 

than the gate delays. A n interesting point is that the circuit behavior was defined using 

neither t ru th table nor state table; he counted the number of peaks wi th in a certain time 

window instead. Even if the evolution found several solutions, the visual inspection on an 

oscilloscope showed that a l l of the evolved solutions produce very high frequency waveforms, 

but that these high frequency components are not crossing the d igi ta l logic threshold hence 

they are not being registered by the counter. 

Iba et al . employed evolutionary algori thm to find a configuration of P L A for three 

circuit instances - a circuit w i t h randomly generated Boolean function having 32 inputs 

w i th 6 terms, 6-input multiplexer and 4-input pari ty [87]. The goal was to find an approx­

imat ion of the given Boolean functions according to l imi ted t ra ining data. A t the end of 

evolution, the randomly generated circuit worked well only for a smal l fraction of a l l input 

combinations (1650 out of 2 3 2 ) . 

M i l l e r et a l . demonstrated that evolutionary design systems are not only able to redis­

cover standard designs as it has been shown i n past, but they can, in some cases, improve 

them [132]. He was interested i n the evolutionary design of ari thmetic circuits such as 

adders and mult ipl iers . A gate level C G P was employed w i t h the function set including 

A N D , N A N D , O R , N O R , X O R , and M U X logic functions. He has reported a one-bit adder 

and two-bit mult ipl ier designed at the gate-level (i.e, without the M U X gate). B o t h circuits 

required fewer resources comparing to the designs produced by human designers. Three-bit 

mult ipl ier consisting of 24 two-input gates evolved using Cartesian genetic programming 

has been introduced i n [127]. The mult ipl ier is about 20% better (in terms of two-input 

gates) than the conventional implementation. Four-bit mult ipl ier consisting of 57 two-input 

gates has been reported i n [182]. The circuit was evolved from the conventional mult ipl ier 

employing 67 cells. 

C G P has been also ut i l ized for evolutionary design of d ig i ta l filters at gate level [125]. It 

is a quite challenging task because nothing is supposed about properties (e.g. conventional 

approach always requires that filtering circuits are linear systems). The goal was to evolve 

the 4th orde digi ta l filters working wi th 4-bit coefficients (i.e. combinational circuits having 

32 inputs and 8 outputs). Resul t ing filters exhibited elementary functionality, however, only 
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for t ra ining signals. Th is approach has been thoroughly analyzed in [210]. It was shown 

that the evolutionary design of d ig i ta l filters at the gate level does not produce filters that 

are useful i n practice when linearity of filters is not guaranteed by the evolutionary design 

method. Another problem is that the goal was to find a circuit that minimizes the difference 

between the obtained signal and expected signal using 128 samples only, instead of finding 

a combinational circuit for a given t r u th table having 2 3 2 rows. Moreover, target circuit 

could not fit into the available resources. 

In [80], a multi-objective approach has been introduced to gate-level evolution. The 

goal was to find an opt imized solution for several smal l circuits having up to 40 gates and 

6 inputs (3-bit mult ipl ier , 3-bit adder, 7-segment display decoder). The fitness function 

considered not only the number of logic gates and transistors but also the propagation 

delay. Resul t ing solutions are organized on the Pareto front which allows the designers to 

choose the most suitable one. 

M a n y other approaches were proposed for evolution of smal l combinational as well as 

sequential circuits but none of them has provide results competit ive w i th C G P , see e.g. 

[1, 4, 165]. 

If we look at the results achieved at the gate-level dur ing the last two decades, it 

appears that the problems solved now by evolutionary techniques are nearly of the same 

size and complexity as those that have been solved several years ago [69]. The most complex 

combinational circuit that has been evolved consists of tens of gates having up to 20 inputs 

[172]. Apa r t from the problem related to the fitness calculation time, there is another 

problem related to the encoding scheme. L o n g chromosomes which are usually required to 

represent complex solutions imply large search spaces that are typical ly difficult to search. 

In many cases, even a well tuned parallel evolutionary algori thm running on a cluster of 

workstations fails to find an adequate solution i n a reasonable t ime. In order to evolve large 

designs and simultaneously keep the size of chromosome small , the function-level evolution 

seems to be a promising way [134]. 

3.2.3 Funct ion- l eve l representat ion 

In the function-level evolution, circuits are designed using higher functions such as mul­

tiplexers, adders, comparators, L U T s , etc. Function-level approach can evolve solutions 

for complex problems, but the main weakness is that human has to provide the most ap­

propriate functions for specific problems. It seems that the evolutionary approach can be 

successfully applied only if a k ind of domain knowledge which helps i n focusing the search 

algori thm on promising areas of the search space is introduced. Next paragraphs w i l l survey 

basic models proposed i n the literature. 

A single fc-input lookup table can implement arbitrary Boolean function defined over 

k variables, including f- to-1 multiplexer. A s the L U T s can model multiplexers, a cascade 

of lookup tables can be used to implement any combinat ional circuit having n inputs. 

Figure 3.8 shows an example. 

A l though this representation is very efficient, it has some caveats. In the t radi t ional 

logic synthesis, the set of considered sub-functions is determined by the set of operators 

used i n the in i t i a l synthesis and by the set of gates i n the l ibrary of logic blocks used i n 
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Figure 3.8: a) A Boolean function F w i t h three input variables implemented using b), c) 
3-input lookup table ( L U T 3 ) and d) a cascade of 2-input lookup tables ( L U T 2 ) . 

technology mapping. In contrast, the fc-input L U T can implement 2 2 different functions: 

e.g. 16,384 functions for L U T having 4-inputs only. Restr ic t ion of the set of Boolean sub-

functions considered during the synthesis process often results i n poor synthesis results for 

a large class of functions. For L U T - b a s e d F P G A s , it is extremely important to consider 

al l available Boolean functions. Therefore, there has recently been research concerning the 

application of the functional decomposition to the F P G A logic synthesis [32]. A l though this 

domain could be a potential applicat ion of E H W , L U T - b a s e d representation is not popular 

in this field since it implies huge and rough search space. 

In order to address the problem of insufficient complexity of circuits evolved at gate-

level, Murakawa et a l . proposed a model for function-level evolution which operates w i th 

programmable function units ( P F U s ) arranged i n a gr id [134]. E a c h unit can perform one 

of high-level functions, such as addit ion, subtraction, mul t ipl icat ion, division, sine, cosine, 

constant generation and if-then. The selection of function to be implemented by P F U is 

determined by a corresponding gene in chromosome. Neighboring columns of P F U s are 

interconnected by configurable crossbar switches. The output of P F U can be fed only into 

the input of a P F U located i n the next neighboring column. The authors ut i l ized a variable 

length encoding. Each gene consists of a string of integers that identify a part icular P F U , 

the function of P F U and addresses of input operand(s). Figure 3.9 shows part of the model 

that is configured using the following chromosome: 

(1, sin, Y)(2, cos, X)(3, add, X,Y) • • • (6, mul, 1, 2)(7, if - then, 1, 3, X, 2)(8, sin, 1) • • • 

For example, the gene (6,mul,1,2) specifies the hardware function executed at the top 

P F U in the second column (i.e. P F U ' s number is 6). The function is mul t ip l ica t ion using 

operands produced by the first P F U (i.e., sine) and the second P F U (i.e., cosine) i n the 

first column. The output of the s ix th P F U is siniY) • cos(X). 
Apar t from these models, any G P - l i k e representation such as common G P , C G P or L G P 

can uti l ize complex computing blocks instead of gates. For example, C G P can easily be 

modified to evolve larger circuits at function-level [157]. Instead of gates and single-wire 

connections, application specific functions and multiple-bit connections can be employed. 

The advantage is that while the size of chromosome is s imilar to the gate-level evolution, the 

size of phenotype can be arbi t rar i ly large, depending on the bui ld ing blocks used. However, 

there are several issues concerning the use of common C G P i n this domain. For example, 

32 



3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS 

X Y Z 1st column 1 2 3 4 5 X Y Z 2nd column 6 7 8 
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Figure 3.9: The evolutionary function-level model proposed by Murakawa [134]. A part of 
the grid having three pr imary inputs denoted as X , Y and Z is shown. 

Kalganova proposed an extension of C G P that addresses the problem of mult i - input mul t i -

output bui ld ing blocks typica l at function-level [89]. 

Evaluation of Candidate Circuits 

Due to the complexity of candidate circuits, it is impossible to evaluate circuit responses for 

al l possible input vectors. Hence candidate circuits are usually evaluated using a training 

set. W h i l e the t ra ining set is applied during evolution, another set referred to as test 

set has to be used at the end of evolution. The purpose of this step is to validate the 

obtained results. The val idat ion can consider various aspects, e.g. generality, robustness, 

functionality, etc. The goal of evolution is typical ly to minimize the difference between 

the response of a candidate circuit and the target response. The fitness value is usually 

calculated as the sum of the absolute deviations using the following equation: 

fitness = — \d(i) — r(i)\ (3-5) 
i. 

where d(i) represents desired value for fitness case i and r(i) is a response of a particular 

candidate solution to fitness case i. For m-ouput circuits (m > 1), the fitness value can be 

calculated as follows: 

m 

fitness = - ^2 51 1°^' J) ~ r(*>•?') I (3-6) 
j=l i 

where d(i,j) is a desired value for j-th ouput and fitness case i and r(i,j) is the response of 

a candidate solution measured on j - t h output. Al ternat ive ly mean absolute error or mean 

square error metrics can be used as well. 
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Note that this scheme can be used only when it is acceptable to evolve a circuit which 

responds correctly for a certain subset of a l l possible input vectors. The problem is that the 

specification is i n principle incomplete. Hence this approach is not applicable for arithmetic 

circuits. O n the other hand, i n some cases it is sufficient to evaluate only some structural 

properties of candidate circuits which can be done wi th a reasonable t ime complexity. For 

example, because the testabili ty of a candidate circuit can be calculated i n a quadratic 

time, very large benchmark circuits w i th predefined testabili ty properties were successfully 

evolved [143]. 

Let us conclude this section wi th a statement of Yao and Higuchi [197]. They claimed 

that circuits are not evolved from a conceptual viewpoint. Rather, a circuit behavior is 

evolved as the fitness function does not reflect the internal structure of the circuit . Hence, 

evolved circuits are not necessarily robust because nothing is known about their behavior i n 

conditions different from those that have been ut i l ized dur ing evolution. In order to evolve 

robust circuits, some non-behavioral requirements have to be introduced [175]. Th is yields 

to the multi-objective approach to the fitness calculation. 

Circuits Evolved at Function-Level 

The first attempt to apply the function-level evolution i n order to evolve large designs has 

been reported i n [134]. Murakawa et al . used the function-level E H W based on F P G A 

to create an adaptive filter for digi ta l mobile communicat ion, and non-linear prediction 

functions for lossy data compression system. Another application of function-level E H W is 

autonomously reconfigurable and evolvable neural network chip [78]. 

Sekanina extended C G P in order to handle the function-level evolution [157]. A s a 

proof of concept, evolutionary design of image filters has been chosen as a demonstration 

applicat ion. The objective was to design a complete structure of an image filter. The 

target filters could be composed of simple digi ta l components such as logic gates, adders 

and comparators. Several Gaussian noise filters have been evolved. Later , image filters for 

other types of noise and edge detectors were evolved using the same technique [158, 161]. 

A o k i et al . introduced graph-based evolutionary opt imizat ion technique called Evo lu ­

t ionary G r a p h Generation [10]. Instead of creating bit level circuits directly, the proposed 

E G G system generates ari thmetic data-flow graphs that can be transformed into actual 

bit-level circuit configurations. The advantages of this method were demonstrated through 

experimental synthesis of ari thmetic circuits at different levels of abstraction. Several in ­

stances of competit ive 16-bit constant multipliers consisting of word-level ari thmetic com­

ponents (such as one-bit full adders or one-bit registers) were evolved. 

The most complex circuits have been evolved using a generalized disjunction decompo­

sition introduced by Stomeo et a l . in [172]. A m o n g others, 17-bit pari ty circuit , the 6-bit 

multiplier , and a circuit w i t h 14 inputs and eight outputs have been evolved using function-

level approach (multiplexers and common gates have been ut i l ized as basic bui ld ing blocks). 

However, while the method is successful i f the number of evaluations is measured, it pro­

duces inefficient implementations w i th respect to the number of gates. Another problem is 

that the decomposition strategy is a k ind of domain knowledge which has to be supplied 

by designer. 

34 



3.3. P R A C T I C A L ASPECTS OF T H E EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS 

She proposed an E H W chip containing an array of 6 x 8 4-input L U T s [166]. The ob­

jective was to accelerate the evolution of combinational and sequential circuits. In order 

to evolve larger circuits, he ut i l ized a k ind of decomposition method. The evolved circuit 

is represented using 4-bit L U T tables, multiplexers and eventually D flip-flops. The ex­

perimental results showed that this decomposition technique requires fewer generations to 

evolve fully functional solutions, reduces the t ime for an experiment, and allows the evo­

lut ion of large circuits. A m o n g others, a 5-bit mult ipl ier (412 L U T s ) , 6-bit adder (2516 

L U T s ) and 14-input circuit C M 1 6 2 (4667 L U T s ) have been successfully evolved. 

Shanthi put together previously published modular developmental approach [165] to­

gether w i th par t i t ioning in order to demonstrate that the combined method is able to handle 

large digi ta l circuits [164]. Even i f a 5-bit mult ipl ier has been presented only, is has been 

shown that compared to the direct evolution technique, the proposed technique reduces the 

t ime of evolution five times and improves the area by 5% - 50%. 

In addi t ion to the combinat ional circuits, several synchronous finite state machines 

having up to 20 states have been successfully evolved at the function-level [135]. 

3.3 Practical Aspects of the Evolutionary Design of Digital 
Circuits using C G P 

A s it has been shown in the previous chapter, genetic programming and its variants have 

been successfully applied to solve many difficult problems. However, the computat ional 

power which the evolutionary approaches need for obtaining satisfactory or innovative re­

sults is usually enormous. For example, K o z a ut i l ized two clusters of workstations, 1000 

x Pen t ium 11/350 M H z processor and 70 x D E C A l p h a / 5 3 3 M H z processor. Accord ing to 

the reported results, approximately 82 hours and 129 generations is needed in average to 

reaching a solution for 36 analog circuit design tasks solved using G P on the clusters [107]. 

In case of intrinsic as wel l as extrinsic evolution, evolutionary system usually spends most 

of t ime by running domain-specific simulators which evaluate candidate individuals using 

large t ra ining sets. In order to reduce the computat ional time, various methods have been 

proposed. 

The parallel izat ion on clusters of workstations represents the most applied approach as 

it does not require any significant change of source code wri t ten for a common workstation. 

Due to the stochastic nature of evolutionary algorithms, it is usually necessary to execute 

tens or hundreds of independent evolutionary runs i n order to find a satisfactory solution. 

In this context, the evolutionary approach scales l inearly as each workstat ion can execute 

a single evolutionary run. A similar approach can be adopted for parallel variants of G P . 

In this chapter, we w i l l present and discuss various techniques that can be applied i n 

order to accelerate the evolutionary design technique based on C G P . 

3.3.1 S imula tors for C i r c u i t E v o l u t i o n 

In contrast w i th other approaches, the main advantage of C G P is the fixed-length encoding 

that allows to implement the process of fitness evaluation efficiently not only i n software 

but also i n hardware. 
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Figure 3.10: Pr inc ip le of fitness evaluation of a candidate combinational circuit represented 
using C G P . The candidate circuit has three inputs and two outputs. The circuit is encoded 
using the following chromosome: (2,1,1)(2,0,0)(3,1,1)(4,3,0)(1,6,0)(1,6,1)(8,6). The set of 
bui lding blocks includes three common logic gates T = { A N D (0), O R (1), X O R (2)}. A s 
there are 9 matches, the fitness value of the candidate circuit is equal to 9. 

Figure 3.10 shows the principle of fitness evaluation when the problem of evolutionary 

design of d igi ta l circuits is considered. The goal is to design a combinational circuit having 

three pr imary inputs and two pr imary outputs. The specification is given i n the form of a 

t ru th table. The test cases are successively applied to the pr imary inputs, the candidate 

circuit is simulated and the calculated response is compared wi th t ru th table. If the calcu­

lated response matches the specification (i.e. the required output is equal to the required 

response given by the t ru th able), the fitness value is incremented. A s soon as a l l test cases 

are applied, the fitness value holds the number of correct responses. 

In order to maximize performance, it is important to simulate candidate circuits effec­

tively. Simulators that are ut i l ized for circuit evolution can be divided into four classes: 

interpreted simulators, high-level simulators, native simulators and hardware-based simula­
tors. The simulators, their s imulat ion processes as well as part icular examples are summa­

rized i n Figure 3.11. 

Interpreted simulation 

In case of the interpreted simulators, the simulated circuit is represented using an interme­

diate language or intermediate code. T h e simulator can be regarded as a v i r tua l machine 

that successively executes the instructions of the intermediate language, one instruct ion 

at a t ime. The effect of executing the interpreted object code creates the behavior of the 

circuit . A n y variant of a genetic programming including C G P can be easily evaluated using 

this approach as the genotype in fact represents a code for interpreter. In comparison wi th 

other approaches, the interpreted code is portable. The code can run on any machine that 

has the same interpreted simulator. However, the interpreted simulation represents the 
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slowest approach compared wi th the other three kinds of simulators, because there must 

be an extra layer of execution on top of the native machine that executes the simulator. 

representation 

Candidate 
circuit 

intermediate code 
CGP representation 

high level code 
C, GPU PTX 

compiler 
GCC, CUDA PTX 

host machine code 
x32, x64 

configuration string 

simulation platform 

interpreted simulator 

host machine 

host machine 

hardware accelerator 

Figure 3.11: The common types of s imulat ion processes that have been applied i n the field 
of evolutionary design of digi ta l circuits 

The advantage of C G P encoding is that it can be direct ly used as an intermediate code 

that is consequently processed by an interpreter. Two types of interpreters are usually 

ut i l ized. The interpreter based on recursion and linear interpreter. In the first case, the 

encoded graph structure is executed by recursion, start ing from the output nodes down 

through the functions, to the input nodes [70]. In this way, the unconnected nodes are 

not processed and do not affects the performance of the evaluation. The calculated values 

are stored in local stacks and propagated upwards. For efficiency, it is appropriate to 

introduce some caching mechanism and evaluate each node only once even i f such a node 

is shared and connected mult iple times. Note that each output has to be calculated using 

its own recursion descent. This is another reason why the caching is important and should 

be introduced. The linear interpreter works in opposite direction. The execution of the 

encoded graph starts from the first node and continues according to the increasing node 

index. P rov id ing the C G P encoding does not allow feedback loops, this execution scheme 

guarantee the calculated output values to be correct. Th is scheme represents the most 

efficient implementat ion as it does not introduce any overhead due to function cal l ing that 

have to manipulate w i th stack. However, a l l the nodes are evaluated even i f they are not 

connected. In order to improve the performance, a simple preprocessing step that marks 

the ut i l ized nodes only can be introduced. Let us assume the goal is to evaluate a candidate 

circuits having rtj pr imary inputs encoded using nn C G P nodes. To simulate a candidate 

circuit , one array consisting of tii + nn items is needed. In fact, this array stores the 

calculated output value for each node. Thus, it can be directly addressed by the indices 

stored i n chromosome. In contrast w i t h the recursive approach, a l l the output values are 

calculated in one pass. B o t h of these interpreters are applicable for absolute [131] as well 

as relative C G P encoding [70]. 

Figure 3.12 depicts the interpreted simulat ion process for both presented approaches. 
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a) b) 

Figure 3.12: The code that have to be evaluated i n order to simulate the candidate circuit 
from Figure 3.10 using a) recursive interpreter b) linear interpreter. 

For the simplicity, none of the discussed optimizations is considered. The i l lustrat ion con­

tains the instructions represented by logic operations that have to be executed by the 

interpreter, one by one, i n order to simulate the given circuit . 

High-level simulation 

Another common approach is to use a compiler that can compile a circuit into a high-

level language such as C . In order to evaluate the response, the generated C description 

supplemented wi th the evaluation procedure is compiled wi th a common C compiler and is 

run just like any other C program. F r o m the view of portabil i ty, the high-level code is not 

as portable as interpreted code because it needs to be recompiled to the native language 

of the platform every t ime it is simulated. Even i f the high-level simulators exhibit better 

performance in contrast w i th the interpreted simulators, the compilat ion t ime may represent 

a bottleneck of the whole system. If the high-level code is large, the compilat ion t ime may 

be extremely long. O n contrary, for the smal l designs, the compilat ion t ime is usually larger 

than the t ime needed for evaluation. Another penalty, that should be also considered is the 

t ime needed to launch the compiled program. 

High-level simulator and interpreted simulator represent two possible methods for im­

plementing genetic programming on G P U s [72]. In order to calculate the fitness values, 

the candidate solutions are converted to some form of source code that is compiled and 

executed on G P U . For instance i n [73], C programs were generated from the G P indiv idual , 

compiled to a G P U P T X language and then executed on the G P U . In fact, P T X code 
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is an intermediate code that is compiled by the graphics driver just i n t ime when it is 

used. However, the results showed that the process of pre-compilation leads to a significant 

t ime overhead. The authors noticed that this approach is suitable for applications where 

there is a large amount of data to be processed and the evolved programs are sufficiently 

complicated [72]. 

Native-code simulation 

The most effective approach that reduces the m a i n drawbacks of the high-level compiler 

is the native code compilat ion that skips the intermediate code generation. In order to 

simulate a given circuit , the corresponding representation is direct ly translated (i.e. com­

piled using an applicat ion specific compiler) to the machine executable code for the given 

platform. The machine code residing in the same memory space can be easily executed 

without any t ime penalties by a simple cal l . A t the expense of portabil i ty, native code 

runs slightly faster than high-level code because the application specific compiler can han­

dle direct machine code optimizations. However, the overall performance is significantly 

higher as there do not arise any t ime penalties due to the complex compilat ion or program 

launching. B o t h native code and high-level code are typical ly about 20 times faster than 

optimized interpreted code [109]. The major shortcoming for native code compila t ion is 

portabili ty. 

The idea to use the native-code simulat ion i n connection wi th C G P i n the form which has 

been presented herein was not published i n literature. However a similar idea has been used 

by Nord in [138]. He introduced a system based on linear genetic programming performing 

the automatic induct ion of machine code. The candidate solutions were represented directly 

using binary machine code and executed directly without passing an interpreter during 

fitness calculat ion. The evolved L G P program has been comprised of a sequence of 32-bit 

machine instructions. W h e n executed, those instructions cause the central processing unit 

to perform operations on the C P U ' s hardware registers. The linear machine code approach 

to G P has been documented to be over 60 times faster when compared to an interpreting 

C-language implementat ion and up to 1500 to 2000 times faster when compared to a L I S P 

implementation [137, 138]. 

Hardware acceleration 

If the a im is to reduce the s imulat ion time, the hardware-based simulators (accelerators) 

offer the highest degree of freedom (especially if modern F P G A s allowing to implement a 

custom accelerator are taken into account). In this case, the simulated circuit is compiled 

to a suitable representation that is downloaded to the hardware simulator. The hardware 

simulator is usually constructed using one or more F P G A s or G P U s that contain several 

processing units. A s soon as the circuit is simulated, the obtained results are downloaded 

to the workstation. The process of compilat ion is usually t r i v i a l as it involves converting 

a genotype to a configuration string. Even if the simulations on hardware can be orders 

of magnitude faster than those running i n software, the communicat ion can introduce a 

significant overhead. There are two potential communicat ion bottlenecks. In case that 

the hardware accelerator does not contain a sufficient amount of memory to store a l l the 
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test-cases, an addi t ional penalty can be introduced due to fetching of data from a host 

machine. Besides that, the interactions wi th the host machine represent another problem. 

These host-hardware interactions should be minimized. B o t h of these problems represent 

a serious issue for current G P U s . Another disadvantage is a l imi ted size of the circuit that 

can fit into the simulator. 

The hardware accelerators can be divided into three groups: application-specific ( A S I C ) 

chips developed for a given problem [152], application-specific accelerators based on recon-

figurable F P G A s [163, 180, 61, 189] and accelerators based on off-the-shelf hardware (e.g. 

G P U s ) [73, 72]. 

3.3.2 P e r f o r m a n c e I m p r o v e m e n t U s i n g P a r a l l e l S i m u l a t i o n 

Even i f the common C P U s are since nineties equipped wi th the instructions that can process 

mult iple data in one cycle, this fact has been overlooked by the E A community. One reason 

is that the first Single Instruction M u l t i p l e D a t a ( S I M D ) instruct ion sets tended to slow 

overall performance of the system due to the reuse of existing floating point registers. 

Other systems, like M M X offered a support for data types that were not interesting to a 

wide audience and had expensive context switching instructions to switch between using 

the F P U and M M X registers. Nowadays, the current systems seem to have settled down 

and the S S E instruct ion set represents a powerful and easily applicable system. 

In addit ion, there are also some common instructions that are performed i n parallel . For 

example a bit-wise logical instructions such as A N D , O R , X O R and N O T are performed 

independently for a l l the bits i n the operands; the instructions are executed i n one clock 

cycle by concurrently activation of 32 (or 64) different logic gates wi th in the arithmetic 

logic unit . In this context, a common C P U can be also seen as S I M D processor consisting 

of several one-bit processors. 
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Figure 3.13: The principle of parallel s imulat ion. The response for a l l eight test-cases is 
evaluated applying a single 8-bit word to each pr imary input. 

The idea of parallel s imulat ion is to uti l ize bitwise operators operating on mult iple bits 

to perform more than one evaluation of a gate in a single step [127]. Us ing this approach, the 

simulators working at the gate level can be significantly accelerated. For example, when the 

combinational circuit under s imulat ion has three inputs and it is possible to concurrently 

perform bitwise operations over 2 3 = 8 bits in the simulator then the circuit can completely 

be simulated by applying a single 8-bit test vector at each input (see Figure 3.13). O n 

the other hand when it is impossible to evaluate the vectors in parallel, eight three-bit test 

vectors must be applied sequentially. Current processors allow us to operate wi th 64 bit 

40 



3.3. P R A C T I C A L ASPECTS OF T H E EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS 

operands, i.e. it is possible to evaluate the t ru th table of a six-input circuit by applying a 

single 64-bit test vector at each input . Therefore, the parallel s imulat ion is 64 times faster 

than the sequential s imulat ion. Note that in case that the circuit has more than six inputs, 

the speedup is constant, i.e. 64. This technique can be also ut i l ized i n hardware. However, 

it is mainly useful for gate-level evolution. In case of function-level evolution, for example, 

over 6-bit operators (such as addit ion, subtraction, m a x i m u m etc.) the speedup is only c/b, 
where c is the number of bits of the operators implemented in hardware. 

The parallel s imulation can also be combined wi th native simulator that utilizes modern 

instruct ion sets such as S S E / S S E 2 enabling to process four 8-bit operations i n parallel or 

Advanced Vector Extension that manipulates w i th 256-bit data types. The C G P implemen­

tat ion that utilizes S S E / S S E 2 extension was introduced i n [221]. The proposed system was 

evaluated using a symbolic regression problem i n floating point domain. Us ing the same 

64-bit computer, the authors reported speedup between 20-117 depending on the number 

of t ra ining vectors and the size of C G P array. 

3.3.3 Effcient C a l c u l a t i o n of F i tness V a l u e 

In order to determine the fitness value, the H a m m i n g distance between the obtained 32-bit 

(or 64-bit) response and desired output value has to be calculated. This task can be solved 

by applying X O R operation on the vectors and determining the number of non-zero bits 

in the resulting bit vector. The naive approach requires one operation per bi t , un t i l no 

more bits are set. For a 32-bit word, it w i l l go through 32 iterations which is unacceptable. 

Th is task can be solved using an 8-bit lookup table and four lookups. The ma in drawback 

of this approach is that a lookup table residing in the main memory can cause addit ional 

penalties in case there is a cache miss or it might introduce some latency due to the memory 

operations. In order to eliminate these problems, it is possible to use some tricks performing 

S I M D in general-purpose registers. The following code uses a variable-precision algori thm 

to perform a tree reduction adding the bits i n a 32-bit value: 

u n s i g n e d i n t p o p c n t ( r e g i s t e r u n s i g n e d i n t x ) 

{ 
x -= C (x » 1) & 0 x 5 5 5 5 5 5 5 5 ) ; 
x = CC(x » 2) & 0 x 3 3 3 3 3 3 3 3 ) + ( x & 0 x 3 3 3 3 3 3 3 3 ) ) ; 
x = ( ( ( x » 4 ) + x ) & OxOfO fO fO f ) ; 
x += (x » 8) ; 
x += (x » 1 6 ) ; 
r e t u r n (x & 0 x 0 0 0 0 0 0 3 f ) ; 

} 

A l g o r i t h m 3.14: Popula t ion count 

The operation this algori thm performs is referred to as the populat ion count. It is based 

on an 0{log{n)) a lgori thm that successively groups the bits into groups of 2, 4, 8, 16, and 

32, while maintaining a count of the set bits i n each group. The first step maps two-bit 

values into sum of two one-bit values, i.e. it partit ions the integer into groups of two bits 

and computes the populat ion count for each 2-bit group. The second step calculates the 
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populat ion count of adjacent 2-bit group and stores the sum to the 4-bit group resulting 
from merging these adjacent 2-bit groups. To do this simultaneously to a l l groups, one has 
to mask out the odd numbered groups, mask out the even numbered groups, and then add 
the odd numbered groups to the even numbered groups. In the next steps, the reduction 
using a shift and sum approach is applied since the value i n each k-bit field are smal l enough 
that adding two k-bit fields results in a value that s t i l l fits in the k-bit field. The A M D 
A t h l o n code opt imizat ion guide suggests a very similar a lgori thm that replaces the last 
three lines wi th mul t ip l ica t ion (see A l g o r i t h m 3.15). 

u n s i g n e d i n t p o p c n t ( r e g i s t e r u n s i g n e d i n t x ) 

{ 
x -= ( ( x » 1) & 0 x 5 5 5 5 5 5 5 5 ) ; 
x = C ( ( x » 2 ) & 0 x 3 3 3 3 3 3 3 3 ) + ( x & 0 x 3 3 3 3 3 3 3 3 ) ) ; 
x = C ( ( x » 4 ) + x ) & O x O f O f O f O f ) ; 
r e t u r n ( ( x * 0 x 0 1 0 1 0 1 0 1 ) » 2 4 ) ; 

} 

A l g o r i t h m 3.15: Popula t ion count opt imized for A M D A t h l o n C P U [2] 

A s the populat ion count is often needed in cryptography and other applications, In­

tel introduced a P O P C N T instruct ion w i t h the SSE4.2 instruction set extension, firstly 

available i n a Nehalem-based Core i7 processor, released i n November 2008. However, the 

common P C s are rarely equipped wi th this extension. 

3.4 Current Problems of Evolutionary Design 

From the view of the design automation and abil i ty to produce novel designs, the evolu­

t ionary design represents a promising and general-purpose design method. However, there 

are known problems that l imi t the applicat ion of evolutionary approach i n some domains. 

The scalabili ty problem means such si tuation i n which the evolutionary algori thm is able 

to provide a solution to a smal l problem instance, however, only unsatisfactory or even 

none solutions can be obtained for larger problem instances i n reasonable t ime. Dur ing 

the last decade, a number of researchers have been addressing the scalabili ty problem. 

Unfortunately, this issue has not been yet successfully solved [69]. 

In order to overcome the scalabili ty problem, a k ind of domain knowledge is usually 

employed i n focusing the search algori thm on promising areas of the search space and 

reducing the computat ion overhead. The scalabili ty problem can pr imar i ly be seen from 

two perspectives: scalabili ty of representation and scalabili ty of fitness evaluation. 

3.4.1 Sca labi l i ty of R e p r e s e n t a t i o n 

In terms of the scalabili ty of representation, the problem is that long chromosomes which are 

usually required to represent complex solutions imp ly large search spaces that are typical ly 

difficult to search. In order to evolve large designs and simultaneously keep the size of 

chromosome small , various techniques have been proposed. 
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Variable Length Representation 

Variable length representation of chromosomes provides, in contrast to the fixed length 

representation, more flexibili ty to the search algori thm. It allows for sampling a genome 

space wi th varying dimensionalities, balancing accuracy and parsimony of the solutions and 

the manipula t ion of non-coding segments [202]. A l t h o u g h this technique is not pr imar i ly 

considered as a technique for solving the scalabili ty problem, it is incorporated at the level 

of genotype or phenotype i n almost a l l methods that attempt to overcome the scalabili ty 

problem. 

Function-Level Evolut ion 

Instead of gates and single-wire connections, the solution is composed of complex application-

specific functional blocks (such as adders, multipliers and comparators) connected using 

mult i -bi t connections [134, 157, 60]. The advantage is that while the system complex­

ity can be effectively increased, the size of chromosome can remain relatively small . This 

approach has mainly been ut i l ized i n the area of approximate synthesis where resulting 

innovative circuits can have tens of inputs and outputs. However, the selection of suitable 

functional blocks represents a domain knowledge that has to be included into the design 

method. 

Incremental Evolut ion 

In order to evolve more complex circuits and without the a im to minimize the number 

of gates, Torresen proposed a divide-and-conquer approach for the evolution of digi ta l 

circuits, sometimes referred to as increased complexity evolution [176, 178]. The key idea is 

to decompose (e.g. according to Shanon) a target circuit on modules that are subsequently 

evolved separately. The advantage is that the modules are much smaller than the original 

circuit and so they can be evolved easily. The decomposition can also be applied recursively. 

Kalganova employed the incremental evolution i n two directions [90]. The objective was 

to semi-automatically divide a complex task into simpler subtasks i n order to evolve each 

of these subtasks and then to incrementally merge the evolved subsystems, reassembling a 

new evolved complex system. Generalized disjunction decomposition is the latest and most 

successful version of this method [172]. The 17-bit pari ty circuit , the 6x6 bit mult ipl ier , and 

the alu4, which is a circuit w i th 14 inputs and eight outputs never evolved before w i th any 

other techniques, were evolved using the incremental evolution. However, while the method 

is successful i f the t ime of design is measured (respectively, the number of evaluations), it 

produces inefficient implementations w i th respect to the number of gates. Another problem 

is that the decomposition strategy is a k ind of domain knowledge which has to be supplied 

by designer. Incremental evolution was also combined wi th the function level evolution 

[164, 60]. 

Development 

The above mentioned approaches employ a direct encoding of target circuit i n the chro­

mosome. Hence the size of the chromosome is proport ional to the size of the circuit . A s 
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developmental approaches employ indirect encoding, the chromosome contains a genetic 

program which is executed i n order to construct the target circuit . The genetic program 

can be implemented using various computat ional models, e.g. L-system, cellular automaton, 

if-then-else rules or, i n general, as a program. 

Arb i t r a r i l y large multipliers were constructed using evolved programs working in a grid 

of programmable nodes [18]. However, no innovation is observable i n evolved multipliers 

in comparison to conventional multipliers. A similar approach was proposed to create 

arbi t rar i ly large sorting networks which exhibit sl ightly better properties (in the number 

of components and delay) than sorting networks created using conventional construction 

algorithms [159]. A m o n g others, developmental genetic programming introduced by K o z a 

[105, 107], L-system-based antenna design [83] and developmental neural networks [167] are 

examples of successful application of developmental approach. 

A l though the developmental approaches do not usually lead to innovative circuit designs, 

they are useful for investigation of principles of development, genetic regulatory networks, 

environmental interactions and fault tolerance which could be useful for evolution and 

adaptation of large-scale d ig i ta l circuits i n future. Designing these developmental encodings 

is not t r i v i a l and a lot of domain knowledge has to be supplied by designer. 

Modular izat ion 

Some evolutionary algorithms enable to dynamical ly create and destroy reusable modules 

(subcircuits). The reuse of modules makes the evolution easier even for large circuits. Var­

ious modular izat ion techniques have been introduced for tree-based genetic programming. 

A m o n g others, the automatical ly defined functions represent the most popular approach 

[101]. Cartesian Gent ic Programming was extended by ut i l iz ing automatic module acqui­

sition, evolution, and reuse [188, 92]. Shanthi and Parthasarathi have proposed modular 

developmental C G P [164]. In particular, it was shown that the computat ional effort can 

be significantly reduced for smal l combinational circuits in comparison to standard C G P . 

However, evolved solutions are inefficient w i th respect to the number of gates. 

3.4.2 Sca labi l i ty of F i tness E v a l u a t i o n 

Even if an encoding is chosen such that it allows the candidate circuits to be represented ef­

fectively, there is another scalabili ty problem having substantial impact on the evolutionary 

design of d ig i ta l circuits. In case of the combinat ional circuit evolution, the evaluation time 

of a candidate circuit grows exponentially w i th the increasing number of inputs (assuming 

that a l l possible input combinations are tested i n the fitness function). Hence, the evalua­

t ion t ime becomes the main bottleneck of the evolutionary approach when complex circuits 

w i th many inputs are evolved. In case of popular benchmark circuits, the l imi t when the 

evolution provides some solution is 17 inputs for pari ty circuits [172, 188], 8 inputs for 

combinational multipliers when a novel solution has been obtained [182] and 16 inputs for 

combinational multipliers when only functionality has been evolved [164]. The 28-input 

sorting networks evolved using F P G A accelerator are probably the largest circuits that 

were successfully evolved using the fitness function which evaluates a l l possible assignments 

to the inputs, however, only functionality has been evolved [98]. 

44 



3.4. C U R R E N T PROBLEMS OF EVOLUTIONARY DESIGN 

Perfect and Approximate Synthesis 

From the viewpoint of the scalabili ty of evaluation, the applications of d ig i ta l circuit evo­

lut ion can be divided into two ma in classes which we w i l l cal l the perfect synthesis and 

approximate synthesis. 
In case of the perfect synthesis the goal is to obtain a circuit which responds perfectly 

for a l l requested assignments to the inputs and which exhibits a k ind of innovation such 

as close-to op t imum number of gates, smal l delay or low power consumption. The fitness 

function is usually constructed i n such a way that a l l requested assignments are applied 

to the inputs of a candidate circuit and the fitness value is defined as the number of bits 

that the candidate circuit computes correctly (additional cri teria can be incorporated as 

well). The evolution of ari thmetic circuits is a typica l example of that class. Because 

the evaluation t ime depends exponentially on the number of inputs of the circuit there is 

the scalabili ty problem inherently present. Thus, only relatively smal l and simultaneously 

innovative designs have been evolved i n this domain. 

In case of the approximate synthesis it is sufficient to evolve a circuit which responds 

correctly for a reasonable subset of a l l possible input vectors. The problem is that the 

specification is i n principle incomplete. A m o n g others, design of filters, classifiers and 

predictors are typica l examples [78, 157, 60]. The fitness value is usually calculated on 

the basis of the circuit response obtained for a carefully chosen t ra ining set, a subset of 

a l l possible input vectors. A p p l y i n g a l l possible input vectors is intractable as the circuit 

can have tens of inputs. This approach is commonly applied dur ing the learning process of 

neural networks or classification systems. In contrast to the perfect synthesis, the behavior 

of evolved solution has to be validated using a test set at the end of evolution, i.e. using the 

vectors unseen during the evolution. To justify the approach, the evolved solution should 

exhibit a k ind of innovation. For example, the goal can be to obtain a solution having better 

classification accuracy or smaller area overhead wi th respect to competit ive solutions. 

In order to assess the evolvabili ty of functionally in case of combinational circuits, Mi l l e r 

and Thomson included only a randomly selected sample of a l l possible input combinations 

to the fitness function [130]. Unfortunately, it has been demonstrated that this is not a 

right way since the evolved digi ta l circuits d id not work correctly for the remaining input 

vectors. 

Special Cases of Tractable Applications 

Dig i t a l circuits evolved so far contain from several gates to thousands of gates. It is typica l 

for evolution of smal l circuits that a l l possible input vectors are used i n the fitness function 

and that the a im is to improve circuit parameters in comparison w i t h exit ing designs. 

Evolved mid-size circuits such as image filters or classifiers contain thousands of gates. In 

this case, the researchers focus on ways to reduce the number of test vectors required for 

evaluation whilst being able to provide a reliable evaluation method. 

A n obvious conclusion is that the perfect evolutionary synthesis is currently applicable 

only for smal l circuits. O n the other hand, when the problem belongs to the class of the 

approximate synthesis, real-world and innovative circuits are l ikely to be evolved. However, 

there exist applications that do not suffer from this problem. Even i f a perfect synthesis 
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scenario is ut i l ized (i.e. a circuit that exactly fulfils the specification ought to be evolved), 

the evolutionary approach can be applied to solve large instances without having fitness 

scalabili ty problems. 

We have identified that linear systems represent a class of problems that can be effec­

t ively evaluated [223]. This domain has been completely ignored by E A community even 

if it comprises a wide variety of real-world applications. In case that the target system 

exhibits the linear properties, it is possible to perfectly evaluate a candidate circuit using 

a single input vector independently of the circuit complexity (i.e. the number of inputs, 

outputs or components). The system is linear i f and only i f it consists of linear components 

(functions). A linear function is a function / : D —• 1Z which satisfies the following two 

properties: 

addi t iv i ty / (x + y) = /(x) + /(y) 

homogenity / ( « x ) = « / ( x ) 

for every x G T>, y G T> and for a l l scalars a, where T> and 1Z are vector spaces over field K. 
Note that x and y are not necessarily vectors of real numbers, but can in general be members 

of any vector space. Th is is equivalent to requiring that for any vectors x i , . . . , x m G V 
and scalars a\,..., am G K, the following equality holds 

/ ( a i x i H h a m x m ) = a i / (x i ) H h a m / ( x m ) (3.8) 

The concept of l inearity can be easily extended to linear operators because the operators 

represent i n fact a mapping from one space to another. This idea can be also ut i l ized at 

gate-level. In Boolean algebra, a linear function is a function / for which there exists vector 

arj, a i , . . . , an G {0, l } n + 1 such as 

/ ( 6 i , . . . , bn) = a0 0 (oi A 6i) 0 . . . 0 (an A bn) (3.9) 

for a l l bi,..., bn G {0,1}™. The easy way to determine the l inearity of Boolean operations 

is based on the looking into the t ru th table. A n operation is linear if each variable always 

makes a difference i n the t ru th value or it never makes a difference. In order to determine 

the l inearity efficiently, a spectral method based on Walsh transformation can be ut i l ized 

[146]. 

Accord ing to the definition of Boolean linearity, there are only six linear functions of 

two input variables x,y G {0 ,1} . Namely, two identities x and y, two logical complements 

-ix and ->y and finally nonequivalence and equivalence relation x ^ y and x = y. These 

functions correspond wi th the following common two-input gates: B U F , N O T , X O R and 

X N O R . This set of gates is used i n Reed-Mul le r logic [66]. It is well known that many 

Boolean functions which can be easily implemented using X O R gates are very inefficiently 

represented in canonical Boolean logic. The most extreme case represents the n-bit pari ty 

circuits which can be realized wi th n — 1 X O R gates only. O n contrary, 2 n _ 1 — 1 O R gates 

and a large number of A N D gates are required when a common logic including A N D , O R 

and N O T gates is used [127]. 

The principle of l inearity can be demonstrated on the evolutionary design of pari ty 

circuits using X O R and X N O R gates only. Let us assume an n-input pari ty circuit ought 
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to be designed. The common approach requires to evaluate 2™ test-cases; i.e. 1024 vectors 

for a 10-bit pari ty circuit . If the l ineari ty is taken into account, the number of fitness 

cases can be reduced to n + 2; i.e. 12 vectors for a 10-bit pari ty circuit . One test-case 

corresponding to the case when al l inputs are set to zero, another one the opposite case, 

i.e. when a l l the inputs are set to one, and the rest n input vectors matching the cases 

when exactly one input is set to one. The latter vectors are required i n order to inform the 

evolution that a l l the inputs have to contribute to the resulting value. 

The evolutionary design of multiple-constant multipliers represents another problem i n 

which the principle of l inearity can be ut i l ized to reduce fitness evaluation time. Because the 

multiple-constant multipliers are composed of adders, subtracters and shifters (i.e. bui lding 

blocks exhibi t ing the linear property), a single t ra ining vector can be ut i l ized to perfectly 

evaluate the fitness value. Us ing this approach multipliers consisting of hundreds of gates 

can be evolved at function-level (see Chapter 4). 

Let us conclude this section wi th a different problem that also belongs to the class 

of tractable problems - the evolutionary design of benchmark circuits. In this case it 

is sufficient to evaluate only some structural properties of combinat ional circuits. The 

key feature is that the evaluation of these properties can be done i n a reasonable time 

complexity. For example, the testabili ty of a candidate circuit can be calculated i n a 

quadratic t ime. This approach has been firstly ut i l ized in [143]. The authors showed that 

it is possible to evolve very large benchmark circuits w i th predefined testabili ty properties. 

3.5 Summary 

Evolut ionary circuit design is considered as a very challenging research area. The first 

difficulty comes from the complexity of the search space. Another difficulty is caused by 

the presence of very good and robust conventional design tools that have been extensively 

developed for many years to produce compact and efficient solutions. 

There is a belief that evolutionary search works better for analogue circuits rather than 

digi tal circuits possibly due to the fact that analogue behaviors provide relatively smoother 

search spaces [169]. In addit ion, contrasting wi th digi ta l design, there is no reliable set of 

design rules for analog circuit synthesis. A s a consequence, the engineer has to rely on his 

own experience or in tui t ion. Another problem is that automated design tools for analog 

circuits are not as developed as i n the area of digi ta l circuits. 

One of the goals of the early pioneers of the evolvable hardware was to evolve com­

plex circuits, overcome the l imits of t radi t ional design and find ways how to exploit the 

vast computat ional resources available on today's computat ion platforms. However, the 

scalabili ty issue for evolvable hardware continues to be out of reach [69]. 

A l though we have shown some possibilities how to improve the t ime needed to evaluate a 

candidate solution in C G P , the discussed acceleration techniques have only marginal impact 

on evolutionary synthesis of complex (i.e. real-world) d ig i ta l circuits since the evaluation 

t ime grows exponentially w i th increasing number of pr imary inputs. Thus the only way 

to eliminate the fitness scalabili ty issue seems to be introducing of new domain-specific 

evaluation methods. 
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Chapter 4 

Evolutionary Synthesis of Linear 
Transforms 

The linear transforms represent a key concept that is i n some way employed i n every digi ta l 

signal processing (DSP) applicat ion. In order to reduce area and power requirements for 

embedded and mobile applications, designers of such systems use various techniques. One 

of the approaches is focused on the usage of effective finite-precision algorithms. M a n y 

numerically intensive applications have computations that are based on linear transforms 

such as convolutions, the discrete Fourier transform, the discrete cosine transforms, etc. 

Mathematical ly , they consist exclusively of additions and mult ipl icat ions by constants. The 

algorithms usually involve a large number of mult ipl icat ions of one variable w i th several 

constants. A proper opt imizat ion of this part of the computat ion, referred to as mult iple 

constant mul t ip l ica t ion problem ( M C M ) , often results in a significant improvement not only 

of the performance but also the power consumption. W h e n implemented i n hardware, the 

multiplications by constants are often implemented by a sequence of additions and shifts. 

Compared to general n x n-bit multipliers, this implementat ion is less expensive in terms 

of chip area and power consumption. 

The design and opt imizat ion of a finite precision implementat ion for a given application 

represents a nontr iv ia l task. The designer has to manual ly choose a numerically robust 

algori thm considering the least possible precision in the final fixed point implementation. 

In the second step, accuracy has to be tuned. The goal is to reduce the precision of the 

mult ipl icat ive constants (and thus the number of additions) without exceeding a given 

error constraint. This step conceals two major problems - the exponentially large number 

of different configurations of constant precisions and the fact that reducing the precision 

of one or several constants has a v i r tua l ly unpredictable impact on the output error and is 

strongly dependent on the chosen error measure [148]. 

In order to simplify this process, several approaches have been proposed. For example, 

Bre i t zman proposed a system for automatic derivation and implementat ion of fast con­

volut ion algorithms [21]. Algor i thms are presented i n a uniform mathematical notat ion 

that allows automatic derivation, opt imizat ion, and implementation. Pi ischel et a l . have 

proposed another approach for the domain of linear D S P transforms that is able to au­

tomate the mentioned design steps [148]. Th is method is suitable for automatic design 
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of a close to op t imal implementat ion of a given transform if an error measure and error 

threshold is given. There also exists a generator for opt imized software implementations of 

D S P transforms called S P I R A L [147]. A given problem is described in Signal Processing 

Language and automatical ly transformed using a set of rules, compiled and according to 

the given performance results eventually modified, recompiled and so on. The process of 

transformation is driven by the requirements and constraints. 

In this chapter, we w i l l introduce an evolutionary method based on Cartesian Genetic 

Programming that can synthesize complex instances of the M C M problem. The goal of this 

research is to show that the evolutionary algori thm is able to generate not only complex 

but also close to op t imal structures even i f a perfect synthesis scenario is considered. In 

order to eliminate the scalabili ty problem of a candidate M C M evaluation, the l inearity is 

exploited as it has been discussed in Section 3.4.2. Surprisingly, the proposed method is 

able to compete w i th well opt imized heuristics i n part icular problem instances. 

4.1 Theoretical Background 

The a im of this section is to provide the necessary background on transform algorithms 

and multiplierless implementat ion techniques i n order to put the M C M problem into the 

context. 

Mathematical ly , a linear transform can be expressed as mul t ip l ica t ion y = M x , where 

x is an input vector, M the transform matr ix , and y the output vector. The input vector 

x represents a sampled signal, the output vector y represents a transformed input signal. 

Surprisingly, for each transform where M is of size nxn there is a large number of different 

fast algorithms, which have similar, close to min ima l cost, typical ly of the order 0 ( n log(n)), 

but have different structures and different numerical accuracies [148]. The reason for this 

variety lies in the recursive structure of the algorithms. For a given transform, there are 

various ways of computing it using other, smaller transforms. The combination of these 

choices leads to a combinatorial explosion as the number of algorithms grows exponentially 

w i t h n. 

In order to implement a linear transform i n hardware, two basic bui ld ing blocks are used 

- addit ions/subtractions and mult ipl icat ions by constants. W h e n mul t ip ly ing by constants 

in hardware, costly combinational n x n-bits multipliers may be avoided by replacing them 

wi th structure consisting of additions, subtractions and shifts. In most cases, the shifts 

can be effectively implemented using the wires. The principles of multiplierless mult ipl ier 

design w i l l be briefly introduced i n the following paragraphs. Fi rs t ly , design of a single 

constant mult ipl ier w i l l be described. Then , its extended version w i l l be discussed. 

4.1.1 Single C o n s t a n t M u l t i p l i c a t i o n 

In order to implement a D S P algori thm, each real-valued constant c is firstly replaced by 

its fixed point approximation c ~ k/2n, where n denotes the number of fraction bits and 

k represents the corresponding fixed point value. A s the denominator has a fixed value, 

the number of operations required to mul t ip ly by c is not affected by the posit ion n of the 

decimal point (i.e. a fixed-point mul t ip l ica t ion is equivalent to a mul t ip l ica t ion by an integer 
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followed by a right shift) and we can restrict our discussion to integer fixed point numbers 
c = k without loss of generality. The mul t ip l ica t ion y = kx of variable x by a known 
constant k can be decomposed to into additions, subtractions and shifts. The problem of 
finding the op t imal decomposition is known as the single constant mul t ip l ica t ion problem 
( S C M ) [185]. 

A straightforward method for decomposing the mul t ip l ica t ion into the additions and 
shifts can be constructed as follows. Let us assume a common binary representation of a 
constant k 

n—l 

k = Y/h2i, he {0,1} (4.1) 
i=0 

where n corresponds wi th the number of bits used to represent a given integer k. Using 
this representation, the product of k and x can be computed as 

n-l 
y = kx = x^2bi2i. (4.2) 

i=0 

Then, a simple method of mul t ip ly ing can be constructed; for each non-zero bit 6j, one shift 
and one adder is issued resulting into the adder chain 

n-l 
y = kx = xbi2i = xb0 + (2xbi + (4x6 2 + •••))• ( 4 - 3 ) 

i=0 

This direct method requires as many additions as the number of nonzero bits 6j minus 
one, which can be as large as n — 1. In this sense, the effort i n mul t ip l ica t ion can be 
estimated through the number of nonzero bits. Statistically, the half of the digits are zeros 
if a binary coding is used. Thus [(n — l ) / 2 j adders is required i n average. The worst case 
scenario requires n — l additions. Figure 4.1a show the implementat ion of a multiplierless 
mult ipl ier for k = 15. 

A s it can be easily demonstrated, this method does not produce an opt imal decompo­
sition. For example, the mul t ip l ica t ion y = 15x = 8x + (4x + (2x + lx)) consisting of three 
adders and three shifts can be implemented as y = 15x = 16x — x requiring one subtraction 
and one shift only. To handle this issue and reduce the number of operations, signed digit 
(SD) representation is commonly used i n both hardware as well as software [68, 124]. A 
constant represented in S D is expressed as 

n—l 

k = Y,bi2i, ft* e {1 ,0 ,1} , (4.4) 

i =0 

where 1 stands for -1 . Th is scheme recodes each sequence of m consecutive ' 1 ' digits i n 
a normal binary representation, where m > 1, by an S D sequence of n — 1 '0' digits w i th 
prefix '1 ' and suffix ' 1 ' . For example 15io = H H 2 = IOOOISD - Compar ing to the direct 
approach, the density of zeros increases to two thirds [124]. The worst case scenario, i.e. the 
alternating one's and zero's digits, requires [(n— l ) / 2 j additions or subtractions. Since the 
SD representation is non unique, a canonic signed digit system ( C S D ) having the min imum 
number of non-zero elements is used instead. 
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1 5D E C 1 1 1 1 B|N 15DEC= 16-1=10001, 

(a) (b) 

Figure 4.1: The implementat ion of the multiplierless mult ipl ier for the constant 15. The 
structure has been designed using a) the direct encoding and b) C S D representation. 

105 = 0110100L 

(a) 

105 = 7-15 = (8-1)(16-1) 

(b) 

Figure 4.2: Two S C M implementations for the constant 105. 

Even i f the C S D system minimizes the cost, it is known that C S D in general does 

not y ie ld the m i n i m u m cost solution. It can be sometimes more efficient to firstly factor 

the coefficient into several factors and implement the ind iv idua l factors in an op t imal C S D 

sense [42, 43, 124]. The process of factorization is i l lustrated i n Figure 4.2 for the coefficient 

105 = O I I O I O O I 2 = 10101001CSD- In this case, the direct binary code and C S D require 

three additions. B y factorizing, this coefficient can also be represented as 105 = 7 x 15 = 

(8 — 1)(16 — 1). Th is implementat ion requires only one adder for each factor. 

In order to find an op t imal solution that minimizes the cost, a k ind of reusing of interme­

diate results has to be introduced. However, finding the op t imal addi t ion chain for a given 
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^ = (x » 2) + X 

s2 = (x»3)-x 
*3 = (s2 « 5) - S, 

10021*= (Si « 11) 

(C) 

Figure 4.3: The implementat ion of addi t ion chains using a) direct method, b) C S D repre­
sentation and c) the op t imal solution. 

constant k is known to be NP-complete problem [26, 23]. For example, the addi t ion chain 

to mul t ip ly x by k = 1021 can be implemented using 4 additions. In this case, the direct 

method requires 6 additions and the C S D method requires 5 additions. The corresponding 

implementations are summarized in Figure 4.3. 

In order to find the op t imal decomposition, Dempster and Macleod designed an exhaus­

tive search algori thm that finds the opt imal M C M implementat ion of constants defined over 

12 bits [41]. Th is work has been extended by Gustafsson et al . for constants up to 19 bits 

[68]. A l t h o u g h the asymptotic worst-case cost of the op t imal decomposition remains an 

open problem, is has been shown that a m a x i m u m of five additions is needed for constants 

of up to 19 bits. 

4.1.2 M u l t i p l e C o n s t a n t M u l t i p l i c a t i o n 

The single constant mul t ip l ica t ion problem can be extended to the problem of mul t ip ly ing a 

variable x w i th several constants fei,..., fejy i n parallel . The resulting structure referred to 

as mult ipl ier block can be used to implement digi ta l finite impulse response (FIR) filters (see 

Figure 4.4), linear signal transforms such as the discrete Fourier transform or discrete cosine 

transform, and so on [185]. For example, discrete Fourier and trigonometric transform 

algorithms involve rotations, which require simultaneous mul t ip l ica t ion by two constants. 

The problem of finding the decomposition wi th fewest operations is known as the mult iple 

constant mul t ip l ica t ion ( M C M ) design problem [185]. 

Compar ing to the previous problem, the design of an opt imal multiplierless M C M struc­

ture is more complicated since intermediate results of the S C M decompositions may be 

shared. In addit ion to that, the op t imal decomposition can not be obtained as a simple 

combination of opt imal S C M multipliers obtained for each constant independently. Another 

53 



C H A P T E R 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS 

Figure 4.4: Each F I R filter can be expressed as the sum of the input sample and its delayed 
variants mul t ip l ied by a finite number of coefficients. Th is equation can be transformed 
and expresses as the sum of the input sample mul t ip l ied by finite number of coefficients 
that are successively summed [124]. F I R filter i n the transposed structure (a) implemented 
using a mult ipl ier block (b). 

characteristics that has to be also considered is the number of levels that determines the 
propagation delay. Figure 4.5 shows an example of a mult ipl ier block which implements 
the parallel mul t ip l ica t ion by 19 and 71 using only 3 add/subtract operations and 3 shifts. 
The opt imal decompositions of 19 and 71 require 2 add/subtract operations and 2 shifts 
each. 

(a) (b) (c) 

Figure 4.5: a) op t imal decomposition of constant 19, b) op t imal decomposition of constant 
17 and c) the op t imal implementat ion of M C M mult ipl ier block for constants 19 and 71. 

Even if the M C M problem is NP-complete , several efficient heuristics have been pro­

posed. A good survey containing the details can be found, for example, in [185]. Apa r t 

from the direct simple methods based on C S D representation that do not provide good 

solutions, some authors applied common subexpression el iminat ion algorithms. The basic 

idea is to find common subpatterns i n representations of constants after the constants are 

converted to a convenient number system such as C S D . The disadvantage, however, is that 

the performance of these algorithms depends on the number representation. Graph-based 

algorithms and hybr id algorithms represent the best approaches proposed i n this field. In 
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contrast w i th another heuristics, the graph-based algorithms are expected to outperform 

other methods, since they have the fewest restrictions. Graph-based algorithms iteratively 

construct the graph representing the mult ipl ier block. The graph construction is guided 

by a heuristic that determines the next graph vertex to add to the graph. Graph-based 

algorithms offer more degrees of freedom by not being restricted to a part icular representa­

t ion of the coefficients, or a predefined graph topology (as i n digit-based algorithms), and 

typical ly produce solutions w i th the lowest number of operations. A very efficient graph-

based heuristic approach was proposed by Voronenko and Pi ischel i n [185]. Th is algori thm 

can handle problem sizes as large as one hundred 32-bit constants. The algori thm can be 

considered as the state of the art method for the M C M design problem. 

4.2 Proposed Method 

The goal is to synthesize a mult iple constant mult ipl ier block which generates iV output 

values yi = CiX where 1 < i < N, a are given constants and x is the input variable. The 

circuit is composed of high-level linear components such as additions, subtractions and logic 

shifts. The evolution is conducted at function level. In order to design a mult ipl ier block 

having the min ima l cost, two-stage fitness strategy is employed. A t the beginning of the 

search, the objective of the evolutionary algori thm is to evolve a fully functional mult ipl ier 

only. Once the first fully functional solution appears, an opt imizat ion phase rewarding the 

solutions w i th lower cost is conducted. D u r i n g this stage, the number of components is 

optimized. The problem is approached using evolutionary algori thm i n which the problem 

representation is borrowed from the C G P . 

(0,0,2) (1,0,0) (3,1,1) 

« 1 
1 2x , 3 * « 

« 1 
1 2x , 

+ 3x 
x 

i 

(0,0,3) (1,2,0) (3,0,0) 

* i 2 4 • 

« 2 + — + 

» J x 

3x 

Figure 4.6: Example of a candidate M C M block. C G P parameters are as follows: I = 3, 
nc = 3, nr = 2, F = {add (0), sub (1), lb-shift (2), 2b-shift (3)}. Nodes 2, 4 and 5 are 
not ut i l ized. Chromosome: 0,0,2, 0,0,3, 1,0,0, 1,2,0, 3,1,1, 3,0,0, 3, 6. The last two integers 
indicate the outputs of the M C M . The input x is encoded as 0. 

A candidate mult ipl ier block is represented as an array of nc (columns) and nr (rows) 

of programmable nodes. The number of columns defines the m a x i m u m M C M delay. E a c h 

node has two inputs where at least the first input is always ut i l ized. The number of inputs, 

iii, and outputs, n0, is fixed and chosen as follows: rtj = 1, na = N. Feedback is not 

allowed. Each node input can be connected to the output of a node placed i n the previous 

columns or directly to the input variable x. E a c h node is programmed to perform one 

of functions defined i n the set V which includes addit ion, subtraction, various shifts and 
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identity function. These functions as well as a l l connections are used over b bits, where 

b = 16 in our case. Figure 4.6 shows an example of M C M wi th two coefficients. 

E A operates wi th the populat ion of A individuals where A = 5. The in i t i a l populat ion 

is randomly generated. The goal of E A is to minimize the difference between actual and 

required products. W h e n a functionally perfect solution is obtained, the fitness function 

is switched to a new fitness function i n which the number of components is opt imized. In 

order to measure the s imilar i ty of a candidate solution and the required response, sum of 

absolute differences ( S A D ) is used. The fitness value is defined as 

fitness = < 

N 

fsAD when fsAD > 0, fSAD = ^2^2\Vi - xci\ 
X i=l 

NcNr 

(4.5) 

fc otherwise, fc = ^ cost (Mi) 
i=l 

where cost{Mi) is the cost of node Mi- The cost function is constructed as follows: 

for identity function, 

cost(Mi) = { 1 for shift, (4.6) 

for addi t ion/subtract ion. 

The evolution is stopped when the best fitness value stagnates or a predefined number 

of generations is exhausted. A s it has been discussed, i n theory, it is sufficient to evaluate 

a candidate solution using one test-case, e.g. x = 1. Nevertheless, especially i n case when 

r contains right shifts and subtractions, the l imi ted number of bits may introduce a k ind 

of nonlinearity. For example, i n order to implement y = 3x, the following structure can 

be evolved y = ((x << 12) >> 11) + x. For x = 1, the result is correct, however, when 

x = 128 is used, the obtained result y = 128 does not correspond w i t h the expected value 

384 due to the overflow caused by the left shift. In order to avoid this behavior more test 

cases should be used. It is usually sufficient to test x w i t h the powers of two. 

4.3 Results 

In order to evaluate the proposed method, we have chosen to evolve multipliers w i th 3, 5, 10, 

20 and 54 coefficients (given i n Table 4.1). T h e coefficients were encoded at 16 bits. A l l the 

multipliers were evaluated using single t ra ining vector x = 1. The evolved multipliers were 

verified at symbolic level. A l l experiments were repeated 200 times wi th the populat ion of 

eight individuals and five genes mutated in the chromosome. V = {a, a + b, a — b, 2a, 4a, 

8a, . . . , 8192a }. Table 4.1 gives other parameters of the experiments, average results (the 

number of generations and used adders/subtractors), the success rate and parameters of 

the best evolved solutions. 

Results are compared wi th the best known heuristic approach [185] which produces very 

compact solutions. Table 4.1 shows that the proposed evolutionary-based approach is able 

to generate mult ipl iers that are competit ive wi th results obtained using the state of the art 

heuristic approach. The evolution can reduce the to ta l number of components as well as 
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Table 4.1: Results of evolutionary design of M C M s wi th different coefficients. Popula t ion 
size is 8. Averages are calculated from 200 independent runs. 

Settin gs Average Results The Best M C M 
cols x rows maxgen geners. #add/sub succ. rate delay add/sub shifts operations 
3 constants: 2925, 23111, 13781 
Heuristics [185] 8 8 8 16 

5x6 20M 1M62 14 68.5 5 9 8 17 
6x6 20M 1M27 14 86.5 6 8 8 16 
7x4 40M 2M15 13 99.0 7 8 6 14 (Fig. 4.8) 

5 constants: 83, 221, 71, 387, 13 
Heuristics [185] 5 6 6 12 

4x6 20M 461k 10 99.5 4 7 6 13 
5x6 20M 207k 11 99.5 5 6 6 12 
6x6 20M 114k 11 100.0 6 6 5 11 

10 constants: 117, 1123, 743, 221, 1069, 7605, 987, 16689, 3033, 29 
Heuristics [185] 8 14 13 27 

10x4 40M 4M8 23 99.0 7 15 12 27 
7x6 20M 4M7 23 95.5 6 17 11 28 
9x4 40M 9M5 22 91.0 9 17 9 26 

20 constants: 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71 
Heuristics [185] 4 19 8 27 

4x10 40M 457k 23 100 4 19 4 23 (Fig. 4.7) 
5x10 40M 347k 23 100 4 19 4 23 
6x5 40M 772k 21 100 5 19 3 22 

54 constants: 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 
83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 
181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 
Heuristics [185] 6 53 53 106 

5x20 40M 12M9 66 98 5 56 17 73 
6x14 40M 19M7 63 90 6 56 12 68 
6x16 40M 9M8 65 98.5 6 55 19 74 

the delay of the designed M C M s . Even if the goal of this research was to demonstrate and 

confirm the val idi ty of our hypothesis concerning the linear problems, the proposed method 

has been able to discover better solutions i n some instances. In case of the 3 constant 

M C M , a solution exhibi t ing lower delay containing fewer shifts has been evolved. In case 

of the 20 constant M C M , the number of shift has been reduced by one half. 

3 1x 37x 41x 5x 3x 29x 59x 61x 7x 71x 67x l l x 23x 19x 43x 53x 47x 13x 17x l x 

Figure 4.7: The best evolved M C M wi th 20 constant coefficients 
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Figure 4.7 shows one of evolved innovative solutions for the 20 constant M C M . This cir­

cuit consists of 4 shifters and 19 adders/subtractors. The heuristic approach [185] provides 

a solution consisting of 19 shifters and 19 adders/subtractors. Delay remains unchanged. 

X X 

Figure 4.8: M C M wi th 3 coefficients (2925, 23111, 13781): according to [10] (left), the best 
evolved solution (right) 

Figure 4.8 compares the best evolved solution w i t h the solution provided by the heuris­

tics for the 3 constant M C M . Evolved solution contains 2 shifters less and exhibits shorter 

delay than the solution provided by the heuristics. 

4.4 Summary 

A very t ime-consuming evaluation of candidate configurations is one of problems which 

influence the applicabil i ty of evolutionary circuit design. In this chapter, we focused on 

such problems i n which a candidate solution can be perfectly evaluated in a short t ime if 

some domain knowledge is employed. Linear transforms i n general, and mult iple constant 

mult ipl ier blocks i n particular, belong to this class. A l t h o u g h well-optimized heuristics 

exist for linear transforms design, we confirmed that novel implementations of mult iple 

constant multipliers can be designed using evolutionary algori thm. A s the design of opti­

ma l multiplierless implementations of linear transforms is known to be NP-complete , the 

probabil i ty that a novel implementat ion w i l l be discovered using an evolutionary approach 

even increases w i t h the increasing number of constants as well as precision bits. Us ing this 

method, d ig i ta l circuits w i t h to ta l output wid th higher than 850 bits have been successfully 

evolved. 
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Chapter 5 

Evolutionary Synthesis of Complex 
Combinational Circuits 

Efficient logic synthesis and opt imizat ion have been crucial for computer theory as well as 

computer industry for more than 50 years. Nowadays, many companies provide commercial 

tools that allow producing reasonable solutions (circuits) i n a reasonable time. However, 

the recent work i n the area of conventional synthesis has shown that these tools produce 

solutions that are far from op t imum for many circuit classes [35]. Evolvable hardware 

community has demonstrated that very efficient implementations of digi ta l circuits can 

be obtained using evolutionary computat ion, par t icular ly by means of Cartesian Genetic 

Programming [182]. Unfortunately, the evolutionary circuit design is able to discover in ­

novative designs only for smal l circuit instances (approx. up to 20 inputs and 100 gates). 

One of the key problems is a very t ime consuming fitness calculation which typical ly grows 

exponentially w i th increasing circuit complexity (number of inputs). 

The goal of this chapter is to show that it is possible to significantly reduce the number of 

gates for complex circuits, too. A s it w i l l be demonstrated, very compact implementations 

can be obtained if the fitness calculation utilizes a formal verification algori thm to check 

whether a candidate circuit is functionally correct or not. In order to decide the correctness 

of a candidate solution, we have employed SAT-based equivalence checking. T h i s approach 

translates the problem of functional equivalence of two combinational circuits to the problem 

of deciding whether a Boolean formula given i n conjunctive normal form is satisfiable or 

not. We have used SAT-based equivalence checking from several reasons. Fi rs t ly , the 

combinational circuits represented by C G P can be converted to Boolean formula i n linear 

t ime wi th respect to the number of C G P nodes. Secondly, as it w i l l be shown, the SAT-based 

approach enables to apply several opt imizat ion techniques specific for the evolutionary 

design. A n d finally, the SAT-based equivalence checking becomes to be a preferred method 

as it outperforms the B D D - b a s e d approaches in many problems. 

5.1 Theoretical Background 

The a im of this section is to provide the necessary background on the problem of checking 

a functional equivalence of combinational circuits that represents the fundamental part of 
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the proposed method. We w i l l firstly introduce the Boolean satisfiability problem and the 

existing S A T solvers. Then , the problem of functional equivalence checking w i l l be intro­

duced. We w i l l briefly summarize how the binary decision diagrams are used i n determining 

functional equivalence and outline the concept of the functional equivalence checking based 

on S A T . In addi t ion to that, the last part is devoted to the conventional logic synthesis. 

5.1.1 B o o l e a n Satisf iabi l i ty 

Boolean satisfiability problem is a well-known decision problem consisting of deciding 

whether the variables of a proposit ional formula can be assigned i n such a way that the 

formula evaluates to true. The research area devoted to this problem is today very active 

as many real-world problems can be effectively solved by transforming them to the S A T 

problem. However, S A T is also a typ ica l example of NP-comple te problem which means 

that a l l S A T solvers algorithms require i n worst-case exponential t ime wi th respect to the 

size of a given instance [36]. Despite that, modern S A T algorithms are extremely effective 

at coping wi th large problem instances and large search spaces [116]. In the field of digi ta l 

system design, the use of S A T has been investigated for more than twenty years and many 

powerful tools u t i l iz ing S A T solvers have been developed. Test pattern generation [111], 

identification of functional dependencies i n Boolean functions [112], technology-mapping 

[151], combinational equivalence checking [64] or model checking [123] represent successful 

examples of pract ical applications of S A T solvers. 

Mos t of the S A T solvers require to transform the solved problem into Boolean formula 

in conjunctive normal form ( C N F ) . C N F formula ip consists of a conjunction of clauses 

denoted as l o j . Each clause contains a disjunction of literals. A l i teral is either variable 

Xi or its complement - i X j . The clause can contain up to n literals providing there exists 

exactly n variables. Formula 5.1 contains example of a Boolean formula in C N F of three 

variables x\, X2 and £3 . The given formula is satisfiable because there exists at least one 

assignment that evaluates the formula to true, e.g. x\ = 0 , £ 2 = 1 , £3 = 1. 

f(xi, x2, £3) = ( " ^ l V -<X3)(xi V x 2 ) ( - i x i V x 2 V £3) A (x\ V ->X2 V x3) (5.1) 

The modern S A T solver algorithms can be divided into two groups, complete algorithms 

and incomplete algorithms. Most of the complete algorithms for solving the S A T problem 

for conjunctive normal forms are based on the Dav i s -Pu tnam procedure [40] and Davis-

Putnam-Logemann-Loveland procedure ( D P L L ) proposed i n 1962 [39]. S A T O [203], Satz 

[113], Chaff [133], B e r k m i n [63], M i n i S A T [51] and P r e c o S A T [19] represent typica l S A T 

solvers based on D P L L algori thm. The incomplete algorithms are based on a local search, 

e.g. genetic algorithms. The stochastic local search methods are used especially when there 

is no or l imi ted knowledge of the specific structure of the problem instances to be solved. 

5.1.2 C o m b i n a t i o n a l E q u i v a l e n c e C h e c k i n g 

Determining whether two Boolean functions are functionally equivalent represents a fun­

damental problem in formal verification. A l though the functional equivalence checking 
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is an NP-complete problem, several approaches have been proposed so far to reduce the 

computat ional requirement for pract ical circuit instances. 

T^1 

Figure 5.1: Equivalence checking of two combinational circuits using the a l l outputs ap­
proach. The combinational circuits are equivalent i f and only i f the output evaluates to 
zero for every input assignment. 

Mos t of the proposed techniques are based on representing the circuit by means of its 

canonical representation. Generally, two Boolean functions are equivalent i f and only if 

canonical representations of their output functions are equivalent. A brute-force method to 

determine combinational equivalence is to expand the combinat ional functions i n minterm 

form (or i n a t ru th table) and compare them term by term (row by row). Th is method 

represents an approach routinely used by E H W community. Clearly, this method runs into 

the problem of exponential size, because the number of minterms (or rows of a corresponding 

t ru th table) of a function can grow exponentially w i th the increasing number of input 

variables. In order to decide the functional equivalence problem i n reasonable time, we need 

a representation that is bo th canonical and compact. However, due to the NP-completeness, 

it is l ikely that a l l canonical representations are exponential i n size i n the worst case. In 

spite of that, there exist representations that provide reasonable results for many pract ical 

applications. 

The Reduced Ordered B i n a r y Decision Diagrams ( R O B D D ) represent the widely used 

canonical representation i n formal verification [196]. R O B D D is a directed acyclic graph 

that can be obtained by applying certain transformations on the ordered binary decision 

diagram. Determining whether two circuits represent the same Boolean function is equiv­

alent to determining whether two R O B D D S are isomorphic. Some of methods developed 

to determine whether two R O B D D S are isomorphic are based on graph-based algorithms. 

Other methods are based on the combination of R O B D D s wi th the X O R operation and 

checking whether the resulting R O B D D is a constant node (zero) [109]. 

The equivalence checking using B D D s is i l lustrated in Figure 5.2. The objective is to 

decide whether a combinational circuit CA exhibits the same Boolean function as combi­

national circuit CB', bo th of these circuits having three pr imary inputs and two pr imary 

outputs. Note that only the first outputs exhibit the same Boolean function. F i r s t l y a 
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miter circuit w i th Boolean function / is created (a). M i t e r consists of the checked com­

binat ional circuits combined using X O R gates. If CA and CB are functionally equivalent, 

/ must evaluate to zero for each input assignment. For i l lustrat ion, (b) contains common 

B D D while (c) contains R O B D D . Look ing at the R O B D D it can be easily determined that 

it does not contain a single zero node; thus the circuits are not equivalent. Moreover, using 

the R O B D D it can be determined that the circuits gives different results for example for 

the assignment x\ = X2 = £3 = 1. 

A l l these graph-based approaches rely on the fact, that the number of nodes i n the 

resulting graph w i l l be relative small; otherwise, the t ime of the R O B D D construction as 

well as the t ime of comparison w i l l be enormous. In practice, these methods are rarely 

implemented directly without any further circuit preprocessing. The ma in problems are 

the need for high memory resources due to the huge number of B D D nodes and significant 

t ime requirements. A l though many functions i n practice can be represented by polynomial 

number of B D D nodes wi th respect to the number of inputs, there are functions (e.g. 

multipliers) that always have the number of nodes exponentially related to the number of 

inputs [48]. The verification of such functions s t i l l represents a challenge. Note that A n d -

or-invert graphs ( A I G ) represent another canonic representation wi th s imilar properties. 

H i g h consumption of memory resources has motivated the researchers to look for al-
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ternative methods. Since the satisfiability solvers were significantly improved during the 

last few years, the SAT-based equivalence checking becomes a promising alternative to the 

B D D - b a s e d checking. In this case, the circuits to be checked are transformed into one 

Boolean formula which is satisfiable i f and only i f the circuits are functionally equivalent 

[64]. 

A s it has been mentioned, the S A T solvers require to transform the equivalence checking 

problem into Boolean formula i n conjunctive normal form. Unfortunately, the t ime com­

plexity of translat ion process transforming a circuit to op t imal C N F is exponential [184]. 

However, there exist subopt imal techniques that introduce a new variable for each logic 

gate having the linear complexity. For our purposes, the most suitable transformation of 

the circuit to C N F is represented by Tseit in 's a lgori thm proposed i n [179] that works as 

follows: Let us consider a combinational circuit CA w i th k inputs that is composed of n 
interconnected logic gates. Wi thou t loss of generality, let us restrict the set of a l l possible 

gates to the following one-input and two-input gates: N O T , A N D , O R , X O R , N A N D , N O R 

and X N O R only. Let yi = Cl(xn, 2^2) denote a gate i of CA w i th function Q, output yi and 

two inputs xn and 2^2 (1 < i l , i 2 < fe + n) . The Tse i t in transformation is based on the fact 

that the C N F representation ip captures the val id assignments between the pr imary inputs 

and outputs of a given circuit . Th i s can be expressed using a set of val id assignments for 

every gate. In particular, (p = uj\ A 0J2 A • • • A ojn where u>i(yi,xn,Xi2) = 1 if and only if 

the corresponding predicate yi = £l(xn,Xi2) holds true. D u r i n g the transformation a new 

auxil iary variable is introduced for every signal of CA- Hence the C N F contains exactly 

k + n variables and the size of the resulting C N F is linear w i th respect to the size of CA-

Let us assume that a common 2-input logic A N D gate should be transformed to C N F . 

The objective is to express a Boolean function of two variables y = AND(x\, X2) = x\X2 
by means of C N F u(y,xi,X2) that is evaluated to true i f and only if the predicate y = 
AND(x\,X2) holds true. The latter statement can be expressed using the implications 

from both directions as 

u(y,xi,x2) = (y x1x2)(x1X2 => y). (5.2) 

Us ing the identity P => Q = P V Q, the expression can be rewrit ten as 

u(y, xi, x2) = (y V x1x2){x1~X2~ V y). (5.3) 

Final ly , applying the second De Morgan 's law PQ = P V Q and distr ibutive law P V QR = 
(P V Q)(P V R), the equation can be rewrited as 

u(y,xi,X2) = ( p s i ) ( ^ V s 2 ) ( s i V i ^ V y ) . (5.4) 

Table 5.3 contains the C N F representation for the common logic gates. The Tseit in 's 
transformation can be applied to any Boolean function having arbitrary number of variables. 
The Boolean function wi th mult iple outputs is converted to C N F using the same approach 
however, each output is converted separately. Because both the size of resulting C N F and 
the complexity of the translat ion are linear, the resulting C N F does not necessary have 
the lowest possible number of literals. In order to improve the size of C N F , some k ind of 
preprocessing (e.g. gate merging or subsuming of inverters) can be introduced [184, 7]. 
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Gate Boolean function CNF representation 

xl — N O T _ > O — y = Xl (V Vx"i)(y V x i ) 

X > - \ V 
AND 1— 

X2 —1 J 
y = XiX2 (y V i i V x 2 ) ( y V i i ) ( y V i 2 ) 

y = xi V x2 (y V n V x 2 ) ( y Vx\){y V i 2 ) 

y = Xl © x2 (y V x i V x 2 ) ( y V i i Vx2)(y V i i V i 2 ) f e V a ; i V i 2 ) 

* . - r ~ v . v 

NAND D -
X _ | " J - y — XiX2 (y V x i V x 2 ) (y V x i ) (y V x 2 ) 

y = xi V x2 (y V x i V x 2 ) ( y V x i ) ( y V x 2 ) 

y = Xi®X2 (y V x i V x 2 ) ( y V x i V x 2 ) (y V x i V x 2 ) (y V x i V x 2 ) 

Figure 5.3: C N F representation for the common logic gates 

In order to check whether two circuits are functionally equivalent, the following scheme 

is usually used. Let CA and CB be combinat ional circuits, bo th wi th k inputs denoted as 

x\... Xk and m outputs denoted as y\... ym and y[... y'm respectively. The same approach 

as in the previous case can be used - the corresponding pr imary outputs yi and y[ are 

connected using the X O R - g a t e . The corresponding pr imary inputs are connected as well. 

The goal is to obtain one circuit that has only k p r imary inputs x\ ... x^ and m p r imary 

outputs z\... z m , Zi = XOR{yi,y'^). In order to disprove the equivalence, it is necessary 

to identify at least one X O R gate which evaluates to 1 for an input assignment, i.e. it is 

necessary to find an input assignment for which the corresponding outputs y\ and y\ provide 

different values and thus Zi = 1. Th is can be done by checking one output after another (i.e. 

a C N F is created and solved for each X O R gate separately) or by the a l l outputs approach 

(all X O R outputs are connected using the m-input O R gate; thus one C N F is created and 

solved only) . Note that both approaches are used i n practice. 

Figure 5.4 shows an example of equivalence checking based on S A T . The objective 

is to decide whether a combinational circuit C\ exhibits the same Boolean function as 

combinational circuit CB- F i r s t l y a miter circuit combining both of the checked circuits 

is created (a). The miter is transformed to the C N F (b) using a Tseit in 's transformation. 

For each gate, new variable is created and a C N F according to the Table 5.3 is generated. 

The obtained C N F instance is solved using a S A T solver. In this case, there exists an 

assignment ( x i . . .X13 = 1100000010101) that satisfies the C N F . It means that the circuits 

are functionally different. 

A l though the equivalence checking technology has been significantly improved during 
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a) 

(Xi + Xi)(^Xi + -1X4) 
( x 2 + X5)(^X<2 + ->I 5 ) 

( x 5 + - i x 6 ) ( x 3 + - . x 6 ) ( - . x 5 + -1X3 + xe) 

(-1X4 + X 7 ) ( - i X 6 + X 7 ) ( x 4 + X 6 + ^ X 7 ) 

(x2 + X g ) ( ^ X 2 + ->xs) 

( x 8 + x 9 ) ( x 3 + x 9 ) ( - i x 8 + + - i x 9 ) 

( X i + XIO)(X9 + X i 0 ) ( - i X i + -1X9 + -1X10) 
(-•Xg + X10 + X n ) ( x 9 + - .X10 + X n ) ( - ' X 9 + - • X i o + - . x n ) ( x 9 + X10 + - • x n ) 

(-1X7 + X10 + x i 2 ) ( x 7 + ^X10 + x i 2 ) ( - i x 7 + 
- • X i o + - . x i 2 ) ( x 7 + x 1 0 + - • x i 2 ) 

( - •x 6 + X n + X i 3 ) ( x 6 + - i X n + X i 3 ) ( " . X 6 + -•3:11 + ^x13)(x6 + x n + 
(X12 + X 1 3 ) 

b) 
Figure 5.4: Pr inc ip le of combinational equivalence checking using S A T . 

the last years even for circuits w i th mil l ions of gates, there exist some specific problems 

that remain to be extremely difficult. In fact, we have transformed one problem that i n 

the worst case w i l l take exponential t ime i n the number of its circuit inputs into another 

problem that i n the worst case w i l l take exponential t ime i n the number of its variables. For 

example, formal verification of ari thmetic circuits, especially i f mul t ip l ica t ion is involved, 

represents one of these problems [168]. It is known, that multipliers lack a compact canonical 

representation that can be buil t efficiently from gate level implementations. For example, 

the equivalence checking of multipliers using the B i n a r y Decision Diagrams is intractable 

as the number of nodes grows exponentially wi th the number of inputs. O n the other hand, 

the common SAT-based combinat ional equivalence checking is also impract ica l due to the 

large runtime requirements; despite the compact C N F representation, the number of paths 

traversed by the S A T solver grows exponentially w i t h the increasing number of inputs (see 

Figure 5.5). In order to improve performance of the S A T solver i n this part icular case, 

various techniques have been proposed to reduce the equivalence checking t ime [168, 6, 7, 

142]. A l l approaches attempt to exploit specific knowledge about the nature of the problem 

under verification. 
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E 

Figure 5.5: The t ime needed to perform the SAT-based equivalence checking for various 
multipliers, a) The runtime and number of branches for the Satz S A T solver, b) The 
runtime and number of decisions for the Minisa t S A T solver w i th preprocessing. Note that 
the C N F are rather small ; e.g for 11-bit mult ipl ier the C N F uses 1400 variables and consists 
of 4732 clauses [88]. 

5.1.3 C o n v e n t i o n a l L o g i c Synthesis 

A m o n g others, SIS [162] and A B C [17] represent the open synthesis tools routinely used i n 

the digi ta l circuit synthesis community. SIS (Sequential Interactive Synthesis) is a system 

pr imary designed for synthesis and opt imizat ion of sequential circuits. It consists of variety 

of algorithms and tools including combinational opt imizat ion techniques. SIS can synthe­

size combinational , synchronous and asynchronous circuits, generating either two-level or 

multi- level equations. The A B C , SIS's successor, is a growing software system for synthesis 

and verification of combinat ional as well as sequential circuits. The A B C supports various 

representations of logic functions such as the Sum of Products or B ina ry Decision D i a ­

grams, but most of the operations are performed over And-Inverter G r a p h representation. 

The basic operations include various conversions, minimizat ions, combinational equivalence 

checking, synthesis and technology mapping. 

Combinat ional logic functions are commonly specified by P L A or B L I F files where 

P L A stands for programmable logic array and B L I F stands for Berkeley Logic Interchange 

Format . The P L A file is an abbreviated t ru th table where a l l inputs are specified. However, 

it does not list products for which a l l the outputs are zero or undefined combinations. 

B L I F which is a list of gates lists a l l interconnected single output combinational gates 

(and latches i n case of sequential circuits) . Implementations of the synthesis tools support 

various operations wi th circuits, for example, it is possible to convert P L A to B L I F and vice 

versa. Ci rcui t s specified i n B L I F can also be mapped on a chosen set of gates, including 

lookup tables. B o t h of these representations can contain don't care symbols to simplify the 

specification. 

The B L I F describes the digi ta l circuit behavioral i n a hierarchical manner. Combina­

t ional as well as sequential d ig i ta l circuit can be viewed as a directed graph of combinational 

logic nodes and sequential logic elements. B L I F encodes each node using a t ru th table sim-
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i lar ly to the P L A . Figure 5.6 contains example of two possible B L I F representations that 

describe the same circuit consisting of five logic gates. The first case encodes the circuit 

using two-input Boolean functions. In the second case, the same behavior is modeled using 

two lookup tables ( 4 - L U T and 2 - L U T ) . 

a) 

#gate-level representation .names rt u 
.model tst_01.blif 11 1 
.inputs a b e d .names s t v 
.outputs x y 10 1 
.names a b r 01 1 
11 1 11 1 
.names b c s .names u x 
10 1 1 1 
01 1 .names v y 
11 1 1 1 
.names c d t .end 
11 1 b) 

#LUT-4 representation .names a b c d x 
.model tst_01_fpga.blif 1111 1 
.inputs a b e d .names b e y 
.outputs x y 00 0 

.end c) 

Figure 5.6: Example of two possible B L I F representations describing the same combina­
t ional function of four variables. The directive .inputs defines the list of input variables, 
.outputs is the list of output variables. Each .name directive begins a section that defines 
the t r u th table for a given list of variables. In this section, the input and output parts are 
separated by a space character. 

The synthesis process using A B C is based on D A G - a w a r e rewri t ing of a circuit rep­

resented using A I G [17]. Rewr i t ing is performed using a l ibrary of pre-computed A I G s 

(command rewrite), or collapsing and refactoring of logic cones w i t h 10-20 inputs (com­

mand ref actor). Accord ing to the documentation, i terat ing these two transformations and 

interleaving them wi th A I G balancing (command balance) substantially reduces the A I G 

size and tends to reduce the number of A I G levels. In order to simplify the process of syn­

thesis, A B C offers several synthesis scripts such as resyn, resyn2, and resyn2rs combining 

the mentioned commands. SIS contains s imilar commands and provides two basic synthe­

sis scripts, script.rugged and script.algebraic. Combina t iona l logic synthesis i n A B C using 

resyn and resyn2 is typical ly 10-100x faster compared to SIS scripts giving a comparable 
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quali ty measured i n terms of the number of A I G nodes and levels i n the resulting network. 
However, the resulting number of factored-form literals is typical ly larger compared to SIS 
[17]. The synthesis is followed by technology mapping to L U T s or standard cells (command 
map). 

Table 5.1: Recommended synthesis scripts for the SIS and A B C system 

SIS A B C 

read P L A file read P L A file 
script .rugged script .choice 
map map 
script _rugged: script .choice: 
sweep; eliminate -1 fraig_store; 
simplify - m nocomp resyn; fraig_store; 
eliminate -1 resyn2; fraig_store; 
sweep; eliminate 5 resyn2rs; fraig_store; 
simplify - m nocomp share; fraig_store; 
resub -a fraig_restore 
fx 
resub -a; sweep 
eliminate -1; sweep 
fulLsimplify - m nocomp 

In this work, we w i l l use the synthesis tools w i t h recommended (standard) setting 

which is represented by synthesis scripts given i n Table 5.1. The synthesis is followed by 

technology mapping into the M C N C technology l ibrary [195] l imi ted to 2-input gates only, 

for simplicity. 

5.2 Proposed Method 

The goal of proposed evolutionary circuit synthesis method (pr imari ly intended for the 

perfect synthesis) is to automatical ly create complex real-world circuits that w i l l contain 

fewer gates than the circuits routinely designed using conventional synthesis algorithms. 

Since the complete t ru th table evaluation is intractable for large combinat ional circuits 

(i.e. the circuits having more than 20 inputs), each candidate circuit produced by C G P is 

verified against the reference circuit using a SAT-based combinational equivalence checking 

algori thm. 

Accord ing to the prel iminary experiments, we have chosen M i n i S A T 2 (version 070721) 

S A T solver [50] because it exhibits smal l runtime requirements, has flexible interface and 

can be effectively embedded into a custom applicat ion. In addi t ion to that, M i n i S A T was 

recently awarded i n several industr ia l categories of the S A T competi t ion [50]. 

The method consists of three steps that w i l l be described i n detail in the following 

sections. In the first step, the opt imized circuit is synthesized using a conventional synthesis 

tool . The synthesis includes an opt imizat ion phase followed by mapping to the standard 

technology l ibrary as it has been described in the previous chapter. In this case, SIS, or 

its successor A B C can be ut i l ized. In the second step, the synthesized circuit is converted 
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from the B L I F file format to the C G P representation. F ina l ly , the algori thm based on C G P 

that employs a formal verification method to reduce the number of gates is used. 

The C G P is terminated if either the m a x i m u m allowed number of generations has been 

exhausted or a solution that fulfills a l l requirements has been discovered. The in i t i a l solution 

(the seed) is constructed by means of mapping of the circuit obtained from conventional 

synthesis and specified i n the B L I F format to the C G P representation. The mapping is 

straightforward since the C G P representation is i n fact a netlist. If the in i t i a l circuit consists 

of m gates, each of them possessing up to 7 inputs, then C G P w i l l operate wi th parameters 

nc = m,nr = 1,1 = nc,na = 7. A s it w i l l be explained later, the in i t i a l circuit is also 

transformed into the conjunctive normal form i n order to create a reference solution for the 

formal verification. 

5.2.1 F o r m a l Veri f icat ion in F i tness F u n c t i o n 

Assume that C is a fc-input/m-output circuit composed of n logic gates and the goal is 

to reduce the number of gates. The first step involves creating a reference solution (seed) 

by converting C to the corresponding C N F ipi using the approach described above. Let 

X = {x\,xi,..., XN} be a set containing the variables used wi th in ipi and | X | = N = k+n. 

The variables corresponding wi th the pr imary inputs w i l l be denoted as x\,...,Xk and 

the auxi l iary variables generated dur ing the transformation process w i l l be denoted as 

. . . , Xk+n- Let the last m variables XN-m+i, • • • >%N correspond w i t h the pr imary 

outputs of C. This step is i l lustrated i n Figure 5.7a). The reference circuit has k = 4 

inputs and consists of n = 5 gates. Thus, nine variables xi,...,xg have been created. 

W h i l e the variables x\,...,x± correspond wi th the pr imary inputs, the variables xs and xg 

refer to the pr imary outputs. 

The following steps are used i n order to calculate the fitness value of a candidate circuit : 

1. A new instance of the S A T solver is created and ini t ia l ized wi th the reference circuit 

C . Th i s comprises creating of iV new variables and submit t ing a l l clauses of <p\ into the 

S A T solver. 

2. A candidate solution is transformed to a list of clauses that are submit ted into the S A T 

solver. The transformation includes reading the C G P representation according to the 

indexes of the nodes. If a C G P node contributes to the phenotype, it is converted to the 

corresponding C N F according to Table 5.3, otherwise it is skipped. In particular, for 

each node a new variable is created and a list of corresponding C N F clauses is submitted 

into the S A T solver. The following input mapping is used i n order to form a C N F : If 

an input of the node situated i n row ir and column ic is connected to the pr imary input 

i, variable xi is used; otherwise variable xjy+i is used where i = (ic — l).nr + ir denotes 

the index of the corresponding node. Let variables corresponding wi th the pr imary 

outputs of a candidate solution be denoted x jv ' -m+i : • • • >XN' where N' is the number 

of converted C G P nodes. 

Note that although it is possible to include unused gates to C N F without affecting the 

reasoning, it is preferred to minimize the number of clauses and variables of the resulting 

C N F since it can decrease the decision time. 
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This step is depicted in Figure 5.7b). The ut i l ized candidate circuit contains four gates 

that contribute to the phenotype. For each gate, a new variable (xio, • • • ,£13) has to 

be created. Since the C N F of the reference circuit consists of ten variables, the first 

variable created i n this step is x io- The last two variables £12 and £13 correspond wi th 

the candidate solution's pr imary outputs. 

3. M i t e r circuit for combinational equivalence checking is created. The X O R gates are 

applied to each output pair which means that m new variables denoted as yi, • • • ,ym 

have to be created and C N F s of X O R gates yi = XOR(XN-i,x^'-i), i = 0 . . .m — 1 

have to be submit ted to the S A T solver. 

Figure 5.7c) shows the resulting structure of miter circuit as well as the C N F clauses 

submitted to the S A T solver during this phase. Since the opt imized circuit has two 

pr imary outputs, two new variables y\ and y2 have been created. 

4. In order to guarantee that the resulting C N F w i l l be satisfiable i f and only if at least 

one miter is evaluated to 1, the outputs of the miters generated i n the previous step 

have to be combined together. The solution is based on combining the outputs by 

m-input O R gate z = O R ( y i , . . . , ym). A s it can be easily derived, the corresponding 

C N F representation has the form of A i = i ( - , x i V z ) A (->z V x\ V • • • V £&). In order to 

provide a C N F instance capable of the equivalence checking, it is necessary to append 

the clause (z) that implies z = 1. However, this C N F can be simplified as follows 

/ \ ^ = 1 ( - i y j V z) A (-iz V yi V • • • V yk) A (z) = (yi V • • • V yt) because the z = 1 can be 

propagated through the clauses. So, i n order to finish the C N F , clause (y i V • • • V yk) 
has to be submit ted to the S A T solver (see last clause in Figure 5.7c). 

5. F ina l ly , the S A T solver determines whether the submit ted set of clauses is satisfiable 

or not. If the C N F is satisfiable, it means that there exists at least one assignment 

of input variables for which the reference circuits gives different response. Thus the 

fitness function returns -1 because the candidate circuit and the reference circuit are 

not equivalent; otherwise the number of ut i l ized gates is returned. 

The resulting C N F given i n Figure 5.7 submit ted to the S A T solver is satisfiable, thus 

the candidate circuit is thrown away since it receives bad fitness value. This result can 

be easily verified when the following input assignment x\ = £2 = ^3 = ^4 = 0 is used. 

For this combination, the output y\ is evaluated to 1. 

5.2.2 T i m e of C a n d i d a t e C i r c u i t E v a l u a t i o n 

In order to compare the t ime of evaluation for the common fitness function and the proposed 
S A T based fitness function, the pari ty circuit opt imizat ion problem has been chosen. The 
design of a pari ty circuit consisting of A N D , O R and N O T gates only is considered as a 
standard benchmark problem for genetic programming [101]. The relevant C G P parameters 
are as follows: A = 4, V = { A N D , O R , N O T , B U F } , I = Ng, nc = Ng and nr = 1 where 
Ng is the number of gates of the reference circuit . One gene of the chromosome undergoes 
the muta t ion only. The C G P implementat ion uses the parallel evaluation described i n 

70 



5.2. PROPOSED METHOD 

1 1 \ 
2 A N D V 

CNF 

(xi V - i x 5 ) ( x 2 V -^x5)(-^x1 V - i x 2 V x 5 ) 
(-iX 2 V l 6 ) ( ^ 3 V X 6)(X2 V l 3 V - iX 8 ) 
(X3 V -1X7) (X4 V -1X7) (-1X3 V -1X4 V X7) 
(x B V - i x 8 ) ( x 7 V - i x 8 ) ( - i x 5 V -nx7 V x 8 ) 
(-iX 6 VXg)(^X 7 V Xg)(x6 V l j V -1X9) 

a) reference circuit 

(-.x2 V xi0)(-.x3 V xi0)(x2 V x3 V - 1 X 1 0 ) 

(x3 V -ixn)(x4 V -ixn)(-ix3 V - 1 X 4 V in) 
(xn Vxi2)(-.Xn V-ixi2) 
( - 1 X 1 0 V X 1 3 ) ( - 1 X 1 1 Vxi 3)(xi 0 Vxn V - 1 X 1 3 ) 

b) candidate circuit 

1 \ 
2 A N D V 

c) miter 

(-•x8 V X12 V yi)(xa V - .X12 V yi) 
(-ixg V -1X12 V -ij/i)(l8 V X12 V -ij/i) 

(-1X9 V X13 V y2)(xg V - .X13 V y2) 
( - .X9 V ^Xi 3 V ~^y2)(xg V X13 V -.J/2) 

(2/1 V y2) 

CNF is satisfiable if 
xi = 0, x2 = 0, x3 = 0, x4 = 0. x5 = 0 : 

x6 = 0, x 7 = 0, x 8 = 0, xg = 0, x io= 0, 
x n = 0,xi2= l ,x i3= 0, yi = 1, 2/2 = 0 

Figure 5.7: Example of transformation of reference circuit , candidate circuit and miter to 
C N F 

Section 3.3.2. The in i t i a l circuit (seed) has been obtained by mapping a pari ty circuit 

consisting of X O R gates (parity tree) to the 2-inputs gates using A B C . 

Table 5.2 gives the mean evaluation t ime (out of 100 runs) for three fitness functions 

- the standard fitness function of C G P (tcgp), the opt imized and accelerated evaluation 

(tOCgp), and the proposed SAT-based method (tsat). Las t two columns contain the achieved 

speedup of proposed approach against the common C G P and accelerated C G P . Since tcgp 

increases exponentially w i th the increasing number of circuit inputs, the standard C G P 

approach provides a reasonable evaluation t ime for pari ty circuits that contain up to 22 

inputs. The opt imized evaluation is applicable for up to 24 inputs. In case of the SAT-based 

approach the evaluation t ime is almost similar independently of the number of candidate 

circuit inputs. The experiments were carried out on Intel Core 2 Duo 2.26 G H z processor. 

For rtj > 26 only extrapolated values are given as running the experiments is not tractable 

due to the problems wi th enormous memory as well as runtime requirements. 

The opt imized and accelerated C G P implementat ion works as follows. Because the 
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Table 5.2: The mean evaluation t ime for the standard fitness function of C G P tcgp, C G P 
wi th opt imized and accelerated evaluation tocgp and the SAT-based C G P tsat i n the task of 
fe-bit pari ty circuit . Symbol '* ' denotes extrapolated values. 

seed tcgp tocgp tsat tcgp-tsat tocgp-tsat 

Hi [gates] [ms] [ms] [ms] speedup speedup 

12 69 0.13 0.04 0.348 0.3 0.1 
14 87 0.54 0.16 0.438 1.2 0.4 
16 103 2.54 0.27 0.531 4.8 0.5 
18 115 11.45 1.20 0.722 15.9 1.7 
20 125 51.44 5.17 0.776 66.3 6.7 
22 135 220 25.11 0.804 273.6 31.2 
24 145 1328 139 0.903 1471 153.9 
26 171 5962* 626* 1.028 5799 608 
28 181 26748* 2820* 1.195 22383 2359 
30 199 119996* 12703* 1.211 99088 10489 
32 215 538327* 57207* 1.348 399352 42438 

in i t ia l populat ion already contains a fully functional solution and the el i t ism is impl ic i t for 

C G P , there w i l l be at least one perfectly working solution i n each populat ion. Hence we 

can now consider C G P as a circuit optimizer rather than a tool for discovering new circuit 

implementations from a randomly generated in i t i a l populat ion. The fitness evaluation 

procedure which probes every assignment to the inputs (i.e., 0 . . . 2ni — 1 test cases) is time 

consuming. In order to make the evaluation of a candidate circuit as short as possible, 

it is only tested whether a candidate circuit is working correctly or incorrectly. In case 

that a candidate circuit does not produce a correct output value for the j - t h input vector, 

j € {0 . . . 2ni — 1}, dur ing the evaluation, the remaining 2ni — j — 1 vectors are not evaluated 

and the circuit gets the worst possible score. Exper imenta l results show that this technique 

reduces the computat ional overhead (see Table 5.2), but it does not significantly contribute 

to solving the scalabili ty problems. Note that this technique cannot be applied for the 

randomly ini t ia l ized C G P because we have to know the fitness score as precisely as possible 

(i.e. the exact number of bits has to be calculated that can be generated by a particular 

candidate circuit) i n order to obtain a reasonably smooth fitness landscape. 

5.2.3 C G P - S p e c i f i c P e r f o r m a n c e I m p r o v e m e n t Techniques 

Al though the system can be used direct ly as it was proposed in the previous section, it is 

possible to introduce some techniques allowing the S A T solver even to increase the perfor­

mance. 

The speed of the SAT-based equivalence checking depends mainly on the number of 

paths that have to be traversed in order to prove or disprove the satisfiability. The number 

of paths among others increases wi th the increasing number of outputs to be compared, i.e. 

more outputs to be compared more t ime the SAT-solver needs for the decision. In order 

to simplify the decision problem and increase the performance, C N F reduction based on 

finding s tructural similarities were proposed i n literature. 
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In our case we can apply an elegant and simple solution. Since every fitness evaluation 

is preceded by a mutat ion, a list of nodes that are different for the parent and its offspring 

can be calculated. This list can be used to determine the set of outputs that have to be 

compared w i t h the reference circuit and only these outputs are included into C N F . This 

can be achieved by omit t ing the unnecessary outputs during the miter creation phase. 

In order to decrease the number of variables as well as the number of clauses i n N O T -

intensive circuits, the following approach is used. Let yi = NOT(xi), then the N O T gate 

can be subsumed to C N F of every gate that is connected directly to output yi. Us ing l i teral 

instead of yi and l i teral Xi instead of -ij/j respectively solves the problem. 

Note that proposed approach can easily be combined wi th other methods designed 

to speedup the SAT-based equivalence checking, e.g. circuit preprocessing, incremental 

approach or improved C N F transformation [44, 49, 7, 184]. 

Table 5.3: The mean t ime needed to evaluate a candidate solution for p la in and optimized 
SAT-based fitness method 

seed tsat tosat tsat • tosat 

circuit rii n0 [gates] [ms] [ms] speedup 

a p e x l 45 45 1408 49.80 15.52 3.21 
apex2 39 3 235 3.54 2.52 1.40 
apex3 54 50 1407 34.56 13.93 2.48 
apex5 117 87 784 17.45 5.07 3.44 

In order to evaluate the impact of proposed improvements, four complex circuits have 
been selected for experiments from the L G S y n t h 9 3 benchmark set. This benchmark set 
includes nontr iv ia l circuits specified in B L I F format that are t radi t ional ly used by engineers 
to evaluate quali ty of synthesis algorithms. The benchmark circuits were mapped to 2-input 
gates using SIS. Parameters of selected circuits as well as obtained results are summarized 
in Table 5.3. It can be seen that even i f the circuits exhibit higher level of complexity i n 
comparison wi th pari ty circuits, the average t ime needed to perform the fitness evaluation 
remains s t i l l reasonable. Note that the same experimental setup mentioned i n the previous 
section has been ut i l ized. Obta ined results show that the average t ime needed to evaluate 
a candidate solution has been reduced three times i n average by means of applying the 
proposed steps dur ing the transformation of a candidate solution to corresponding C N F . 

5.3 Evaluation of the Proposed Method 

This section surveys experiments performed to further evaluate the proposed method. In 

particular, the effect of populat ion sizing, C G P grid sizing, mutat ion rate and t ime allowed 

to evolution are analyzed for benchmark circuits. In al l experiments we used the optimized 

SAT-based fitness function. The experiments were carried out on a cluster consisting of 

Intel X e o n X5670 2 .4GHz processors using the Sun G r i d Engine ( S G E ) that enables to run 

the experiments i n parallel . 
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5.3.1 P o p u l a t i o n Size 

Table 5.4 surveys the best (minimum) and mean number of gates obtained for A = 1 

and A = 4 out of 100 independent runs. The number of evaluations was l imi ted to 

400,000 which corresponds wi th 100,000 generations for E S ( l + 4 ) and 400,000 generations 

for ES(1+1) . The mutat ion operator modified 1 gene of the chromosome, I = nc and 

T = { B U F , A N D , O R , N O T , X O R , N A N D , N O R } . The best values as well as mean values 

indicate that ES(1+1) performs better than E S ( l + 4 ) which corresponds wi th the assump­

t ion of very rugged fitness landscape. 

Table 5.4: The best and mean number of gates for different populat ion sizing. 

seed E S 1+4 E S 1+1 
circuit Hi n0 [gates] best mean best mean 

a p e x l 45 45 1408 1240 1267 1201 1255 
apex2 39 3 235 138 155 132 146 
apex3 54 50 1407 1336 1350 1331 1347 
apex5 117 87 784 736 746 730 743 
mean 959 863 880 849 873 

5.3.2 M u t a t i o n R a t e a n d T o p o l o g y of C G P e n c o d i n g 

Table 5.5 gives the best (minimum) and mean number of gates obtained for different mu­

ta t ion rates (1, 2, 5, 10, 15 genes) and C G P gr id setting ( n c x 1 versus n c x nfi). It w i l l be 
(i) 

seen below that the number of rows nr is variable. The number of evaluations was l imited 

to 400,000 and results were calculated out of 100 independent runs of ES(1+1) . Table 5.5 

also includes the mean number of bits that were included to create miters and the mean 

time of a candidate circuit evaluation. 

The best results were obtained for the lowest muta t ion rate. The higher muta t ion rate 

the higher mean number of gates i n the final circuit . W h i l e the mean number of miters 

grows wi th increasing of the mutat ion rate, the mean evaluation t ime is reduced. This 

phenomenon can be explained by the fact that higher muta t ion rate implies more changes 

that are performed in circuits and thus more miters have to be considered. O n the other 

hand, because of many (mostly harmful) changes i n a circuit it is easier to disprove the 

equivalence for S A T solver and so reduce the evaluation time. 

The settings nc x 1 or nc x nr do not have a significant impact on the resulting number 

of gates on average. Reca l l that the values of nc and nr are given by the circuit topology 

which is created by the SIS tool . The number of rows ( n ^ ) is considered as variable for 

a given circuit i n order to represent the circuit optimally. For example, the 1408 gates 

of the a p e x l benchmark is mapped on the array of 19x189 nodes; however only 1, 5, 7, 

14, 17, 26, 43, 57, 84, 117, 142, 177, 189, 187, 139, 89, 51, 27, 40 gates are ut i l ized i n 

columns i = 1 . . . 19. The advantage of using nr > 1 is that delay of the circuit is impl ic i t ly 

controlled to be below a given m a x i m u m value. 
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Table 5.5: The best (minimum) and mean number of gates, the mean number of miters and 
the mean evaluation t ime for different mutat ion rates (1-20 genes) and C G P grid setting 
( n c x 1 versus n c x nfi) 

mutated genes ( n c x 1) mutated genes ( n c X Ur 
1 2 5 10 15 20 1 2 5 10 15 20 

a p e x l - 1408x1 a p e x l - 19x189 
best 1240 1290 1351 1377 1382 1393 1260 1290 1351 1379 1385 1392 
mean 1269 1313 1367 1387 1396 1399 1287 1326 1369 1390 1395 1399 
mean (miters) 3.8 5 8.2 12.3 15.3 17.6 3.6 4.8 8 12.2 15.2 17.6 
mean tosat [ms] 15.8 11.2 8.8 7.7 7.7 7.2 11.8 11.5 9.7 7.8 7.9 6.7 

apex2 - 235x1 apex2 - 22x23 
best 164 159 166 181 195 200 165 167 172 186 194 201 
mean 170 172 181 195 203 209 171 174 182 195 205 209 
mean (miters) 1.8 2.1 2.5 2.7 2.8 2.9 1.8 2 2.5 2.7 2.8 2.9 
mean tosat [ms] 1.7 1.7 1.4 1.2 1.1 0.9 1.7 1.6 1.4 1.2 1.0 1.0 

apex3 - 1407x1 apex3 - 24x193 
best 1341 1358 1383 1392 1395 1396 1345 1362 1383 1392 1396 1398 
mean 1354 1369 1389 1397 1399 1400 1357 1372 1390 1397 1400 1401 
mean (miters) 2.6 3.6 6.2 9.4 12 14 2.6 3.5 6.1 9.4 11.9 14.1 
mean tosat [ms] 10.5 10.1 9.0 11.4 8.3 8.0 10.5 10.3 9.8 8.8 9.8 7.2 

apex5 - 784x1 apex5 - 34x117 
best 740 741 755 765 767 774 741 750 757 767 768 771 
mean 748 753 764 773 775 779 751 757 766 773 775 777 
mean (miters) 4.6 6.4 11.1 18.1 23.7 28.4 4.6 6.4 11.2 18.1 23.7 28.4 
mean tosat [ms] 3.3 3.1 3.0 2.9 2.9 2.7 3.1 3.2 2.9 3.0 3.2 2.9 

5.3.3 Seeding the Ini t ia l P o p u l a t i o n 

In order to investigate the role of seeding of the in i t i a l populat ion we have used two seeds 

obtained after 1 and 1000 iterations of the SIS script. Figure 5.8 shows that convergence 

curves for two selected L G S y n t h 9 3 benchmark circuits - a p e x l (the largest one) and ex4p 

(the highest number of inputs) - are very similar for those seeds. We can also observe 

how the progress of evolution is influenced by restarting C G P (every 3 hours; using the 

best solution out of 100 independent runs) which can be also considered as a new seeding. 

Figure 5.8 shows that repeating the synthesis scripts (SIS and A B C are compared) quickly 

lead to a smal l reduction of the circuit size; however, no further improvements have been 

observed i n next 1 hour. 

5.3.4 P a r i t y B e n c h m a r k s 

In Section 5.2.2 we compared the evaluation t ime of the standard fitness function and the 

SAT-based fitness function in the task of pari ty circuits opt imizat ion. Table 5.6 shows 

concrete results - the m i n i m u m number of gates that were obtained for 12-38 input pari ty 

circuits by running the proposed method for 3, 6, 9 and 12 hours. The results are aver­

aged from 100 independent runs of C G P wi th the following setting: ES(1+1) , 1 mutated 
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Figure 5.8: Convergence curves for the a p e x l and ex4p L G S y n t h 9 3 benchmarks. The mean, 
min imum and m a x i m u m number of gates from 100 independent runs of C G P when seeded 
using the result of the 1st i teration and the best result out of 1000 iterations of the SIS 
tool . A B C and SIS were repeated unt i l stable results observed. 

gene/chromosome, T = { B U F , A N D , O R , N O T } , and C G P array of n c x 1 nodes where nc is 

the number of gates i n the seed - the in i t i a l circuit created by SIS. C o l u m n T G denotes the 

number of gates of the op t imal solution which is known in this case. It can be calculated 

as 4w where w is the number of X O R gates i n the opt imized pari ty tree and 4 denotes the 

number of gates from T needed to form a single X O R gate. 

We can observe that the proposed method provides an op t imal solution for tii < 20 and 

almost op t imal solution for larger problem instances. Last column shows that the proposed 

method improves the original solution of SIS by 28-42 %. 

5.3.5 L G S y n t h 9 3 B e n c h m a r k s 

Table 5.7 shows the m i n i m u m and mean number of gates that were obtained for real-

world benchmark circuits of the L G S y n t h 9 3 suite (we have selected those w i t h more than 

20 inputs) by running the proposed method for 3, 6, 9 and 12 hours. The results are 

averaged from 100 independent runs of C G P wi th the following setting: ES(1+1) , 1 mutated 

gate/chromosome, T = { B U F , A N D , O R , N O T , X O R , N A N D , N O R } , and C G P array of 

nc x 1 nodes where nc is the number of gates i n the seed circuit . The in i t i a l circuit was 

obtained by converting the P L A files of L G S y n t h 9 3 circuits to the 2-input gates of T and 
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Table 5.6: The m i n i m u m number of gates that were obtained for pari ty circuits by running 
the proposed method for 3, 6, 9 and 12 hours. T G gives the op t imum solution. 

seed run-time T G relative 
Hi [gates] 3h 6h 9h 12h [gates] improv. 

12 69 45 44 44 44 44 36 % 
14 87 54 53 52 52 52 40 % 
16 103 64 61 60 60 60 42 % 
18 115 74 70 69 69 68 40 % 
20 125 82 79 77 76 76 39 % 
22 135 95 91 88 87 84 36 % 
24 145 110 101 98 96 92 34 % 
26 171 134 120 114 111 100 35 % 
28 181 151 132 124 121 108 33 % 
30 199 165 140 132 129 116 35 % 
32 215 186 169 159 143 124 33 % 
34 227 214 187 172 160 132 30 % 
36 237 220 192 168 162 140 32 % 
38 247 235 219 193 177 148 28 % 

opt imizing them by SIS. Last column shows that the proposed method improves the original 

solutions obtained from SIS by 22-58%. 

5.4 Improved Equivalence Checking 

Al though the SAT-based equivalence checking applied i n the fitness function allows to 

optimize large logic circuits using genetic programming, there exist circuits for which the 

runtime of state-of-the-art S A T solvers grows exponentially w i th the increasing size of the 

problem instance. 

One of the hard cases is the equivalence checking of the combinational multipliers where 

the t ime needed to decide whether two multipliers are functionally equivalent is enormous 

even for instances wi th operands of modest size. In order to improve the performance of 

S A T solvers in this part icular case, various techniques have been proposed i n literature. A 

common goal of the proposed techniques is to modify (preprocess) the input C N F instance 

in order to decrease the proving effort of the S A T solver. For example, a preprocessing tool 

which derives implications according to the computed impl ica t ion graph is proposed i n [7]. 

The implications are then used to reduce the verification time. A l though this tool is able 

to handle the multipliers having 32-bit operands, the run-time is enormous (5.5 hours). 

In order to shorten the decision t ime and improve the performance of the evolutionary 

approach, an enhanced method has been proposed. The knowledge of the dissimilarities 

between the reference circuit and checked (i.e. candidate) circuit is applied to reduce the 

size of C N F instance. Compar ing to the previous approach, this method does not require 

addi t ional reference circuit since a parental circuit serves simultaneously as a reference. It 

also means that as the size of the opt imized circuit gets smaller, the C N F derived from the 

reference requires fewer clauses. Thus, the performance has been improved at two different 
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Table 5.7: The m i n i m u m (even rows) and mean number (odd rows) of gates for L G S y n t h 9 3 
circuits obtained from the proposed method after 3, 6, 9 and 12 hours. 

seed run-time relative 
circuit Hi n0 [gates] 3h 6h 9h 12h improv. 

a p e x l 45 45 1408 1179 1083 1026 990 30 % 
1230 1108 1042 1001 29 % 

apex2 39 3 235 104 101 99 98 58 % 
119 102 100 98 58 % 

apex3 54 50 1407 1280 1223 1189 1167 1 7 % 
1333 1240 1202 1175 16 % 

apex5 117 87 784 675 649 640 633 19 % 
692 661 644 636 19 % 

cordic 23 2 67 32 32 32 32 52 % 
33 32 32 32 52 % 

cps 24 109 1128 870 788 737 698 38 % 
909 806 757 713 3 7 % 

duke 22 29 430 286 274 270 268 38 % 
296 279 272 269 3 7 % 

e64 65 65 192 133 130 129 129 33 % 
139 131 129 129 33 % 

ex4p 128 28 500 404 399 396 394 21 % 
414 401 397 395 21 % 

misex2 25 18 111 76 73 72 70 3 7 % 
82 74 72 71 36 % 

vg2 25 8 95 79 75 74 74 22 % 
83 77 74 74 22 % 

levels - by applying an approach that uses a variable reference and reducing the size of a 

miter circuit . In order to generate a C N F that is used to decide about the equivalence of 

the parental and candidate circuit , the proposed extension uses of the following steps. 

1. Because the evolutionary approach is based on the modify-and-test approach, we can 

easily determine the difference between the parent ind iv idua l and its modified (mutated) 

version. Let A be a set containing (a) the indexes of such gates where at least one gene 

has been modified and (b) the indexes of the outputs that have been modified. T h i s set 

can be constructed wi th in the mutat ion phase. 

The improved Equivalence Checking algori thm is i l lustrated i n Figure 5.9. The example 

contains the reference circuit and its mutated version. For the simplicity, only one 

mutat ion w i l l be considered i n this example. The second input of gate 7 has been 

mutated and is now connected to the output of gate 5. Since only one mutat ion has 

been executed, A contains one index referring the mutated gate A = {7}. Note that 

the gate indices correspond wi th the encoding introduced i n Section 2.1.5. The example 

circuit has four inputs indexed as 0 , . . . , 3 and consists of 7 gates indexed as 4 , . . . , 10. 

2. Another set, A e , contains the indexes of a l l the gates and outputs i n the mutated circuit 

which are directly or indirect ly connected to the outputs of the gates of A . The A e set 
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can be constructed i n linear t ime as follows. Let A e = A , i = 0 and dmin = min(A) be 

the lowest index of a modified gate (if it exists). Check a l l gates wi th the index greater 

than dmin (starting w i t h the lowest index). If at least one of the inputs is connected to 
(i) 

a gate whose index is stored i n A e then increase i and add the corresponding index 

to A e \ The same procedure is performed for a l l the pr imary outputs. A t the end, 

Ae = Af holds. 

In our example, the gates wi th indexes 8, 9, 10 are successively tested. The A e is 

ini t ia l ized to A ^ = A = {7}. Since the gate wi th index 9 is connected to gate 7 that 

is already in A^\ the gate is added to the set resulting i n A ^ = {7, 9}. F ina l ly , the x 
(2) 

output is also labeled as it is connected to previously labeled gate 9, thus A e = {7, 9, x}. 
(2) 

A s there are no other nodes to test, A e = A e = {7, 9, x}. 
3. In this step, the A r set which contains the indexes of a l l the gates in the reference 

parental circuit that contribute to any of the outputs listed i n A is constructed. S imi lar ly 

to the previous step, the A r set can be calculated i n linear t ime as follows. Let A ^ 

contains the indexes of the gates that are directly connected to the pr imary outputs 

listed i n A and i = 0. G o through al l the gates (starting wi th the highest index). If a 
(i) 

gate index is in A)- then increase i and add al l the gate indexes the part icular gate is 

connected w i t h to A^l\ A t the end, A r = A ^ . 

In our example, the set w i l l contain the gates contr ibut ing to the x output. Since there 

is only one gate connected direct ly to the output x, the A ^ is ini t ia l ized as follows 

A r 0 ' 1 = {9}. Then, the gates wi th indices 9,8,7,6 and 5 are successively tested i f their 

output is connected to a gate listed i n A r . The algori thm gradually generates the 

following sequence: A f ° = {9, 7}, A ^ 2 ) = {9, 7, 6} and finally A r = A ^ 3 ) = {9, 7, 6,4}. 

4. The Af set containing the indexes of a l l the gates of mutated circuit that have to be 

included to C N F is constructed. The Af set is determined as follows. Let i = 0 and A ^ 

contain the indexes of the gates that are directly connected to the pr imary outputs listed 

i n A e and whose indexes d meet the following condit ion: (d G A e ) V (d $ Ae A d £ Ar). 

Then, go through al l the gates of the mutated circuit (starting w i t h the highest index). 

If a gate is i n A ^ •* then for every input connected to this gate (with index d) which the 
following condit ion (d G A e ) V (d ^ A e A d ^ A r ) holds for, increase i and add d to A ^ . 

In our example, gate 9 and then gate 7 are labeled because both are labeled i n the 

reference as well as modified circuit . Gate 4 is not labeled because it is labeled in the 

reference circuit only. Gate 5 is labeled because it is connected to gate 7 but included 

neither i n modified nor reference circuits. Then , Af = {9, 7, 5}. 

5. F ina l ly , the S A T solver is applied on the clauses representing a l l the gates that are 

included i n A r and Af, and only those outputs that are in Ae. In our example, the 

final circuit consists of 8 gates (7 + 1 X O R ) . Th is is a significant reduction wi th respect 

to the common combinational equivalence checking approach described i n Section 5.1.2 

that lead to 17 gates (14 + 2 X O R + 1 O R ) . Us ing the improved version described i n 

Section 5.2, 15 gates (14 + 1 X O R ) are encoded to C N F . 
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Figure 5.9: Const ruct ion of the miter circuit (c) from the reference circuit (a) and modified 
(mutated) circuit (b) using the improved algori thm. The number of C N F clauses has been 
significantly reduced. The obtained C N F (d) consists of 23 clauses. The improved C E C 
proposed i n Section 5.2 generates 44 clauses. 

5.4.1 T i m e of C a n d i d a t e C i r c u i t E v a l u a t i o n 

In order to compare the t ime of evaluation for standard fitness function tec Pi the proposed 

SAT-based fitness function tsat (Section 5.2) and the enhanced SAT-based fitness function 

timp, the problem of the combinational mult ipl ier opt imizat ion has been chosen. 

The C G P parameters are as follows: the populat ion size A = 2, the set of bui lding blocks 

consists of 8 common gates T = { B U F , N O T , A N D , O R , X O R , N A N D , N O R , X N O R } , 1-

back parameter has been set to m a x i m u m value, i.e. I = Ng, where Ng is the number of 

gates of the in i t i a l (seed) circuit that has been created using conventional synthesis. One 

mutat ion per chromosome has been allowed, one-dimensional C G P structure has been used, 

i.e. nc = Ng and nr = 1. 

The C G P implementat ion uses the parallel evaluation described i n Section 3.3.2. The 

circuits were mapped to the 2-input gates using SIS. The experiments were carried out on a 

cluster consisting of Intel X e o n X5670 2 .4GHz processors using the Sun G r i d Engine ( S G E ) 

that enables to run the experiments in parallel. 
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Table 5.8 gives the mean evaluation t ime for the three fitness functions. The results 

were obtained from fifty 10-minute independent runs of C G P . In the last column, we can 

observe a significant speedup achieved using the improved SAT-based fitness function. 

Table 5.8: The mean evaluation t ime in milliseconds for three fitness functions i n the task 
of A;-bit mult ipl ier evolution. 

circuit na seed (Ng) tcgp tsat timp tsat/timp 

mutlipl ier 7 x 7 14 14 238 8 1 4 0,3 
mult ipl ier 8 x 8 16 16 416 45 250 8 33,1 
mult ipl ier 9 x 9 18 18 540 183 1 789 17 105,4 
mult ipl ier 10 x 10 20 20 680 901 6 431 44 146,0 
mult ipl ier 11 x 11 22 22 836 n / a 316 333 88 3 607,8 

5.4.2 L G S y n t h 9 3 B e n c h m a r k s 

Further experiments were performed using the L G S y n t h 9 3 benchmark set. In this eval­

uation, only circuits w i t h more than 20 inputs were considered. These benchmarks are 

intractable for common C G P based on the standard fitness function that enumerates a l l 

the possible input combinations. Table 5.9 compares the number of gates obtained after 3 

and 12 hours of opt imizat ion using the SAT-based fitness function (Ngsat) and improved 

SAT-based fitness function (Ngimp). The results clearly show the more runtime available, 

the more compact circuits obtained i n comparison to the reference circuit (the Ng column) 

synthesized using SIS. The Ne columns give the mean number of evaluations which has 

been performed wi th in a given t ime l imi t . The columns 'speedup' (Neimp/Nesat) show 

that the improved approach is able to evaluate more candidate solutions in a given time 

l imi t . The results were obtained from fifty independent runs of C G P . 

Figure 5.10 contains convergence curves for selected benchmark circuits - a p e x l (the 

largest one), ex4p (the highest number of inputs), apex3 (the second largest circuit) and 

apex5 (the second highest number of inputs, the th i rd largest c ircui t ) . The graphs contain 

mean, m i n i m u m and m a x i m u m number of gates from 50 independent runs of C G P for two 

variants of fitness function; the SAT-based fitness function proposed i n Section 5.2.1 and its 

enhanced version. We can observe that the improved SAT-based fitness function exhibits 

better convergence i n comparison w i t h the common SAT-based fitness function. 

5.5 Experimental Evaluation and Comparison with 
Conventional Synthesis 

5.5.1 Synthesis of L G S y n t h 9 3 B e n c h m a r k s 

Table 5.10 contains the best results obtained using the noncommercial and commercial 

tools. We have used the standard settings for the tools and technology l ibrary wi th the 

same set of gates as C G P , i.e. T = { B U F , N O T , A N D , O R , X O R , N A N D , N O R } . 

It can be seen that the commercial synthesis tools provide results that are comparable 

wi th the noncommercial synthesis tools such as A B C and SIS. The results from SIS and 
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Table 5.9: The min . number of gates obtained using the SAT-based fitness function (Ngsat) 
and improved SAT-based fitness function (Ngimp) for the L G S y n t h 9 3 benchmarks. The iVe 
columns give the mean number of evaluations i n mill ions. 

circuit Hi n0 

seed 

N9 Ngsat Ngimp 
3h runtime 

impr. Nesat speedup 

a p e x l 45 45 1408 1179 946 20% 0,22 0,50 2,3 
apex2 39 3 235 104 93 11% 2,66 10,04 3,8 
apex3 54 50 1405 1280 1099 14% 0,23 0,54 2,4 
apex5 117 88 784 675 618 8% 0,93 2,22 2,4 
cordic 23 2 67 32 32 0% 10,44 17,46 1,7 
cps 24 109 1128 870 643 26% 0,32 0,81 2,5 
duke2 22 29 430 286 264 8% 0,98 1,79 1,8 
e64 65 65 192 133 138 -4% 3,52 2,39 0,7 
ex4p 128 28 500 404 368 9% 1,69 6,79 4,0 
misex2 25 18 111 76 73 4% 8,48 12,28 M 
vg2 25 8 95 79 80 - 1 % 6,23 5,83 0,9 

seed 12h runtime 
circuit Hi n0 N9 Ngsat Ngimp impr. Nesat Neimp speedup 

a p e x l 45 45 1408 921 847 8% 0,22 0,49 2,2 
apex2 39 3 235 98 90 8% 3,20 10,77 3,4 
apex3 54 50 1405 1167 1038 11% 0,21 0,52 2,5 
apex5 117 88 784 633 613 3% 1,02 2,21 2,2 
cordic 23 2 67 32 32 0% 13,59 17,84 1,3 
cps 24 109 1128 698 585 16% 0,36 0,80 2,2 
duke2 22 29 430 268 260 3% 1,22 1,92 1,6 
e64 65 65 192 129 129 0% 3,37 2,46 0,7 
ex4p 128 28 500 394 349 11% 1,96 7,08 3,6 
misex2 25 18 111 70 71 - 1 % 9,97 13,36 1,3 
vg2 25 8 95 74 78 -5% 5,09 5,83 1,1 

A B C were obtained by iterative application of the synthesis script (1000 iterations). None 

of the tools has provide better results than C G P (when C G P is seeded using the first result 

provided by SIS) wi th the exception of apex5 where the number of gates is very similar. 

5.5.2 Synthesis of C o n v e n t i o n a l l y H a r d to Synthes ize C i r c u i t s 

Despite the massive development and more than 50 years of history of logic synthesis and 

opt imizat ion, the latest results provided by Cong and Minkov ich i n [35] or Schmidt and 

Fiser i n [53] indicate that the current synthesis tools are not able to cope wi th newly 

emerging designs. One part of the problem is that most of the currently used gate-level 

synthesis algorithms and processes have been established i n 1980's and they are being used 

i n today's commercial tools; thus the ever-increasing size of the digi ta l circuits becomes 

a problem. However, there have been discovered very smal l circuits, for which synthesis 

tools produce extremely bad results. Cong and M i n k o v i c h demonstrated that the number 
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Figure 5.10: Convergence curves for the a p e x l , ex4p, apex3 and apex5 L G S y n t h 9 3 bench­
marks. The mean, m i n i m u m and m a x i m u m number of gates from 50 independent runs of 
C G P for two variants of fitness function 

Table 5.10: The min . number of gates obtained using the noncommercial tools (SIS, A B C ) , 
commercial tools (C1 ,C2 ,C3) and the proposed approach based on C G P . 

circuit SIS A B C C I C 2 C 3 C G P impr. 

a p e x l 1394 1862 1439 1272 1368 847 33,4% 
apex2 151 225 221 195 299 90 40,4% 
apex3 1405 1737 1494 1332 1515 1038 22,1% 
apex5 751 768 728 609 921 613 -0,7% 
cordic 67 61 67 49 90 32 34,7% 
cps 1128 1109 1150 975 967 585 39,5% 
duke 406 356 417 366 357 260 27,0% 
e64 192 384 183 191 255 129 29,5% 
ex4p 488 523 468 467 555 349 25,3% 
misex2 111 121 94 89 108 71 20,2% 
vg2 95 113 88 83 109 78 6,0% 

of gates of the synthesized circuits is of orders of magnitude higher than the opt imum. This 

study has been extended in [53] where the authors shown that there exists a huge class of 

real-wo r id circuits for which synthesis fails and provides very poor results. This failure is 

a problem of both academic (SIS, A B C ) and commercial tools. If a large design is broken 

down to mult iple smaller circuits and failures of this k ind occur, we obtain an unacceptably 

large circuit without having any clue for it. 

Summarized, up to our knowledge no available conventional synthesis process is able 

to efficiently discover disclosed structures and to create new, non-standard structures. The 

synthesis mostly fully relies on local optimizations. Therefore, using some k ind of global 

opt imizat ion may overcome drawbacks of present local synthesis algorithms. Genetic pro-

83 



C H A P T E R 5. EVOLUTIONARY SYNTHESIS OF C O M P L E X COMBINATIONAL CIRCUITS 

gramming thus becomes an apparent opt ion. The major feature of G P is that it does 

not employ any deterministic synthesis algorithm; a l l the optimizations are being done 

implici t ly , without any structural biases. 

Experiments 

In order to evaluate the proposed system i n this task, we have used a set of hard-to-

synthesize benchmarks that have been published in literature. In particular, four different 

classes of benchmark circuits have been employed; difficult standard benchmark circuits, 

artificially created benchmark circuits, tautology and near-tautology benchmarks and non-

t r iv ia l pari ty circuits. E a c h benchmark circuit was generated by a specific synthesis process 

using A B C synthesis tool (see [209]). The obtained results (in terms of number of 2-input 

gates) are shown i n Table 5.12, 5.11, 5.13 and 5.14, respectively. Three set of experiments 

have been used. 

Firs t ly , we have compared the C G P - b a s e d opt imizat ion wi th A B C . B o t h of the tools 

are ut i l ized as pr imary opt imizat ion processes. The results obtained using A B C are shown 

i n column Nga, while the results provided by C G P are shown in column Ngc. The relative 

improvement (the number of gates obtained by C G P in comparison w i t h A B C ) is shown 

in the next column. It can be seen that C G P almost always outperforms A B C , sometimes 

significantly. The A B C resynthesis completely fails in these cases, while C G P is able to 

impl ic i t ly discover beneficial circuit structures. It is most apparent i n the tautology and 

near-tautology examples. In cases where the difference between A B C and C G P is negligible, 

most probably the global op t imum is approached by both methods. 

Secondly, the C G P has been used to optimize circuits obtained by a conventional syn­

thesis. E a c h of the presented benchmark categories requires a specific synthesis process, to 

obtain satisfactory results. Generally, it is the capabil i ty of X O R decomposition for diffi­

cult standard benchmarks and pari ty benchmark circuits and collapsing for the rest of the 

benchmarks [209]. We have processed the benchmarks by the respective processes and fur­

ther minimized by the A B C script, to obtain the best conventional solution. Then, we have 

processed these circuits by C G P . The obtained results are shown i n the Ngbc co lumn and 

the percentage improvement achieved is shown next. It can be seen that the conventional 

solution was almost always improved. 

Final ly , we have tr ied to further optimize the circuits opt imized by C G P by running the 

A B C resynthesis script. Surprising results were obtained, see columns Ngca for the result 

of C G P opt imized using A B C and Ngbca for the best conventional result opt imized by C G P 

and A B C . T h e results were almost always deteriorated by A B C . This gives us a hint that 

C G P is able to find a very deep local m i n i m u m i n the circuit size, to refine the structure 

so that no other synthesis can improve it further more. 

Difficult Artif icially Created Circuits 

The difficult circuit were firstly mentioned i n [35]. Even i f the commercial tools are able 

to manage these deceptive benchmarks without problems, the resulting structures contain 

more than 500-times higher number of gates i n comparison wi th the op t imum size. These 

circuits were called L E K O (Logic Examples wi th K n o w n Opt imum) and L E K U (Logic E x -
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amples w i th K n o w n Upper Bound) benchmarks. The Cong and Minkovich ' s L E K U circuits 

are basically constructed by intentionally introducing a bad structure into the replicated 

core circuit which made the circuit artificially large. This process may be performed on 

other, realistic benchmark circuits as well . Col laps ing a mult i- level network into a two 

level circuit completely destroys the original structure, which is then very difficult to be 

recreated. The results obtained for this class of circuits are shown i n Table 5.11. In al l the 

cases, the results provided by the conventional synthesis tools have been further improved 

by C G P . The average improvement was about 17%. 

Table 5.11: The min ima l number of gates for artificially created difficult benchmarks 

circuit rii n0 N9 N9a N9c 
imp. N9b N9bc 

imp. N9ca Nah 
ybca 

L E K U - C B 25 25 759 216 175 19% 235 181 23% 196 189 
L E K U - C B _ c 25 25 699 214 178 17% 211 176 17% 182 189 
L E K U - C D _ c 25 25 932 224 186 17% 195 177 9% 195 180 

Difficult Standard Benchmark Circuits 

Designers have objected to the Cong and Minkovich ' s L E K U circuits that they are ar­

tificially constructed. However, Fiser discovered circuits from the standard L G S y n t h ' 9 3 

benchmark set, which are difficult to synthesize as well . Par t icular ly, the capabil i ty of the 

X O R decomposition is required to synthesize these circuits properly. Wi thou t using the 

X O R decomposition, the synthesized circuits are sometimes more than 25 times larger. U n ­

fortunately, the X O R decomposition is not performed i n a l l the available tools (SIS, A B C ) , 

except of B D S [194]. M a n y commercial tools are missing this abi l i ty as well . Table 5.12 

shows that the conventional synthesis using A B C completely fails as it provides the solu­

tions that are of magnitude higher than the op t imum (see columns Nga and Ngc). The 

C G P provides the results that are about 90% better than the solutions provided by A B C . 

Table 5.12: The min ima l number of gates for difficult s tandard benchmark circuits 

circuit na N9 N9a N9c 
imp. N9b N9bc 

imp. N9ca ybca 

9sym 9 1 329 280 27 90% 57 48 16% 37 50 
rd84 8 4 713 395 31 92% 85 32 62% 35 33 
t481 16 1 1263 420 21 95% 11 11 0% 15 11 

Tautology and Near-Tautology Benchmarks 

A different k ind of artificially complex benchmarks can be created by generating large 

random sum of products (SOPs) . If the number of product terms i n the S O P exceeds a 

part icular threshold, the function turns into tautology. Two-level min imiza t ion must be run 

in order to discover the true nature of functions described by this needlessly large amount 

of S O P s [209]. However, A B C and commercial tools do not do so. If this S O P (in form of a 

P L A or mapped into technology) is submit ted to the synthesis, huge circuits are produced 

as it is demonstrated i n Table 5.13. Compar ing to A B C , the proposed C G P - b a s e d synthesis 
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tool is able to discover significantly better structures requiring only a fraction of the original 

number of gates. Note that the t a u t l benchmark circuit is implemented using X N O R gate 

which inputs are connected to the same input variable. 

Table 5.13: The min ima l number of gates for tautology and near-tautology benchmarks 

circuit in nQ Ng Nga Ngc imp. Ngb Ng^ imp. Ngca Ng^ 

big-pla 
t a u t l 

25 1 15744 
25 1 15397 

14940 24 100% 29 24 17% 24 24 
14583 1 100% 1 1 0% 1 1 

Parity Benchmark Circuits 

In order to obtain difficult benchmarks circuits, F išer have constructed new benchmark 
circuits by appending a X O R tree to the circuit 's outputs, to obtain one pari ty bit according 
to the [53]. The upper bound of the area is the sum of the original circuit size and the size 
of the X O R tree. The circuit may be then resynthesized, w i th the hope of decreasing its 
size. The results for the standard benchmark circuits supplemented wi th the pari ty three 
are shown in Table 5.14. 

Table 5.14: The min ima l number of gates for the standard circuit benchmarks supplemented 
wi th pari ty tree 

circuit m n0 N9 N9a N9c 
imp. N9b N9bc 

imp. N9ca Nah 
ybca 

9sym 9 1 217 214 37 83% 57 46 19% 38 49 
a l u l 12 1 1085 795 52 93% 38 38 0% 57 38 
b4 33 1 9645 5008 5003 0% 279 98 65% 4535 104 
c8 28 1 1605 486 71 85% 53 51 4% 68 53 
cc 21 1 799 347 36 90% 54 36 33% 40 38 
count 35 1 1608 921 78 92% 57 54 5% 82 58 
ex7 16 1 1985 1392 719 48% 118 74 37% 726 87 
i l 25 1 759 397 37 91% 37 35 5% 36 35 
in6 33 1 5046 2386 798 67% 118 106 10% 759 111 
misex3c 14 1 5869 4445 4444 0% 492 358 27% 4463 355 
s l238 32 1 66633 52590 35116 33% 1916 897 53% 26726 935 
s298 17 1 2294 1483 52 96% 51 36 29% 61 41 
s344 24 1 3387 1910 76 96% 76 61 20% 80 59 
s349 24 1 3619 1950 79 96% 82 63 23% 80 73 
s420.1 34 1 4098 2521 2541 - 1 % 80 80 0% 2281 81 
s420 35 1 2535 1175 141 88% 123 108 12% 148 109 
signet 39 1 49167 36974 45143 -22% 8304 7453 10% 34991 7318 
t e r m l 34 1 2397 918 80 91% 136 95 30% 75 101 
tt2 24 1 13800 9828 13140 -34% 66 55 17% 10414 62 

We have confirmed the findings published in [53]. The conventional synthesis tools are 

not able to minimize the circuit size efficiently, unless it is collapsed into a two-level S O P 

network and resynthesized. This process fully resembles the construction of the artificial 

L E K U benchmarks. The results of the resynthesis are spun between two extreme cases: at 
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the „ g o o d " end, the circuit size is significantly reduced wi th respect to the upper bound, 

at the other end the size explodes. The reason for the size explosion is the same as for 

the L E K U benchmarks - the obtained S O P is too large and the subsequent synthesis is 

not able to rediscover the original circuit structure. The need for X O R decomposition has 

been emphasized even more i n these experiments. Tools not able to perform the X O R 

decomposition sometimes produced results 50-times larger than the upper bound. 

5.6 Summary 

A s it has been presented in Chapter 3, the current methods of evolutionary synthesis are 

capable of evolving either smal l and simultaneously innovative circuits or larger circuits 

that are not interesting from the implementat ion point of view because of their inherent 

inefficiency. Accord ing to our best knowledge, when a perfect synthesis scenario is consid­

ered, the most complex combinational circuit has been successfully evolved by Stomeo i n 

[172]. This circuit , specified by a t ru th table, consists of tens of gates and has 17 pr imary 

inputs and one pr imary output. Even if this result can be considered by the E H W commu­

nity as a great success because it was evolved from scratch, it has a marginal significance 

from the viewpoint of the logic synthesis because commercial synthesis tools are able to 

handle the combinational circuits having hundreds of inputs and thousands of gates. The 

main reason that prevents E A from evolving large and real-world competitive circuits is 

pr imar i ly caused by the problem of scalabili ty of the fitness evaluation. 

We have shown that it is possible to eliminate the mentioned scalabili ty l imits by intro­

ducing a different fitness evaluation procedure. The proposed method is based on applying 

formal verification techniques that allow a significant acceleration of the fitness evaluation 

procedure, overcoming thus the major bottleneck of evolutionary design. In particular, 

we have used a S A T solver i n the fitness function that allows significant reducing of the 

computat ional requirements of the fitness function for such combinational circuit opt imiza­

t ion problems for which a fully functional in i t i a l solution exists before the opt imizat ion is 

started. Proposed algori thm can produce complex and simultaneously innovative designs, 

quite competit ive w i th the state-of-the art logic synthesis tools. This method can poten­

t ia l ly be used to minimize the area on the chip, delay of the circuit , power consumption or 

to minimize the number of test vectors. 

Compar ing to the standard C G P , we have demonstrated that the proposed method is 

able to evaluate over 40000 x more candidate solutions i n the same time when the com­

mon 32-input pari ty benchmark problem is considered. In addit ion, we have introduced 

some CGP-spec i f ic techniques that are able to further improve the performance of a S A T 

solver. Us ing the multipliers, known as hard benchmark problems, we have shown that 

the enhanced version of the proposed method tracking the changes between parent and its 

offspring is able to provide the addi t ional speedup over 3000 when the 11-bit mult ipl ier 

is considered. Note that the speedup increases mostly exponentially w i th the increasing 

complexity of the solved problem. 

The proposed technique has been evaluated using the common L G S y n t h 9 3 benchmark 

circuits. It has been shown that this approach enables to optimize large logic circuits having 
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from tens to hundreds of inputs and thousands of logic gates. The most complex L G S y n t h 9 3 

benchmark circuit (apex5) consists of 784 gates, 117 pr imary inputs and 88 pr imary outputs. 

Us ing another benchmark set, we have demonstrated that the proposed method can handle 

the circuits that are known to be hard for common synthesis tools. These circuits consist 

from several hundreds to several thousands of logic gates. The largest circuit that has been 

successfully processed by the proposed evolutionary method contains 66633 logic gates, 32 

pr imary inputs and one pr imary output. 

We have also demonstrated that despite the fact that various logic synthesis and opti­

mizat ion tools have been proposed i n the recent 50 years, the logic synthesis /opt imizat ion 

problem has not been completely solved yet. Us ing the L G S y n t h 9 3 benchmark we have 

shown, that the best-obtained results of conventional synthesis conducted using academia 

as well as commercial tools can be improved by the proposed method i n 20-40%. The 

experiments w i th the hard-to-synthesize circuits show that a significant area improvement 

(33-99%) can be reached using the proposed evolutionary approach. In this case, C G P 

is able to discover structures, for which conventional synthesis completely fails. A s a re­

sult, C G P can be efficiently used as a pr imary circuit opt imizat ion process, which, as we 

have found by processing numerous benchmark circuits, universally produces good results, 

regardless the original circuit structure. 

The ma in drawback of the C G P opt imizat ion is a long runtime (several hours) required 

to obtain reasonable improvements, especially for large circuits. However, for the cost 

of runtime, C G P is able to produce results that conventional synthesis is never able to 

reach. The long runtime drawback may be par t ia l ly compensated by running C G P as a 

post-synthesis process. The original circuit is first maximal ly reduced by a conventional 

synthesis and then opt imized by C G P . A s a consequence, the circuit size can be further 

reduced. 

A l though the results for L G S y n t h 9 3 benchmarks are very encouraging, the SAT-based 

combinational equivalence checking can definitely perform unsatisfactory for some problem 

instances. However, the proposed method is assumed to be able to handle large-scale 

opt imizat ion problems if more advanced version of S A T solver is ut i l ized. 
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Chapter 6 

Evolutionary design of nonlinear 
image filters 

Image preprocessing, which includes image filtering, edge detection, histogram equalization, 

brightness and contrast adjustment, and other low level operations over images, is the 

first stage of many applications. A s low-cost digi ta l cameras have entered to almost any 

place, the need for high-quality, high-performance and low-cost image filters is of growing 

interest. It is a well-known fact that the quali ty of preprocessing significantly influences 

the accuracy, reliability, robustness and performance of subsequent image processing steps 

such as segmentation, classification, recognition etc. In order to perform the required 

preprocessing (such as image filtering, edge detection etc.) a problem-specific filter has to 

be created. Tradit ionally, engineers use a l ibrary of predefined filters and operators and 

manually tune promising variants of these filters for a given applicat ion. In the process of 

tuning, various properties of filters might be opt imized, in particular, their coefficients and 

structure [24, 47, 145]. There are also other important parameters to be optimized. W i t h 

emerging of new portable devices, the number of operations should be opt imized since it has 

impact on the performance as well as power consumption. In case that the filter should be 

implemented as a d igi ta l circui t , the parameters such as area, delay and power consumption 

play an important role. 

Historically, linear filters became the most popular filters i n image processing. The 

reason of their popular i ty is caused by the existence of robust mathematical models which 

can be used for their analysis and design. However, there exist many areas in which the 

nonlinear filters provide significantly better results [46]. The advantage of nonlinear filters 

lies i n their abi l i ty to preserve edges and suppress the noise without loss of detail . The 

success of nonlinear filters is caused by the fact that image signals as well as existing noise 

types are usually nonlinear. A s there is no suitable general theory for the design of non­

linear operators, evolutionary design techniques have been ut i l ized to accomplish this task 

in the recent years. The pioneer work i n this area has been done by Sekanina who applied 

Cartesian Genetic Programming in the image filter design task [157]. 

Sekanina has shown that evolutionary design techniques are able to generate slightly 

better solutions than the standard filters [158]. Unfortunately, his direct evolutionary de­

sign approach which works for low noise intensity does not work for higher noise intensities. 
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The goal of the research presented in this chapter is to show that by an innovative com­

binat ion of evolved designs and conventional designs we are able to propose the systems 

that exhibit at least comparable quali ty w i t h respect to the conventionally used approaches 

and simultaneously significantly reduce the overall implementat ion cost on a chip i n com­

parison to standard approaches based on sophisticated filtering schemes, such as adaptive 

median filter. In this research, the evolutionary design approach is presented as a tool that 

can automatical ly discover nonlinear image filters that are competit ive w i th filters designed 

conventionally i n terms of filtering quali ty as well as implementat ion cost on a chip. 

6.1 Theoretical Background 

In this section, we w i l l briefly introduce the principles of the image filters. In order to 

compare the results produced by C G P we w i l l introduce the most popular conventional 

methods that are ut i l ized to suppress selected types of non-linear noise. In order to demon­

strate the advantage of the evolutionary designed filters, the conventional filters are also 

discussed from the hardware implementat ion point of view. In this research we w i l l take 

into account grey-scaled images only; however, the concept can be natural ly extended to 

color images. 

6.1.1 Image F i l t e r s a n d S l i d i n g W i n d o w F u n c t i o n 

The image filters operate i n the spatial or frequency domain. W h i l e the linear filters are 

implemented in frequency domain, the software as well as hardware implementations of 

non-linear image filters operate i n the spatial domain. A s spatial filters operate w i th pixel 

values i n the neighbourhood of the centre pixel (so-called filter window or kernel), it is 

necessary to implement a local neighbourhood function (sometimes referred to as a sliding 
window function). Th is function is applied separately on a l l p ixel locations and is typical ly 

invariable for a l l locations (i.e. spatially invariant). Figure 6.1 shows the concept of sl iding 

window function. 

Filtered image 

Figure 6.1: The concept of sl iding window function. The output of the image filter for 
location [x,y] (x,y = 1) is calculated according to a value of the pixel situated at location 
[x, y] and its surrounding pixels. In this case, 3 x 3 sl iding windows is considered. 

Figure 6.2 shows the most common hardware architecture of the sl iding window function 

that uses the row buffers. Th is approach assumes that one image pixel is read from memory 

in one clock cycle. The pixels are read row by row. W h e n buffers are filled (which is done 
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wi th a fixed latency), this architecture provides the access to the entire pixel neighborhood 

every clock cycle. Note that when local neighborhood function is applied at edge locations 

some of the neighborhood is not defined. In order to cope wi th this problem and produce 

the images w i t h the same size, the undefined pixels can be assigned a value of 0, or can 

reflect p ixel values across each edge. 

Neighborhood registers Row buffers 

Input 

8 bits/pixel 
W -1,-1 W 

0,-1 
w 

1,-1 length = image width - 3 

w 
-1,0 

w 
0,0 

w 
1,0 length = image width - 3 

w w 
0,1 

w 

3x3 window based filter 
Output 

Figure 6.2: Implementation of a 3 x 3 filter window. Row buffers are used to reduce the 
memory access to one pixel per clock cycle. 

The length of the shift registers depends on the wid th of the input image. In order to 

implement a sl iding window, several image rows have to be stored. The number of rows 

corresponds to the window size. Another approach is to choose a fixed row length and divide 

the input image into strips. However, this method leads to decreasing of the performance 

due to data overlapping (when compared to the usage of full-length row buffers). 

W h i l e the architecture places the lowest demand on external memory bandwidth , the 

highest demand is placed on internal memory bandwidth . This architecture is suitable for 

F P G A devices as the modern F P G A s contain large amount of fast embedded memory. If 

the embedded memory is not available, it is necessary to access the external memory for 

more than one pixel in one clock cycle. Thus this approach requiring the external memory 

can be efficient only for smal l window sizes. In consequence of that it is rarely used in high 

performance image processing since the memories represent a performance bottleneck. 

A s the implementat ion cost of buffers implementat ion depends on the size of the input 

image and as the buffers have to be implemented for every window-based spatial filter, we 

w i l l not consider this implementat ion cost i n the comparisons which w i l l be performed later. 

6.1.2 Impulse Noise 

Due to the imperfections of image sensors, images are often corrupted by a noise. The 

impulse noise is the most frequently referred type of noise. In most cases, impulse noise is 

caused by malfunctioning pixels i n camera sensors, faulty memory locations i n hardware, 

or errors i n the data transmission. We distinguish two common types of impulse noise: 
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the salt-and-pepper noise (commonly referred to as intensity spikes or speckle) and the 

random-valued shot noise. For images corrupted by salt-and-pepper noise, the noisy pixels 

can take only the m a x i m u m or m i n i m u m values. In case of the random-valued shot noise, 

the noisy pixels have an arbi trary value. Impulse burst noise represents another type of 

impulse noise that consists of sudden step-like transitions between two or more discrete 

values at random and unpredictable times. In fact it is a variant of a random-valued shot 

noise that is characterized by longer durat ion. The main reason for the occurrence of bursts 

is the interference of frequency modulated carrying signal w i th the signals from other data 

sources. Th is interference can occur several times during a transmission of a single image 

and corrupt several image pixels i n one or more neighboring rows. Impulse burst noise is 

also often accompanied by salt-and-pepper noise and mult ipl icat ive noise [96]. In case that 

the images are transferred row-wise, the impulse burst noise causes horizontal strikes. The 

similar effect occurs i f the images are transferred column-wise. The impulse burst noise is 

a specific k ind of noise which is difficult to filter even if a non-linear filter is used. W i t h 

the increased noise intensity, more consecutive rows may be affected and subsequent noise 

filtering becomes difficult as the filtered value need not be determined according to the 

values of the neighboring pixels. Therefore, a larger filter window ought to be considered 

i n order to obtain a satisfactory quali ty of the filtered image. 

(a) original image (b) 5% salt-and-pepper noise (c) 5% impulse noise (d) 10% impulse burst noise 

Figure 6.3: Image consisting of 384 x 256 pixels corrupted by salt-and-pepper noise wi th 
p = 5% (b), random-valued impulse noise wi th p = 5% (c) and impulse burst noise wi th 
p = 10%, q = 128 (d). For the i l lustrat ion, a snapshot of the first three rows represented 
as one-dimensional signals is depicted below each image. 

The shot noise and impulse noise in general can be modeled as follows. Consider image 

/ and observation image J of the same size w x h pixels. The image J corrupted by the 

impulse noise can be expressed as 

j _ f Nxy w i th probabil i ty p 
'" \ Ixy w i t h probabil i ty 1 — p 

where Ixy and Jxy denotes the pixel values at locat ion (x, y) of the original image and 

the noisy image respectively, Nxy a noise value independent on Ixy, x = 1 , . . . , w and 
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y = l,...,h. The p is the probabi l i ty that a given pixel is affected by a noisy value, 

0 < p < 1. For gray level images encoded using 8 bits per pixel , the Nxy can take up to 

256 discrete values. In case of the salt-and-pepper noise, Nxy is equal to 0 or 255 each wi th 

equal probabili ty. In case of the random-valued shot noise, Nxy is usually modeled using 

the discrete uniform distr ibut ion. 

The burst noise can be characterized using two parameters: p and q. S imi la r ly to the 

previous model, let p denote a probabil i ty that a certain pixel is affected by the noise. 

Let q be a parameter which determines the max ima l durat ion of a burst expressed as the 

max ima l number of consecutive pixels which are affected by an impulse. The number of 

burst fragments in the image depends on bo th these parameters; the higher q, the lower 

number of burst fragments for a given value of p. F igure 6.3 shows example of an image 

corrupted by various types of impulse noise. 

6.1.3 N o n l i n e a r Impulse No i se F i l t er s 

Tradit ionally, the impulse noise is removed by a median filter [3] which represents the most 

popular nonlinear filter even i f the quali ty of the filtered images is poor i n comparison wi th 

other advanced techniques. The output of the median filter is calculated as the median value 

of the kernel. The success of the common median filter is mainly based on its simple and 

efficient software as well as hardware implementat ion which is straightforward and does not 

require many resources. However, the standard median filter gives a mediocre performance 

even for images corrupted by impulse noise wi th lower intensity. Even i f the common median 

filter u t i l iz ing 3 x 3 or 5 x 5-pixel window is able to repair a l l the noisy pixels for the noise 

intensity less than approx. 10-20%, it simultaneously degrades the filtered image because 

it replaces a l l the pixels w i th the median value. W h e n the intensity of noise is increasing, 

a simple median filter leaves many shots unfiltered. In order to increase the performance, 

it is possible to increase the size of filter window, however, the larger filter kernel results i n 

loosing of more details. 

The median-based filtering approach has been intensively studied and extended to 

promising approaches such as center weighted median filter ( C W M F ) [94], more general 

weighted median filter ( W M F ) [22] or order statistic and weighted order statistic filter 
[117]. A good survey of the existing methods can be found for example in [155]. Nev­

ertheless, a l l these median-based methods tend to smudge the image since applying the 

median filtering to the entire image would inevi tably remove details presented in the im­

age. Almos t a l l alternatives to median filters have already been implemented i n hardware 

[52, 25, 115, 29, 108, 28]. 

In order to overcome the main drawback of the median-based filters, a switching-based 
median filtering concept has been proposed [173]. Th is concept splits the filtering process 

into two parts - noise detection and noise replacement. The noise detector determines 

which pixels are affected by the impulse noise and only these pixels are replaced. Noise 

detection can be based on various concepts: a median-based filter [173], fuzzy techniques 

[150] or neural networks [95]. However, the common problem of the proposed detection 

mechanisms is the necessity to predetermine the value of a threshold parameter which 

significantly influences the filtering quality. 
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The adaptive median filter ( A M F ) proposed i n [85] is a robust approach which tries to 

identify and replace the affected pixels only. In contrast w i th the previous approaches, the 

detection method is based on the statist ical ordered filters w i th gradually increasing kernel 

size. Compared to the common median-like filters, A M F provides significantly better results 

even for images corrupted wi th high intensity impulse noise. S imi lar ly to the median-based 

approaches, the adaptive median filter can be efficiently implemented i n hardware [218]. 

In addi t ion to filtering, adaptive median filters can be also used as detectors of corrupted 

pixels (detection statistics) [199, 136]. 

Apa r t from the non-iterative algorithms, the iterative algorithms such as pixel-wise me­
dian of the absolute deviations from the median ( P W M A D ) [37] or directional weighted 
median filter ( D W M F ) outl ined i n [45] have been introduced. These approaches provide 

very good results i f the random valued impulse noise is considered; they do not contain 

any varying parameters and require no previous t ra ining or opt imizat ion. The main dis­

advantage is apparent - the iterative approach places higher requirements for the memory 

resources especially in case of hardware implementation. 

W h i l e the common impulse noise can be successfully filtered using D W M F or P W M A D , 

the removal of the impulse burst noise using these filters fails especially if the noise intensity 

is higher. A l l these median-like filters rely on the principle of spatial locali ty which is 

violated. Various filters have been proposed to suppress impulse burst noise in the recent 

years. A p a r t from the A M F and W M F which produce images of reasonable quality, specific 

filters developed for impulse burst noise such as training-based opt imized soft morphological 

filters and variat ional approaches [97, 96, 136, 46] have been introduced. Unfortunately, it 

is much more difficult to implement these filters i n hardware than median filters because 

they use for example unl imi ted kernel size, nontr iv ia l restoring algori thm (e.g. solving 

of differential equations), etc. Thus, A M F , P W M A D and W M F represent the tradeoff 

between filtering quali ty and implementat ion cost. 

Figure 6.4: Compar ison of various image filters using a set of 25 test images corrupted by 
salt-and-pepper noise of intensity 5-75%. M e a n P S N R is reported. 

Figure 6.4 summarizes the results of filtering properties of adaptive median filters (with 

filtering windows 5 x 5 , 7 x 7 and 9 x 9 ) and standard median filters (with filtering windows 

3 x 3, 5 x 5 and 7 x 7 ) that were evaluated using a set of 25 test images (see [218]). A l l 

images were corrupted by salt-and-pepper noise of intensity 5-75%. The results were also 
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compared to the best known software solution ( D W M F [45]) which utilizes filtering windows 

of unl imi ted size. The visual quali ty of filtered images is numerically expressed by the peak 

signal-to-noise ratio ( P S N R ) . The higher the P S N R value, the better filtering quality. 

(a) or ig inal image 

(d) M F 5 x 5 

(b) cor rupted image 

(e) A M F 5 x 5 (f) A M F 7x7 

Figure 6.5: Image corrupted by salt-and-pepper impulse noise filtered using conventional 
filters, (a) Or ig ina l image (b) Image corrupted by 40% salt-and-pepper noise ( P S N R : 9.535 
dB) (c) F i l te red by median filter w i th the kernel size 3 x 3 ( P S N R : 16.796 d B ) (d) Fi l tered 
by median filter w i th the kernel size 5 x 5 ( P S N R : 18.309 d B ) (e) Fi l tered by adaptive 
median wi th the kernel size up to 5 x 5 ( P S N R : 22.021 dB) (f) F i l te red by adaptive median 
wi th the kernel size up to 7 x 7 ( P S N R : 22.078 d B ) 

Figure 6.5 contains examples of filtered images. Increasing the size of filtering window 

allows the standard median filter to remove a great deal of noisy pixels; however because 

the standard median filters modify almost a l l pixels, images become smudged and detail 

less. Thus it is suitable to uti l ize the smallest window as possible. Nevertheless such a filter 

fails when the noise intensity is higher than approx. 10-20%. O n the other hand, adaptive 

median filters work correctly not only for higher but also for lower noise intensities because 

they t ry to use the smallest possible window and modify only corrupted pixels. In this case, 

the size of filtering window influences the quali ty of filtering when noise intensity is higher 

than 40%. 
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Order statistic and median niters 

Consider a sequence {xi,X2, • • •,XN} = {xi}, 1 < i < N that consists of N elements 

generated by a random variable X. Let {x{\ be arranged i n ascending order so that x^ < 

£(2) < • • • < x<k) < ••• < x(N-\) — X(N)- Then , element xn.\ = S^{xi} is so-called 

k-th order statistic. Note that element x^ corresponds to the minimum of the observed 

sequence and xrm to the maximum. In case that k = (N + l ) / 2 , where N is odd, xn^ is 

the median of the given sequence. 

Let M be the length of the filter window, M = 2 L + 1 , and {xi} is the input sequence, 1 < 

i < N and N > M. Then the filter defined by specifying its output yj (j = L + l , . . . ,N—L) 

as yj = S(ty{xj-L,..., Xj+l} is denoted as the k-th order statistic filter ( O S F ) . It is obvious 

that i f the k = (N + l ) / 2 then the k-th order statistic filter defines the standard median 

filter. 

So-called weighted O S F [30] assigns a weight to every element of the observation window. 

This generalization allows the usage of some elements of window more than once. O n 

contrary, some elements need not to be included into the process of filtering. 

[X. . ] = 

2 2 1 2 2 
1 1 2 1 2 
2 3 3 3 2 
4 1 2 3 4 
3 2 1 4 2 

2 2 2 2 2 
2 2 2 2 2 
3 2 3 3 3 
3 3 3 3 3 
4 3 3 4 4 

S.({2,3,3,4,1,2,3,2,1}) = S 6 ({1,1,2,2,2,3,3,3,4}) = 3 

Figure 6.6: F i l t e r ing using a two dimensional 6th order statistic filter (a 3 x 3 filter window 
is used) 

Because each pixel of a given image can be treated as a random variable, statistic order 

filter can be used for the filtering of the images. However, i n this case we need a two 

dimensional variant of statistic filter which can be obtained as an extension of the one-

dimensional case mentioned above. Instead of one-dimensional observed sequence we 

have to consider a two-dimensional mat r ix [xij]. E a c h element of this matr ix corresponds 

to one pixel of observed input image. Similar ly, the output of the filter is a two-dimensional 

matr ix [yij] (see Figure 6.6). Note that the two-dimensional statistic order filter does not 

have to use every element of the rectangular filtering window. 

The hardware implementat ion of median-based filters can be divided into three classes 

[30]: array-based architectures, stack filter-based architectures, and sorting network-based 

architectures. 

The array architectures use a large number of simple processors arranged into a systolic 

linear array. Each processor processes one value of the filter window. Even if the processors 

can be pipelined and can provide high throughput, this architecture is not suitable for 

manipulat ing wi th large windows. Unfortunately, large windows are typica l for adaptive 

median filters. 

The most efficient approach is based on stack filters. A stack filter uses a transformation 
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of process of filtering into the binary domain. This transformation uses threshold decompo­

sition. Processing i n the binary domain is very efficient and can be easily parallelized. The 

main disadvantage of this approach is the requirement for a high number of decomposition 

levels which depends exponentially on the number of bits used to represent each pixel . O n 

the other hand, i n the serial bitwise version, the stack filters usually allow the most area 

efficient implementat ion [108]. 

Sort ing networks-based architectures can be used to implement arbi trary rank order 

filters. The samples of observed filter window are sorted by a sorting network. Then , the 

value i n the middle of sorted sequence represents the median value. Sort ing network is de­

fined as a network of elementary operations denoted as compare&swap elements (sometimes 

called comparators) that sorts a l l input sequences. A compare&swap (CS) of two elements 

(a, b) compares o and b and exchanges (if it is necessary) the elements i n order to obtain 

sorted sequence. A sequence of compare&swap operations depends only on the number 

of elements to be sorted, not on the values of the elements. The ma in advantage of the 

sorting network is that the sequence of comparisons is fixed. Thus it is suitable for parallel 

processing and pipelined hardware implementation. In hardware, C S is implemented using 

two multiplexers that are controlled by means of a comparator that determines the maxi ­

m u m of the two. A s the sorting network can be easily pipelined, the approach provides the 

best performance. There exist different types of sorting networks. The sorting networks 

constructed using Batcher 's bi tonic sort and Batcher 's odd-even merge sort provide the 

best results in terms of implementat ion cost [218]. 

(a) 9-input sorting network (b) pipelined hardware implementation 

Figure 6.7: Structure of 9-input sorting network (a) and its pipelined hardware implementa­
t ion (b). Each vert ical line represents one compare&swap operation. The arrow determines 
the posit ion of m a x i m u m of the two inputs. The pipelined hardware implementat ion con­
sists of compare&swap operations and buffers. P rov id ing that the 0 4 is the output and 
10-17 inputs connected to the sl iding window function, the shown structure represents a 
median filter. 

The bitonic sorter [14] is developed on the basis of the 0-1 principle [93]. It is based on 

merging of two so-called bitonic sequences. A 0-1-sequence is called bitonic if it contains at 
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most two changes between 0 and 1. The main idea is to recursively divide the input sequence 

into several parts. In each part, bi tonic sequences are created and subsequently merged i n 

order to create 1) another larger bitonic sequence and 2) sorted sequence. After a l l merging 

tasks, the sequence is sorted. Structure of the 9-input sorting network created using the 

bitonic sorter and its corresponding hardware implementat ion is depicted i n Figure 6.7. 

Results of synthesis of the pipelined median filter are summarized i n Table 6.1. The 

median filters were described i n V H D L , simulated using M o d e l S i m and synthesized using 

X i l i n x I S E tools to V i r t e x II P r o X C 2 V P 5 0 - 7 F P G A . The implementat ion cost is expressed 

in terms of slices. The ut i l ized F P G A contains 23616 slices i n total . 

Table 6.1: Results of synthesis (number of slices) of common median filters 

median filter 
# inputs optimal using bitonic SN using oe-merge SN max. freq. 

9 (3x3) 268 297 289 305 MHz 
25 (5x5) 1506 1706 1582 305 MHz 
49 (7x7) unknown 4815 4426 303 MHz 
81 (9x9) unknown 10315 9719 302 MHz 

Switching-based filters 

The switching-based approach outl ined i n [173] can be considered as a general process of 
filtering that operates i n two steps. In the first step, the noisy pixels are detected using a 
detection algori thm. Then, the new values of the corrupted pixels are estimated using an 
estimation algori thm. 

Input image 

f — 
1 1 it i * J i * W w 
1 3 lb 

4 
p* 

1 5 lb 4 W 1 4 lb 

f 
18 ^ 

f W 1 7 Hb 
d 

Image 
filter —>J 

Vi i 

Noise 
detector 

Filtered image 

>• IB >• 

Figure 6.8: The concept of the switching-based filtering using a 3 x 3 filter kernel 

Let Xij and yij denote pixels w i th coordinates i,j i n noisy image and filtered image 

respectively. If the estimated value of the corrupted pixel is Zij, the switching filter 

concept can be defined as 

Vij — $ij ' Zij ~\~ (1 "Sij) ' (6.2) 

where Sij is a binary noise map - an output produced by the estimation algori thm. Noise 

map contains ones at the positions of pixels detected as noisy pixels. 

In general, is determined by comparing the absolute difference between the original 

pixel value x^ and some local statistics fl(xij) w i th a threshold T. Statistics fl(xij) can 
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be produced by common median filter, weighted median filter, adaptive median filter or 

using a complex detection mechanism, e.g. D W M F or P W M A D . Since the value of T 
is highly correlated to the image contents, noise probabil i ty and distr ibut ion, T has to 

be calculated for each filtered image. This is unpract ical since the problem of finding the 

opt imal threshold is a complex task. W h i l e setting T too high leaves a lot of the noisy pixels 

unfiltered, too low T causes that image details w i l l be treated as noise and the overall image 

quality w i l l be degraded. In order to avoid setting of this parameter, the process of noise 

map estimation is usually applied iteratively w i th varying threshold (e.g. D W M F ) . The 

objective of this approach is to make the choice of op t imal T irrelevant. Es t imated value of 

the filtered pixel Zij is usually based on common median filter or its variants (e.g. weighted 

median filter). 

The concept the switching-based filtering is shown i n Figure 6.8. The noise detector 

provides single bit value according to which the filter action is determined (i.e. whether the 

processed pixel is a noise that needs to be filtered or it is an uncorrupted pixel that passes 

the filter unchanged). 

Adapt ive median filter 

The adaptive median filter ( A M F ) can be defined i n several ways [86, 85]. We w i l l use the 

definition based on the order statistic. In this sense, A M F can be considered as iterative 
order statistic filter. The iterative processing was introduced in order to detect and replace 

corrupted pixels only. In each iteration, filtering windows of different sizes are ut i l ized. 

Figure 6.9: (a) Image corrupted by 40% salt-and-pepper noise, (b) Image filtered by adap­
tive median filter w i th Wmax = 9 x 9 , (c) Size of the filtering window used for processing 
each pixel of the input image and the processed number of pixels in each stage 

In order to simplify the description, we w i l l deal only w i th one filter window located at 

posit ion (u,v). Let a two-dimensional matr ix [xij] describe the input image and W is the 

size of the filtered window. Let the sequence [w^j] be the output of a local neighborhood 

function which contains just N = W x W samples of filter window located at posi t ion (u, v) 
(assume that W is odd). Let x u v denote the value of p ixel xu>v which corresponds to the 

value of a p ixe l at posi t ion (u, v) of the input image. Let yuv be the output of the A M F 

located at posi t ion (u,v). The algori thm of adaptive median filter is as follows: 
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1. Initialization 
Start w i th the smallest windows size W = 3. Let the m a x i m u m window size be Wmax 

(again, an odd number). 

2. Computation of order statistic 
Let x m i n = 5(o) ([wk,i]) be the output of the 0-th order statistic filter. x m a x = Srm ([wk,i]) 
is the output of the i V - t h order statistic filter A n d xmed = S((N+i)/2)([wk,l\) is the output 
of the median filter. 

3. Evaluation of the terminating condition 
If the condit ion x m i n < xmed < x m a x is satisfied then the processing ends wi th the 
computat ion of the output value which is defined as follows: If x m i n < xuv < x m a x then 
the pixel is not corrupted by noise and the output value is the value of the original pixel , 
i.e. yuv = xuv. If xmin < xuv < x m a x is not satisfied then the output value is the median 
of the window, i.e. yuv = xme(i- If the condit ion is not satisfied then the computat ion 
continues. 

4. Increasing of the window size 
If the condit ion x m i n < xmed < x m a x is not satisfied, it can be interpreted as follows. If 
many pixels have the same value then it is impossible to determine (with the current 
window size) whether the pixels are corrupted wi th high intensity noise or whether it is 
the constant area wi th a l l pixels of the same color. This is the reason why the window 
size has to be increased. 

If the window W is smaller than Wmax, increase the size of the window, i.e. W = 
W + 2, and repeat the computat ion from step 2. If the size of the window W reaches 
the m a x i m u m value Wmax, the processing ends and the output value is defined as 

Duv — %med' 

Figure 6.9 demonstrates the filtering capabilities of adaptive median filter. The image 
containing 256 x 256 pixels corrupted by 40% impulse noise is filtered by adaptive median 
filter using three levels (i.e. w i th the window which can take up to 7 x 7 pixels). It can 
be seen that a l l the noisy pixels were successfully detected and removed. More than 95% 
pixels (62822 out of 65536) were processed i n the first level using the 3 x 3 pixel window. 
Then, 4% pixels were processed i n the next level using the 5 x 5 window. 

A l though the adaptive median filter is defined as an iterative filter, the result can be 
computed i n a two-phase process [218]. The idea is to implement a set of sorting networks 
of different number of inputs (from 3 x 3 to Wmax x Wmax). The min imum, m a x i m u m 
and median value of each sorting network is ut i l ized. A s these sorting networks have 
different latencies it is necessary to include registers at suitable positions to synchronize the 
computat ion. In the second phase, the outputs of sorting networks are combined together 
using a simple combination logic. Because we w i l l need a reference hardware implementat ion 
of adaptive median filter in next chapters, we have implemented the filter i n F P G A . The 
proposed hardware architecture of the adaptive median filter implemented using the two-
phase scheme is depicted i n Figure 6.10. Note that the hardware architecture can be 
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Figure 6.10: Hardware implementat ion of the adaptive median filter based on sorting net­
works [218] 

optimized and only one sorting network that provides a l l the required values can be ut i l ized. 

Such a sorting network can be designed using a cascade of unbalanced sorting networks. 

Table 6.2: Results of synthesis of proposed adaptive median filter 

SN bitonic SN oe-merge Latency 
^^max # slices max. freq # slices max. freq [delay] 
5x5 2220 305 MHz 2024 303 MHz 15 
7x7 7297 302 MHz 6567 298 MHz 21 
9x9 18120 302 MHz 16395 298 MHz 28 

Results of synthesis of the pipelined adaptive median filter are summarized i n Table 6.2. 

The adaptive median filters were described in V H D L , simulated using M o d e l S i m and syn­

thesized using X i l i n x I S E tools to V i r t e x II P r o X C 2 V P 5 0 - 7 F P G A . The implementat ion 

cost is expressed i n terms of slices. The ut i l ized F P G A contains 23616 slices i n total . A d a p ­

tive median filter w i th filtering window 7x7 exhibits a very good performance/cost ratio i n 

comparison to standard median filters. Th is filter occupies approx. 30% of the chip and is 

able to remove noise up to 60% intensity. A s the design of A M F is pipelined and without 

iterations, it provides the same performance as standard median filters (i.e. approx. 300M 

processed pixels per second). 

6.2 Evolutionary Design of Image Filters using C G P 

First ly , let us describe the evolutionary method that has been proposed by Sekanina i n 

[158] and ut i l ized to create image filters w i th the 3 x 3 pixel filter window. In the next 

chapter, we w i l l introduce several extensions that have been proposed to evolve the filters 

w i t h better filtering properties. 

Every image filter is considered as a function (a digi ta l circuit i n the case of hardware 

implementation) of nine 8-bit inputs and a single 8-bit output, which processes grayscale 
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images. A s Figure 6.11 shows, every p ixe l value of the filtered image is calculated using 

a corresponding pixel and its eight neighbors i n the processed image. In order to evolve 

an image filter which suppresses a given type of noise from corrupted image, we need (a) 

t ra ining data consisting of corrupted and original version of the image that w i l l be used 

to determine the fitness score of the candidate filters (i.e., to evaluate the quali ty of any 

candidate filter) and (b) a set of suitable 8-bit functions that can be used by C G P . The 

generality of evolved filters (i.e., the abi l i ty to operate sufficiently also for other images 

containing the same type of noise the filters have not been trained for) is tested by means 

of a test set. 

Input image Filtered image 

• • • • • 
01CHDi=ChD • • • 

• • • • • 
• • • • • • 

Figure 6.11: The concept of evolutionary design of image filters that utilizes the 3 x 3 filter 
window 

6.2.1 E n c o d i n g of a C a n d i d a t e F i l t e r 

A candidate filter is represented using nc x nr nodes arranged i n a grid, where a typical 

grid size is ( n c = 8) x ( n r = 4). The setting of other C G P parameters is: rtj = 9, na = 1, 

na = 2, A = 8 and I = nc. E a c h node represents a two-input function which receives two 

8-bit values and produces an 8-bit output. The 8-bit node output is ut i l ized to ensure a 

straightforward connectivity of the nodes in hardware. Table 6.3 lists the functions that 

were confirmed as useful for this task [158]. We note that these functions are also suitable 

for hardware implementat ion (i.e. there are no complex functions, such as mul t ip l ica t ion 

or division). A node input may be connected either to an output of another node, which 

is placed anywhere i n the preceding columns or to a pr imary input of the filter. The filter 

circuits are encoded as array of integers of the size 3 • nr • nr + 1. 
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6.2.2 F i tness F u n c t i o n 

In order to evolve an image filter capable of removing a given type of noise, the original 

uncorrupted image is needed to determine the fitness values of candidate filters. The goal 

of C G P is to minimize the difference between the original image and the filtered image. 

Usually, the fitness function is implemented as the mean difference per pixel also known 

as the mean absolute error. Let u denote a corrupted image, v the filtered image and w the 

original (uncorrupted) version of u. Let the image size b e M x J V pixels. Due to the one 

pixel neighborhood i n kernel, the area of ( M —2) x (N — 2) pixels is processed only. Wi thou t 

loss of generality, the pixel values at the borders are ignored and thus remain unfiltered. 

The fitness value of a candidate filter is obtained by calculat ing the error function: 

j M-2N-2 

f i t n 6 S S = ( M - 2 ) ( J V - 2 ) ^ ~ W { i , j ) ^ 

The objective is to design a filter producing images w i th min ima l error, i.e. the lower 

fitness value the better filter. Note that it is pract ical ly impossible to obtain a filter pos­

sessing the zero fitness value (i.e. an ideal filter) since the filter manipulates w i th corrupted 

images only (i.e. missing and incomplete information) and it can not predict the original 

values perfectly for an arbitrary input image. O n l y in rare cases (e.g. a t ra ining image wi th 

simple pattern), it is possible to evolve a filter that exhibits the zero fitness value but this 

filter w i l l not be probably robust (i.e., it w i l l work only for the selected t ra ining image). 

Thus, i f a candidate filter fulfills a given cri terion of quali ty (e.g. the mean difference per 

pixel is less than a predefined error e), it is usually considered as a solution to the problem. 

It is evident that the robustness of evolved filter depends on the selection of the training 

data. Thus, generality of evolved filters (i.e., whether the filters can operate sufficiently 

also for other images containing the same type of noise) has to be tested by means of a test 

(validation) set. There exists several metrics for expressing of the quali ty of filtering. For 

this purposes, the peak signal-to-noise ratio ( P S N R ) or mean square error ( M S E ) is usually 

used in image processing. P S N R is defined as 

P S N R = 10 l o g 1 0 — — (6.3) 

Table 6.3: L is t of functions implemented in each programmable node 

code function description code function description 
0 255 constant 8 x > 1 right shift by 1 
1 X identity 9 x > 2 right shift by 2 
2 255 -x inversion 10 swap(x, y) swap nibbles 
3 x V y bitwise O R 11 x + y + (addition) 
4 x V y bitwise x O R y 12 x + s y + wi th saturation 
5 x Ay bitwise A N D 13 (x + y) > 1 average 
6 x Ay bitwise N A N D 14 max(x, y) maximum 
7 x (By bitwise X O R 15 min(x, y) m i n i m u m 
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where N x M is the size of image, v denotes the filtered image and w denotes the original 

image. The higher P S N R value the better filter. Note that the denominator represents 

the mean square error. It has been shown experimentally, that a suitable image containing 

128 x 128 pixels provides the sufficient amount of t ra ining data for evolution of robust 3 x 3 

salt-and-pepper filters [119]. 

6.3 Experimental Results 

A s it has been discussed i n previous chapters, the evolutionary design of image filters is a 

t ime consuming process. There is large amount of t ra ining data that have to be evaluated i n 

order to determine the fitness value. In order to speed up the evolutionary design process 

and give the evolutionary algori thm possibil i ty to explore large por t ion of search space, 

we have proposed an F P G A - b a s e d accelerator which hardware architecture is described i n 

Chapter 7. 

The a im of the first experiment is to apply the proposed accelerator to evolve filters for 

salt-and-pepper noise working wi th the 3 x 3 pixel filter window. Then, i n order to improve 

the filtering properties, we have combined several filters and create a more robust bank filter 

working wi th the 3 x 3 pixel filter window. A s it w i l l be shown, this filter is able to compete 

wi th conventionally used filters working wi th larger filter windows, however, the resulting 

filter is probably the best solution that can be obtained using 3 x 3 pixel filter window. 

Thus, the last section deals w i t h the evolutionary design of filters u t i l iz ing concept of so 

called switching filters. The common goal of these experiments is to experimentally evaluate 

whether the evolutionary design is able to discover solutions that exhibit better properties 

i n terms of filtering capabil i ty and implementat ion cost comparing to the conventionally 

used approaches. 

6.3.1 E v o l u t i o n a r y D e s i g n of S a l t - a n d - p e p p e r Noi se F i l t e r s a n d 

Noise -Res i s tant E d g e Detec tors 

In order to evaluate the performance of the proposed F P G A - b a s e d evolutionary platform, 

we have arranged four experiments. The objective was to evolve filter for salt-and-pepper 

noise of (1) 5%, (2) 10% and (3) 20% intensity and (4) design an edge detector which is 

able to deal w i th input images corrupted by the salt-and-pepper noise. Note that a 3 x 3 

filter window is considered in a l l cases. Except the 5%-salt-and-pepper noise, the other 

problems were not approached by means of evolutionary design techniques i n literature. In 

order to compare the quali ty of the obtained filters w i th the results published i n [161, 160], 

visual quali ty of filtered images is expressed i n terms of mdpp which stands for the mean 

difference per pixel between the filtered image and original image. 

The following experimental setup was applied. The C G P array was comprised of 4 x 8 

programmable nodes. E a c h C G P node can implement one of the sixteen 8-bit functions 

listed i n Table 6.3. The £-back parameter was set to one; i.e. the inputs of a certain node 

can be connected either to the output of a node situated in the previous column or to the 

pr imary input . The chromosome consists of 384 bits; a single node is configured using 12 

bits. Thus the search space contains 2 3 8 4 possible solutions. 
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Figure 6.12: Tra in ing images ut i l ized for the evolutionary design of 5% (a,b), 10% (a,c) and 
20% (d,e) salt-and-pepper noise filter, and the evolutionary design of noise-resistant edge 
detector (f,b). 

The populat ion contains eight individuals (A = 8). The in i t i a l populat ion is generated 

randomly. Then , two offspring are generated from each parent using a bi t -mutat ion op­

erator. A new populat ion is selected from the eight parents and their sixteen offspring. 

We ut i l ized a deterministic selection i n which the eight-best scored individuals are selected 

as new parents. The evolutionary algori thm utilizes a single genetic operator - mutat ion, 

which is applied wi th the probabil i ty of 4.7-6.3% per bit . This muta t ion intensity was 

experimentally confirmed as the most suitable. N o crossover operator is u t i l ized i n this 

type of E A [158]. 

Table 6.4: Parameters of the experiments 

exp. bits runs evaluations 
no input image target image mutated (Nr) per run 
E l 5%-noise Lena l28 L e n a l 2 8 18 64 160,000 
E 2 10%-noise Lena l28 Lena l28 24 349 320,000 
E 3 20%-noise Lena l28 Lena l28 20 139 320,000 
E 4 5%-noise Lena l28 edges in L e n a l 2 8 18 389 160,000 

The evolution is stopped when a predefined number of evaluations is exhausted. Ta­

ble 6.4 provides the parameters that have been used i n each experiment. The parameters 

have been determined experimentally [215]. Because it is intractable to evaluate a l l possible 

input combinations, there exists 2 9 ' 8 = 2 7 2 possible input vectors, approximate synthesis 

scenario has been applied. A s a t ra ining image, we used the 128 x 128-pixel version of Lena 

image referred to as L e n a l 2 8 which is corrupted wi th a given type of noise in some regions. 

Figure 6.12 depicts the t raining images that have been applied i n this experiment. 

Table 6.5: The fitness value of the evolved filters for the four test problems expressed i n 
terms of mean difference per pixel (mdpp) 

exp. training best worst average conventional 
no image solution solution solution approach 
E l 6.049 0.410 3.190 0.967 ±o.58i 4.796 (median) 
E 2 12.382 0.982 3.280 1.720 ±0.337 5.207 (median) 
E 3 25.766 1.870 4.350 2.850 ±o.5io 6.383 (median) 
E 4 n / a 1.100 2.660 1.910 ±0.419 11.329 (sobel) 
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Table 6.5, which summarizes the obtained results, contains the fitness values of the 

best, worst and an average solution. The statistics is calculated from the Nr independent 

evolutionary runs. The number of runs for each experiment is given i n Table 6.4. The 

last co lumn of Table 6.6 gives the results of conventional filters. A s it can be seen, the 

evolutionary designed filters significantly outperform the conventional solutions. 

Table 6.6: Compar ison of mdpp of the best evolved filters and 3 x 3 median filter on a test 
set of 256 x 256 images. 

test 5% noise 10% noise edge detection 
image evolved M F A M F evolved M F A M F evolved S O 
Airp lane 0.338 3.536 1.046 0.874 3.843 1.227 0.988 2.902 
B i r d 0.147 1.514 0.598 0.389 1.648 0.651 0.467 2.827 
Bridge 0.657 7.830 2.545 1.386 8.165 2.765 1.688 2.856 
Camera 0.627 4.413 1.589 0.850 4.746 1.707 1.108 2.786 
G o l d h i l l 0.451 5.870 2.053 0.962 6.134 2.191 1.161 2.812 
Lena 0.367 3.577 1.209 0.863 3.893 1.437 1.022 2.832 

Table 6.6 compares mdpp of the best-evolved filters and conventional filters (median 

filter denoted as M F , adaptive median filter denoted as A M F and Sobel operator denoted 

as SO) on a set of 256 x 256-pixel test images. In order to fairly evaluate the quality, 

a l l the filters use the 3 x 3 filter window. Even i f the evolutionary design does not i n 

general guarantee robustness of the evolved filters (i.e. that they exhibit a s imilar quali ty 

independently on the image content), the obtained results show that the evolved filters 

exhibit very good performance not only for the t ra ining images but also for the testing 

images. A s it can be seen, the results outperform not only the common median filter but 

also the more advanced adaptive median filter. 

Figure 6.13: The best evolved filter for 5% salt-and-pepper impulse noise. 

Figures 6.13 and 6.14 depict structure of the best evolved filters for 5% and 10% re­

spectively salt-and-pepper noise. Figure 6.15 gives examples of images filtered using the 

best-evolved filters. A s it can be seen, the images filtered by evolved filters are not as 

smudged as the images filtered by median filters. The most significant improvement has 

been achieved i n the last experiment which combines the edge detector w i th noise removal. 

If a conventional edge detector is applied to the image corrupted by the salt-and-pepper 

noise, the noisy pixels are significantly amplified. 
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Figure 6.15: The B i r d (a-d) and G o l d h i l l (e-h) images from test set in the 10% salt-and-
pepper noise removal task. The edge detection i n images corrupted by the 5% salt-and-
pepper noise, the Ai rp lane image (i-1). 

6.3.2 E v o l u t i o n a r y D e s i g n of R o b u s t S a l t - a n d - p e p p e r No i se F i l t e r 

Even if the results presented i n the previous section clearly demonstrate that the evolution­

ary design approach is able to automatical ly evolve competit ive image filters, unfortunately 

this method is not able to evolve competit ive filters for higher noise intensities (e.g. 40%). 

It may seem that this failure is caused by the insufficient information provided by the 3 x 3 

filter window. O n the other hand, the missing information can be derived from the unaf­

fected pixels since there are five out of nine pixels (in average) that are unaffected by the 
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noise i f a 40% noise level is considered. The goal of this experiment is to experimentally 

evaluate whether is it possible to design an image filter working wi th 3 x 3 filter window that 

can provide sufficient quali ty even for higher noise intensities. A n d moreover, to provide a 

solution suitable for pipelined hardware implementat ion i n F P G A that can compete to the 

quali ty of adaptive median filter. 

The main feature of evolutionary design of image filters is that each evolutionary run 

typical ly produces a solution having different structure as well as properties. Th is behavior 

is usually undesirable because the evolutionary design does not guarantee the evolved filters 

are robust (i.e. that the proposed filters exhibit the constant quali ty for the whole class 

of images corrupted wi th a given type of noise). However, this feature can be exploited to 

create robust image filters. 

Filter kernel 3x3 
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Figure 6.16: The proposed architecture for the impulse noise removal 

In order to create more robust salt-and-pepper noise filter, we have proposed to combine 

several simple image filters u t i l iz ing the 3 x 3 window that are designed by an evolutionary 

algori thm. A s Figure 6.16 shows the procedure has three steps: (1) the reduction of a 

dynamic range of noise, (2) processing using a bank of n filters and (3) deterministic 

selection of the best result. 

The first step reduces the large dynamic range of corrupted pixels (0/255) using a com­

ponent which inverts a l l pixels w i th value 255, i.e. a l l shots are transformed to have a 

uniform value. This task is easy to implement in hardware using comparators. This step 

has been introduced according to the analysis presented in [158] where we have recognized 

that the evolved salt-and-pepper noise filters have problems wi th the large dynamic range 

of corrupted pixels (0/255). Note that the comparators can be replaced wi th a more so­

phisticated algori thm that replaces the affected pixels w i th zero value which indicates the 

noisy pixel that should be replaced. 

The preprocessed image then enters a bank of n filters which operate in parallel . We 

selected n evolved filters which produce different results and which exhibit better-than-

average filtering quali ty and ut i l ized them i n the bank. Note that a l l these filters were 

designed by E A using the same type of noise and training image and w i t h the same aim: 

to remove the 40% salt-and-pepper noise. 

F ina l ly , the outputs coming from banks 1 . . . n are combined by n-input median filter 

which can be easily implemented using comparators [93]. 
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(e) evolved filter (f) A M F 5x5 (g) A M F 7x7 (h) 3-bank filter 

(m) M F 5x5 (n) evolved filter (o) A M F 5x5 (p) A M F 7x7 

Figure 6.17: F i l t e r ing the images corrupted by 40% salt-and-pepper noise (a-i) and filtering 
the images corrupted by 5% salt-and-pepper noise (j-p) 

In order to evolve the filters for the bank, we have applied the same experimental setup 

as i n the previous experiment. A s a t ra ining image we ut i l ized 128 x 128-pixel version of 

Lena (Lenal28) which was par t ia l ly corrupted by 40% salt-and-pepper noise. Evo lu t ion was 

repeated 100 times; 1.5 mi l l ion evaluations were performed i n each run. C G P operated wi th 

an eight-member populat ion and the 5% mutat ion. Accord ing to the chromosomes of the 

five best-scored filters we created corresponding pipelined V H D L models and synthesized 

them. The first part of Table 6.7 shows that the implementat ion cost of evolved filters is 

much lower than the cost of the 3 x 3 median circuit given in Table 6.1. 

To evaluate the quali ty of the proposed bank, the proposed approach and adaptive 

median filters are compared on several test images of size 256 x 256 pixels which contain 

the salt-and-pepper noise w i t h the intensity of 5%, 10%, 20%, 40%, 50% and 70% corrupted 

pixels. Table 6.8 summarizes the results obtained for selected test images and two versions 
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Table 6.7: Result of synthesis for evolved filters ut i l ized in the bank (filterl-5) and for the 
whole bank filters 

filter # slices area max. frequency latency 
filterl 156 0.7% 316 M H z 8 
filter2 199 0.8% 318 M H z 8 
filter3 137 0.6% 308 M H z 8 
filter4 183 0.8% 321 M H z 8 
filterö 148 0.6% 320 M H z 8 

filter # slices area max. frequency latency 
3-bank 500 2.1% 308 M H z 11 
5-bank 843 3.6% 305 M H z 13 

of the adaptive median filter and two versions of the bank filter (which contain the filters 

from Table 6.7). The higher P S N R , the better results. 

Surprisingly, only three filters ut i l ized i n the bank are needed to obtain a bank filter 

which produces images of at least comparable visual quali ty to the adaptive median filter. 

Th is fact is demonstrated by Figure 6.17f-i where the visual quali ty of the images filtered 

by the adaptive median and 3-bank filter is pract ical ly undistinguishable. The structure of 

the best evolved filters that are ut i l ized in the 3-bank filter is shown i n Figure 6.18. 

A n obvious question is how it is possible that three (five, respectively) filters u t i l iz ing a 

relatively smal l 3 x 3 filter window evolved wi th the a im of removing 40%-salt-and-pepper 

noise are able to suppress the salt-and-pepper noise wi th the intensity up to 70%? Moreover, 

none of these filters does work sufficiently in the task which it was trained for (the 40% 

noise). We are convinced that this success is caused by the fact that although these filters 

perform the same task, they operate i n a different way. W h i l e the median filter gives as its 

output one of the pixels of the filtering window, evolved filters can sometime produce new 

pixel values. B y processing these n-values i n the n-input median, the shot is suppressed. 

We tested several variants of evolved filters in the bank but never observed a significant 

degradation i n the image quality. 

Table 6.8: P S N R for adaptive median filters w i th the kernel size up to 7 x 7 and bank filters 
containing 3 and 5 filters 

Adaptive median filter 5 x 5 Bank filters 3-bank 
img/noise 5% 10% 20% 40% 50% 70% 5% 10% 20% 40% 50% 70% 
goldhill 31.60 31.15 30.08 26.90 24.29 15.85 36.61 33.75 30.61 27.71 25.86 19.09 
bridge 29.93 29.47 28.06 24.99 22.56 14.78 34.06 31.45 28.99 25.83 24.28 18.33 
lena 34.43 33.66 31.21 27.17 24.43 15.46 31.42 30.30 28.16 25.68 24.13 18.32 
pentagon 33.10 32.76 31.46 28.23 25.21 16.31 37.44 34.63 31.89 28.68 26.57 18.43 
camera 30.86 30.36 28.56 25.14 22.67 14.97 34.25 30.57 28.18 25.28 23.72 17.85 

Adaptive median filter 7 x 7 Bank filters 5-bank 
img/noise 5% 10% 20% 40% 50% 70% 5% 10% 20% 40% 50% 70% 
goldhill 31.60 31.15 30.08 27.31 25.96 20.88 37.21 34.39 31.13 27.96 25.96 19.07 
bridge 29.94 29.47 28.05 25.17 23.71 19.06 34.82 32.32 29.71 26.12 24.44 18.32 
lena 34.42 33.65 31.20 27.52 25.98 20.45 31.44 30.39 28.42 25.88 24.20 18.31 
pentagon 33.10 32.76 31.46 28.62 27.17 21.65 38.01 35.20 32.41 28.94 26.68 18.43 
camera 30.86 30.36 28.56 25.29 23.85 19.24 34.62 31.09 28.74 25.57 23.91 17.84 
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(c) Third filter (filter 3) 

Figure 6.18: Three filters evolved for the 40% salt-and-pepper noise and ut i l ized i n the 
3-bank filter 

The results obtained for this class of images are quite promising from the application 

point of view. We can reach the quali ty of adaptive median filtering using a 3-bank filter: 

however four times less resources are ut i l ized. This can potential ly lead to a significant 

reduction of power consumption of a target system. Moreover, as the adaptive medians 

require larger filtering windows than bank filters they also require more logic to implement 

input F I F O s . For example, the adaptive median wi th kernel size up to 7 x 7 pixels needs 

seven input F I F O s . Each F I F O stores the whole row of the filtered image. This overhead 

is not included in the implementat ion cost of filters given i n Tables 6.2 and 6.7. Note that 

the proposed filter bank, which can comprise an arbitrary number of evolutionary designed 

filters working i n parallel , needs three input F I F O s only. 

The extended version of the 3-bank filter, has been registered as Czech U t i l i t y M o d e l 

under N o . UV020017/2009. The proposed filter is opt imized for high-performance impulse 

noise removal task. The proposed filter works i n three phases. The first phase (detection 

phase) tries to identify the noisy pixels and replace them wi th a constant value. Some k ind 

of inaccuracy is not crucial in this step. T h e second phase comprises the filtering of the 
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noise intensity [%] 

Figure 6.19: Compar ison of various image filters and the extended version of the 3-bank 
filter using a set of 25 test images corrupted by salt-and-pepper noise of intensity 5-75%. 

resulting image using a bank of evolutionary designed filters. F inal ly , a selection mechanism 

that determines the best result is applied. The resulting value is calculated according to 

the knowledge of the value of central p ixel and the results produces by the evolutionary 

designed filters. Figure 6.19 summarizes the results of filtering properties of the proposed 

3-bank filter, adaptive median filters (with filtering windows 5 x 5 , 7 x 7 and 9 x 9 ) , standard 

median filters (with filtering windows 3 x 3, 5 x 5 and 7 x 7 ) and the D W M F filter which 

utilizes filtering windows of unl imi ted size. 

6.3.3 E v o l u t i o n a r y D e s i g n of S w i t c h i n g F i l t er s 

The main disadvantage of the common median-based filters is that the filtering transfor­

mat ion is applied on a l l the pixels of the image regardless i f the pixel represents the noise 

or not. Thus this approach results i n loss of the image details and causes the degradation 

of the image quali ty especially i f a larger filter kernel is used (see Figure 6.4). In order 

to improve the filtering quality, so called switching-based median filter, which combines 

median filter w i th a noise detector, has been proposed i n [173]. 
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Figure 6.20: The structure of the filter under evolution that utilizes the concept of switching 
filter w i th 5 x 5 filter window. 
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Table 6.9: The list of functions that can be implemented i n each programmable node 

code function description code function description 
0 255 constant 7 x + y addition 
1 X identity 8 x +s y addition with saturation 
2 255 - a; inversion 9 (x + y) » 1 average 
3 max(x, y) maximum 10 y if (x > 127) else x conditional assignment 
4 min(x, y) minimum 11 \x - y\ absolute difference 
5 x > 1 division by 2 12 x < 1 multiplication by 2 with saturation 
6 x > 2 division by 4 13 x < 2 multiplication by 4 with saturation 

The goal of this work is to experimentally evaluate whether it is possible to design 

filters that are able to compete wi th conventionally used non-iterative as well as iterative 

filters suitable for the impulse noise removal task. In addi t ion to the salt-and-pepper noise, 

random-valued impulse noise and impulse burst noise w i l l be investigated. The objective is 

to design filters based on the switching concept. In particular, the evolutionary algori thm 

has to design a filter system consisting of a noise detector and nonlinear image filter. B o t h 

parts are evolved in parallel . Th is enforces the node sharing. S imi lar ly to the previous 

experiments, the filters should be suitable for F P G A - b a s e d implementation. 

In our case, the image filter produces filtered value Oi and noise detector output O2, 
both are 8-bit values. The structure of the image filter is i l lustrated i n Figure 6.20. The 

M S B of O2 controls the multiplexer that implements the switching algori thm. The switching 

filter works as follows. If O2 is less than 128 (i.e. the M S B of O2 equals to 0), then the 

value Ic was detected as noise and the final output of the filter OF equals the filtered value 

Oi, otherwise OF equals the original value Ic- In fact, the noise detector represents an 

addi t ional logic of the filter c i rcui t ry that is capable of determining whether the value of 

the pixel to be filtered is a noise value or a correct (uncorrupted) value. 

The following experimental setup was used. In order to evolve an image filter, the C G P 

at the functional level was ut i l ized. The C G P array consists of nc x nr = 7 x 9 nodes. 

Each node can implement one of the high-level functions listed in Table 6.9. The £-back 

parameter has been set to I = nc (i.e. the full connectivity has been enabled). O n l y the 

elements situated i n the first four columns can be connected direct ly to the pr imary inputs. 

The evolutionary algori thm works wi th the populat ion of A = 8 individuals . U p to 

15 genes in an ind iv idua l can be mutated. The in i t i a l populat ion is generated randomly. 

The results were obtained from 100 independent runs of the C G P system. E a c h single 

experiment takes 200,000 generations. This artificial l imi t has been chosen i n order to 

provide the tradeoff between the quali ty of the evolved filters and the time needed for the 

evolution. The goal of this experiment was to confirm the hypothesis instead of find the 

best possible solution. The objective is to design filters working wi th 5 x 5-pixel kernel that 

are opt imized for the removal of a) salt-and-pepper, b) random-valued impulse noise and 

c) impulse burst noise. 

For the first three problems, an artificial image corrupted by 20% noise consisting of 

256 x 256 pixels was used as t ra ining data. The t ra ining images for the investigated problems 

are shown in Figure 6.21. We carried out an analysis of the images and recognized that 

the t ra ining data set for the evolutionary design of a salt-and-pepper noise filter consist 

of 62,061 unique t ra ining vectors extracted from Figure 6.21b. The t ra ining data for the 
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Figure 6.21: The training data ut i l ized in the experiments: (a,d) the reference image, 
(b) the image corrupted by 20% salt-and-pepper noise, (c) the image corrupted by 20% 
random-valued impulse noise and (e) the image corrupted by 20% impulse burst noise. The 
noise intensity 20% means that 20% of the to ta l number of pixels of the reference image is 
corrupted by the noise. 

evolutionary design of a random-valued impulse noise filter comprise 63,437 unique t raining 

vectors extracted from Figure 6.21c. Note that the ut i l ized images can provide up to 

252 • 252 = 63504 different t raining vectors i f a filter window of 5 x 5 pixels is considered. 

The artificial image has been ut i l ized because it contains a representative sample of t raining 

vectors possessing crucial features; for example smooth gradients of different types combined 

wi th sharp edges. These components showed to be important for the filter t raining. The 

previous experiments showed that i f the noise intensity is low dur ing the t ra ining process 

(< 10%), the evolutionary design approach can not guarantee that the evolved filter works 

also for a high intensity noise. O n the other hand, i f the t ra ining noise intensity is high 

(> 30%), substantial amount of (training) image data is lost and the resulting filters do 

not exhibit reasonable filtering quality. Dur ing the evolutionary design of impulse burst 

noise filter, a t ra ining image consisting of 384 x 256 pixels selected from [16] was used. 

This image contains 92,813 unique t ra ining vectors. The left part of this image is shown 

in Figure 6.21e. The impulse burst noise model corresponds to the following parameters: 

p = 0.01 -T- 0.3, q = 128, a = 30. 

The quali ty of the evolved filters is compared wi th several conventional single-step and 

iterative filters that are known to provide good results i n removing of the part icular type of 

impulse noise. In order to show the abil i ty of the evolved solutions to improve the filtered 

image using the iterative processing, one and two iterations of these filters w i l l be performed. 

The results are compared to the images filtered by the conventionally used approaches such 

as D W M F and P W M A D . Moreover, the filtering results w i l l also be compared to standard 

median filter ( M F ) and adaptive median filter ( A M F ) . We have used the recommended 

settings of the P W M A D filter, i.e. five iterations, the value of threshold was set to 5 and 

the filter window consisting of 5 x 5 pixels has been ut i l ized. In case of the impulse burst 

noise, center weighted median filter ( C W M F ) has been also included i n the comparison. 

We have chosen the center weight equal to 3 and the kernel size 3 x 3 pixels. 

The evolved filters were evaluated using a set of 30 randomly selected images from [16], 

each of which was corrupted by noise of l % - 3 0 % intensity. Therefore, i n total more than 

200 test images were ut i l ized during the evaluation process. The filtering quali ty (expressed 

by means of P S N R ) for each noise intensity is calculated as average of the P S N R for each 

image i n the evaluation set. 
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The experiments were conducted on a cluster consisting of more than 200 P C s (Xeon 

E5345, 2 .33GHz, 8 G B R A M ) using the Sun G r i d Engine ( S G E ) that enables to run a l l the 

experiments i n parallel . A highly opt imized software implementation of C G P described i n 

Chapter 3.3.1 has been ut i l ized. The evolution t ime of a single run is approximately 8 hours 

unt i l the C G P algori thm reaches 200,000 generations. 

Salt-and-pepper noise 

Table 6.10 summarizes the obtained results for the evolutionary design of switching salt-

and-pepper noise filter. The evolved filter is denoted as F18 . The results show that the 

evolutionary designed filter exhibits the best results for lower noise intensity (1%—15%) i n 

comparison wi th the conventional filters. For higher noise intensity (i.e. greater than 20%) 

the A M F produces the images w i t h the highest values of P S N R . However, the difference 

between F18 and A M F for these noise intensities is negligible. 

Table 6.10: Compar ison of the sal t&pepper noise filters i n terms of mean P S N R (dB) . The 
size of the kernel is also specified for each filter. 

filter 1% 5% 
noise intensity 

10% 15% 20% 25% 30% 

F18 5x5 39.0 36.4 33.7 31.2 28.5 25.9 23.4 
F18, 2 iter. 38.1 35.9 34.0 32.5 31.3 30.1 29.0 
P W M A D 3x3 33.0 32.4 30.7 27.7 24.5 21.6 19.1 
P W M A D 5x5 29.0 28.9 28.8 28.4 27.7 26.2 24.0 
D W M F 5x5 28.8 28.3 27.8 27.2 26.6 25.9 25.0 
A M F 5x5 34.3 33.9 33.2 32.2 31.4 30.5 29.5 
M F 5x5 26.5 26.4 26.2 26.0 25.8 25.6 25.3 

unfiltered 25.1 18.1 15.1 13.3 12.1 11.1 10.3 

In order to demonstrate the visual quality, Figure 6.22 contains example of the filtered 

images for the input image corrupted by 15% and 30% salt-and-pepper noise. In addi t ion 

to the evolutionary designed filter, the conventionally used approaches are also included i n 

this comparison. Note that the standard median filter as well as the D W M F filter are not 

included i n this comparison, since the filtered images are smudged (see the results given i n 

Table 6.10). Whi l s t the evolved filter F18 provides a very good result of the filtered image 

even if a single i teration is ut i l ized, the iterative P W M A D filter leaves a significant amount 

of noisy pixels i n the resulting image (see Figure 6.22b,i,j). 

The evolved filter F18 provides very good results even for images corrupted by 30% salt-

and-pepper noise. The visual quali ty is comparable to the A M F (see Figure 6.22g,h). A 

single application of F18 is not sufficient to obtain the best quali ty for the image corrupted 

by 30% noise (as evident in Figure 6.22d). However, images filtered by F18 filter exhibit 

better quali ty i n comparison wi th the P W M A D filter that leaves a lot of noise i n the filtered 

image and makes a loss of some detail (see Figure 6.22d,k). 

To summarize the obtained results, the C G P - b a s e d evolutionary system succeeded i n 

searching a robust salt-and-pepper noise filter whose filtering quali ty can compete wi th the 

iterative filters and especially the adaptive median filter even for high noise intensity. 
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(a) corrupted image (b) evolved F18 (c) corrupted image (d) evolved F18 

(i) 3x3 kernel P W M A D (j) 5x5 kernel P W M A D (k) 3x3 kernel P W M A D (1) 5x5 kernel P W M A D 

Figure 6.22: F i l t e r ing the images corrupted by 15% (a,b,e,f,i,j) and 30% (c,d,g,h,k,l) salt-
and-pepper noise using different filters 

Random-valued impulse noise 

The random-valued noise represents a more realistic type of impulse noise i n which the 

corrupted pixels can take an arbi trary value from the entire scale available for the given 

class of images. Therefore, in this case the noise may be represented by an arbitrary 

grayscale value from 0 to 255. It is thus more difficult to dist inguish between the noisy 

and the uncorrupted pixels. In the consequence of a false detection, a filter may have a 

tendency to deteriorate the overall quali ty of the filtered image. 

The obtained results for the evolutionary design of switching random-valued impulse 

noise filters are summarized i n Table 6.11. The best evolved filter opt imized for random-

valued impulse noise is denoted as F17 . S imi lar ly to the previous experiment, the obtained 

results are compared wi th the results of conventional filters. Surprisingly, the evolutionary 

approach succeeded in the search for a robust filter for the noise of this type. A s expected, 

the higher noise intensity requires more iterations of the filter to obtain an acceptable result. 
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Table 6.11: Compar ison of the random valued noise filters i n terms of mean P S N R (dB) . 
The size of the kernel is also specified for each filter. 

filter 1% 5% 
noise 

10% 
intensity 

15% 20% 25% 30% 

F 1 7 5x5 36.0 33.4 30.9 28.7 26.6 24.7 23.0 
F17, 2 iter. 34.4 32.5 30.9 29.6 28.4 27.2 25.9 
P W M A D 3x3 33.1 32.5 31.2 29.5 27.4 25.3 23.3 
P W M A D 5x5 29.1 29.0 28.7 28.3 27.8 27.0 26.0 
D W M F 5x5 28.9 28.4 27.8 27.3 26.8 26.2 25.7 
A M F 5x5 33.9 30.0 26.0 23.3 21.2 19.6 18.3 
M F 5x5 26.6 26.5 26.3 26.1 25.9 25.5 25.2 

unfiltered 28.5 21.5 18.5 16.7 15.5 14.5 13.7 

The comparison of the visual quali ty of different filters considering images corrupted by 

the random-valued noise is shown i n Figure 6.23. Very good results can be obtained using 

two iterations of the evolved filter F 1 7 or conventional P W M A D filter w i th the 5 x 5 filter 

window. Unl ike the case of the salt-and-pepper noise, the adaptive median filter fails i n 

filtering random-valued noise even for lower intensity. O n the other hand, the conventional 

D W M F filter exhibits a good quali ty sl ightly loosing some detail i n comparison w i t h the 

proposed F 1 7 (compare Figure 6.23e-h). 

Impulse burst noise 

In comparison w i t h the previous types of noise, impulse burst noise represents a serious 
issue because the principle of spatial locali ty is violated in this case. W i t h the increased 
noise intensity, more consecutive rows may be affected and subsequent noise filtering be­
comes difficult as the filtered value need not be determined according to the values of the 
neighboring pixels. 

Table 6.12: Compar ison of the impulse burst noise filters in terms of mean P S N R (dB) . 
The size of the kernel is also specified for each filter. 

filter 1% 3% 5% 7% 
noise intensity 

10% 12% 15% 20% 25% 30% 

F32 5x5 35.4 33.9 33.0 31.9 30.9 29.8 28.7 27.0 25.3 23.4 
F32, 2 iters 32.6 31.6 30.9 30.1 29.3 28.7 28.0 27.0 25.9 24.7 
C W M 3x3 32.5 30.2 27.1 24.8 21.7 20.1 18.7 16.2 14.6 13.3 
P W M A D 5x5 32.3 29.9 26.6 24.3 21.2 19.6 18.2 15.8 14.3 12.9 
D W M F 5x5 26.5 24.3 22.4 21.2 19.5 18.4 17.4 15.6 14.4 13.3 
A M F 5x5 26.8 23.3 20.7 19.5 17.6 16.7 15.7 14.1 13.0 12.0 
M F 3x3 29.4 28.0 25.6 23.8 21.0 19.6 18.2 15.8 14.3 12.9 

unfiltered 25.3 21.4 18.8 17.6 15.9 15.1 14.2 12.9 12.0 11.2 

The results for the evolutionary design of switching impulse burst noise filter are summa­

rized i n Table 6.12. T h e proposed filter F32 exhibits the best filtering quali ty i n comparison 

wi th the commonly used conventional filters, surprisingly, even i f we do not apply iterative 
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l l l i l i l 
l l l l l l f 

(a) corrupted image (b) evolved F17 (c) corrupted image (d) evolved F17 

(e) evolved F17, 2 iter. (f) 5x5 kernel D W M (g) evolved F17, 2 iter. (h) 5x5 kernel D W M 

(i) 3x3 kernel P W M A D (j) 5x5 kernel A M F (k) 5x5 kernel P W M A D (1) 5x5 kernel A M F 

Figure 6.23: F i l t e r ing the images corrupted by 15% (a,b,e,f,i,j) and 30% (c,d,g,h,k,l) 
random-valued impulse noise using different filters 

filtering. We have analyzed the best evolved filter (denoted as F32) and recognized that 

this filter tries to avoid the calculations based solely on horizontal information [213]. This 

interesting property shows that the evolutionary approach was able to detect, that the 

burst noise affects adjacent horizontal pixels. If the burst noise has been applied i n vertical 

direction, the pixels of filter window ut i l ized by the evolved filters changed. 

Figure 6.24d shows that the proposed filter exhibits very good quali ty even for the lower 

noise intensity - in this case 1% impulse burst noise was generated. In case of the image 

filtered by the P W M A D filter, we can see that a perceptible part of the noise remains i n the 

image (see Figure 6.24c). In contrary, the image produced by the C W M F does not contain 

any impulse; however, the image is smudged and lacks the details i n comparison w i t h the 

original image. 

Similar comparison was performed considering the images corrupted wi th higher noise 

intensity (30% impulse burst noise). The obtained results are shown i n Figure 6.24e-h. 
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(i) corrupted image (j) 3x3 kernel C W M F (k) 3x3 kernel P W M A D (1) evolved F32 

Figure 6.24: F i l t e r ing the images corrupted by 1% (a,b,c,d), 15% (e,f,g,h) and 30% (j,k,l) 
impulse burst noise 

Whi l s t the proposed filter was able to detect and remove a great por t ion of the noisy pixels, 

the conventional filters have serious problems and fail to remove the noise. The failure of 

the conventional filters probably lies in the fact that the bursts are accumulated i n the 

neighboring rows of the image and thus it is difficult to estimate the correct p ixel values 

using median filter. 

In comparison w i t h the previous results, the last example depicted i n Figure 6.24i-l 

represents a serious problem for the filters. Th is data set shows an image containing several 

sharp and contrast transitions that are very similar to the noise. Even i f the proposed filter 

is able to provide better image (shown in F i g . 6.24d) i n comparison wi th the C W M F and 

P W M A D filter, it can be seen that the image is degraded slightly. It is interesting to note 

that the proposed filter is efficient not only from the point of view of the filtering quali ty but 

also from the point of hardware/software implementation - it consists of simple operations 

and does not require iterative processing. 
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Evolved filters 

Figure 6.25, 6.26 and 6.27 show the structure of the best evolved filters for salt-and-pepper 

shot noise, random-valued impulse noise and impulse burst noise. 

Figure 6.25: Structure of the best evolved filters for salt-and-pepper shot noise 

In contrast w i th the other investigated problems, the evolved salt-and-pepper noise 

filter, which consists of 31 nodes (operations), employs a relative simple c i rcui t ry for noise 

detection that is based only on the knowledge of value of the central pixel . Th is c i rcui t ry 

consists of 7 nodes. 

Let Ic be value of the central p ixel and 02 be the 8-bit output of the detection part. 

Then the output 02 can be expressed as follows. 

02 = ( ( / c + J c / 4 / 2 ) + (255 - J c ) / 4 ) + 5 (Ic + J c / 4 / 2 ) = ( 7 / c / 8 + 63) + 5 ( 9 / c / 8 ) 

If we analyze this equation, we w i l l find out that the 02 provides the value higher than 

127 only i n such cases in which Ic holds the following inequality: 33 < Ic < 227. The 

evolutionary approach discovered that the noisy pixels are affected by the values that are 

close to 0 or 255. 

O n the other hand, the estimation part of this filter is relative complicated and consists 

of three operations: min imum, m a x i m u m and difference. There are two possible expla­

nations for such a structure. The first theory is that the evolution determined that it is 

not necessary to have a robust statistics that detects exactly the noisy pixels because they 

can be easily removed using an algori thm that has the capabil i ty to suppress the outliers 

(e.g. median filter). The second theory is that the detection is used as a pre-filtering that 

separates the pixels that are definitely uncorrupted and thus it reduces the space of a l l 

possible input combinations that have to be processed by estimation part. 

The evolved random-valued impulse noise filter, which consists of 33 nodes, represents 

the opposite example. In this case, the detection part is a relative complicated ci rcui t ry ut i ­

l iz ing 23 nodes. The calculat ion is based on the values spread out over four directions from 
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Figure 6.26: Structure of the best evolved filters for random-valued impulse noise 

central p ixel . The estimation part mainly utilizes the m i n i m u m and m a x i m u m operations. 
Interestingly, five nodes are shared between estimation and detection circuitry. 

Figure 6.27: Structure of the best evolved filters for impulse burst noise 

The impulse burst noise filter shown in Figure 6.27 contains 33 nodes. In this case, 

the evolutionary approach evolved a relative complicated nonlinear structure that contains 

eight condit ional assignments. The estimation part consists of 10 nodes and utilizes the 

information from eight pixels of the filter window. The interesting feature is that the 

estimation part uses (in addit ion to the value of central pixel) only two pixels that are 

ut i l ized also by the estimation part. 

6.4 Summary 

The experimental results clearly show, that the evolutionary design approach can auto­
matical ly produce image filters that are competit ive w i th conventional filters such as M F , 
C W M F , A M F , D W M F or P W M A D not only in terms of filtering quali ty but also i f the im-
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plementation cost is considered. We observed that images filtered by evolved filters preserve 

more details (and thus provide a higher visual quality) than images filtered by conventional 

filters (e.g. median filters). 

It has been also shown, that the designed filters require less F P G A resources than 

conventional filters. For example, the proposed 3-bank filter provides the same filtering 

capabil i ty as a standard adaptive median filter; however, using four times less slices. The 

more detailed analysis can be found in [214, 220]. 

The best results have been achieved when the concept of so called switching filter con­

sisting of the detection and estimation part was applied during the evolutionary process. 

The switching filters evolved for salt-and-pepper shot noise are able to overcome the con­

ventional filters especially for lower noise intensity (< 15%). Interesting results have also 

been achieved i f the iterative filtering process has been taken into account. Whi l s t D W M F 

and P W M A D require from 5 to 10 iterations, the evolutionary designed random-valued 

impulse noise filter can produce the images of similar quali ty using two iterations. Thus, 

i n contrast w i t h the conventional iterative filters, the satisfactory quali ty is accomplished 

using less number of resources and operations. 

We have also demonstrated that the combination of several evolutionary designed filters 

leads to the significant improvement of the quali ty of filtering even if the same filter window 

is ut i l ized. Th is concept can be employed in the switching-based filters. We can combine 

several evolutionary designed detectors as well as estimators together to produce one robust 

filter of high-quality. 
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Chapter 7 

Hardware Accelerator of Cartesian 
Genetic Programming 

Accord ing to John K o z a , evolutionary algorithms i n general and genetic programming i n 

particular can routinely deliver high-return human-competit ive machine intelligence [107]. 

The competitiveness and performance of the evolutionary approaches have been demon­

strated in many tasks and design areas. Unfortunately, the computat ional power which 

evolutionary algorithms need for obtaining innovative results is enormous for most appli­

cations. Th is k ind of inefficiency is caused by the fact, that the evolutionary algorithms 

usually spends most of t ime by running domain-specific simulators which evaluate candi­

date individuals using large t ra ining sets. Even i f the principles of evolutionary algorithms 

are known from nineties, the large computat ion requirements caused that the E A s became 

popular i n recent decades, when the performance of the personal computers has been dra­

matical ly improved. 

In order to reduce the computat ional t ime of E A s , various methods are usually employed. 

In general, they can be divided into the following classes: (1) algori thmic - the use of smart 

search strategies, evolutionary operators and fitness evaluation strategies, (2) source code 

opt imizat ion for a given platform, (3) parallel implementations on clusters of workstations 

and (4) hardware accelerators. However, even wi th a parallel implementation, the evolution 

can be very t ime consuming. 

In contrast w i th clusters of workstations, the domain-specific hardware accelerators 

represent a very promising solution due to the high performance, low implementat ion cost 

and low power consumption. A s the fitness evaluation of a candidate program is the most 

t ime consuming part of E A , hardware acceleration are pr imar i ly devoted to the fitness 

calculation. A straightforward implementat ion involves mult iple fitness calculation units 

which work concurrently. In addi t ion to application-specific chips such as [152], F i e l d Pro­

grammable Gate Arrays have been ut i l ized [180, 163, 118, 61, 189]. M o d e r n F P G A s provide 

a cheap, flexible and powerful platform, often outperforming common workstations or even 

clusters of workstations i n part icular applications. For example, Mar t inek and Sekanina 

proposed a complete hardware implementat ion of a simple population-oriented evolution­

ary algori thm. A s it has been demonstrated i n [119], a single-chip F P G A - b a s e d accelerator 

running at 50 M H z can provide approx. 20 times higher performance in comparison wi th a 
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common workstation running at gigahertz frequency. This speedup has been reported for 

evolutionary design of image filters. M a r t i n designed linear genetic programming system i n 

an F P G A operating wi th fixed point expressions encoded as linear programs [118]. For the 

even 6-parity problem, he achieved the speedup of 18 (two hardware fitness units have been 

utilized) respectively 419 (for 64 fitness units) i n comparison w i t h the P o w e r P C processor 

running at 200 M H z . A l though the hardware accelerators are able to provide high perfor­

mance, the key issue usually is whether the part icular problem requires the floating-point 

operations or fixed-point operations. The fixed-point ari thmetic circuits or even logic cir­

cuits can be accelerated in a much easier way than floating-point operations on a commonly 

accessible hardware such as F P G A . 

Recently, Graphics Processing Uni t s ( G P U s ) that are available i n common desktop 

computers have been used to parallelize the fitness evaluation. C h i t t y [31] reports the 

speedup of 0,4-30 depending on target problem. Hard ing and Banzhaf have shown how the 

speedup of candidate ind iv idua l evaluation depends on the expression length for various 

problems [71]. W i t h the growing expression length and growing number of test cases, G P U 

becomes more effective than C P U . The m a x i m u m speedup is approx. 1000 for Boolean 

expressions and 14 for a protein classification problem. These results show only the number 

of times faster evaluating evolved G P expressions is on the G P U ( N V i d i a GeForce 7300 

G O ) compared to C P U implementat ion (Intel Centr ino T2400 running at 1.83 G H z ) ; the 

speedup of evolution was not reported. Unfortunately, for t raining sets of a common size, 

the overhead of transferring data to the G P U and for constructing the G P U programs leads 

to a worse performance than C P U . 

This chapter is focused on the implementat ion of a modular F P G A - b a s e d accelerator 

designed to accelerate the Cartesian Genetic Programming. The first two sections are 

devoted to the description and evaluation of the proposed hardware accelerator w i th one 

fitness unit . The second two sections provide the details of the enhanced version supporting 

of mult iple fitness units and its evaluation. 

7.1 Target F P G A Platform 

In order to implement the proposed system, a C O M B 0 6 X card equipped wi th V i r t e x II 

P ro X C 2 V P 5 0 F P G A has been used [27]. Th is platform has been developed to accelerate 

t ime-cri t ical and high-speed applications especially from the area of network applications. 

The whole system contains two F P G A s . The smaller F P G A X C 2 V P 4 of V i r t e x II family 

serves as a P C I interface while the larger F P G A of V i r t e x II P r o family which contains 

23 616 slices, 49 788 flip flops, 852 IO blocks and 232 Block R A M modules (2kB each) is 

intended for implementat ion of application-specific hardware accelerators. The F P G A can 

util ize three types of memories: ternary C A M memory having 2 M b of total capacity; three 

synchronous S R A M s , 2 M B of each, organized as 512A: x 36 and D D R D R A M memory wi th 

the capacity up to 2 G B . 

The V i r t e x II P ro F P G A contains two instances of I B M P o w e r P C 405 core which is 

able to operate at 400 M H z each. A s shown i n Figure 7.1, the P o w e r P C is equipped w i t h a 

5-stage pipeline, a virtual-memory-management unit , separate instruction-cache and data-
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cache units, 3 programmable timers, on-chip memory controller ( O C M ) and variety of 

interfaces, including processor local bus ( P L B ) interface, device control register ( D C R ) 

interface and J T A G port interface. 
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Figure 7.1: Archi tecture and interface of the P o w e r P C 405 processor (adopted from [193]) 

Table 7.1 summarizes basic parameters of the P o w e r P C 405 interfaces. A l though the 

P L B controller is more complicated than O C M controller, it provides a higher throughput. 

Further details of the P o w e r P C 405-processor architecture are available in [193]. 

The F P G A chip can be configured either externally or internally, using the so-called 

Internal Configurat ion Access Por t ( I C A P ) . A l though the port can operate at 66 M H z , it is 

not used for evolutionary filter design due to the low throughput, insufficient for our target 

evolvable hardware applications [59, 119]. 

Table 7.1: A comparison of basic interface parameters of P o w e r P C 405. IS stands for 
Instruction Side, D S stands for D a t a Side. The C405 column summarizes the performance 
of the whole P o w e r P C core. 

I n t e r f a c e D C R I S O C M D S O C M I S P L B D S P L B C 4 0 5 
M a x i m a l th roughpu t [MB/s ] 300 1 200 600 2 400 1 2 400 1 1 200 
D a t a bus w i d t h [b] 32 64 32 64 64 32 
Addres s space [B] 1 k 16 M 16 M 4 G 4 G 4 G 
V a r i a b l e la tency suppor t Yes N o N o Yes Yes n / a 

1 The maximal throughput is higher that the throughput of PowerPC core C405 due to the presence of 
PLB fill buffer. 

7.2 C G P Accelerator with a Single Fitness Uni t 

The basic idea of the C G P accelerator is that a given instance of C G P (i.e. a reconfigurable 
array consisting of u x v programmable nodes) is implemented as a reconfigurable circuit on 
the F P G A . Its configuration is defined using a bi tstream which is stored i n a configuration 
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register implemented also in the F P G A . This concept is called the v i r tua l reconfigurable 

circuit [158]. 

7.2.1 A r c h i t e c t u r e O v e r v i e w 

The proposed C G P accelerator is completely implemented i n a single F P G A and consists 

of Genetic unit ( G U ) , Fitness Un i t ( F U ) and Con t ro l U n i t ( C U ) (see Figure 7.2). Tra in ing 

data are stored i n external S R A M memories. The G U as well as F U are connected to the 

internal F P G A bus which provides an effective communicat ion interface between F P G A 

and P C I bus. The host P C is used to load t ra ining data, read the results, and define 

the parameters of C G P . The F U contains one or more instances of V i r t u a l Reconfigurable 

Ci rcu i t ( V R C ) . The V R C is, i n fact, a second reconfiguration layer developed on the top of 

an F P G A in order to obtain a fast reconfiguration and application-specific programmable 

elements. 
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Figure 7.2: Archi tecture of the proposed C G P accelerator 

In order to maximize the overall performance, the C U plays the role of master, controls 

the entire system and provides an interface to the host P C . In particular, it starts/stops the 

evolution, handles the generation counter and issues the control signals for the remaining 

units. The C U consists of two subcomponents working concurrently. The first subcompo­

nent reconfigures the V R C s according to the configuration stored i n the populat ion memory. 

The second subcomponent is responsible for sending the fitness value to the P o w e r P C pro­

cessor. The P o w e r P C generates a new candidate ind iv idua l when a request is issued. The 

instruction memory of the P o w e r P C is implemented using on-chip synchronous Block R A M 

( B R A M ) memories. The memory is connected to the P C I bus interface in order to upload 

the P o w e r P C programs from P C . Since our search algori thm is opt imized for space, it is 

completely executed from an instruct ion cache. 

The populat ion of candidate configurations is also stored in on-chip B R A M memories. 

The populat ion memory is divided into Nf, banks; each of them contains one configuration 
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bitstream. E a c h bitstream consists of the configuration data that are necessary to configure 

one V R C . A n addi t ional bit (associated wi th every bank) determines the data validi ty; only 

val id configurations can be evaluated. In order to overlap the evaluation of a candidate 

configuration wi th generating a new candidate configuration, at least two memory banks 

have to be ut i l ized. W h i l e a candidate solution is evaluated, the new candidate configuration 

is generated. The populat ion memory provides two independent ports: 

1. the 32-bit read/wri te port A connected to the P o w e r P C processor and 

2. the m-bit read-only port B connected to the fitness unit used for the reconfiguration 

of V R C . 

Note that the wid th of the B port must be chosen wi th respect to the implementat ion l imits 

(m must be an integer divisible by 128) and the number of bits of a part of bitstream used 

to configure one column of V R C . 

The process of evaluation works as follows: 

1. W h e n a val id configuration is available, the C U initiates the reconfiguration of V R C . 

2. A s soon as the first column of configurable logic blocks ( C F B s ) has been reconfigured, 

C U initiates the fitness calculat ion process performed by the F U . 

3. W h e n the last column of C F B s has been reconfigured, a corresponding memory bank 

is invalidated and the bank counter is incremented. 

4. Three clock cycles before the end of evaluation the F U indicates the forthcoming end 

of evaluation. 

5. The C U initiates a new configuration of V R C and repeats the sequence 1-4 again. 

6. A s soon as the fitness value is val id, an interrupt request ( IRQ) is generated to activate 

a service routine of the P o w e r P C . In this routine, P o w e r P C reads the fitness value 

together w i t h some addi t ional data (corresponding bank number) and new candidate 

configurations are generated for the given bank. The P o w e r P C processor acknowl­

edges the interrupt and sets up the val idi ty bit . 

7.2.2 G e n e t i c U n i t 

Due to the presence of the P o w e r P C processor, the proposed system allows the use of var­

ious search algorithms. These algorithms uti l ize a populat ion of candidate solutions and 

a single genetic operator — mutat ion, which inverts k bits of the chromosome (i.e. of the 

configuration). N o crossover operator is used. A n analysis of various search strategies, 

mutat ion operators and pseudorandom number generators is presented in the Section 7.3.2. 

H i l l c l imbing, genetic algori thm and parallel version of random search strategy was imple­

mented. In order to exploit the performance of the proposed platform, the search strategy 

has to generate a new candidate solution as soon as a candidate solution is evaluated. This 

concept differs from standard implementations on common C P U s where a new populat ion 

is usually generated the moment the whole populat ion is evaluated. 
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7.2.3 F i tness U n i t 

The fitness calculation is carried out by the Fitness Un i t . The fitness unit consists of three 

components: (1) the t ra ining data generation part, (2) the fitness computat ion part and (3) 

V i r t u a l Reconfigurable C i rcu i t . Accord ing to the size of t ra ining data, the t ra ining data can 

be stored using internal B R A M memory or external S R A M memory. Note that i n case of 

evolutionary design of image filters, a l l image data are stored i n external S R A M memories 

due to the l imi ted capacity of internal B R A M s available in the F P G A chip. The first part 

of the fitness unit loads the t ra ining data and forwards them to the inputs of V R C . V R C 

is ut i l ized to evaluate the response for the t ra ining vectors. The response of a candidate 

circuit is sent back to the Fitness Uni t , where it is compared w i t h the required response 

which is stored i n another internal /external memory. The implementat ion of the circuit 

responsible for the computat ion of fitness value depends on the problem to be solved. 

C O N F 

Figure 7.3: V R C for symbolic regression problems 

7.2.4 V R C for S y m b o l i c Regress ion P r o b l e m s 

Figure 7.3 shows the V R C implemented for the image filter design problem, which is a 

k ind of a symbolic regression problem over the F X representation [206]. Every candidate 

program (image filter) is considered as a digi ta l circuit of nine 8-bit inputs and a single 

8-bit output. 

The V R C consists of 2-input Configurable Logic Blocks ( C F B s ) , denoted as Ei, placed 

in a gr id of 8 columns and 4 rows. A n y input of each C F B may be connected either to a 

pr imary circuit input or to the output of a C F B , which is placed anywhere in the preceding 

column. A n y C F B can be programmed to implement one of 16 function from T, where T 
includes addit ion, subtraction, shift, min imum, m a x i m u m and logic functions. A l l these 

functions operate wi th 8-bit operands and produce 8-bit results. The reconfiguration is 

performed column by column. The computat ion is pipelined; a column of C F B s represents 

a stage of the pipeline. Registers (denoted D) are inserted between the columns i n order 
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to synchronize the input pixels w i th C F B outputs. The configuration bitstream of V R C , 

which is stored i n a register array conf-reg, consists of 384 bits. A single C F B is configured 

by 12 bits, 4 bits are used to select the connection of a single input, 4 bits are used to select 

one of the 16 functions. Evolu t ionary algori thm directly operates w i t h configurations of 

the V R C ; simply, a configuration is considered as a chromosome. 

In tasks of symbolic regression, t ra ining data are stored i n external S R A M memories. 

Fitness unit loads t ra ining data from external S R A M 1 memory and forwards them to the 

inputs of V R C . The outputs of V R C , yi, are compared wi th required outputs, r j , (which are 

loaded from another external memory, S R A M 2 ) and simultaneously stored into the th i rd 

external memory, S R A M 3 . The F U can be considered as an extension of the V R C pipeline 

because in each clock cycle, a temporary fitness value is updated by a new difference, 

\yi — ri\. Due to pipelined reconfiguration as well as execution of V R C , the evaluation of 

a candidate program (circuit) requires k clock cycles, where k is the number of t ra ining 

vectors. 
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Figure 7.4: V R C for evolution of digi ta l circuits 

7.2.5 V R C for L o g i c Expres s ions 

The architecture of V R C for the evolutionary design of logic circuits is s imilar to the V R C for 

symbolic regression. There are four main differences: P E s contain only logic functions, L-
back=2 is supported, the size of phenotype can be calculated and a data parallel operation of 

P E s (the same as used in the software parallel simulation) is introduced (see Section 3.3.2). 

If P E s operate at dw bits then the speedup against the bit-level execution is riu>-times. In 

order to support L-back=2, addi t ional registers (D) have been used to store the results of 

stage i — 2 for stage i of the pipeline (see Figure 7.4). The number of configuration bits 

for a single column is 2 * log 2 (n j + 2u) + l o g 2 ( n j ) . In contrast to symbolic regression, the 

t ra ining data ( truth table) is stored in B R A M s . For example, if rij = 16 then 64 B R A M s 

are ut i l ized. A l l possible input combinations are generated using a binary counter and need 
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Figure 7.5: C i rcu i t for the calculation of the size of a phenotype 

not to be stored in B R A M s . W h e n the size of circuit is not optimized, the m a x i m u m fitness 

value is 2nin0. 
Figure 7.5 explains the calculation of the size of a candidate circuit . The method assumes 

that a P E can implement a single wire. Once a functionally-perfect solution is found, the size 

is opt imized. The objective is to maximize the number of P E s which operate as wires. The 

configuration of a single column of V R C is analyzed using comparators. The comparator 

returns 1 i n case that a part icular P E operates as a wire. These Is are added using a tree 

of adders. This calculation is performed when the column of P E s is configured. It costs no 

extra t ime. The size of phenotype is stored to the least significant bits of the fitness value. 

7.3 Experimental Evaluation 

7.3.1 T h e o r e t i c a l P e r f o r m a n c e 

Since the steps of the evaluation process described i n Section 7.2.1 are pipelined in such 

manner that there are no idle clock cycles, t ime of evolution ttotai can be expressed as 

Uotal = Unit + Neteval = tinit + NeNt— (7.1) 

where Unit corresponds wi th the t ime needed for the ini t ia l izat ion, Ne is the number of 

evaluations, Nt is the number of t ra ining vectors and / is the operation frequency (in our 

case, / = 100 M H z ) . 

7.3.2 E v o l u t i o n of Image F i l t e r s 

Results of synthesis for V R C consisting of 4 x 8 C F B s are summarized i n Table 7.2. Whi l e 

the P o w e r P C works at 300 M H z , the logic support ing the P o w e r P C works at 150 M H z . The 

remaining F P G A logic ( including V R C and F U ) works at 100 M H z . Exper imenta l results 

show that approximately 6,000 candidate programs can be evaluated per second when 

the t ra ining set consists of 15876 vectors (training image consisting of 128 x 128 pixels is 

considered) which is 44 times faster than the same algori thm running at the Celeron 2.4 

G H z [206]. Th is accelerator was ut i l ized to discover novel implementations of image filters 

discussed in Section 6.3.1. 
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Table 7.2: Results of synthesis for the symbolic regression problems 

V R C IO blocks B R A M Slices D F F 
Avai lable 852 232 23 616 49 788 
4 x 8 C F B s 602 12 4 591 3 638 
used 70% 5% 20% 7% 

Experiments were arranged to find a suitable mutat ion rate, an efficient pseudo-random 

number generator and search strategy. The objective was to (1) remove the salt-and-pepper 

noise wi th intensity of 5%, 10% and 20% from real-world images and (2) design an edge 

detector which is able to deal w i th input images corrupted by the salt-and-pepper noise. A 

visual quali ty of filtered images is expressed using mean difference per pixel (mdpp) between 

the filtered image and original image. 

Search strategy 

A s the search algori thm is stored in the program memory of the P o w e r P C processor, the 

proposed platform allows the designer to easily modify the search algori thm. Three search 

algorithms are evaluated: a random search, a h i l l -c l imbing algori thm and a genetic algo­

r i thm. A s t ra ining images we have used 128 x 128-pixel version of Lena image (see F i g ­

ure 6.12). The parameters for each experiment such as m a x i m u m number of evaluations, 

mutat ion rate and number of evolutionary runs are given in Table 6.4. 

Random search (RS) 

This algori thm operates wi th p individuals that are generated randomly at the beginning of 

the evolution. Then an offspring is created using a bi t -mutat ion operator from each parent 

and evaluated. If the offspring is equal or better than its parent then the offspring replaces 

the parent in the new populat ion. In fact, p standard random search algorithms run i n 

parallel. This algori thm was implemented i n [119] as a special circuit . Figure 7.6 shows 

concurrent operations of several processes running in hardware and the P o w e r P C processor 

(including the configuration of the V R C , evaluation of candidate filters and generation of 

candidate configurations). These processes are synchronized i n such a way that no clock 

cycle is lost because of wai t ing on some resources. Note that only two banks are considered 

in this example. Parameter p was chosen as p = 8. 

Hardware 

Clock signal 

V R C config 

Fitness unit 

P P C 

IRQ 

Action 

T J i i u i J U u T J U u i m r u ™ 
/ bankl \ / bank2 \ / bankl \ / bank2 \ / 

fitness calculation of bankl fitness calculation of bank2 

fitness 
value 

J bankl \ _ 

_ / evaluation X mi it \ 

fitness calculation of bankl 

fitness 
value 

J bank2 \ _ 

_ / evaluation X mut . \ 

fitness calculation of bank2 

fitness 
value 

J bankl \ _ 

_ / evaluation X mut . \ 

Figure 7.6: Example of t iming for 2 banks: the reconfiguration of V R C costs 4 clock cycles, 
the evaluation costs 12 clock cycles and the interrupt routine requires 8 clock cycles. 
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Hill Climbing search (HC) 

This algori thm operates wi th p individuals that are generated randomly at the beginning 

of the evolution. After their evaluation, r offspring configurations are generated for each 

parent using a bi t -mutat ion operator. The best offspring of the r offspring configurations 

replaces the corresponding parent; however, only in case that its fitness value is equal or 

better than the parent's fitness value. Aga in , i n fact, p standard h i l l c l imbing algorithms 

run i n parallel . The following setup was applied in this experiment: p = 8, r = 2. 

Genetic algorithm (GA) 

The in i t i a l populat ion of p individuals is generated randomly. Then, r offspring are gen­

erated from each parent using a bi t -mutat ion operator. A new populat ion consisting of p 
individuals is formed from p parents and their p.r offspring. We used a deterministic se­

lection i n which p-best scored individuals are selected as new parents. The following setup 

was applied i n this experiment: p = 8, r = 2. 

Table 7.3: The experimental evaluation of the search strategies on four test problems 

noise 
type 

search 
algorithm 

mean difference per pixel 
min max mean std.dev. 

5% salt-and-pepper 
noise 

R S 
H C 
G A 

0.410 3.190 0.967 0.581 
0.432 3.320 1.060 0.615 
0.333 3.450 2.010 1.240 

10% salt-and-pepper 
noise 

R S 
H C 
G A 

0.982 3.280 1.720 0.337 
0.913 48.01 4.370 3.730 
0.828 7.390 2.650 2.190 

20% salt-and-pepper 
noise 

R S 
H C 
G A 

1.870 4.350 2.850 0.510 
1.650 4.190 2.880 0.587 
0.870 12.10 2.680 1.330 

5% noise, 
edge detection 

R S 
H C 
G A 

1.100 2.660 1.910 0.419 
1.380 2.960 2.310 0.421 
1.070 2.660 2.400 0.453 

The results are summarized in Table 7.3. We can observe that while the best mdpp (in 

average) is always obtained by means of the R S algori thm, the G A always produces the 

filters w i th the smallest mdpp at a l l . Reca l l that the number of evaluations is identical; 

however, R S always produces more generations than the G A . The fitness value of the 

best-evolved filters are shown i n Table 6.5. The L F S R generator has been used i n this 

experiment. 

M u t a t i o n operator implementation and mutation rate 

Our strategy is to estimate the suitable mutat ion rate using not so many evaluations (less 

than 100,000 evaluations allowed) and then to uti l ize the discovered mutat ion rate in long­

time experiments. Figure 7.7 and Figure 7.8 show boxplot diagram containing the average 

mdpp, median and standard deviance calculated from the best values obtained at the end 

of 32 independent runs of the R S algori thm {p = 8) for each of k inverted bits i n the 
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Figure 7.7: The results of the evolutionary design of 5% salt-and-pepper noise for various 
mutat ion rate calculated from 32 independent runs. 

chromosome (k = 1 — 127). Two methods are used: exactly k bits are always inverted and 

a randomly chosen number of bits is inverted; however, l imi ted by k. 
We can observe that the mutat ion rate which allows min imiz ing the fitness value fluc­

tuates around 20 mutated bits per chromosome. This value corresponds w i t h mutat ion 

ratio of 5.2%. It is also more efficient to invert exactly 20 bits than to randomly generate 

a number from interval 1 — 20. 

Pseudorandom number generator 

A s the outputs of pseudorandom number generators ( P R N G ) only approximate some of 

the properties of random numbers, we have to determine a suitable one for the proposed 

architecture. The following three P R N G s were evaluated: 

Linear congruential generators (CG) 

Linear congruential generators represent the oldest and best-known pseudorandom number 

generator algorithms. It is, however, well known that the properties of this class of gener­

ators are far from ideal. The applied linear congruential generator operates according to 

formula 

Vj+i = (1103515245 x Vj + 12345) m o d 2 3 2 (7.2) 

133 



C H A P T E R 7. HARDWARE A C C E L E R A T O R OF CARTESIAN GENETIC P R O G R A M M I N G 

Figure 7.8: The results of the evolutionary design of 10% salt-and-pepper noise for various 
mutat ion rate calculated from 32 independent runs. 

Linear Feedback Shift Register (LFSR) 

Linear Feedback Shift Register is a shift register whose input bit is driven by the exclusive-

or (xor) of some bits of the overall shift register value. A s for this P R N G is also known 

that output bits do not pose a good dis t r ibut ion we used a parallel L F S R consisting of 

16 independent and different L F S R s seeded identically. The L F S R generators operate 

according to formula 

i = f Vj shr 1 i f L S B bit of Vj = 1 , . 
j + 1 \ Vj shr 1 0 C* otherwise 1 ' ' 

where C% is a suitable constant for i - th L F S R generator (e.g. 0x805FDF47) . 

Mersenne Twister (MT) 

Mersenne Twister algori thm is a twisted generalized feedback shift register that avoids 

many of the problems w i t h earlier generators. It has the period of 2 1 9 9 3 7 — 1 iterations, 

is proven to be equidistributed i n (up to) 623 dimensions (for 32-bit values). A standard 

implementation of Mersenne Twister was ut i l ized [120]. 

Figure 7.9 shows average mdpp and corresponding standard deviations obtained from 

32 independent runs (after 12,288 evaluations in each run) using the R S algori thm {p = 8, 

mutat ion applied on 20 bits). The three generators are compared on two problems: remov­

ing 10% salt-and-pepper noise from Lena image and edge detector design. Surprisingly, 

there are not any significant differences in the quali ty of obtained results. 
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Figure 7.9: The impact of the quali ty of pseudo random numbers generators on the results of 
the evolutionary design of 10% salt-and-pepper noise filter and noise-resistant edge detector. 
The average fitness value expressed in terms of mdpp is calculated from 32 independent 
runs. The error bars shows the standard deviance. 

7.3.3 E v o l u t i o n of D i g i t a l C i r c u i t s 

Table 7.4 provides results of synthesis for various parameters of V R C . W h i l e the size of 
V R C and the number of inputs and outputs are fixed, the number of test vectors evaluated 
in parallel (i.e. dw) increases from 1 to 12. W h e n no data parallel execution is used, 
the whole design occupies approx. 10% resources; when dw = 12 (i.e. 12 test vectors 
are evaluated in parallel by a P E ) the design occupies approx. 90% resources. Us ing this 
setup we can achieve 27 times faster evaluation in comparison wi th a highly opt imized S W 

Table 7.4: Results of synthesis for V R C wi th 10x10 P E s , 9 inputs, 9 outputs and 4 logic 
functions per P E ( X C 2 V P 5 0 - f f l 5 1 7 X i l i n x F P G A ) . D F F is the number of flip-flops and F G 
is the number of function generators 

# of vectors evaluated in parallel (dw) 
resource available 1 2 4 8 12 
B R A M s 232 14 16 20 28 36 

used 6.0% 6.9% 8.6% 12.1% 15.5% 
D F F s 49788 2743 2993 3533 4709 5843 

used 5.5% 6.0% 7.1% 9.5% 11.7% 
F G s 47232 4836 7813 14164 26734 41281 

used 10.2% 16.5% 30.0% 56.6% 87.4% 
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Table 7.5: Results of synthesis for various V R C s of 9 inputs, 9 outputs, 4 logic functions 
and dw = 2 ( F P G A XC2VP50-fF1517) 

V R C size 
resource available 10 x 10 12 x 12 14 x 14 16 x 16 
D F F s 49788 

used 
1644 
3.3% 

2336 
4.7% 

3634 
7.3% 

4664 
9.4% 

F G s 47232 
used 

6242 
13.2% 

9012 
19.1% 

26700 
56.5% 

32352 
68.5% 

# of conf. bits 1200 2016 2744 3584 

implementation running at a C P U Intel X e o n 3 G H z processor (and ut i l iz ing a parallel 

s imulation at 32 bits), even if the V R C works at 100 M H z . 

Table 7.5 contains the results of synthesis for various V R C sizes. The number of inputs, 

outputs, logic functions and data w id th are fixed. The last row shows the number of 

configuration bits of V R C . 

In order to investigate the impact of the L-back parameter, we created two V R C s wi th 

L = 1 and L = 2. Proposed implementations were evaluated i n the task of mult ipl ier 

evolution, a t radi t ional hard benchmark problem for evolutionary circuit design. A parallel 

version of H i l l C l i m b i n g algori thm wi th neighbourhood of two and populat ion size of 8 

individuals was used. Table 7.6 summarizes results of 10 independent experiments for each 

problem. We can see that the increasing value of L-back parameter has the positive effect 

on the average number of generations and the success rate. Obta ined results are comparable 

to the best-known results [182] (where the authors allowed the m a x i m u m value of L-back 

parameter). 

Table 7.7 compares the number of evaluated candidate circuits per one second in a 

highly opt imized S W implementat ion and proposed H W accelerator. In case of the S W 

implementation, the t ime of circuit evaluation depends on the size of the phenotype and 

the number of t ra ining vectors. O n the other hand, i n hardware, this t ime depends only 

Table 7.6: Results for evolution of multipliers ( r = { B U F , A N D , X O R , a A N D &}) 

Parameters of evolution 
multiplier 2 x 2 2 x 3 3 x 3 3 x 4 4 x 4 
l-back 1 2 1 2 1 2 1 2 1 2 
V R C 8x8 8x8 10x10 10x10 10x10 10x10 10x10 10x10 16x16 16x16 
inputs 4 4 5 5 6 6 7 7 8 8 
gener. (max) 10k 10k 100k 100k 1 M 1 M 1 0 M 1 0 M 2 0 M 2 0 M 

Results 
success rate 91% 96% 92% 100% 72% 96% 18% 84% 0% 4% 
gates (min) 7 7 13 13 29 24 60 45 - 125 
gates (max) 19 13 20 21 45 47 67 68 - 156 
gates (avg) 9 8 15 15 34 33 61 57 - 138 
gener. (avg) 1.8k 1.5k 20k 13k 22k 284k 4 .84M 3.84M - 14.2M 
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on the number of t raining vectors. Hence, the accelerator becomes more useful for complex 

V R C s and larger sets of t ra ining data. 

Table 7.7: The number of evaluations per second. V R C operates at 100 M H z (dw = 4), 
S W is executed on the Intel(R) X e o n ( T M ) C P U 3.06 G H z (dw = 32) 

# V R C size (SW) V R C size ( H W ) evaluation 
inputs 10 x 10 12 x 12 16 x 16 10 x 10 12 x 12 16 x 16 speedup 

6 400 296 222 6250 6250 6250 15-28 
7 250 173 89 3125 3125 3125 12-35 
8 154 95 51 1563 1563 1563 10-30 
9 85 50 25 781 781 781 9-31 

7.4 C G P Accelerator with Mul t ip le Fitness Units 

A s it has been demonstrated, the evolution using the proposed accelerator containing a sin­

gle fitness unit running at 100 M H z is significantly faster that the software implementat ion 

running on the common P C at G H z processor. In the task of image filter evolution, which 

can be considered as a symbolic regression problem, the F P G A - b a s e d accelerator exhibits 

the 44 times higher performance. Look ing at the results of synthesis, the F P G A offers the 

capacity to increase this speedup by creating a system wi th mult iple fitness units. The 

architecture of the accelerator w i th mult iple fitness units is shown in Figure 7.10. S imi lar ly 

to the previous architecture, the system consists of genetic unit, fitness unit and control 

unit . A l l the units have the same meaning as it has been described i n the previous section. 
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Figure 7.10: Archi tecture of the proposed C G P accelerator w i t h mult iple fitness units 

The populat ion of candidate configurations is stored i n on-chip B R A M memories. The 

populat ion memory is divided into Nf, banks; each of them contains i V c configuration bit-

streams. Each bitstream consists of the configuration data that are necessary to configure 

one V R C . A l l the bitstreams stored wi th in a bank are evaluated in parallel . A n addit ional 

bit (associated w i t h every bank) determines the data validity; only val id configurations 

137 



C H A P T E R 7. HARDWARE A C C E L E R A T O R OF CARTESIAN GENETIC P R O G R A M M I N G 

can be evaluated. W h i l e the candidate solutions are evaluated, the Nc new candidate con­
figurations are generated. S imi lar ly to the previous architecture, the populat ion memory 
provides also two independent ports; the m-bi t read-only port B is connected to the fitness 
unit and used for the reconfiguration of a l l V R C s . Since corresponding columns of V R C s 
are reconfigured at the same time (i.e. in parallel), the part of bi tstream which encodes one 
column of V R C can contain up-to m/Nc bits. Note that the wid th of the B port must be 
chosen wi th respect to 

1. the implementat ion l imits (m must be an integer divisible by 128), 

2. the number of bits of a part of bi tstream used to configure one column of V R C and 

3. the number of V R C instances Nc. 

7.4.1 F i tness U n i t 

The fitness unit consists of Nc instances of V R C and two subcomponents: (a) the input 

generation part and (b) the fitness computat ion part. The t ra ining data are stored i n 

external S R A M memories. The fitness unit loads t ra ining data from the external S R A M 1 

memory and forwards them to the inputs of V R C s . The V R C s exhibit the same architecture 

as it has been described i n the previous section. 

In case of the evolutionary design of image filters it is necessary to implement a local 

neighborhood function (also referred to as a sl iding window function) producing wk2 bits 

per one clock cycle that have to be forwarded to the inputs of V R C s , where k is the size 

of the filter window and w is the data w id th (in our case k = 3 and w = 8). The local 

neighborhood function can be efficiently implemented using k row buffers as shown i n Figure 

7.11. 

In case of common one-dimensional symbolic regression problems, the t ra ining data can 

be forwarded directly from the S R A M 1 to the V R C inputs. In case that the problem to be 

solved involves the u t i l iza t ion of a history of previous samples, the input generation part of 

the fitness unit w i l l contain a buffer for previous samples. Th i s buffer can be implemented 

using registers or B R A M memories. 
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Figure 7.11: Archi tecture of the fitness unit w i th mult iple V R C s (Nc = 4) 
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The fitness computat ion part consists of i V c instances of a circuit that computes the 

fitness value; each V R C utilizes its own instance. In this experiment, four V R C s wi th 

k2 inputs and one output are used. For each V R C i, the absolute difference between 

the output value yi and the required output value y (which is obtained from the external 

memory S R A M 2 ) is calculated. Then, a temporary fitness value stored i n accumulator 

(ACCi) is updated by the difference \yi — y\. A s soon as F U evaluates the last t raining 

vector, the best fitness value together w i th the index of corresponding V R C is sent to the 

P o w e r P C . V R C s are then reconfigured using new bitstreams. 

7.4.2 G e n e t i c U n i t 

The introduct ion of mult iple V R C instances requires designing of a problem specific memory 

interface that allows avoiding the idle clock cycles. The memory banks are used i n order to 

overlap the evaluation of the candidate solutions wi th the generation of new chromosomes. 

Moreover, each bank is d ivided into i V c equivalent sections, each of them is used to configure 

a single V R C . The populat ion memory consists of several instances of B R A M memories 

arranged together to provide the required number of bits. This arrangement enables to 

reconfigure a l l V R C instances in parallel . In order to reduce the number of memory accesses 

issued by the P o w e r P C processor, the populat ion memory is equipped wi th a logic that 

enables to store only the differences between the configurations of neighboring sections. 
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Figure 7.12: Popula t ion memory and its internal organization 

In order to exploit the performance of proposed highly-paral lel architecture, G U has 

to generate i V c new candidate configurations while another i V c candidate configurations 

are evaluated. Because the search algori thm utilizes a populat ion of candidate solutions, 

a single genetic operator is used (i.e. mutat ion which inverts h bits of the configuration) 

and no crossover operator is applied, the number of memory accesses can be minimized 

by storing the differences between the configuration bitstream of the first offspring and 

remaining offspring. 

The P o w e r P C keeps only the information about mutations (i.e. indices of inverted 

bits) and the best fitness value. F U contains a circuit generating a complete configuration 

bitstream for each V R C according to the par t ia l information stored i n the sections. 

The mechanism controll ing the bitstream generation works as follows. A s soon as the 

evaluation is finished, the best fitness value fbest (out of the four evaluated individuals) 
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together w i t h the index of the corresponding V R C i is sent to the P o w e r P C . The three 

situations can occur 

1. if fbest < /parent then the bitstream of the first mutant is reverted to the parent 
bitstream by applying the mutations leading to this configuration, however i n reverse 
order, 

2. if i > 1 then the differences between the first mutant and i - th mutant stored in i - th 

section have to be reflected to the first bitstream, 

3. i f i = 1 then nothing has to be done; the configuration bitstream corresponds w i t h 

the new parent bitstream. 

B y applying the previous steps, the first section contains the parental bi tstream and a 

new generation can be created. Note that the inverted bits stored i n sections have to be 

cleared before a new generation is created. The same principle is applied for remaining 

banks. 

7.5 Experimental Evaluation 

In order to evaluate the performance of the proposed solution, the problem of evolutionary 
design of image filters w i l l be investigated. We w i l l consider V R C that consists of 8 columns 
and 4 rows (u = 8 and v = 4). The configuration bitstream which is used to configure one 
V R C consists of 384 bits; i.e. 48 bits per a column are used. A single C F B is configured 
by 12 bits, 4 bits are used to select the connection of a single input, 4 bits are used to 
select one of the 16 functions. The populat ion memory consists of 8 B R A M memories that 
provide 256 bit wide output. Hence a V R C wi th the configuration bitstream containing up 
to 64 bits per column can be used. 

7.5.1 T h e o r e t i c a l P e r f o r m a n c e 

Due to the pipelined reconfiguration as well as execution of V R C , the evaluation of Nc 

candidate programs requires ( M — 2)(iV — 2) clock cycles, where M x N is the number of 

pixels of t ra ining image. The t ime t e v ai needed to evaluate Nc candidate solutions can be 

expressed as 

tevai = (M- 2)(N - 2)- = (M - 2)(N - 2 ) - ^ * > 

where / is the operation frequency ( / = 1 0 0 M H z ) . Since the evaluation of a candidate 

solution is pipelined, the t e v ai depends only on the number of t ra ining vectors. Note that i n 

case of the software implementat ion of C G P , the evaluation t ime depends not only on the 

number of t ra ining vectors but also on the number of C G P nodes. A s the generation of new 

candidate configurations is overlapped wi th the evaluation of other candidate solutions, the 

tota l t ime ttotai can be expressed as 

ttotai = tinit ~r~ Ng \~-jr~\ t e v ai , 
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where tinu corresponds wi th the t ime needed for the in i t ia l izat ion (i.e. transferring the 

t ra ining data and programming the P o w e r P C processor), Ng is the number of generations, 

p is the populat ion size and i V c is the number of V R C instances. The proposed platform 

provides the best performance i f the number of V R C instances is equal to the populat ion 

size or the populat ion size is a mult iple of the number of V R C instances (p = kp, where 

k G N + ) . If the previous condit ion is met, a l l the V R C instances are ut i l ized without 

stalls. Note that this condit ion does not represent any l imi ta t ion since the populat ion size 

is typical ly chosen between five and ten individuals and moreover, the populat ion size can 

be adjusted according to the number of ut i l ized V R C instances. 

7.5.2 Resu l t s of Synthes is 

Results of synthesis for the accelerator containing up to four V R C instances ( 4 x 8 C F B s 

each) are summarized i n Table 7.8. The proposed system is implemented using V i r t e x 

II P r o X C 2 V P 5 0 F P G A . The P o w e r P C works at 300 M H z , the memory interface at 150 

M H z and the remaining F P G A logic including F U at 100 M H z . Accord ing to the detailed 

synthesis report, one instance of V R C occupies 3275 slices and 1084 flip-flops. The whole 

design occupies approx. 60% of the F P G A for Nc = 4, the four V R C instances represent 

approx. 90% of the design size (see Figure 7.13). 

Table 7.8: Results of synthesis for various number of V R C instances (Vi r tex II Pro) 

resource avail. N c = = 1 = 2 N c = = 4 

IO blocks 852 602 70% 602 70% 602 70% 
B R A M 232 16 7% 16 7% 16 7% 
S L I C E S 23 616 4 651 20% 7 961 34% 14 582 60% 
D F F 49 788 3 536 7% 4 691 9% 7 001 14% 

Table 7.9 summarizes the results of synthesis for the X C 5 V F X 1 0 0 T F P G A . This F P G A 

is available on the second generation of the C O M B O cards ( C O M B O - L X T ) . The main 

difference between Vir tex-5 and V i r t e x II P r o family is the internal structure of the basic 

bui lding blocks ( L U T s ) ; while the V i r t e x II P ro chip contains 4-input L U T s the Vir tex-5 

chip utilizes L U T s w i th 6 inputs. Moreover, the Vi r tex-5 family is equipped w i t h more 

powerful P o w e r P C processor, faster logic and larger B R A M memories. Thus a well wri t ten 

design usually works on higher frequency and occupies smaller area. 

Table 7.9: Results of synthesis for various number of V R C instances (Vir tex-5, 100 M H z ) 

resource avail. N c = = 1 = 2 = 4 N c = = 8 

IO blocks 640 640 94% 640 94% 602 94% 602 94% 
B R A M 228 8 4% 8 4% 8 4% 12 5% 
S L I C E S 16 000 1 828 11% 3 157 20% 5 819 36% 11 158 70% 
D F F 65 280 3 633 6% 4 788 7% 7 098 11% 11 718 18% 

Accord ing to the detailed synthesis report, one instance of V R C occupies 1290 slices 

and 1084 flip-flops. The whole design occupies approx. 40% of the F P G A for i V c = 4. The 

number of occupied resources indicates that this F P G A is able to contain approximately 
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2.5 times higher number of V R C instances and thus provide 2.5 times higher computat ional 
power wi th nearly the same power consumption. 

7.5.3 E v o l u t i o n of image filters 

Exper imenta l results show that approximately 25,000 candidate filters can be evaluated per 

second when the t ra ining set consists of 15876 8-bit vectors (i.e. a t ra ining image containing 

128 x 128 pixels is used) and four instances of V R C are employed. Table 7.10 contains the 

comparison of the proposed accelerator against the recently published works dealing wi th 

the evolutionary design of image filters i n terms of the number of evaluated candidate 

solutions per second as well as the estimated power consumption. Note that the number of 

evaluations per second has been calculated for the image containing 128 x 128 pixels. The 

last column of Table 7.10 contains the relative speedup. It can be seen that the proposed 

solution works approximately 170 times faster than the highly opt imized software version 

of the same algori thm wri t ten i n C running at the Celeron 2.4 G H z processor. Es t imated 

results indicate that a cluster of 30 F P G A s w i l l have the same power consumption as a 

common processor (65 W ) . Nevertheless, the cluster is capable of providing the speedup 

of more than 5000 supposing that one independent run of C G P is carried out using one 

F P G A . 

Figure 7.13: F P G A V i r t e x II P ro X C 2 V P 5 0 ut i l iza t ion for the accelerator containing four 
V R C instances. 

Apa r t from the F P G A - b a s e d accelerators, several papers have been published i n recent 

years dealing wi th the acceleration of C G P using common G P U s [71, 31, 149]. Hard ing and 

Banzhaf achieved the speedup between 0,02 and 100 for the problem of symbolic regression 

using the G P U N V i d i a GeForce 7300 G O [71]. The direct comparison between the results is 

difficult, as they used extremely large C G P array (10000 nodes) and relative smal l number of 

t ra ining vectors (2000) i n order to reduce the huge overhead arising during the data transfer 

to the G P U or accessing the content of the G P U memory. Another common approach to 

increase the speedup on G P U s is to introduce higher level of parallel ism by increasing 
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Table 7.10: Compar ison of the proposed accelerator w i th published approaches 

Approach Platform clock power evals speedup 
freq. cons. per sec 

Accelerator with PowerPC (4 VRCs) F P G A XC2VP50 100 MHz 2W 25195 1 
Accelerator with PowerPC (1 VRC) F P G A XC2VP50 50 MHz 2W 3150 8 
Complete HW accelerator [119] F P G A XC2V3000 50 MHz 1W 3150 8 
Complete HW accelerator [189] F P G A XCV2000 33 MHz 1W 1935 13 
Muli-VRC accelerator [190] F P G A XCV2000 30 MHz 1W 1935 13 
Highly optimized SW [215] C P U Celeron 2.4 GHz 65W 145 170 
SW [189] C P U Pentium IV 2.0 GHz 60W 16 1495 

the number of individuals in the populat ion [31, 149]. A l t h o u g h this approach enables to 

overlap the expensive data transfers w i th the evaluation of other individuals , the method 

seems to be unpract ical . Accord ing to the published works, it appears that population-

parallel approaches are more effective for smaller data sets but unable to compete wi th the 

F P G A - b a s e d accelerators on very large data sets. 

7.6 Summary 

The goal of this chapter was to present a parallel highly opt imized pipelined hardware 

architecture designed for the acceleration of Cartesian genetic programming. The proposed 

accelerator consists of two main units - genetic engine and fitness unit . The fitness unit 

contains mult iple instances of v i r tua l reconfigurable circuit to evaluate several candidate 

solutions in parallel . The genetic engine is reused in a l l applications. Two types of v i r tua l 

reconfigurable circuits are proposed. W h i l e the first V R C is devoted for symbolic regression 

problems over the F X representation, the second one is designed for evolution of logic 

circuits. In both cases a significant speedup of evolution was obtained i n comparison w i t h a 

highly opt imized software implementat ion of C G P running at common gigahertz processor. 

The speedup can be even increased by using a modern F P G A chip (e.g. Vir tex-5) doubling 

thus resources now capable of running at higher frequencies. In contrast w i th the C G P 

implementations based on G P U s or common C P U s , the proposed hardware accelerator 

provides constant speedup independently on the size of the t ra ining set (if a suitable F P G A 

or external memory is chosen). 
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Chapter 8 

Conclusions 

The pr imary goal of the research presented in this thesis is an acceleration of the evolu­

t ionary design i n the field of d ig i ta l systems design and opt imizat ion. We have postulated 

the hypothesis that the evolutionary design approach can produce interesting and human 

competitive solutions when the problem of scalabili ty is reduced and thus sufficient num­

ber of generations can be ut i l ized. Because the scalabili ty problems significantly l imi t the 

application of evolutionary algorithms, we were pr imar i ly focused on the reduction of the 

fitness evaluation t ime which represents a serious issue i n circuit evolution since the complex 

candidate solutions require a lot of t ime to be evaluated. 

Proposed Approaches to the Scalability Problem Reduction 

The contr ibution of this research can be summarized as follows. The thesis dealt w i th 

the design of various acceleration techniques that can significantly eliminate the scalabili ty 

problem of evolutionary design of digi ta l circuits at various levels of abstraction. In order 

to confirm our hypothesis, the work has addressed three different design classes. 

In order to reduce the fitness evaluation time, a domain-specific single-chip F P G A - b a s e d 

accelerator has been proposed. This accelerator is designed to address the problem of the 

necessity of huge computat ion power for designing of d ig i ta l circuits at the function-level. 

These circuits cannot be fully specified a pr ior i , but their desired behavior is known. A 

typica l example is the regression problem which includes e.g. evolutionary design of non­

linear image filters. The common feature of this class of circuits is that smal l imperfections 

in circuit behavior are tolerable, e.g. it is acceptable that the error of filtering is not zero 

but reasonably smal l value. 

A different approach has been proposed in the area of logic synthesis, where the re­

sulting circuits must perfectly meet the specification. A method based on applying formal 

verification techniques that allow a significant acceleration of the fitness evaluation proce­

dure was proposed, overcoming thus the major bottleneck of the evolutionary synthesis at 

gate level. The proposed algori thm can produce complex and simultaneously innovative 

designs, improving thus the state-of-the art logic synthesis tools. 

Final ly , we have shown that there are applications that require a single t ra ining vector 

in order to calculate the fitness value of a candidate solution. Th is approach is applicable 
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in such cases where the ut i l ized bui ld ing blocks satisfy the properties of linearity. This 

method can be used at the gate level as well as function level. 

The Obtained Results 

It has been demonstrated that i n case of the evolutionary design of nonlinear as well as 

linear image filters, the proposed single-chip accelerator running at 100 M H z can provide, 

using a moderate X i l i n x F P G A X C 2 V P 5 0 , approximately 170 times higher performance i n 

comparison wi th a common P C running at 2.4 G H z . This performance has been achieved 

by introducing a deeply pipelined architecture which significantly accelerates the evaluation 

of a candidate solution. Note that even higher performance can be achieved using the same 

architecture on the latest F P G A chips. The modern F P G A s are able to work on higher 

frequencies and provide significantly more resources that can be ut i l ized to parallelize the 

process of evaluation. 

B y means of the proposed F P G A accelerator, very efficient nonlinear image filters have 

been designed. The performance of the proposed F P G A accelerator and its abi l i ty to 

design innovative solutions was investigated i n several papers dealing wi th evolution of edge 

detectors and various impulse noise filters of lower [215] as well as high intensity [214, 213]. 

Extensive testing was devoted to the analysis of the op t imal choice of the populat ion size, 

mutat ion rate, size of the C G P array, size of the t ra ining image, set of node functions, 

pseudo-random number generator and search algori thm [215, 206]. One of the discovered 

implementations of an impulse noise filter consisting of four evolutionary designed filters 

working w i t h the 3 x 3 pixel filter window combined i n a bank of filters is protected by 

the Czech u t i l i ty model (a patent application was submitted i n 2009). The resulting filter 

exhibits high filtration quali ty while the implementat ion cost remains very low. A p a r t from 

that, some other new impulse noise filters have been evolved using the C G P - b a s e d approach 

[220, 212, 211]. 

Us ing the proposed acceleration algori thm employing the formal verification algori thm, 

a system was developed that is able to optimize the number of gates (and potential ly power 

consumption or delay) of combinational circuits having from tens to thousands pr imary 

inputs. The proposed method has been evaluated using a set of L G S y n t h 9 3 benchmark 

circuits and compared w i t h conventional academia as wel l as commercial synthesis tools 

[209, 208, 219]. It was shown that the proposed method can handle circuits intractable 

for common E H W - b a s e d approaches ut i l ized so far (one of the benchmark circuits has 

over 100 inputs and more than 1000 gates). In contrast w i th the conventional synthesis 

tools, the average improvement i n terms of the number of gates provided by our system was 

approximately 25%. A p a r t from the fact that the obtained result indicates the evolutionary 

approach is able to generate the solutions better than conventional techniques, it also 

confirms the recent hypothesis that the conventional logic synthesis produces the results 

that are far from op t imum [209]. 

The problem of the mult iple constant mult ipl ier design, which belongs to the class of 

problems where a candidate solution can be perfectly evaluated i n a short time, has been 

investigated [223]. A l though the mult iple constant mult ipl ier is not a complex circuit i n 
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its own right, it represents a basic component of more complex circuits that form an in­

tegral part of every linear transformation (e.g. the discrete Fourier transform). A l though 

well-optimized heuristics exist for linear transforms design, we confirmed that novel imple­

mentations of mult iple constant multipliers can be designed using evolutionary algori thm. 

To summarize, it has been demonstrated that the evolutionary approach is able to 

produce innovative solutions i f an efficient evaluation procedure is employed. We have 

presented three different approaches to increase the performance of evolutionary algorithms 

and showed their applicabili ty. 

Future Work 

There are several directions how to continue wi th this research. 

It has been shown that the v i r tua l reconfigurable circuit ut i l ized i n the proposed accel­

erator is able to deliver significant speedup, however due to its implementat ion based on 

multiplexers it simultaneously consumes many F P G A resources. The amount of occupied 

resources could then be substantially reduced when a modern F P G A support ing a fast dy­

namical par t ia l reconfiguration is applied. The multiplexers that are used to connect the 

processing elements could be removed since the connections can be established dynamical ly 

using par t ia l dynamical reconfiguration. If we reduce the area occupied by the V R C , we can 

synthesize more V R C s on a single F P G A chip and thus increase the overall performance. 

The system employing the formal verification a lgori thm can also be improved i n several 

ways. The SAT-based approach can perform unsatisfactory for some problem instances. 

For example, the t ime needed to decide whether two multipliers are functionally equivalent 

grows exponentially w i th the increasing number of inputs. There are tens of extensions and 

algorithms that have been proposed by the S A T community to improve the performance 

of digi ta l circuit equivalence checking. Some of the extensions can be adopted in order 

to improve performance of the proposed system. In future research it is also necessary to 

confirm that the proposed method is able to handle large-scale opt imizat ion problems if 

more advanced version of the S A T solver is ut i l ized. 

Since the evolutionary synthesis based on the formal verification algori thm can handle 

real-world (i.e. complex) circuits, it w i l l be probably necessary to investigate the scalabili ty 

of C G P representation, efficiency of ut i l ized genetic operators and the ut i l ized search al­

gori thm. A s it has been shown, the evolutionary strategy wi th populat ion containing only 

two individuals surprisingly provided the best results. 

We believe that there are other applications of evolvable hardware where formal veri­

fication algorithms are directly or indirect ly applicable. Further investigation is needed to 

identify more complex applications that can benefit from this technique. 

147 





Bibliography 

[I] M . Abd-El-Barr , S. Sait, B . Sarif, and U . Al-Saiari. A modified ant colony algorithm for 
evolutionary design of digital circuits. In Evolutionary Computation, 2003. CEC '03. The 
2003 Congress on, volume 1, pages 708 - 715, 2003. 

[2] Advanced Micro Devices, Inc. A M D Athlon Processor x86 Code Optimization Guide. 
http://support.amd.com/us/Processor_TechDocs/22007.pdf, 2000. 

[3] M . O. Ahmad and D. Sundararajan. A fast algorithm for two-dimensional median filtering. 
IEEE Transactions on Circuits and Systems, 34:1364-1374, 1987. 

[4] B . A l i , A . E . A . Almaini , and T. Kalganova. Evolutionary algorithms and theirs use in the 
design of sequential logic circuits. Genetic Programming and Evolvable Machines, 5(1): 11-29, 
2004. 

[5] Anadigm, AN221E04 - Field Programmable Analog Arrays - User Manual, 2007. U R L : 
http://www.anadigm.com/_doc/UM021200-U007.pdf. 

[6] F . V . Andrade, M . C. M . Oliveira, A . O. Fernandes, and C. J . N . Coelho. SAT-based 
equivalence checking based on circuit partitioning and special approaches for conflict clause 
reuse. Design and Diagnostics of Electronic Circuits and Systems, pages 1-6, 2007. 

[7] F . V . Andrade, L . M . Silva, and A . O. Fernandes. Improving SAT-based combinational 
equivalence checking through circuit preprocessing. In 26th International Conference on 
Computer Design, ICCD 2008, pages 40-45, 2008. 

[8] P. J . Angeline. Subtree crossover causes bloat. In Genetic Programming 1998: Proceedings of 

the Third Annual Conference, pages 745-752. Morgan Kaufmann, 1998. 

[9] T. Aoki , N . Homma, and T. Higuchi. Evolutionary Synthesis of Arithmetic Circuit 

Structures. Artificial Intelligence Review, 20(3-4):199-232, 2003. 

[10] T. Aoki , N . Homma, and T. Higuchi. Evolutionary synthesis of arithmetic circuit structures. 

Artificial Intelligence Review, 20:199-232, 2003. 

[II] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996. 

[12] W . Banzhaf and W . B . Langdon. Some considerations on the reason for bloat. Genetic 

Programming and Evolvable Machines, 3(1):81—91, 2002. 

[13] W . Banzhaf, P. Nordin, R. Keller, and F . Francone. Genetic Programming - An Introduction. 
On the Automatic Evolution of Computer Programs and its Application. Morgan Kaufmann, 
Heidelberg/San Francisco, 1998. 

[14] K . E . Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing 

Conference, pages 307-314, 1968. 

[15] P. J . Bentley. Evolutionary Design by Computers. Morgan Kaufmann, San Francisco C A , 
1999. 

[16] Berkeley Segmentation Dataset. Images, 2003. 
http://www.eecs.berkeley.edu/Research/Proj ects/ 
CS/vision/grouping/segbench/BSDS300/html/dataset/. 

149 

http://support.amd.com/us/Processor_TechDocs/22007.pdf
http://www.anadigm.com/_doc/UM021200-U007.pdf
http://www.eecs.berkeley.edu/Research/Proj


BIBLIOGRAPHY 

[17] Berkley Logic Synthesis and Verification Group. Abe: A system for sequential synthesis and 
verification. 

[18] M . Bidlo and J . Skarvada. Instruction-based development: From evolution to generic 
structures of digital circuits. International Journal of Knowledge-Based and Intelligent 
Engineering Systems, 12(3):221-236, 2008. 

[19] A . Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Technical report, 
Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 
4040 Linz, Austria, 2010. Technical Report 10/1, August 2010, F M V Reports Series. 

[20] M . Brameier and W . Banzhaf. linear genetic programming. Springer, 2007. 

[21] A . F . Breitzman. Automatic Derivation and Implementation of Fast Convolution Algorithms. 

PhD thesis, Philadelphia, P A , U S A , 2003. 

[22] D. R. K . Brownrigg. The weighted median filter. Commun. ACM, 27(8):807-818, 1984. 

[23] D. Bu l l and D. Horrocks. Primitive operator digital filters. Circuits, Devices and Systems, 
IEE Proceedings G, 138(3):401 - 412, 1991. 

[24] A . Burian and J . Takala. Evolved Gate Arrays for Image Restoration. In Proc. of 2004 

Congress on Evolutionary Computing CEC'04, pages 1185-1192. I E E E Publ . Press, 2004. 

[25] D. Caban. F P G A implementation of positional filters. In Design of Embedded Control 
Systems, pages 243-249. Springer-Verlag, 2005. 

[26] P. Cappello and K . Steiglitz. Some complexity issues in digital signal processing. Acoustics, 

Speech and Signal Processing, IEEE Transactions on, 32(5):1037 - 1041, 1984. 

[27] Cesnet, z.s.p.o. Liberouter C O M B O cards, http://www.liberouter.org/hardware.php, 
2005. 

[28] C. Chakrabarti. Novel sorting network-based architectures for rank order filters. IEEE 
Transactions on Very large Scale Integration Systems, 2(4):502-507, 1994. 

[29] C. Chakrabarti. Sorting network based architectures for median filters. Transaction on 

Signal Processing, 1994. 

[30] C. Chakrabarti and L . E . Lucke. V L S I architectures for weighted order statistic (WOS) 

filters. Signal Processing archive, 80(8):1419-1433, 2000. 

[31] D. M . Chitty. A data parallel approach to genetic programming using programmable 
graphics hardware. In GECCO '07: Proceedings of the 9th annual conference on Genetic and 
evolutionary computation, volume 2, pages 1566-1573, London, 2007. A C M Press. 

[32] A . Chojnacki. Effective and efficient fpga synthesis through functional decomposition based 
on information relationship measures. In Proceedings of the Euromicro Symposium on Digital 
Systems Design, DSD '01, pages 30-, Washington, D C , U S A , 2001. I E E E Computer Society. 

[33] D. Cliff, I. Harvey, and P. Husbands. Explorations in evolutionary robotics. Adaptive 

Behavior, 2(1):73-110, 1993. 

[34] M . Collins. Finding needles in haystacks is harder with neutrality. Genetic Programming and 

Evolvable Machines, 7:131-144, 2006. 

[35] J . Cong and K . Minkovich. Optimality Study of Logic Synthesis for LUT-Based F P G A s . 
IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 
26(2):230-239, 2007. 

[36] S. A . Cook. The complexity of theorem-proving procedures. In Proceedings of the third 
annual ACM symposium on Theory of computing, pages 151-158, New York, N Y , U S A , 1971. 
A C M . 

[37] V . Crnojevic, V . Senk, and Z. Trpovski. Advanced impulse detection based on pixel-wise 
M A D . SPIetters, ll(7):589-592, July 2004. 

150 

http://www.liberouter.org/hardware.php


[38] A . Das and R. Vemuri. A graph grammar based approach to automated multi-objective 
analog circuit design. In DATE 2009, pages 700-705. I E E E , 2009. 

[39] M . Davis, G . Logemann, and D. Loveland. A machine program for theorem-proving. 
Commun. ACM, 5:394-397, 1962. 

[40] M . Davis and H . Putnam. A computing procedure for quantification theory. J. ACM, 
7:201-215, 1960. 

[41] A . Dempster and M . Macleod. Constant integer multiplication using minimum adders. 

Circuits, Devices and Systems, IEE Proceedings -, 141(5):407 - 413, 1994. 

[42] A . Dempster and M . Macleod. Use of minimum-adder multiplier blocks in fir digital filters. 
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 
42(9):569 - 577, 1995. 

[43] A . Dempster and M . Macleod. Comments on ldquo;minimum number of adders for 
implementing a multiplier and its application to the design of multiplierless digital filters 
rdquo;. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions 
on, 45(2):242 - 243, 1998. 

[44] S. Disch and C. Schollm. Combinational equivalence checking using incremental SAT solving, 
output ordering, and resets. Asia and South Pacific Design Automation Conference, pages 
938-943, 2007. 

[45] Y . Dong and S. X u . A new directional weighted median filter for removal of random-valued 
impulse noise. Signal Processing Letters, 14(3):193-196, 2007. 

[46] E . R. Dougherty and J . T. Astola, editors. Nonlinear Filters for Image Processing. 
S P I E / I E E E Series on Imaging Science & Engineering. S P I E / I E E E , 1999. 

[47] J . Dumoulin, J . Foster, J . Frenzel, and S. McGrew. Special Purpose Image Convolution with 
Evolvable Hardware. In Real- World Applications of Evolutionary Computing - Proc. of the 
2nd Workshop on Evolutionary Computation in Image Analysis and Signal Processing 
EvoIASP'00, volume 1803 of LNCS, pages 1-11. Springer-Verlag, 2000. 

[48] R. Ebendt, G. Fey, and R. Drechsler. Advanced BDD Optimization. Springer, 2000. 

[49] N . Een, A . Mishchenko, and N . Sorensson. Applying logic synthesis for speeding up SAT. 
Lecture notes in computer science, page 272, 2007. 

[50] N . Een and N . Sorensson. Min iSAT. http://minisat.se. 
[51] N . Een and N . Sorensson. A n extensible SAT-solver. In Theory and Applications of 

Satisfiability Testing, pages 333-336, 2004. 
[52] S. A . Fahmy, P. Y . K . Cheung, and W. Luk. Novel FPGA-based implementation of median 

and weighted median filters for image processing. In FPL, pages 142-147, 2005. 
[53] P. Fiser and J . Schmidt. Small but nasty logic synthesis examples. In Proc. 8th Int. 

Workshop on Boolean Problems, pages 183-190, 2008. 

[54] M . Flynn and P. Hung. Microprocessor design issues: thoughts on the road ahead. Micro, 

IEEE, 25(3):16 - 31, 2005. 

[55] D . B . Fogel. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. 
I E E E Press, 1995. 

[56] L . J . Fogel, A . J . Owens, and M . J . Walsh. Artificial Intelligence through Simulated 
Evolution. Wiley, New York, 1966. 

[57] Z. Gajda and L . Sekanina. Reducing the number of transistors in digital circuits using 
gate-level evolutionary design. In Genetic and Evolutionary Computation Conference, pages 
245-252. Association for Computing Machinery, 2007. 

[58] M . Garvie. Reliable Electronics through Artificial Evolution. PhD thesis, University of 

151 

http://minisat.se


BIBLIOGRAPHY 

Sussex, 2005. 

[59] K . Glette and J . Torresen. A flexible on-chip evolution system implemented on a xilinx 
virtex-ii pro device. In Evolvable Systems: From Biology to Hardware, volume 3637 of LNCS, 
pages 66-75. Springer, 2005. 

[60] K . Glette, J . Torresen, and M . Yasunaga. A n online E H W pattern recognition system 
applied to face image recognition. In Applications of Evolutinary Computing, EvoWorkshops 
2007, volume 4448 of LNCS, pages 271-280. Springer, 2007. 

[61] K . Glette, J . Torresen, M . Yasunaga, and Y . Yamaguchi. On-Chip Evolution Using a Soft 
Processor Core Applied to Image Recognition. In Proceedings 1st NASA /ESA Conference 
on Adaptive Hardware and Systems (AHS), pages 373-380. I E E E CS Press, 2006. 

[62] E . Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. 
Addison-Wesley, 1989. 

[63] E . Goldberg and Y . Novikov. Berkmin: A fast and robust sat-solver. In Proceedings of the 
conference on Design, automation and test in Europe, D A T E '02, pages 142-, Washington, 
D C , U S A , 2002. I E E E Computer Society. 

[64] E . Goldberg, M . Prasad, and R. Brayton. Using SAT for combinational equivalence checking. 
In DATE '01: Proceedings of the conference on Design, automation and test in Europe, pages 
114-121, Piscataway, N J , U S A , 2001. I E E E Press. 

[65] T. G. W . Gordon and P. J . Bentley. On evolvable hardware. In Soft Computing in Industrial 

Electronics, pages 279-323, London, U K , 2002. Physica-Verlag. 

[66] D. Green. Modern Logic Design. Addison-Wesley, 1986. 
[67] J . Grimbleby. Automatic analogue network synthesis using genetic algorithms. In Genetic 

Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First 
International Conference on (Conf. Publ. No. 414), pages 53 -58, 1995. 

[68] O. Gustafsson, A . Dempster, and L . Wanhammar. Extended results for minimum-adder 
constant integer multipliers. In Circuits and Systems, 2002. ISCAS 2002. IEEE 
International Symposium on, volume 1, pages 1-73 - 1-76, 2002. 

[69] P. C. Haddow and A . Tyrrell. Challenges of evolvable hardware: past, present and the path 
to a promising future. Genetic Programming and Evolvable Machines, 12:183-215, 2011. 

[70] S. Harding. Evolution of image filters on graphics processor units using cartesian genetic 
programming. In 2008 IEEE World Congress on Computational Intelligence, pages 
1921-1928, Hong Kong, 2008. I E E E Computational Intelligence Society, I E E E Press. 

[71] S. Harding and W . Banzhaf. Fast genetic programming on GPUs . In Proceedings of the 10th 
European Conference on Genetic Programming, volume 4445 of Lecture Notes in Computer 
Science, pages 90-101, Valencia, Spain, 2007. Springer. 

[72] S. Harding and W . Banzhaf. Implementing cartesian genetic programming classifiers on 
graphics processing units using gpu.net. In Proceedings of the 13th annual conference 
companion on Genetic and evolutionary computation, G E C C O '11, pages 463-470, New 
York, N Y , U S A , 2011. A C M . 

[73] S. L . Harding and W . Banzhaf. Distributed genetic programming on GPUs using C U D A . In 
I. Hidalgo, F . Fernandez, and J . Lanchares, editors, Workshop on Parallel Architectures and 
Bioinspired Algorithms, pages 1-10, Raleigh, N C , U S A , 2009. Universidad Complutense de 
Madrid. 

[74] S. L . Harding, J . F . Miller, and W . Banzhaf. Self modifying cartesian genetic programming: 
Parity. In 2009 IEEE Congress on Evolutionary Computation, pages 285-292. I E E E Press, 
2009. 

[75] R. Harjani, R. A . Rutenbar, and L . R. Carley. A prototype framework for knowledge-based 

152 

http://gpu.net


analog circuit synthesis. In Proceedings of the 24th ACM/IEEE Design Automation 
Conference, D A C '87, pages 42-49, New York, N Y , U S A , 1987. A C M . 

F . Henrici, J . Becker, A . Buhmann, M . Ortmanns, and Y . Manoli. A continuous-time field 
programmable analog array using parasitic capacitance gm-c filters. In Proc. IEEE 
International Symposium on Circuits and Systems, pages 2236-2239. I E E E , 2007. 

T. Higuchi, M . Iwata, I. Kajitani, H . Iba, Y . Hirao, T. Furuya, and B . Manderick. Evolvable 
hardware and its application to pattern recognition and fault-tolerant systems. In Towards 
Evolvable Hardware, Lecture Notes in Computer Science, pages 118-135. Springer Berlin / 
Heidelberg, 1996. 

T. Higuchi, M . Iwata, D . Keymeulen, H . Sakanashi, M . Murakawa, I. Kajitani, E . Takahashi, 
K . Toda, M . Salami, N . Kajihara, and N . Otsu. Real-World Applications of Analog and 
Digital Evolvable Hardware. IEEE Transactions on Evolutionary Computation, 
3(3):220-235, 1999. 

T. Higuchi, T. Niwa, T. Tanaka, H . Iba, H . de Garis, and T. Furuya. Evolving Hardware with 
Genetic Learning: A First Step Towards Building a Darwin Machine. In Proc. of the 2nd 
International Conference on Simulated Adaptive Behaviour, pages 417-424. M I T Press, 1993. 
J . A . Hilder, J . A . Walker, and A . M . Tyrrell. Use of a multi-objective fitness function to 
improve cartesian genetic programming circuits. In NASA/ESA Conference on Adaptive 
Hardware and Systems, pages 179-185. I E E E , 2010. 

A . J . Hirst. Notes on the evolution of adaptive hardware. In Proc. of Adaptive Computing in 
Engineering Design and Control, pages 212-219. Plymouth, U . K . , 1996. 
J . Holland. Adaptation in Natural and Artificial Systems. A n n Arbor: University of 
Michigan Press, 1975. 

G. Hornby, A . Globus, D . S. Linden, and J . Lohn. Automated Antenna Design with 
Evolutionary Algorithms. In Proc. 2006 AIAA Space Conference, page 8, San Jose, C A , 
2006. A I A A . 

D. Horrocks and M . Spittle. Component value selection for active filters using genetic 
algorithms. First On-line Workshop on Soft Computing (WSC1), Special Session on, 
page 19, 1996. 

H . Hwang and R. Haddad. Adaptive median filters: new algorithms and results. IP, 
4(4):499-502, Apr i l 1995. 

H . Hwang and R. A . Haddad. New algorithms for adaptive median filters. In Proc. SPIE 
Vol. 1606, Visual Communications and Image Processing '91, pages 400-407, 1991. 
H . Iba, M . Iwata, and T. Higuchi. Machine learning approach to gate-level evolvable 
hardware. In Evolvable Systems: From Biology to Hardware, volume 1259 of Lecture Notes in 
Computer Science, pages 327-343. Springer Berlin / Heidelberg, 1997. 

M . Jarvisalo. Equivalence checking hardware multiplier designs, 2007. SAT Competition 2007 
benchmark description. Available at http://www.satcompetition.org/2007/contestants.html. 
T. Kalganova. A n extrinsic function-level evolvable hardware approach. In Proceedings of the 
European Conference on Genetic Programming, pages 60-75, London, U K , 2000. 
Springer-Verlag. 

T. Kalganova. Bidirectional incremental evolution in extrinsic evolvable hardware. In Proc. 
of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 65-74. I E E E Computer 
Society Silicon Valley, U S A , July 2000. 

T. Kalganova and J . F . Miller. Evolving more efficient digital circuits by allowing circuit 
layout evolution and multi-objective fitness. In The First NASA/DoD Workshop on 
Evolvable Hardware, pages 54-63. I E E E Computer Society 1999. 

153 

http://www.satcompetition.org/2007/contestants.html


BIBLIOGRAPHY 

[92] P. Kaufmann and M . Platzner. Advanced techniques for the creation and propagation of 
modules in cartesian genetic programming. In Proc. of Genetic and Evolutionary 
Computation Conference, GECCO 2008, pages 1219-1226. A C M , 2008. 

[93] D. E . Knuth. The Art of Computer Programming: Sorting and Searching (2nd ed.). Addison 
Wesley, 1998. 

[94] S. K o and Y . Lee. Center weighted median filters and their applications to image 
enhancement. IEEE Transactions on Circuits and Systems, 15:984-993, 1991. 

[95] H . Kog and L . Guan. A noise-exclusive adaptive filtering framework for removing impulse 

noise in digital images. IEEE Signal Processing Letters, 45:422-428, 1998. 

[96] P. Koivisto, J . Astola, V . Lukin, V . Melnik, and O. Tsymbal. Removing Impulse Bursts from 
Images by Training-Based Filtering. EURASIP Journal on Applied Signal Processing, 
2003(3):223-237, 2003. 

[97] P. Koivisto, H . Huttunen, and P. Kuosmanen. Training-based optimization of soft 

morphological filters. Journal of Electronic Imaging, 5(3):300-322, 1996. 

[98] J . Korenek and L . Sekanina. Intrinsic evolution of sorting networks: A novel complete 
hardware implementation for F P G A s . In Evolvable Systems: From Biology to Hardware, 
volume 3637 of LNCS, pages 46-55. Springer Verlag, 2005. 

[99] J . R. Koza. The Annual „HUMIES" Awards. 

http://www.genetic-programming.org/hc2011/combined.html. 
[100] J . R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural 

Selection. M I T Press, Cambridge, M A , 1992. 

[101] J . R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. M I T 

Press, Cambridge, M A , 1994. 

[102] J . R. Koza. Human-competitive results produced by genetic programming. Genetic 

Programming and Evolvable Machines, 11 (3-4):251-284, 2010. 

[103] J . R. Koza, F . H . Bennett III, D . Andre, and M . A . Keane. Four problems for which a 
computer program evolved by genetic programming is competitive with human performance. 
In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, 
pages 1 -10, 1996. 

[104] J . R. Koza, F . H . Bennett III, D . Andre, and M . A . Keane. The design of analog circuits by 
means of genetic programming. In P. J . Bentley, editor, Evolutionary Design by Computers, 
chapter 16, pages 365-385. Morgan Kaufmann, San Francisco, U S A , 1999. 

[105] J . R. Koza, F . H . Bennett III, D . Andre, and M . A . Keane. Genetic Programming III: 
Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco, 
C A , 1999. 

[106] J . R. Koza and L . W . Jones. Automated re-invention of six patented optical lens systems 
using genetic programming. In Proceedings of the Genetic and Evolutionary Computation 
Conference, GECCO 2005, pages 1953-1960. A C M Press, 2005. 

[107] J . R. Koza, M . A . Keane, M . J . Streeter, W. Mydlowec, J . Y u , and G . Lanza. Genetic 
Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic 
Publishers, 2003. 

[108] P. Lakamsani, R. Yang, B . Zeng, and M . Liou. Design and implementation of a 
programmable stack filter. In ICIP94, pages 664-667, 1994. 

[109] W . K . Lam. Hardware Design Verification: Simulation and Formal Method-Based 

Approaches. Prentice Hall P T R , Upper Saddle River, N J , U S A , 1st edition, 2008. 

[110] J . Langeheine. Intrinsic Hardware Evolution on the Transistor Level. PhD thesis, 2005. 

154 

http://www.genetic-programming.org/hc2011/combined.html


[I l l ] T. Larrabee. Test pattern generation using boolean satisfiability. IEEE Transactions on 
Computer-Aided Design, 11:4-15, 1992. 

[112] C. -C. Lee, J . -H. R. Jiang, C . - Y . R. Huang, and A . Mishchenko. Scalable exploration of 
functional dependency by interpolation and incremental SAT solving. In Proceedings of the 
2007 IEEE/ACM international conference on Computer-aided design, I C C A D '07, pages 
227-233, Piscataway, N J , U S A , 2007. I E E E Press. 

[113] C. M . L i . A constraint-based approach to narrow search trees for satisfiability. Information 

Processing Letters, 71:75-80, 1999. 

[114] D . S. Linden. Automated design and optimization of wire antennas using genetic algorithms. 
PhD thesis, 1997. 

[115] R. Maheshwari, S. S. S. P. Rao, and E . G. Poonacha. F P G A implementation of median 
filter. In VLSI Design, pages 523-524, 1997. 

[116] J . Marques-Silva. Practical applications of boolean satisfiability. In Workshop on Discrete 

Event Systems (WODES'08). I E E E Press, 2008. 

[117] S. Marshall. New direct design method for weighted order statistic filters. VISP, 151 (1): 1—8, 

February 2004. 

[118] P. Martin. Genetic Programming in Hardware. PhD thesis, University of Essex, 2003. 

[119] T. Martinek and L . Sekanina. A n evolvable image filter: Experimental evaluation of a 
complete hardware implementation in F P G A . In Evolvable Systems: From Biology to 
Hardware, volume 3637 of LNCS, pages 76-85. Springer Verlag, 2005. 

[120] M . Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed 
uniform pseudo-random number generator. A CM Trans. Model. Comput. Simul., 8(l):3-30, 
1998. 

[121] T. McConaghy, P. Palmers, G . G . E . Gielen, and M . Steyaert. Simultaneous multi-topology 
multi-objective sizing across thousands of analog circuit topologies. In DAC 2007, pages 
944-947. I E E E , 2007. 

[122] T. McConaghy, P. Palmers, M . Steyaert, and G . G . E . Gielen. Trustworthy genetic 
programming-based synthesis of analog circuit topologies using hierarchical domain-specific 
building blocks. Evolutionary Computation, IEEE Transactions on, 15(4):557-570, 2011. 

[123] K . L . McMil lan . Interpolation and SAT-based model checking. Computer Aided Verification, 
pages 1-13, 2003. 

[124] U . Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays. Springer, 
2007. 

[125] J . F . Miller. Digital filter design at gate-level using evolutionary algorithms. In Proceedings 
of the Genetic and Evolutionary Computation Conference, GECCO 1999, pages 1127-1134. 
Morgan Kaufmann, 1999. 

[126] J . F . Miller. What bloat? Cartesian Genetic Programming on Boolean problems. In 
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2001, pages 
295-302. Morgan Kaufmann Publishers, 2001. 

[127] J . F . Miller, D. Job, and V . K . Vassilev. Principles in the Evolutionary Design of Digital 
Circuits - Part I. Genetic Programming and Evolvable Machines, 1(1):8—35, 2000. 

[128] J . F . Miller, D. Job, and V . K . Vassilev. Principles in the Evolutionary Design of Digital 
Circuits - Part II. Genetic Programming and Evolvable Machines, l(2):259-288, 2000. 

[129] J . F . Miller and S. L . Smith. Redundancy and Computational Efficiency in Cartesian Genetic 

Programming. IEEE Transactions on Evolutionary Computation, 10(2):167-174, 2006. 

[130] J . F . Miller and P. Thomson. Aspects of digital evolution: Geometry and learning. In 

155 



BIBLIOGRAPHY 

Proceedings of the Second International Conference on Evolvable Systems: From Biology to 
Hardware, Lecture Notes in Computer Science, pages 25-35. Springer-Verlag, 1998. 

[131] J . F . Miller and P. Thomson. Cartesian Genetic Programming. In Proc. of the 3rd European 
Conference on Genetic Programming EuroGP2000, volume 1802 of LNCS, pages 121-132. 
Springer, 2000. 

[132] J . F . Miller, P. Thomson, and T. Fogarty. Designing electronic circuits using evolutionary 
algorithms, arithmetic circuits: A case study. In Genetic Algorithms and Evolution Strategies 
in Engineering and Computer Science, pages 105-131. Wiley, 1997. 

[133] M . W . Moskewicz, C. F . Madigan, Y . Zhao, L . Zhang, and S. Malik. Chaff: engineering an 
efficient SAT solver. In Proceedings of the 38th annual Design Automation Conference, D A C 
'01, pages 530-535, New York, N Y , U S A , 2001. A C M . 

[134] M . Murakawa et al. Evolvable hardware at function level. In In Proc. of the Parallel 
Problem Solving from Nature IV, volume 1141 of LNCS, pages 62-71. Springer Berlin / 
Heidelberg New York, 1996. 

[135] N . Nedjah and L . de Macedo Mourelle. Evolutionary Synthesis of Synchronous Finite State 
Machines. In Evolvable Machines: Theory and Practice, pages 103-127, Berlin, 2005. 
Springer. 

[136] M . Nikolova. A variational approach to remove outliers and impulse noise. J. Math. Imaging 
Vis., 20(l-2):99-120, 2004. 

[137] P. Nordin. A compiling genetic programming system that directly manipulates the machina 

code, pages 311-331. M I T Press, Cambridge, M A , U S A , 1994. 

[138] P. Nordin. Evolutionary Program Induction of Binary Machine Code and its Applications. 
PhD thesis, 1997. 

[139] E . Ochotta, R. Rutenbar, and L . Carley. Synthesis of high-performance analog circuits in 
astrx/oblx. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions 
on, 15(3):273 -294, 1996. 

[140] M . Oltean and C. Grosan. Evolving digital circuits using multi expression programming. In 
Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pages 87-97, 
Seattle, 2004. I E E E Press. 

[141] G. Pask. Physical analogues to the growth of a concept. In A . Uttley, editor, Mechanisation 

of thought processes, pages 765-794. National Physical Laboratory H.M.S.O. , 1958. 

[142] E . Pavlenko, M . Wedler, D. Stoffel, W . Kunz, O. Wienand, and E . Karibaev. A New 
Verification Technique for Custom-Designed Components at the Arithmetic Bit Level, volume 
Languages for Embedded Systems and their Applications of Lecture Notes in Electrical 
Engineering, chapter 17, pages 257-272. Springer Netherlands, 2009. 

[143] T. Pecenka, Z. Kotasek, L . Sekanina, and J . Strnadel. Automatic discovery of R T L 
benchmark circuits with predefined testability properties. In 2005 NASA / DoD Conference 
on Evolvable Hardware, pages 51-58. I E E E Computer Society, 2005. 

[144] R. Poli and J . Page. Solving high-order boolean parity problems with smooth uniform 
crossover, sub-machine code gp and demes. Genetic Programming and Evolvable Machines, 
1:37-56, 2000. 

[145] R. Porter. Evolution on FPGAs for Feature Extraction. PhD thesis, Queensland University 
of Technology, Brisbane, Australia, 2001. 

[146] P. Porwik. The spectral test of the boolean function linearity. Int. J. Appl. Math. Comput. 
Sci, 13:567-575, 2003. 

[147] M . Piischel, B . Singer, J . Xiong, J . M . F . Moura, J . Johnson, D . Padua, M . Veloso, and 
R. W . Johnson. S P I R A L : A generator for platform-adapted libraries of signal processing 

156 



algorithms. Journal of High Performance Computing and Applications, special issue on 
'Automatic Performance Tuning", 18(l):21-45, 2004. 

[148] M . Piischel, A . C. Zelinski, and J . C. Hoe. Custom-optimized multiplierless implementations 
of DSP algorithms. In International Conference on Computer-Aided Design (ICCAD), pages 
175-182, 2004. 

[149] D . Robilliard, V . Marion-Poty, and C. Fonlupt. Population parallel gp on the g80 gpu. In 
Proc. of European Conference on Genetic Programming, volume 4971 of LNCS, pages 
98-109. Springer-Verlag, 2008. 

[150] F . Russo and G. Ramponi. A fuzzy filter for images corrupted by impulse noise. IEEE 

Transactions on Circuits and Systems, 45:168-170, 1996. 

[151] S. Safarpour, A . Veneris, G. Baeckler, and R. Yuan. Efficient SAT-based boolean matching 

for F P G A technology mapping. In Proceedings of DAG 2006, 2006. 

[152] H . Sakanashi, M . Iwata, and T. Higuchi. E H W Applied to Image Data Compression. In 

T. Higuchi, Y . L iu , and X . Yao, editors, Evolvable Hardware, pages 19-40. Springer, 2006. 

[153] M . Salami, M . Murakawa, and T. Higuchi. Data compression based on evolvable hardware. 
In Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, pages 
167-179. Springer Berlin / Heidelberg, 1997. 

[154] M . Salami, H . Sakanashi, M . Tanaka, M . Iwata, T. Kuri ta , and H . T. On-line compression of 
high precision printer images by evolvable hardware. In Proc. of the Data Compression 
Conference, pages 219-228, Los Alamitos, C A , U.S .A, 1998. 

[155] S. Schulte, M . Nachtegael, V . D . Witte, D. V . der Weken, and E . E . Kerre. Fuzzy impulse 
noise reduction methods for color images. In Computational Intelligence, Theory and 
Applications International Conference 9th Fuzzy Days in Dortmund, pages 711-720. Springer 
Verlag, 2006. 

[156] H . P. Schwefel. Evolution and Optimum Seeking. John Wiley, New York, 1995. 

[157] L . Sekanina. Image Filter Design with Evolvable Hardware. In Applications of Evolutionary 
Computing - Proc. of the Jfii Workshop on Evolutionary Computation in Image Analysis 
and Signal Processing EvoIASP'02, volume 2279 of LNCS, pages 255-266, Kinsale, Ireland, 
2002. Springer Verlag. 

[158] L . Sekanina. Evolvable components: From Theory to Hardware Implementations. Natural 
Computing. Springer-Verlag Berlin, 2004. 

[159] L . Sekanina and M . Bidlo. Evolutionary design of arbitrarily large sorting networks using 

development. Genetic Programming and Evolvable Machines, 6(3):319-347, 2005. 

[160] L . Sekanina and T. Martínek. Evolving image operators directly in hardware. In S. Cagnoni, 
E . Lutton, and G . Olague, editors, Genetic and Evolutionary Computation for Image 
Processing and Analysis, EURASIP Book Series on Signal Processing and Communications, 
Volume 8, pages 93-112. Hindawi Publishing Corporation, 2007. 

[161] L . Sekanina and R. Růžička. Easily Testable Image Operators: The Class of Circuits Where 
Evolution Beats Engineers. In Proc. of the 2003 NASA/DoD Conference on Evolvable 
Hardware, pages 135-144, Chicago, U S A , 2003. I E E E Computer Society. 

[162] E . M . Sentovich, K . J . Singh, L . Lavagno, C. Moon, R. Murgai, A . Saldanha, H . Savoj, P. R. 
Stephan, R. K . Brayton, and A . Sangiovanni-vincentelli. Sis: A system for sequential circuit 
synthesis. Technical report, University California, Berkeley, 1992. 

[163] B . Shackleford. A high-performance, pipelined, FPGA-based genetic algorithm machine. 

Genetic Programming and Evolvable Machines, 2(l):33-60, 2001. 

[164] A . P. Shanthi and R. Parthasarathi. Practical and scalable evolution of digital circuits. 
Applied Soft Computing, 9(2):618-624, 2009. 

157 



BIBLIOGRAPHY 

[165] A . P. Shanthi, L . K . Singaram, and R. Parthasarathi. Evolution of asynchronous sequential 
circuits. In Evolvable Hardware'05, pages 93-96, 2005. 

[166] X . She. Fast evolution of large digital circuits. W. Trans, on Comp., 7:1988-2000, 2008. 

[167] K . O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 
9:93-130, 2003. 

[168] D . Stoffel and W . O. Kunz. Equivalence checking of arithmetic circuits on the arithmetic bit 
level. IEEE Trans, on CAD of Integrated Circuits and Systems, 2004. 

[169] A . Stoica, D . Keymeulen, R. Tawel, C. Salazar-Lazaro, and W.-t. L i . Evolutionary 
experiments with a fine-grained reconfigurable architecture for analog and digital cmos 
circuits. In Proceedings of the 1st NASA/DOD workshop on Evolvable Hardware, E H 1999, 
pages 76-84, Washington, D C , U S A , 1999. I E E E Computer Society. 

[170] A . Stoica, R. S. Zebulum, M . I. Ferguson, D . Keymeulen, and V . Duong. Evolving circuits in 
seconds: Experiments with a stand-alone board-level evolvable system. In Proceedings of the 
2002 NASA/DoD Conference on Evolvable Hardware (EH'02), pages 67-64, Washington, 
D C , U S A , 2002. I E E E Computer Society. 

[171] A . Stoica, R. S. Zebulum, X . Guo, D . Keymeulen, M . Ferguson, and V . Duong. Taking 
evolutionary circuit design from experimentation to implementation: some useful techniques 
and a silicon demonstration. IEE Proceedings - Computers and Digital Techniques, 
151(4):295-300, 2004. 

[172] E . Stomeo, T. Kalganova, and C. Lambert. Generalized disjunction decomposition for 
evolvable hardware. IEEE Transaction Systems, Man and Cybernetics, Part B, 
36(5):1024-1043, 2006. 

[173] T. Sun and Y . Neuvo. Detail-preserving median based filters in image processing. Pattern 
Recognition Letters, 16:341-347, 1994. 

[174] G. Sussman and R. Stallman. Heuristic techniques in computer-aided circuit analysis. 

Circuits and Systems, IEEE Transactions on, 22(11):857 - 865, 1975. 

[175] A . Thompson. Silicon evolution. In Proceedings of the First Annual Conference on Genetic 

Programming, G E C C O '96, pages 444-452, Cambridge, M A , U S A , 1996. M I T Press. 

[176] J . Torresen. A Divide-and-Conquer Approach to Evolvable Hardware. In Proc. of the 2nd 
International Conference on Evolvable Systems: From Biology to Hardware ICES'98, volume 
1478 of LNCS, pages 57-65, Lausanne, Switzerland, 1998. Springer. 

[177] J . Torresen. Possibilities and limitations of applying evolvable hardware to real-world 
applications. In Field-Programmable Logic and Applications: The Roadmap to Reconfigurable 
Computing, volume 1896 of Lecture Notes in Computer Science, pages 230-239. Springer 
Berlin / Heidelberg, 2000. 

[178] J . Torresen. A scalable approach to evolvable hardware. Genetic Programming and 
Evolvable Machines, 3(3):259-282, 2002. 

[179] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Studies in 

Constructive Mathematics and Mathematical Logic, Part II, pages 115-125, 1968. 

[180] G. Tufte and P. C. Haddow. Prototyping a G A Pipeline for Complete Hardware Evolution. 
In A . Stoica, D . Keymeulen, and J . Lohn, editors, Proc. of the 1st NASA/DoD Workshop on 
Evolvable Hardware, pages 143-150, Pasadena, C A , U S A , 1999. I E E E Computer Society. 

[181] A . Upegui and E . Sanchez. Evolvable F P G A s . In Reconfigurable Computing, pages 725-752. 

Morgan Kaufmann, 2008. 

[182] V . K . Vassilev, D . Job, and J . F . Miller. Towards the Automatic Design of More Efficient 
Digital Circuits. In Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 
151-160, Los Alamitos, C A , U S A , 2000. I E E E Computer Society. 

158 



[183] V . K . Vassilev, J . F . Miller, and T. C. Fogarty. On the nature of two-bit multiplier 
landscapes. In EH 1999: Proceedings of the 1st NASA/DOT) workshop on Evolvable 
Hardware, page 36, Washington, D C , U S A , 1999. I E E E Computer Society. 

[184] M . N . Velev. Efficient translation of boolean formulas to C N F in formal verification of 
microprocessors. Asia and South Pacific Design Automation Conference, pages 310-315, 
2004. 

[185] Y . Voronenko and M . Piischel. Multiplier less multiple constant multiplication. A CM 
Transactions on Algorithms, 3(2), 2007. 

[186] L . Zaloudek and L . Sekanina. Transistor-level evolution of digital circuits using a special 
circuit simulator. In Evolvable Systems: From Biology to Hardware, volume 5216 of Lecture 
Notes in Computer Science, pages 320-331. Springer Berlin / Heidelberg, 2008. 

[187] J . A . Walker, J . A . Hilder, and A . M . Tyrrell. Evolving variability-tolerant cmos designs. In 
Evolvable Systems: From Biology to Hardware, volume 5216 of Lecture Notes in Computer 
Science, pages 308-319. Springer Berlin / Heidelberg, 2008. 

[188] J . A . Walker and J . F . Miller. The Automatic Acquisition, Evolution and Re-use of Modules 
in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation, 
12(4):397-417, 2008. 

[189] J . Wang, Q. Chen, and C. Lee. Design and implementation of a virtual reconfigurable 
architecture for different applications of intrinsic evolvable hardware. IET computers and 
digital techniques, 2(5):386-400, 2008. 

[190] J . Wang, C. Piao, and C. Lee. Implementing multi-vrc cores to evolve combinational logic 
circuits in parallel. In Evolvable Systems: From Biology to Hardware, volume 4684 of LNCS, 
pages 23-34, 2007. 

[191] G. Wilson and W . Banzhaf. A comparison of cartesian genetic programming and linear 
genetic programming. In Genetic Programming, volume 4971 of Lecture Notes in Computer 
Science, pages 182-193. Springer Berlin / Heidelberg, 2008. 

[192] Xi l inx Inc. Xi l inx F P G A s . 

http://www.xilinx.com/products/silicon-devices/fpga/index.htm. 
[193] Xi l inx Inc. Xi l inx Virtex-II Pro Platform F P G A s . 

http://www.xilinx.com/partinfo/ds031.pdf, 2005. 
[194] C. Yan, M . Ciesielski, and V . Singhal. BDS: a BDD-based logic optimization system. In 

Design Automation Conference, 2000. Proceedings 2000. 37th, pages 92 -97, 2000. 
[195] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. Technical 

report, 1991. M C N C , Technical Report. 

[196] S. Yanushkevich, D . M . Miller, V . P. Shmerko, and R. S. Stankovic. Decision Diagram 
Techniques for Micro- and Nanoelectronic Design Handbook. C R C , 2006. 

[197] X . Yao and T. Higuchi. Promises and Challenges of Evolvable Hardware. IEEE Transactions 

on Systems, Man, and Cybernetics - Part G, 29(l):87-97, 1999. 

[198] T. Y u and J . F . Miller. Finding needles in haystacks is not hard with neutrality. In 
Proceedings of the Fifth European Conference on Genetic Programming (EuroGP-2002), 
volume 2278 of LNCS, pages 13-25. Springer-Verlag, 2002. 

[199] S.-Q. Yuan and Y . - H . Tan. Erratum to „impulse noise removal by a global-local noise 
detector and adaptive median filter": [signal processing 86 (8) (2006) 2123-2128]. Signal 
Processing, 87(5):1171, 2007. 

[200] R. S. Zebulum, M . Pacheco, and M . Vellasco. Evolvable systems in hardware design: 
Taxonomy, survey and applications. In Evolvable Systems: From Biology to Hardware, 
volume 1259 of Lecture Notes in Computer Science, pages 344-358. Springer Berlin / 

159 

http://www.xilinx.com/products/silicon-devices/fpga/index.htm
http://www.xilinx.com/partinfo/ds031.pdf


BIBLIOGRAPHY 

Heidelberg, 1997. 

[201] R. S. Zebulum, M . Pacheco, and M . Vellasco. Evolutionary Electronics - Automatic Design 
of Electronic Circuits and Systems by Genetic Algorithms. The C R C Press International 
Series on Computational Intelligence, 2002. 

[202] R. S. Zebulum, M . S. Vellasco, and M . A . Pacheco. Variable length representation in 

evolutionary electronics. Evol. Comput., 8(1):93-120, 2000. 

[203] H . Zhang. SATO: A n efficient propositional prover. In Proceedings of the 14th International 
Conference on Automated Deduction, CADE-14 , pages 272-275, London, U K , 1997. 
Springer-Verlag. 

[204] S. Zhao and L . Jiao. Multi-objective evolutionary design and knowledge discovery of logic 
circuits based on an adaptive genetic algorithm. Genetic Programming and Evolvable 
Machines, 7(3):195-210, 2006. 

Author's publications 

Journal papers 

[205] Z. Vašíček and L . Sekanina. Evoluční návrh kombinačních obvodů. Elektrorevue, 2004(43):6, 
2004. 

[206] Z. Vašíček and L . Sekanina. A n evolvable hardware system in Xi l inx Virtex II Pro F P G A . 
International Journal of Innovative Computing and Applications, 1 (1):63—73, 2007. 

[207] Z. Vašíček and L . Sekanina. Hardware accelerator of cartesian genetic programming with 

multiple fitness units. Computing and Informatics, 29(6+):1359-1371, 2010. 

[208] Z. Vašíček and L . Sekanina. Formal verification of candidate solutions for post-synthesis 
evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable 
Machines, 12(3):305-327, 2011. 

Conference papers 

[209] P. Fišer, J . Schmidt, Z. Vašíček, and L . Sekanina. On logic synthesis of conventionally hard 
to synthesize circuits using genetic programming. In Proc. of the 13th Int. IEEE Symposium 
on Design and Diagnostics of Electronic Circuits and Systems, pages 346-351. I E E E 
Computer Society, 2010. 

[210] L . Sekanina and Z. Vašíček. On the practical limits of the evolutionary digital filter design at 
the gate level. In Applications of Evolutionary Computing, volume 3907 of Lecture Notes in 
Computer Science, pages 344-355. Springer Berlin / Heidelberg, 2006. 

[211] Z. Vašíček and M . Bidlo. Evolutionary design of robust noise-specific image filters. In IEEE 

Congress on Evolutionary Computation, pages 269-276. I E E E Computer Society, 2011. 

[212] Z. Vašíček, M . Bidlo, L . Sekanina, and K . Glette. Evolutionary design of efficient and robust 
switching image filters. In Proc. of the 2011 NASA/ESA Conference on Adaptive Hardware 
and Systems, pages 192-199. I E E E Press, 2011. 

[213] Z. Vašíček, M . Bidlo, L . Sekanina, J . Torresen, K . Glette, and M . Furuholmen. Evolution of 
impulse bursts noise filters. In Proc. of the 2009 NASA/ESA Conference on Adaptive 
Hardware and Systems, pages 27-34. I E E E Press, 2009. 

[214] Z. Vašíček and L . Sekanina. A n area-efficient alternative to adaptive median filtering in 

160 



F P G A s . In Proc. of 2007 Conf. on Field Programmable Logic and Applications, pages 
216-221. I E E E Computer Society, 2007. 

[215] Z. Vašíček and L . Sekanina. Evaluation of a new platform for image filter evolution. In Proc. 
of the 2007 NASA/ESA Conference on Adaptive Hardware and Systems, pages 577-584. 
I E E E Computer Society, 2007. 

[216] Z. Vašíček and L . Sekanina. Reducing the area on a chip using a bank of evolved filters. In 
Evolvable Systems: From Biology to Hardware, volume 4684 of Lecture Notes in Computer 
Science, pages 222-232. Springer Verlag, 2007. 

[217] Z. Vašíček and L . Sekanina. Hardware accelerators for cartesian genetic programming. In 
European Conference on Genetic Programming, volume 4971 of Lecture Notes in Computer 
Science, pages 230-241. Springer Verlag, 2008. 

[218] Z. Vašíček and L . Sekanina. Novel hardware implementation of adaptive median filters. In 
Proc. of 2008 IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop, 
pages 110-115. I E E E Computer Society, 2008. 

[219] Z. Vašíček and L . Sekanina. A global postsynthesis optimization method for combinational 
circuits. In Proc. of the Design, Automation and Test in Europe, DATE, pages 1525-1528. 
I E E E Computer Society, 2011. 

[220] Z. Vašíček, L . Sekanina, and M . Bidlo. A method for design of impulse bursts noise filters 
optimized for F P G A implementations. In DATE 2010: Design, Automation and Test in 
Europe, pages 1731-1736. European Design and Automation Association, 2010. 

[221] Z. Vašíček and K . Slaný. Efficient phenotype evaluation in cartesian genetic programming. 
In 15th European Conference on Genetic Programming, volume 7244 of Lecture Notes in 
Computer Science, pages 265-276. Springer Verlag, 2012. 

[222] Z. Vašíček, L . Čapka, and L . Sekanina. Analysis of reconfiguration options for a 
reconfigurable polymorphic circuit. In Proceedings of the 2008 NASA/ESA Conference on 
Adaptive Hardware and Systems, pages 3-10. I E E E Computer Society, 2008. 

[223] Z. Vašíček, M . Zádník, L . Sekanina, and J . Tobola. On evolutionary synthesis of linear 
transforms in F P G A . In Proc. of the 8th Int. Conference on Evolvable Systems: From 
Biology to Hardware, volume 5216 of LNCS, pages 141-152, Berlin, 2008. Springer Verlag. 

Books 

[224] L . Sekanina, Z. Vašíček, R. Růžička, M . Bidlo, J . Jaroš, and P. Švenda. Evoluční hardware: 
Od automatického generování patentovatelných invencí k sebemodifikujícím se strojům. 
Academia, Praha, 2009. 

Other publications 

[225] M . Bidlo and Z. Vašíček. Cellular automata-based development of combinational and 
polymorphic circuits: A comparative study. In Evolvable Systems: From Biology to Hardware, 
volume 6274 of Lecture Notes in Computer Science, pages 106-117. Springer Verlag, 2008. 

[226] M . Bidlo and Z. Vašíček. Comparison of the uniform and non-uniform cellular 
automata-based approach to the development of combinational circuits. In Proc. of 
NASA/ESA Conference on Adaptive Hardware and Systems, pages 423 - 430. I E E E 
Computer Society, 2009. 

[227] M . Bidlo and Z. Vašíček. Investigating gate-level evolutionary development of combinational 

161 



BIBLIOGRAPHY 

multipliers using enhanced cellular automata-based model. In IEEE Congress on 
Evolutionary Computation, pages 2241-2248. I E E E Computer Society, 2009. 

[228] M . Bidlo, Z. Vašíček, and K . Slaný. Sorting network development using cellular automata. 
In Evolvable Systems: From Biology to Hardware, volume 6274 of Lecture Notes in Computer 
Science, pages 85-96. Springer Berlin / Heidelberg, 2010. 

[229] T. Dulík, Z. Křivka, J . Kadlec, M . Bližňák, V . Budíková, O. Jirák, N . Olšarová, J . Trbušek, 
and Z. Vašíček. Virtuální laboratoř pro vývoj aplikaci s mikroprocesory a FPGA. C E R M , 
Brno, 2011. 

[230] O. Jirák, Z. Křivka, N . Olšarová, and Z. Vašíček. Odvozování propojení komponent pro 
podporu návrhu pro malé fpga čipy. In Proc. of the DATAKON 2010, pages 81-90. VŠB T U , 
2010. 

[231] O. Jirák, Z. Křivka, and Z. Vašíček. Component interconnection inference tool supporting 
the design of small fpga-based embedded systems. In Proc. of the IADIS International 
Conference Applied Computing 2010, pages 230-234. IADIS Press, 2010. 

[232] O. Jirák, Z. Křivka, and Z. Vašíček. Integrated development environment for virtual 
laboratory. In International Technology, Education and Development Conference, page 10. 
I A T E D , 2011. 

[233] Z. Křivka and Z. Vašíček. The virtualization of development boards in the virtual laboratory 
of microprocessor technology. In 12th International Carpathian Control Conference, pages 
424-428. VŠB T U , 2011. 

[234] L . Sekanina, R. Růžička, Z. Vašíček, R. Prokop, and L . Fujčík. Repomo32 - new 
reconfigurable polymorphic integrated circuit for adaptive hardware. In 2009 IEEE 
Workshop on Evolvable and Adaptive Hardware, pages 39-46. I E E E Computational 
Intelligence Society, 2009. 

[235] Z. Vašíček. Evolutionary synthesis of gate-level digital circuits. In Proceedings of 11th 

Conference and Competition HONEYWELL EMI 2005. F E K T V U T , 2005. 

[236] Z. Vašíček. Implementation of high-performance reconfigurable systems on a chip. In 
Proceedings of 12th Conference and Competition STUDENT EEICT 2006 Volume 2, pages 
232-234. F E K T V U T , 2006. 

[237] Z. Vašíček. Reálné aplikace evolučního návrhu. In Počítačové architektury a diagnostika 
2007. Česko-slovenský seminář pro studenty doktorandského studia, pages 137-142. 
University of West Bohemia in Pilsen, 2007. 

[238] Z. Vašíček. Towards automatic design of competitive image filters in fpgas. In Proceedings of 

Junior Scientist Conference. TU-Wien , 2008. 

[239] Z. Vašíček, L . Čapka, and L . Sekanina. Analysis of reconfiguration options for a 
reconfigurable polymorphic circuit. In Proceedings of the 2008 NASA/ESA Conference on 
Adaptive Hardware and Systems, pages 3-10, Washington, D C , U S A , 2008. I E E E Computer 
Society. 

[240] L . Čapka and Z. Vašíček. Investigating the influence of mutation operators in cartesian 
genetic programming. In 13th International Conference on Soft Computing, pages 43-47. 
Faculty of Mechanical Engineering B U T , 2007. 

162 


