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Abstract

In recent years, Transformer models have emerged as powerful tools for contextualized text
representation, achieving state-of-the-art performances. Particularly in unsupervised settings,
these models prove useful when labeled data is unavailable. This thesis investigates the topical
clustering of unlabeled scientific text, leveraging various pre-trained large language models.
The primary focus is on grouping the publication database at Deggendorf Institute of Technol-
ogy (DIT) according to their main topics.

The initial experiments employ the BERT-base model, established as the baseline approach.
The study also explores the effectiveness of TinyLlama, a compact 1.1B parameters chat model
adopting the Llama2 architecture, demonstrating its high potential in revealing diverse topics
within the dataset. Additionally, the implications of using encoded Abstract Meaning Repre-
sentations (AMR) are explored, especially in the context of encoding the publications with an
AMR parser. The study further investigates the advantages of reducing the dimensionality of
BERT encodings into a lower space through the application of autoencoders.

The experiments showcase the efficiency of TinyLlama and the reduced set of BERT encod-
ings in the task of topical modeling, favoring these methods over the traditional approach using
BERT. This research contributes to the growing field of unsupervised topical clustering, offer-
ing insights and methodologies for efficient exploration and understanding of scientific text.
The code is available here https://mygit.th-deg.de/bf01805/thesis.git
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1 Introduction

In the last few years, pre-trained Large Language Models have revolutionized the field of Nat-
ural Language Processing with their ability to produce contextualized vector representations,
as well as capture long-range dependencies in the input text. These encodings can be uti-
lized in down-stream NLP tasks, such as translation, text classification, question answering,
clustering, all the way to text generation. Different variations of these models have achieved
state-of-the-art performances on different tasks, whether they were based on the full trans-
former architecture (e.g. Llama, BART), encoder-only models (e.g. BERT), or the ones based
on the decoder component of the transformer (e.g. GPT).

1.1 Motivation

In the task of topical clustering of unlabeled text, researchers have employed variations of
BERT model to acquire embeddings that can be later utilized for clustering. However, different
challenges may arise when dealing with complex and mixed scientific domains, since long and
complex scientific terminologies affect the efficiency of the produced embeddings and their
ability to form meaningful and well-separated clusters.

Another common issue that usually affects the clustering performance is the Curse of Di-
mensionality effect. Transformer models encode the input into a high-dimensional space, for
instance, BERT-base encodes the input text into a 768-dimensional space. This high dimen-
sionality in the produced embeddings can negatively affect the performance of clustering al-
gorithms such as k-means, when too many features lead the algorithm to lose sense of the
relative distances between data points, resulting in insufficient clustering.

1.2 Objective

This thesis work explores the possible ways to perform topical clustering of scientific research
texts after encoding them using transformer models. The aim is to explore ways to minimize the
negative impact of semantically complex text, as well as reduce the negative effect of the high
dimensionality by using dimensionality reduction techniques. The experiments include the
use of different types of Transformer models, including the basline approach using BERT and
mBERT (multilingual BERT), AMR Parser, as well as TinyLlama-1.1B-Chat which is a compact
chat model that adopts the architecture of Llama2.

The used models are different in their architecture and learning objectives. Initially, the
common way of encoding text using BERT is performed. The BERT encodings are going to
serve as a benchmark to compare with encodings coming from the chat model TinyLlama, as
well as encodings coming from an Abstract Meaning Representation (AMR) parser.

1



1 Introduction

This study also explores the advantages of employing deep auto-encoders to reduce the di-
mensional space of encodings for enhanced k-means clustering, aiming to minimize informa-
tion loss during the reduction process.

The investigation addresses three key questions:

1. Can TinyLlama, a 1.1B parameter chat model adopting the architecture of Llama2, out-
perform the baseline approach of using Bidirectional Encoders (BERT) in the task of
topical clustering of scientific publications?

2. What are the implications of using encoded Abstract Meaning Representations, particu-
larly when encoding text using an AMR parser?

3. Can autoencoders introduce improvements through their ability to encode input data
into a lower-dimensional space?

This analysis tackles these key questions with a focus on clustering the scientific publications
within the Deggendorf Institute of Technology (DIT) publication database, covering various
topics. The objective is to group these documents based on their primary themes. The experi-
ments with TinyLlama enabled the discovery of 14 detailed topics while achieving clustering
scores comparable to the common approach using BERT encodings, which enables the clus-
tering of 8 topics. Furthermore, the proposed reduced BERT encodings introduced significant
improvements in clustering scores, achieving score improvement of 116%, 135%, and 38% in
Silhouette, Calinski-Harabasz, and Davies-Bouldin scores respectively, while allowing the dis-
covery of 13 different topics. Determining the theme of a cluster involves analyzing the most
frequent and relevant keywords extracted from the documents within that cluster, where Key-
BERT is utilized for that purpose, helping identify and highlight the key topics characterizing
the cluster’s content.

1.3 Thesis Structure

With regards to the organization of this thesis, theBackground chapter gives a brief description
of the main concepts and technologies relevant to this work, including the Transformer models,
clustering, dimensionality reduction, Abstract Meaning Representation, and evaluation met-
rics. Related Work chapter explores relevant previous work. The chapter Methodology starts
by performing basic exploratory analysis on the the dataset utilized in this work, and then goes
through the methods used in this work in a more detailed approach. The Experiments chapter
shows the final results and compares the different models and techniques followed to perform
the clustering. The Results Discussion chapter recaps the results and summarize them in a
table. Finally, the Conclusion chapter summarizes the final take-away from this work.
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2 Background

This chapter goes through the main concepts and technologies used in this work, providing a
brief description of the Transformers, K-means clustering, Abstract Meaning Representation
Graphs, Cluster Evaluation Metrics, Keyword Extraction using KeyBERT, Deep Autoencoders,
and dimensionality reduction using UMAP.

2.1 Transformers

The Transformer, introduced in the famous paper ”Attention is All You Need” by Vaswani et
al. [1], has revolutionized Natural Language Processing. Its encoder-decoder architecture and
self-attention mechanism enables parallelization, and capturing long-range dependencies in
language modeling tasks. The model proposed in the paper is shown in Figure 2.1. The encoder
maps an input sequence to continuous representations in a high-dimensional space, which is
then processed by the decoder. The decoder receives the output of the encoder together with
the decoder output at the previous time step to generate an output sequence. This architecture
opened doors for many different applications, achieving state-of-the-art performances on a
wide range of NLP tasks.

The high-dimensional embeddings generated by the encoder component of the transformer
are leveraged in this study, since the encoder is capable of capturing the contextualized mean-
ing of the input sentences. In terms of the architecture of the models used in this thesis,
encoder-only models (e.g. BERT), as well as encoder-decoder models (e.g. BART, Tiny Llama)
are explored. The following subsections discuss the specifics of each used model, its distinctive
properties, and the rationale behind its selection.

2.1.1 BERT-base-uncased

BERT (Bidirectional Encoder Representations from Transformers) is a language representa-
tion model introduced by Devlin et al. [2]. Encoding text using BERT has been the standard
method due to its bidirectional approach of encoding text. It is designed to pre-train deep bidi-
rectional representations from unlabeled text, which makes it a suitable choice for text encod-
ings. ”BERT-base-uncased” is a widely used variant of BERT. The ”uncased” attribute signifies
its case-insensitivity, facilitating a broader understanding of language. This model excels in
capturing contextual relationships between words due to its bidirectional nature and extensive
pre-training on large corpora. All BERT models used in this work produce embeddings with a
hidden size of 768.

3



2 Background

Figure 2.1: The Transformer model architecture proposed in the paper Attention is All You
Need

2.1.2 mBERT

mBERT (multilingual BERT) is another variant of BERT designed to handle multiple languages.
Unlike language-specific models, mBERT is trained on diverse multilingual corpora, making it
proficient in understanding and generating representations for text in various languages. This
model enabled researcher to work with multilingual datasets efficiently, providing a unified
framework for cross-lingual NLP tasks. While this analysis is focused on English text, the
inclusion of mBERT is for exploratory purposes. The aim is to showcase how a multilingual
model behaves in this analysis. Additionally, its multilingual capabilities offers the flexibility
to extend the analysis to other languages if needed, enhancing the adaptability and potential
scope of the research.

2.1.3 TinyLlama-1.1B-Chat

Introduced by Zhang, Peiyuan, et al. [3], TinyLlama is a chat model that is trending very re-
cently and available on Hugging Face1, it adopts exactly the same architecture and tokenizer
as Llama2 [4]. The model is compact with only 1.1B parameters, a context window of size 2048

1https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
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2.2 K-means Clustering

tokens, and hidden size of 2048, which makes it possible to inference in a constrained com-
putational setting. Compared to models like GPT 3 [5], there are few architectural differences
done in Llama:

• Llama uses SwiGLU activation function instead of ReLU.

• It uses rotary positional embeddings instead of absolute positional embedding.

• It uses root-mean-squared layer-normalization instead of standard layer-normalization.

2.1.4 AMR Parser

Encoded Abstract Meaning Representation (AMR) are explored in this analysis through the
use of an AMR parser which follows BART architecture. BART [6] employs a generative
model with a full encoder-decoder transformer architecture, combining bidirectional and auto-
regressive training objectives for sequence-to-sequence models. The parser is trained on the
objective of generating AMR graphs. The use of the parser is through amrlib2, a python library
for AMR parsing, generation and visualization. More specifically, the model ’parse-xfm-bart-
base’ is used to encode the data using its encoder component. The purpose of using the AMR
parser is to explore whether extracting the key concepts from text can be beneficial in the task
of topic modeling.

2.1.5 KeyBERT

KeyBERT is an algorithm that employs BERT embeddings for keyword extraction from texts.
By leveraging contextualized word representations, it performs context-aware and accurate
identification of key terms in the input text. KeyBERT utilizes a pre-trained BERT model to
obtain contextualized word embeddings for each word in the input text. The word embeddings
are then aggregated to produce a sentence-level embedding, this step captures the overall con-
text of the text. Using sentence embeddings, KeyBERT identifies the most informative words
as keywords. The algorithm selects words based on their contribution to the text’s overall con-
textual meaning. In this work, KeyBERT is used to extract the most relevant words from each
cluster in order to identify the relevant topic of the cluster.

2.2 K-means Clustering

K-Means is a widely used unsupervised machine learning algorithm used for clustering data
points. It divides a dataset into k clusters based on similarity, aiming to minimize the intra-
cluster variance. The algorithm operates by initializing cluster centroids, assigning data points
to the nearest centroid, and then iteratively updating centroids based on the mean of the as-
signed points. An example of some random data points clustered using k-means with k set to
4 is shown in figure 2.2. The following is a detailed explanation of how k-means works.

2https://github.com/bjascob/amrlib
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2 Background

Figure 2.2: Scatter plot example of clustered data using k-means with k=4

2.2.1 Initialization of Cluster Centroids

The algorithm starts by randomly initializing k cluster centroids in the feature space. These
centroids represent the centers of the initial clusters.

2.2.2 Assigning Data Points to Nearest Centroids

Each data point in the dataset is assigned to the cluster whose centroid is closest to it. This
assignment is based on a distance metric, commonly the Euclidean distance.

2.2.3 Iterative Update of Centroids

After the initial assignment, the algorithm iterates between two steps:

1. Update Centroids: For each cluster, the centroid is updated to the mean of all the data
points assigned to that cluster. This moves the centroid closer to the center of the cluster.

2. Reassign Data Points: Once the centroids are updated, data points are reassigned to
the cluster whose centroid is closest to them.

2.2.4 Minimization of Intra-cluster Variance

The goal of K-means is to minimize the within-cluster variance, also known as inertia or sum
of squared distances from each point to its assigned centroid. This is achieved through the
iterative process of centroid updating and point reassignment.

2.2.5 Convergence Criteria

The algorithm continues iterating until either the centroids no longer change significantly be-
tween iterations or a specified number of iterations is reached. Convergence typically occurs
when the centroids stabilize and the assignment of data points to clusters remains constant.

6



2.3 Abstract Meaning Representation (AMR) Graphs

2.2.6 Choosing the Number of Clusters (K)

Determining the appropriate number of clusters, k, is crucial. Common methods for selecting
k include the silhouette analysis or elbow method. In this work, the silhouette analysis is used
to determine the appropriate number of clusters for each set of encodings.

2.3 Abstract Meaning Representation (AMR) Graphs

AMR graphs are a popular way to represent the meaning of the text, abstract away from its
complex terminology. It uses concepts and relations from a fixed vocabulary to capture the
core semantic meaning of a sentences independently of their surface structure, in the sense that
sentences which are similar in meaning should be assigned the same AMR, even if they are not
identically worded. For example, the sentences “he described her as a genius”, “his description
of her: genius”, and “she was a genius, according to his description” are all assigned the same
AMR [7]. Figure 2.3 shows the graph representation of the previous sentences along with the
linearized version of the AMR graph.

In this work, an AMR parser is used to encode the input text. The aim here is to explore
whether encoding the text with a model that is trained on the objective of generating AMR
graphs can introduce any improvements in the task of topical clustering of text.

d/describe-01

h/he

s/she

g/genius

:ARG0

:ARG1

:ARG2

Figure 2.3: AMR graph of the Sentence “he described her as a genius”.
Linearized format: (d/describe-01 :ARG0 (h/he) :ARG1 (s/she) :ARG2 (g/genius))

2.4 Evaluation Metrics

The Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index are metrics used to
evaluate the performance of clustering algorithms. They provide quantitative measures for
assessing the quality of the formed clusters. An explanation is provided of each:

7



2 Background

2.4.1 Silhouette Score

The Silhouette Score serves as a quantitative measure of the degree of separation between
clusters and the similarity of each data point within a cluster to others. It ranges from -1
to 1, where a high score indicates well-defined clusters, 0 suggests overlapping clusters, and
negative values imply that data points might be assigned to the wrong cluster. The Silhouette
Score is calculated using the formula:

Silhouette Score =
1

N

N∑
i=1

bi − ai
max{ai, bi}

where N is the total number of data points, ai is the average distance from the i-th data point
to the other data points in the same cluster, and bi is the smallest average distance from the
i-th data point to data points in a different cluster.

2.4.2 Calinski-Harabasz Index

The Calinski-Harabasz Index calculates the ratio of between-cluster variance to within-cluster
variance. It measures how well-separated clusters are and is higher when clusters are compact
and well-defined. It is computationally efficient and useful for datasets with varying cluster
sizes. The Calinski-Harabasz Index is calculated using the formula:

CH =
B

W
× N − k

k − 1

where CH is the Calinski-Harabasz Index, B is the between-cluster dispersion, W is the
within-cluster dispersion, N is the total number of data points, and k is the number of clusters.

2.4.3 Davies-Bouldin Index

The Davies-Bouldin Index evaluates the compactness and separation of clusters. It measures
the average similarity between each cluster and its most similar cluster, aiming for lower val-
ues, which indicate more distinct clusters. The Davies-Bouldin Index is calculated using the
formula:

DB =
1

k

k∑
i=1

max
j ̸=i

(
Si + Sj

d(ci, cj)

)
where DB is the Davies-Bouldin Index, k is the number of clusters, Si is the average distance
from each point in cluster i to the centroid of cluster i, and d(ci, cj) is the distance between
the centroids of clusters i and j.

2.4.4 Visual Example

A visual example in Figure 2.4 demonstrates how clustering scores correspond to increasing the
value of k. In this example, the data clearly fit into two clusters. Attempting to fit the data into
more than two clusters results in lower Silhouette and Calinski-Harabasz scores and higher

8



2.5 Autoencoders

Davies-Bouldin scores. This serves as a good illustration of how these scores can indicate the
appropriate number of clusters that best fit the clustered data. In this study, the Silhouette
score will be employed as a method to determine the most suitable value of k for each of the
encodings obtained by the different models. The k-means algorithm will be executed multiple
times using various values of k, and the final choice of k will be based on the Silhouette score
that best aligns with the clustering quality.

Figure 2.4: Visual example of how clustering scores correspond to increasing the number of
clusters (k) beyond the suitable value, which is 2 in this example

2.5 Autoencoders

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled
data (unsupervised learning). An autoencoder learns two functions: an encoding function that
transforms the input data, and a decoding function that recreates the input data from the en-
coded representation. The autoencoder learns an efficient representation (encoding) for a set
of data, typically for dimensionality reduction. Figure 2.5 shows the basic architecture of the
autoencoder. Deep autoencoders are employed in this work in the process of encoding the em-
beddings into a lower dimensional space after finding the least possible number of components
that can recreate the embeddings with minimum recreation loss. This is going to be helpful for
k-means since the reduced dimensional space boosts the performance of the clustering algo-
rithm.

2.6 UMAP for Dimensionality Reduction

UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction tech-
nique designed for visualizing high-dimensional data in a lower-dimensional space. It pre-
serves the underlying manifold structure of the data, maintaining meaningful relationships
between points. UMAP is very good at preserving both local and global structure, offering flex-
ibility in parameter tuning and scalability. It has applications in visualization, clustering, and
dimensionality reduction tasks, providing insights into complex datasets. Compared to other

9



2 Background

Figure 2.5: Deep Autoencoder

techniques like t-SNE (t-Distributed Stochastic Neighbor Embedding) and PCA (Principal Com-
ponent Analysis), UMAP stands out for its effectiveness in capturing nonlinear relationships
and handling large datasets efficiently.
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3 Related Work

Recent years have witnessed the widespread adoption of transformer models in various Nat-
ural Language Processing applications, resulting in significant improvements across several
NLP tasks. Numerous studies have proposed effective methods to leverage contextualized
transformer embeddings for downstream applications. This chapter explores relevant previ-
ous research that has influenced the foundation of this thesis and highlights its distinctions.

In the task of topic modeling, Zineddine Bettouche and Prof. Andreas Fischer [8] conducted
topical clustering of scientific research activity within DIT’s publication library, utilizing the
same dataset as employed in this work. The authors employed various models from the BERT
family, including BERT-base, SciBERT, as well as mBERT for processing multilingual text. Their
research involves creating a landscape representation of scientific fields through encoding and
clustering research publications. As ground-truth topic labels are absent, coauthorship analy-
sis is employed, examining author uniqueness within clusters and constructing coauthorship-
based social networks. The calculated high uniqueness of authors in the formed clusters and
the found homogeneity of topics across the connected-components in the social network is
used in assessing the effectiveness of the clustering. The coauthorship analysis part is not con-
ducted in this thesis work. However this work extends their approach by incorporating a chat
model encodings and a set of BERT encodings reduced to a lower dimensional space using au-
toencoders. Additionally, encoded Abstract Meaning Representation graph information in the
context of topic modeling is explored.

Another study [9] introduces an unsupervised topic detection approach to address the chal-
lenge of discovering current research topics and methodologies in scientific domains of a num-
ber of publications. Leveraging transformer-based GPT-3 similarity embedding models and
modern document clustering techniques, the approach is demonstrated using 593 publication
abstracts from urban study and machine learning domains. The process involves three phases:
an iterative clustering phase utilizing GPT-3 embeddings and HDBSCAN clustering to group
similar abstracts, a keyword extraction phase employing the Maximal Marginal Relevance
ranking algorithm, and a keyword grouping phase producing topic representations for abstract
clusters. The authors used Uniform Manifold Approximation and Projection (UMAP) algorithm
as a dimensionality reduction technique to be able to reduce the high-dimension space of the
abstract embeddings to a reasonable range because HDBSCAN requires the dimension size to
be smaller than the number of abstracts, in their case, smaller than 593. However, in this work,
autoencoders are used to encode the embeddings to an appropriate space based on minimized
reconstruction-loss, while UMAP is only employed for the visualization purpose.

This paper [10] explores the application of the Bidirectional Encoder Representation from
Transformers (BERT) model for text clustering, comparing it with the commonly used Term
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Frequency Inverse Document Frequency (TFIDF) method. Their results indicate that BERT
outperforms TFIDF in 28 out of 36 metrics, highlighting its effectiveness in representing textual
data for clustering. Additionally, the paper emphasizes the importance of adapting feature
extraction and normalization techniques based on the chosen text clustering algorithm.

A study [11] investigated the utilization of pre-trained Transformer-based word embeddings
in the context of text clustering. The authors introduce a clustering ensemble approach that
incorporates embeddings from all layers of the network. Numerical experiments conducted
on datasets with various Transformer models demonstrate the effectiveness of the proposed
method when compared to several baseline methods.

Prior research work explored using encoded AMR graph information. In a recent study
by Joseph Gatto and Sarah M. Preum [12], AMR graphs were leveraged to model low-resource
health Natural Language Processing tasks. Through the augmentation of text embeddings with
semantic graph embeddings, the authors demonstrated improved performance across six classi-
fication tasks. Inspired by their work, this study explores whether encoding AMR information
can yield any interesting findings. The process of linearizing Abstract Meaning Representa-
tion (AMR) structures enables the application of traditional sentence embedding techniques,
such as contrastive learning, to construct meaningful AMR representation vectors. Contrastive
learning involves creating a dataset of triplets comprising an anchor, a positive example, and a
negative example. The objective is to encourage the model to bring the embeddings of the an-
chor and positive example closer while pushing the anchor and negative example embeddings
further apart. This approach yields semantically rich text embeddings that are analyzable in
high-dimensional space. Unlike Gatto et al.’s approach, this work involves encoding AMR infor-
mation using an AMR parser, specifically focusing on the encodings produced by the parser’s
encoder component.

12



4 Methodology

This chapter focuses on the detailed steps of the implementation process. In this chapter the
focus purely on the methods, while the next chapter will show the results of the experimenta-
tions.

4.1 Dataset Exploration

The scientific publication database at DIT consists of a total 1500 publications that include
an abstract section. To ensure consistency in language, 175 entries identified as non-English
are excluded from the dataset, resulting in a remaining 1325 publications for analysis. The
language filtering process utilizes langdetect, a library designed to detect the language of a
given text. Despite this automated approach, a few German papers were identified during
manual verification, resulting in manual exclusion for those cases.

With regards to the length of the analyzed abstracts, Figure 4.1 shows a histogram illustrating
the frequency of the number of tokens. This is a crucial consideration due to context length
restrictions imposed by Transformer models. However, the majority of abstracts fall within
an acceptable range, with an average token count of 189 tokens. BERT models have a context
length limitation of 512 tokens, if the token count crosses this threshold, truncation occurs,
resulting in the loss of valuable information. In the case of TinyLlama, this concern is alleviated,
as its context window length is 2048 tokens, ensuring that no truncation will happen since all
analyzed abstracts are already below that limit.

Figure 4.1: Histogram of token count per abstract
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4.2 General Overview

While the used models are different in their architecture and learning objectives, the steps are
generally similar. Figure 4.2 shows a diagram that illustrates the overall process applied in this
work.

Abstracts

KeyBERT

Keywords

Model HD Encodings

Autoencoder

Reduced Encodings

k-means

UMAP

Plots

Figure 4.2: Methodology Overview

The abstracts are fed to BERT-base, mBERT, TinyLlama, and the AMR Parser to obtain the
encodings, as well as to KeyBERT in order to obtain the most relevant keywords from each
abstract. The acquired information is then stored for the next stage, which is the clustering
using k-means and visualization using UMAP. In addition to the clustering and visualization
of the high-dimensional encodings, a reduced set of encodings is explored as well. The choice
of the most suitable set of embeddings to be reduced is decided based on the Autoencoder
Reconstruction-Loss Assessment. The following subsections describe the process in more de-
tails.

4.2.1 Encoding of Scientific Publications

To obtain the contextualized text embeddings of DIT’s scientific publication database, each
model is fed with the abstract of each publication. The output of the last encoder layer is
of particular interest; it comprises a sequence of vectors, with each vector representing an
input token in its surrounding context. Following this, an average vector is calculated from the
word-level embeddings, resulting in a single vector serving as the overall sentence embedding.
Figure 4.3 that illustrates this process.

Abstract Model
Encoder

[x1,x2, . . . ,xn]
[x1,x2, . . . ,xn]

:
[x1,x2, . . . ,xn]

Sequence of Token Vectors

[avg1,avg2, . . . ,avgn]

Average Vector
(Sentence Embedding)

Figure 4.3: Encoding of Scientific Publications
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4.2.2 Clustering and Plotting of The Encoded Scientific Publications

Following the inference of each model and the storage of the resulting embeddings, the next
step involves applying the k-means clustering algorithm. The number of clusters k will vary
based on the nature of the embeddings and their ability to effectively group data points. Instead
of relying on intuition in choosing k, the value that yields the best possible Silhouette score for
each set of embeddings will be selected. To achieve this, each set of embeddings is clustered
multiple times with k ranging from 2 to 20. Afterwards, the optimal value for each case is
determined.

For the visualization purpose, the dimensionality of the clustered embeddings needs to be
reduced to a 2-dimensional space suitable for plotting. The python library umap-learn1 is used
for the dimensionality reduction task, while matplotlib2, a well-known Python library, will be
employed for the visualization part.

4.2.3 Keyword Extraction

In order to determine the primary theme or field of study characterizing the content of each
cluster, KeyBERT will be employed to extract the top 3 relevant keywords from each abstract.
Following the clustering of abstracts, the most frequent words in each cluster can be computed.
A number of 4 to 6 keywords are sufficient to identify the relevant topic of a cluster. These
keywords are then displayed in the legend of each plot, along with their corresponding topics.

4.2.4 Determining Topics

Assigning a relevant topic to each cluster primarily involves analyzing the top frequent key-
words within the cluster. In addition to common sense and manual checks on the content of
each cluster, arriving to the final topic is also done in consultation with a generative model.
ChatGPT is a suitable option for this task since this is only for confirmation and no scalable
solution is required here. It has the capability to recognize the main topic or field of study
based on a given list of keywords. The prompting method can be controlled to decide whether
ChatGPT should provide a general topic characterized by the keywords, or a more specific one.
For example, keywords like ”classification,” ”algorithm,” ”prediction,” and ”kernel” may result
in the general topic of Computer Science, but on a more detailed level, it can also be ”Machine
Learning”. Table 4.1 presents lists of possible keywords and their corresponding topics. This
predefined list is utilized to automatically assign the field of study, which is then displayed in
each plot’s legend. The topic is assigned to a cluster when its top 4 most frequent keywords
overlap with at least 3 words from the list.

4.2.5 Autoencoders for Dimensionality Reduction

This work includes the training and utilization of autoencoders to effectively reduce the di-
mensional space of the encoded abstracts. This reduction aims to boost the performance of
k-means and improve the separation of topics. It is known that any dimensionality reduction

1https://umap-learn.readthedocs.io/en/latest/
2https://matplotlib.org/
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Keywords Topic

recommender, recommendations, personalized, analytics Big Data
rna, cell, cells, melanoma, myelin, melanoma Biology
tourist, cultural, motivation, satisfaction Crowdsourcing
digital, biomimetics, mobile, data, health, participatory Digital Health
laser, dielectric, microscopy, capacitors, silicon, ghz, electrode Electronics
renewable, electricity, energy, solar Energy
biopsy, therapy, fmri, health, training, exercise, overweight,
lifestyle, patients, aerobic, metabolic

Health

network, virtual, virtualization, security, digital IT
classification, algorithms, features, clustering, prediction, kernel Machine Learning
quantum, exciton, silicon, photoluminescence, irradiation, man-
ufacturing, calibration

Materials Science

quality, video, 3d, visual, bitrate, bitstream, mpeg Media
reactor, thermal, coolant, reactors, nuclear, fusion, bubbles Molecular Physics
nanowire, nanoporous, microlenses, micro, laser, plasma Nanotechnology
polishing, optical, optics, surfaces, surface, laser, precision Optical Engineering
piezoelectric, actuators, buckling, stability, piezoelectric Structural Engineering

Table 4.1: Topic assignment based on frequent keywords

technique involves a degree of information loss. To minimize this loss, it is important to care-
fully select the optimal number of components that can still retain the internal structure of
the data. This is achieved through the Autoencoder Reconstruction-Loss Assessment which
measures the reconstruction loss while having different number of components in the latent
space of the autoencoder, and then encode the embeddings into a lower space after deciding
on the appropriate latent space size.

Autoencoder Reconstruction-Loss Assessment

The approach taken involves training multiple autoencoders for each set of embeddings gen-
erated by the models. These autoencoders vary in the number of components on the latent
space (encoder output layer), ranging from 1 component up to 140 with a step of 10. Each au-
toencoder consists of input and output layers adapting to the specific embeddings’ hidden size,
along with five hidden layers, including the latent space layer. The hidden layer sizes are set as
256, 128, X, 128, 256, where X represents the encoded latent space which is assigned a different
value in each iteration. The purpose of this process is to assess the validation loss for each au-
toencoder and determine the optimal number of components that minimize information loss
and retain the essential structure of the original embeddings.
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Encoding The Embeddings Into A Lower Space

Following the autoencoder reconstruction-loss assessment and the determination of the opti-
mal number of components for the encoder latent space, the next step involves encoding the
original embeddings into this lower-dimensional latent space. This is accomplished using a
deep autoencoder comprising 7 hidden layers set as 512, 256, 128, Xoptimal, 128, 256, 512, where
Xoptimal is the previously identified optimal value. The resulting reduced set of embeddings is
then subjected to clustering and plotted in a similar approach applied to the original embed-
dings.
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5 Experiments

This chapter reveals the results of the experiments. To present the findings in an organized
manner, the clustered encodings in their original high-dimensional space are shown first. Fol-
lowing that, the advantages of encoding a set of embeddings into a lower space through the
utilization of autoencoders is explored.

5.1 Original Embeddings Findings

This first section is going to show the findings of the embedded abstracts in their original high-
dimensional space, without any dimensionality reduction applied prior to k-means clustering.
The results begin by conducting the Silhouette score assessment where the optimal number of
clusters is decided for each set of embeddings. After that, the clustering results of BERT-base,
mBERT, TinyLlama, and AMR parser are presented.

5.1.1 Silhouette Score Assessment

As discussed in the Methodology chapter, the most suitable value for the number of clusters k is
the one that results in a high Silhouette score. Figure 5.1 shows the Silhouette score assessment
result. It is important to highlight that the selection of the optimal value is not solely based on
the highest score but involves consideration of the entire plot shape.

Figure 5.1: Silhouette Score Assessment

Based on the assessment, k values of 8, 7, 14, and 6 for BERT-base, mBERT, TinyLlama, and
the AMR Parser, respectively, are chosen. This approach ensures a fair comparison, as each
model is evaluated based on the most suitable number of clusters for its specific characteristics.
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5.1.2 BERT-base-uncased

Figure 5.2 presents the clustering results of the transformer-encoded scientific publications
using the model BERT-base-uncased. It is possible to discover 8 different topics with BERT-
base. In terms of cluster quality, BERT-base achieves Silhouette, Calinski-Harabasz, and Davies-
Bouldin scores of 0.083, 87.036, and 2.593 respectively. The identified topics are Energy, Material
Science, Health, Electronics, IT, Media, Optical Engineering, and Biology. Looking at the most
frequent keywords for each cluster shows confidence in the topic assignment, which indicates
an appropriate choice of 8 clusters.

Figure 5.2: BERT-base-uncased Encodings

5.1.3 mBERT

Figure 5.3 shows the clustering results of mBERT encodings, it is possible to discover 7 clusters
with mBERT. It achieves Silhouette, Calinski-Harabasz, and Davies-Bouldin scores of 0.093,
88.243, and 2.772 respectively. BERT-base, in comparison, was capable of recognizing one ad-
ditional cluster ”IT”, which probably most of its content got embedded with the ”Media” cluster,
considering their high similarity.

An argument favoring BERT-base over mBERT for this specific analysis is that the input text
is entirely in English, giving BERT-base an advantage with more exposure to English training
samples compared to mBERT, which was trained on 104 different languages. An interesting
observation in the mBERT plot is the distinct green cluster on the left, labeled as ”Health.” This
cluster contains mainly health-related publications, along with some publications in the Energy
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and a few other topics, as indicated by the keywords ”renewable” and ”dielectric”. While there
is no clear explanation for this behavior at the moment, it raises a question mark that could be
investigated in future analyses involving multilingual data.

Figure 5.3: mBERT Encodings

5.1.4 TinyLlama-1.1B-Chat

Figure 5.4 shows the results of clustering the scientific publications using the model TinyLlama-
1.1B-Chat. The results were comparable to BERT-base in terms of clustering scores. TinyLlama
achieves Silhouette, Calinski-Harabasz, and Davies-Bouldin scores of 0.098, 64.815, and 2.532
respectively. However, the number of identified clusters is 14, which is significantly higher
than the BERT models. An important consideration here is that TinyLlama encodes the input
text into a 2048-dimensional space, while BERT encodings are in 768 dimensions. Despite
the potential disadvantage of the significantly high dimensionality in TinyLlama (almost 2.6
times higher than BERT), exposing it to the Curse of Dimensionality effect, it still achieved
comparable clustering scores, and that certainly counts for TinyLlama.

With TinyLlama, it was possible to discover interesting detailed topics, such as:

• Digital Health: A discipline that includes digital care programs, integrating technologies
and health, and analyzing public health.

• Crowdsourcing: A topic that involve studying social and cultural topics of a group of
people.
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Figure 5.4: TinyLlama-1.1B-Chat Encodings

• Big Data: Involves analyzing large amounts of data, as seen in recommender systems.

• Structural Engineering: A branch of civil engineering that focuses on the design and
analysis of structures such as buildings, reactors, and other infrastructure.

To grasp the overall shift in the distribution of abstracts across topics between TinyLlama
and BERT-base, a visual representation of the mapping between the two clustering methods is
provided using the sankey diagram in Figure 5.5. The diagram illustrates that the diversity in
TinyLlama’s technology-related topics primarily originates from what was initially assigned to
”IT,” ”Media,” and ”Energy” clusters according to BERT-base. Additionally, TinyLlama success-
fully separated the ”Nanotechnology” from ”Electronics”, as well as ”Structural Engineering”
topic from what was mistakenly included with ”Optical Engineering.” The rest of topics, namely
”Material Science,” ”Health,” and ”Biology,” generally remain consistent with minor differences.
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Figure 5.5: Sankey diagram for topic assignment comparison of BERT-base and TinyLlama

These interesting findings demonstrate the effectiveness of the chat model TinyLlama in the
task of topic modeling, outperforming BERT-base in this specific task, due to its capability of
revealing the diversity of topics covered within the DIT publication database while achieving
comparable clustering scores. It is also a motivation to extend this work and include larger
variations of Llama2 in future analyses.

5.1.5 AMR Parser

The result of clustering the encodings coming from the AMR parser did not perform as good
as the previous models in the task of topic modeling. The parser achieves Silhouette, Calinski-
Harabasz, and Davies-Bouldin scores of 0.052, 77.416, and 2.901 respectively. It is clear that
some data points were assigned the wrong cluster, and it is possible to confirm that by looking
at the ”Health” cluster where keywords like ”renewable” and ”electricity” should not appear
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there, at least within the most frequent keywords for the cluster.

Figure 5.6: AMR Parser Encodings

It is possible that AMR’s tendency to generalize concepts lead to encodings being closer to
each other, making it harder to distinguish detailed topics. As a result, this AMR encodings
didn’t turn out to be a good fit for the task at hand.

5.2 Reduced Embeddings Findings

This section explores the advantages of encoding the embeddings into a lower-dimensional
space using autoencoders, followed by clustering the reduced embeddings and presenting them
in a manner similar to the previous approach. The primary objective is to enhance the per-
formance of the clustering algorithm and assess whether improved clustering results can be
achieved. Opting for the appropriate set of embeddings and latent size is achieved in two
steps:

1. Autoencoder Reconstruction-Loss Assessment: Determining the optimal number
of components that still preserves essential information from the original embeddings
is crucial. This will be accomplished through the Autoencoder Reconstruction-Loss As-
sessment, which aids in selecting the appropriate set of embeddings and determining the
number of components of the latent space of the autoencoder.

2. Training and Validation Losses: The training and validation losses of the autoencoder
responsible for the dimensionality reduction process are examined. This step ensures that
overfitting is not occurring. If the autoencoder exhibits signs of overfitting the training
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set while reconstructing the embeddings, it will be excluded from the reduction process.
This ensures the effectiveness of the dimensionality reduction technique employed in the
clustering process.

5.2.1 Autoencoder Reconstruction-Loss Assessment

Figure 5.7 illustrates the reconstruction validation losses of the trained autoencoders across the
number of encoded components. The analysis reveals that BERT-base excels in reconstructing
the input with minimal loss, followed by TinyLlama. While mBERT shows comparable re-
sults, it is going to be excluded from the next experiment since BERT-base and TinyLlama are
expected to be reliable options. On the other hand, the AMR parser shows the highest recon-
struction errors, with an unexpected behavior after 60 components. Therefore, it makes sense
to exclude the AMR parser from the reduction process.

Figure 5.7: Autoencoder Reconstruction-Loss Assessment

Based on the assessment, the encodings of BERT-base and TinyLlama are chosen to move
to the next round, selecting a value of 60 components for both cases. This choice ensures
minimum reconstruction errors of 0.73 and 0.75 for BERT-base and TinyLlama respectively.

5.2.2 Autoencoder Training and Validation Loss

Another necessary step in opting for the appropriate set of embeddings to be encoded into a
lower space is the training and validation loss of the autoencoder responsible for the reduc-
tion process. Figure 5.8 shows the training and validation loss when training two different
autoencoders to reconstruct BERT-base and TinyLlama encodings.

In the case of BERT-base, the training and validation loss curves exhibit remarkable similar-
ity, indicating a high capability to perform the task with a strong generalization to new data.
On the other hand, TinyLlama is showing a significant gap between the training and validation
losses, this could be a sign of overfitting because its encodings may be too complex and fitting
noise in the training data. Despite TinyLlama’s prior success in clustering, it is going to be
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(a) BERT-base-uncased (b) TinyLlama (Excluded due to overfitting)

Figure 5.8: Autoencoder Training and Validation Loss

excluded from the reduction process due to the overfitting issue, and BERT-base encodings are
the final choice to proceed with the reduction task.

5.2.3 Silhouette Score Assessment

In a similar sense as seen previously, the appropriate number of clusters for the reduced set
of embeddings is decided based on the Silhouette score assessment. Figure 5.9 shows the as-
sessment for the BERT-base encodings reduced to 60 components. A k value of 13 clusters is
selected as it yields a silhouette score of 0.182, being the highest Silhouette score achieved in
this analysis.

Figure 5.9: Silhouette Score Assessment (Reduced BERT-base)

5.2.4 Reduced BERT-base Encodings

Finally, the clustering outcomes of the encoded publication using BERT-base encodings after
reducing to 60 components are shown in Figure 5.10. The reduced set of embeddings resulted in
the best clustering scores in this analysis, achieving Silhouette, Calinski-Harabasz, and Davies-
Bouldin scores of 0.18, 205.249, and 1.597 respectively.
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Figure 5.10: BERT-base Encodings Reduced to 60 Components

The 13 identified topics with the reduced BERT-base encodings align closely with the 14 top-
ics discovered with TinyLlama, with the exception of the additional ”Big Data” cluster found by
TinyLlama. This illustrates the efficiency of encoding BERT embeddings into a lower space of
60 components. The reduced encodings demonstrate the capability to identify nearly identical
topics while notably enhancing the clustering scores. The next section provides a comparative
analysis of the two methods (TinyLlama and the reduced BERT-base encodings).

5.3 TinyLlama vs Reduced BERT-base Comparison

The final piece of analysis in this work presents a comparison between the two high achieving
methods in this study. Up to this point, both TinyLlama and the reduced set of BERT-base
encodings have demonstrated outstanding results. Figure 5.11 presents a bar chart, illustrating
differences in cluster volumes between the two methods, with the difference in cluster size
displayed as data labels. Despite minor variations in cluster sizes, the two methods exhibit a
remarkably similar distribution of abstracts across topics.
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Figure 5.11: Reduced BERT vs TinyLlama topic distribution

For a more insightful perspective, a comparison between the findings of the two methods
using the Sankey diagram is provided in Figure 5.12. The diagram illustrates how topics from
the reduced set of BERT encodings correspond to the topics obtained from TinyLlama. The
flow shows high consistency in topic assignment between the two methods, except of a few
minor differences which is expected.

It is important to be aware that certain abstracts may fit to more than one suitable topic.
For instance, a scientific publication within the energy sector utilizing big data or machine
learning techniques might be considered as ”Energy,” ”Big Data,” or ”Machine Learning” based
on the semantics employed in its abstract text. Additionally, differences in specific encoding
characteristics and the k-means random initialization of centroids contribute to variations in
cluster assignment between any two methods. However, it’s important to emphasize that such
differences don’t necessarily mean that one of them is completely wrong. The key insight from
this comparison is that the overall distribution is largely similar in both methods.
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Figure 5.12: Sankey diagram for topic assignment comparison of Reduced BERT and TinyLlama
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6 Results and Discussion

During this analysis, transformer encoded research publications were utilized to perform topic
modeling which aims to group these documents into meaningful clusters based on their main
topic. Table 6.1 summarizes the performances of the used models. It includes the number of
clusters or topics identified as well as the clustering scores for all of the methods.

Model Clusters Silhouette Calinski-Harabasz Davies-Bouldin

BERT-base-uncased 8 0.083 87.036 2.593
mBERT 7 0.093 88.243 2.772
TinyLlama-1.1B-Chat 14 0.098 64.815 2.532
AMR Parser 6 0.052 77.416 2.901
Reduced BERT (60 components) 13 0.18 205.25 1.597

Table 6.1: Clustering scores of the different models

The chat model TinyLlama as well as the BERT-base encodings reduced to 60 components,
have demonstrated interesting results, being able to group the documents into more detailed
clusters and achieving better clustering scores compared to the base-line method using orig-
inal BERT encodings. TinyLlama’s encodings were able to form 14 clusters representing dif-
ferent topics, while the reduced BERT-base encodings formed 13 clusters. TinyLlama achieved
clustering scores comparable to those obtained with original BERT-base encodings. On the
other hand, the reduced BERT-base encodings achieved significant improvements in cluster-
ing scores, improving Silhouette, Calinski-Harabasz, and Davies-Bouldin scores by 116%, 135%,
and 38% respectively, compared to the common BERT-base method of using high dimensional
embeddings. On the other hand, the AMR parser was not a suitable option for this specific anal-
ysis since it did not introduce reliable results due to AMRs tendency in generalizing concepts,
resulting in encodings being closer to each other, which then result in less clustering efficiency.
The model mBERT showed some confusion in its results, grouping Health and Energy-related
publications in one isolated cluster. However, mBERT could serve as a suitable option, partic-
ularly when processing multilingual data, as demonstrated in previous works.

Based on these findings, it is clear that TinyLlama and the reduced set of BERT encodings
yield favorable outcomes. While the reduced BERT encodings demonstrate superior cluster-
ing scores compared to TinyLlama, it is noteworthy that TinyLlama excels in identifying an
additional cluster.
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7 Conclusion

This thesis conducted topical clustering on a library of scientific publications, aiming to cluster
and group these publications into their main topics. The focus was on the publication database
at the Deggendorf Institute of Technology (DIT), which contained 1325 scientific publications
that include an abstract section written in English.

Previous methods mainly involved the use of the BERT family of models in encoding texts,
being the base-line method for such tasks. However, and in addition to the traditional method
using BERT, this work extended the experiments with the use of a the chat model TinyLlama-
1.1B-Chat, which adopts the architecture of Llama2, as well as encoded Abstract Meaning Rep-
resentation information through the use of an AMR parser. The work also explored the possible
advantages of reducing the dimensional space of BERT encodings aiming to boost the perfor-
mance of k-means clustering algorithm through the use of autoencoders.

The experiments demonstrated a notable potential of the chat model TinyLlama in topical
modeling since it showed the capability to identify 14 different topics while achieving clus-
tering scores comparable to those obtained with BERT. Also, the reduced set of BERT-base
encodings demonstrated the ability to cluster the publications into 13 topics, with significant
enhancement in clustering scores, achieving score improvement of 116%, 135%, and 38% in
Silhouette, Calinski-Harabasz, and Davies-Bouldin scores respectively, compared to the con-
ventional BERT encodings.

In summary, this analysis has provided valuable insights into effective methods for topi-
cal clustering, highlighting the strengths of large chat models such as TinyLlama, as well as
the benefits of dimensionality reduction with autoencoders. These findings contribute to the
existing methods and tools available for in-depth exploration of text and topic modeling.

Future analyses may explore the capabilities offered by larger Llama2 models, such as those
with 7B, 13B, and 70B parameters, to further enhance the efficacy of topical clustering tasks.
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