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Abstract 

In recent years, Transformer models have emerged as powerful tools for contextualized text 
representation, achieving state-of-the-art performances. Particularly in unsupervised settings, 
these models prove useful when labeled data is unavailable. This thesis investigates the topical 
clustering of unlabeled scientific text, leveraging various pre-trained large language models. 
The primary focus is on grouping the publication database at Deggendorf Institute of Technol­
ogy (DIT) according to their main topics. 

The initial experiments employ the BERT-base model, established as the baseline approach. 
The study also explores the effectiveness of TinyLlama, a compact 1.1B parameters chat model 
adopting the Llama2 architecture, demonstrating its high potential in revealing diverse topics 
within the dataset. Additionally, the implications of using encoded Abstract Meaning Repre­
sentations (AMR) are explored, especially in the context of encoding the publications wi th an 
A M R parser. The study further investigates the advantages of reducing the dimensionality of 
BERT encodings into a lower space through the application of autoencoders. 

The experiments showcase the efficiency of TinyLlama and the reduced set of BERT encod­
ings in the task of topical modeling, favoring these methods over the traditional approach using 
BERT. This research contributes to the growing field of unsupervised topical clustering, offer­
ing insights and methodologies for efficient exploration and understanding of scientific text. 
The code is available here https://mygit.th-deg.de/bf01805/thesis.git 
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1 Introduction 

In the last few years, pre-trained Large Language Models have revolutionized the field of Nat­
ural Language Processing wi th their ability to produce contextualized vector representations, 
as wel l as capture long-range dependencies in the input text. These encodings can be uti­
lized in down-stream N L P tasks, such as translation, text classification, question answering, 
clustering, all the way to text generation. Different variations of these models have achieved 
state-of-the-art performances on different tasks, whether they were based on the full trans­
former architecture (e.g. Llama, BART) , encoder-only models (e.g. BERT), or the ones based 
on the decoder component of the transformer (e.g. GPT). 

1.1 Motivation 

In the task of topical clustering of unlabeled text, researchers have employed variations of 
BERT model to acquire embeddings that can be later utilized for clustering. However, different 
challenges may arise when dealing wi th complex and mixed scientific domains, since long and 
complex scientific terminologies affect the efficiency of the produced embeddings and their 
ability to form meaningful and well-separated clusters. 

Another common issue that usually affects the clustering performance is the Curse of D i ­
mensionality effect. Transformer models encode the input into a high-dimensional space, for 
instance, BERT-base encodes the input text into a 768-dimensional space. This high dimen­
sionality i n the produced embeddings can negatively affect the performance of clustering al­
gorithms such as k-means, when too many features lead the algorithm to lose sense of the 
relative distances between data points, resulting in insufficient clustering. 

1.2 Objective 

This thesis work explores the possible ways to perform topical clustering of scientific research 
texts after encoding them using transformer models. The aim is to explore ways to minimize the 
negative impact of semantically complex text, as wel l as reduce the negative effect of the high 
dimensionality by using dimensionality reduction techniques. The experiments include the 
use of different types of Transformer models, including the basline approach using BERT and 
mBERT (multilingual BERT), A M R Parser, as wel l as T inyLlama- l . lB-Cha t which is a compact 
chat model that adopts the architecture of Llama2. 

The used models are different in their architecture and learning objectives. Initially, the 
common way of encoding text using BERT is performed. The BERT encodings are going to 
serve as a benchmark to compare wi th encodings coming from the chat model TinyLlama, as 
well as encodings coming from an Abstract Meaning Representation (AMR) parser. 
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1 Introduction 

This study also explores the advantages of employing deep auto-encoders to reduce the di­
mensional space of encodings for enhanced k-means clustering, aiming to minimize informa­
tion loss during the reduction process. 

The investigation addresses three key questions: 

1. Can TinyLlama, a 1.1B parameter chat model adopting the architecture of Llama2, out­
perform the baseline approach of using Bidirectional Encoders (BERT) in the task of 
topical clustering of scientific publications? 

2. What are the implications of using encoded Abstract Meaning Representations, particu­
larly when encoding text using an A M R parser? 

3. Can autoencoders introduce improvements through their ability to encode input data 
into a lower-dimensional space? 

This analysis tackles these key questions wi th a focus on clustering the scientific publications 
within the Deggendorf Institute of Technology (DIT) publication database, covering various 
topics. The objective is to group these documents based on their primary themes. The experi­
ments wi th TinyLlama enabled the discovery of 14 detailed topics while achieving clustering 
scores comparable to the common approach using BERT encodings, which enables the clus­
tering of 8 topics. Furthermore, the proposed reduced BERT encodings introduced significant 
improvements in clustering scores, achieving score improvement of 116%, 135%, and 38% in 
Silhouette, Calinski-Harabasz, and Davies-Bouldin scores respectively, while allowing the dis­
covery of 13 different topics. Determining the theme of a cluster involves analyzing the most 
frequent and relevant keywords extracted from the documents wi th in that cluster, where Key-
BERT is utilized for that purpose, helping identify and highlight the key topics characterizing 
the cluster's content. 

1.3 Thesis Structure 

W i t h regards to the organization of this thesis, the Background chapter gives a brief description 
of the main concepts and technologies relevant to this work, including the Transformer models, 
clustering, dimensionality reduction, Abstract Meaning Representation, and evaluation met­
rics. Related Work chapter explores relevant previous work. The chapter Methodology starts 
by performing basic exploratory analysis on the the dataset utilized in this work, and then goes 
through the methods used i n this work i n a more detailed approach. The Experiments chapter 
shows the final results and compares the different models and techniques followed to perform 
the clustering. The Results Discussion chapter recaps the results and summarize them in a 
table. Finally, the Conclusion chapter summarizes the final take-away from this work. 
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2 Background 

This chapter goes through the main concepts and technologies used in this work, providing a 
brief description of the Transformers, K-means clustering, Abstract Meaning Representation 
Graphs, Cluster Evaluation Metrics, Keyword Extraction using KeyBERT, Deep Autoencoders, 
and dimensionality reduction using U M A P . 

2.1 Transformers 

The Transformer, introduced in the famous paper 'Attention is A l l You Need" by Vaswani et 
al. [1], has revolutionized Natural Language Processing. Its encoder-decoder architecture and 
self-attention mechanism enables parallelization, and capturing long-range dependencies in 
language modeling tasks. The model proposed in the paper is shown i n Figure 2.1. The encoder 
maps an input sequence to continuous representations i n a high-dimensional space, which is 
then processed by the decoder. The decoder receives the output of the encoder together wi th 
the decoder output at the previous time step to generate an output sequence. This architecture 
opened doors for many different applications, achieving state-of-the-art performances on a 
wide range of N L P tasks. 

The high-dimensional embeddings generated by the encoder component of the transformer 
are leveraged in this study, since the encoder is capable of capturing the contextualized mean­
ing of the input sentences. In terms of the architecture of the models used in this thesis, 
encoder-only models (e.g. BERT), as wel l as encoder-decoder models (e.g. BART, T iny Llama) 
are explored. The following subsections discuss the specifics of each used model, its distinctive 
properties, and the rationale behind its selection. 

2.1.1 BERT-base-uncased 

BERT (Bidirectional Encoder Representations from Transformers) is a language representa­
tion model introduced by Devl in et al. [2]. Encoding text using BERT has been the standard 
method due to its bidirectional approach of encoding text. It is designed to pre-train deep bidi­
rectional representations from unlabeled text, which makes it a suitable choice for text encod­
ings. "BERT-base-uncased" is a widely used variant of BERT. The "uncased" attribute signifies 
its case-insensitivity, facilitating a broader understanding of language. This model excels in 
capturing contextual relationships between words due to its bidirectional nature and extensive 
pre-training on large corpora. A l l BERT models used in this work produce embeddings wi th a 
hidden size of 768. 
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2 Background 
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Figure 2.1: The Transformer model architecture proposed in the paper Attention is A l l You 
Need 

2.1.2 mBERT 

mBERT (multilingual BERT) is another variant of BERT designed to handle multiple languages. 
Unlike language-specific models, mBERT is trained on diverse multilingual corpora, making it 
proficient i n understanding and generating representations for text in various languages. This 
model enabled researcher to work wi th multilingual datasets efficiently, providing a unified 
framework for cross-lingual N L P tasks. While this analysis is focused on English text, the 
inclusion of mBERT is for exploratory purposes. The aim is to showcase how a multilingual 
model behaves in this analysis. Additionally, its multilingual capabilities offers the flexibility 
to extend the analysis to other languages i f needed, enhancing the adaptability and potential 
scope of the research. 

2.1.3 TinyLlama-l.lB-Chat 

Introduced by Zhang, Peiyuan, et al. [3], TinyLlama is a chat model that is trending very re­
cently and available on Hugging Face 1, it adopts exactly the same architecture and tokenizer 
as Llama2 [4]. The model is compact wi th only 1.1B parameters, a context window of size 2048 

'https://huggingface.co/TinyLlama/TinyLlama-1.IB-Chat-vl.0 
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2.2 K-means Clustering 

tokens, and hidden size of 2048, which makes it possible to inference i n a constrained com­
putational setting. Compared to models like GPT 3 [5], there are few architectural differences 
done in Llama: 

• Llama uses S w i G L U activation function instead of ReLU. 

• It uses rotary positional embeddings instead of absolute positional embedding. 

• It uses root-mean-squared layer-normalization instead of standard layer-normalization. 

2.1.4 AMR Parser 

Encoded Abstract Meaning Representation (AMR) are explored i n this analysis through the 
use of an A M R parser which follows B A R T architecture. B A R T [6] employs a generative 
model wi th a full encoder-decoder transformer architecture, combining bidirectional and auto-
regressive training objectives for sequence-to-sequence models. The parser is trained on the 
objective of generating A M R graphs. The use of the parser is through amrlib2, a python library 
for A M R parsing, generation and visualization. More specifically, the model 'parse-xfm-bart-
base' is used to encode the data using its encoder component. The purpose of using the A M R 
parser is to explore whether extracting the key concepts from text can be beneficial i n the task 
of topic modeling. 

2.1.5 KeyBERT 

KeyBERT is an algorithm that employs BERT embeddings for keyword extraction from texts. 
By leveraging contextualized word representations, it performs context-aware and accurate 
identification of key terms in the input text. KeyBERT utilizes a pre-trained BERT model to 
obtain contextualized word embeddings for each word i n the input text. The word embeddings 
are then aggregated to produce a sentence-level embedding, this step captures the overall con­
text of the text. Using sentence embeddings, KeyBERT identifies the most informative words 
as keywords. The algorithm selects words based on their contribution to the text's overall con­
textual meaning. In this work, KeyBERT is used to extract the most relevant words from each 
cluster in order to identify the relevant topic of the cluster. 

2.2 K-means Clustering 

K-Means is a widely used unsupervised machine learning algorithm used for clustering data 
points. It divides a dataset into k clusters based on similarity, aiming to minimize the intra-
cluster variance. The algorithm operates by initializing cluster centroids, assigning data points 
to the nearest centroid, and then iteratively updating centroids based on the mean of the as­
signed points. A n example of some random data points clustered using k-means wi th k set to 
4 is shown i n figure 2.2. The following is a detailed explanation of how k-means works. 

2
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5 

https://github.com/bjascob/amrlib


2 Background 
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Figure 2.2: Scatter plot example of clustered data using k-means wi th k=4 

2.2.1 Initialization of Cluster Centroids 

The algorithm starts by randomly initializing k cluster centroids in the feature space. These 
centroids represent the centers of the initial clusters. 

2.2.2 Assigning Data Points to Nearest Centroids 

Each data point in the dataset is assigned to the cluster whose centroid is closest to it. This 
assignment is based on a distance metric, commonly the Euclidean distance. 

2.2.3 Iterative Update of Centroids 

After the initial assignment, the algorithm iterates between two steps: 

1. Upda te Cent ro ids : For each cluster, the centroid is updated to the mean of all the data 
points assigned to that cluster. This moves the centroid closer to the center of the cluster. 

2. Reass ign D a t a Po in t s : Once the centroids are updated, data points are reassigned to 
the cluster whose centroid is closest to them. 

2.2.4 Minimization of Intra-cluster Variance 

The goal of K-means is to minimize the within-cluster variance, also known as inertia or sum 
of squared distances from each point to its assigned centroid. This is achieved through the 
iterative process of centroid updating and point reassignment. 

2.2.5 Convergence Criteria 

The algorithm continues iterating until either the centroids no longer change significantly be­
tween iterations or a specified number of iterations is reached. Convergence typically occurs 
when the centroids stabilize and the assignment of data points to clusters remains constant. 

6 



2.3 Abstract Meaning Representation (AMR) Graphs 

2.2.6 Choosing the Number of Clusters (K) 

Determining the appropriate number of clusters, k, is crucial. Common methods for selecting 
k include the silhouette analysis or elbow method. In this work, the silhouette analysis is used 
to determine the appropriate number of clusters for each set of encodings. 

2.3 Abstract Meaning Representation (AMR) Graphs 

A M R graphs are a popular way to represent the meaning of the text, abstract away from its 
complex terminology. It uses concepts and relations from a fixed vocabulary to capture the 
core semantic meaning of a sentences independently of their surface structure, i n the sense that 
sentences which are similar i n meaning should be assigned the same A M R , even i f they are not 
identically worded. For example, the sentences "he described her as a genius", "his description 
of her: genius", and "she was a genius, according to his description" are all assigned the same 
A M R [7]. Figure 2.3 shows the graph representation of the previous sentences along wi th the 
linearized version of the A M R graph. 

In this work, an A M R parser is used to encode the input text. The aim here is to explore 
whether encoding the text wi th a model that is trained on the objective of generating A M R 
graphs can introduce any improvements in the task of topical clustering of text. 

Figure 2.3: A M R graph of the Sentence "he described her as a genius". 
Linearized format: (d/describe-01 :ARG0 (h/he) : A R G l (s/she) :ARG2 (g/genius)) 

2.4 Evaluation Metrics 

The Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index are metrics used to 
evaluate the performance of clustering algorithms. They provide quantitative measures for 
assessing the quality of the formed clusters. A n explanation is provided of each: 

7 



2 Background 

2.4.1 Silhouette Score 

The Silhouette Score serves as a quantitative measure of the degree of separation between 
clusters and the similarity of each data point wi th in a cluster to others. It ranges from -1 
to 1, where a high score indicates well-defined clusters, 0 suggests overlapping clusters, and 
negative values imply that data points might be assigned to the wrong cluster. The Silhouette 
Score is calculated using the formula: 

where iV is the total number of data points, is the average distance from the i - th data point 
to the other data points in the same cluster, and bi is the smallest average distance from the 
i-th data point to data points in a different cluster. 

2.4.2 Calinski-Harabasz Index 

The Calinski-Harabasz Index calculates the ratio of between-cluster variance to within-cluster 
variance. It measures how well-separated clusters are and is higher when clusters are compact 
and well-defined. It is computationally efficient and useful for datasets wi th varying cluster 
sizes. The Calinski-Harabasz Index is calculated using the formula: 

where CH is the Calinski-Harabasz Index, B is the between-cluster dispersion, W is the 
within-cluster dispersion, iV is the total number of data points, and k is the number of clusters. 

2.4.3 Davies-Bouldin Index 

The Davies-Bouldin Index evaluates the compactness and separation of clusters. It measures 
the average similarity between each cluster and its most similar cluster, aiming for lower val­
ues, which indicate more distinct clusters. The Davies-Bouldin Index is calculated using the 
formula: 

where DB is the Davies-Bouldin Index, k is the number of clusters, Si is the average distance 
from each point in cluster i to the centroid of cluster i , and d(ci, Cj) is the distance between 
the centroids of clusters i and j. 

2.4.4 Visual Example 

A visual example i n Figure 2.4 demonstrates how clustering scores correspond to increasing the 
value of k. In this example, the data clearly fit into two clusters. Attempting to fit the data into 
more than two clusters results i n lower Silhouette and Calinski-Harabasz scores and higher 

N 
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2.5 Autoencoders 

Davies-Bouldin scores. This serves as a good illustration of how these scores can indicate the 
appropriate number of clusters that best fit the clustered data. In this study, the Silhouette 
score w i l l be employed as a method to determine the most suitable value of k for each of the 
encodings obtained by the different models. The k-means algorithm w i l l be executed multiple 
times using various values of k, and the final choice of k w i l l be based on the Silhouette score 
that best aligns wi th the clustering quality. 

K = 2 
Si lhouette: 0.83 

Cal insk i -Harabasz: 4047.46 
Davies-Bould in: 0.24 

K = 3 T 
Si lhouette: 0.57 1 

Cal insk i -Harabasz: 2 4 b ö V 6 i 
Davies-Bould in: 0.88 T 

K = 4 T 
Si lhouette: 0.32 1 

Cal insk i -Harabasz: 2062.22 I 
Davies-Bould in: 1.23 T 

Figure 2.4: Visual example of how clustering scores correspond to increasing the number of 
clusters (k) beyond the suitable value, which is 2 in this example 

2.5 Autoencoders 

A n autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled 
data (unsupervised learning). A n autoencoder learns two functions: an encoding function that 
transforms the input data, and a decoding function that recreates the input data from the en­
coded representation. The autoencoder learns an efficient representation (encoding) for a set 
of data, typically for dimensionality reduction. Figure 2.5 shows the basic architecture of the 
autoencoder. Deep autoencoders are employed i n this work in the process of encoding the em-
beddings into a lower dimensional space after finding the least possible number of components 
that can recreate the embeddings wi th minimum recreation loss. This is going to be helpful for 
k-means since the reduced dimensional space boosts the performance of the clustering algo­
rithm. 

2.6 UMAP for Dimensionality Reduction 

U M A P (Uniform Manifold Approximation and Projection) is a dimensionality reduction tech­
nique designed for visualizing high-dimensional data in a lower-dimensional space. It pre­
serves the underlying manifold structure of the data, maintaining meaningful relationships 
between points. U M A P is very good at preserving both local and global structure, offering flex­
ibility i n parameter tuning and scalability. It has applications in visualization, clustering, and 
dimensionality reduction tasks, providing insights into complex datasets. Compared to other 
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2 Background 

Figure 2.5: Deep Autoencoder 

techniques like t-SNE (t-Distributed Stochastic Neighbor Embedding) and P C A (Principal Com­
ponent Analysis), U M A P stands out for its effectiveness in capturing nonlinear relationships 
and handling large datasets efficiently 
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3 Related Work 

Recent years have witnessed the widespread adoption of transformer models in various Nat­
ural Language Processing applications, resulting in significant improvements across several 
N L P tasks. Numerous studies have proposed effective methods to leverage contextualized 
transformer embeddings for downstream applications. This chapter explores relevant previ­
ous research that has influenced the foundation of this thesis and highlights its distinctions. 

In the task of topic modeling, Zineddine Bettouche and Prof. Andreas Fischer [8] conducted 
topical clustering of scientific research activity wi th in DIT's publication library, utilizing the 
same dataset as employed i n this work. The authors employed various models from the BERT 
family, including BERT-base, SciBERT, as wel l as mBERT for processing multilingual text. Their 
research involves creating a landscape representation of scientific fields through encoding and 
clustering research publications. A s ground-truth topic labels are absent, coauthorship analy­
sis is employed, examining author uniqueness wi th in clusters and constructing coauthorship-
based social networks. The calculated high uniqueness of authors i n the formed clusters and 
the found homogeneity of topics across the connected-components in the social network is 
used in assessing the effectiveness of the clustering. The coauthorship analysis part is not con­
ducted i n this thesis work. However this work extends their approach by incorporating a chat 
model encodings and a set of BERT encodings reduced to a lower dimensional space using au-
toencoders. Additionally, encoded Abstract Meaning Representation graph information in the 
context of topic modeling is explored. 

Another study [9] introduces an unsupervised topic detection approach to address the chal­
lenge of discovering current research topics and methodologies in scientific domains of a num­
ber of publications. Leveraging transformer-based GPT-3 similarity embedding models and 
modern document clustering techniques, the approach is demonstrated using 593 publication 
abstracts from urban study and machine learning domains. The process involves three phases: 
an iterative clustering phase utilizing GPT-3 embeddings and H D B S C A N clustering to group 
similar abstracts, a keyword extraction phase employing the Maximal Marginal Relevance 
ranking algorithm, and a keyword grouping phase producing topic representations for abstract 
clusters. The authors used Uniform Manifold Approximation and Projection (UMAP) algorithm 
as a dimensionality reduction technique to be able to reduce the high-dimension space of the 
abstract embeddings to a reasonable range because H D B S C A N requires the dimension size to 
be smaller than the number of abstracts, in their case, smaller than 593. However, in this work, 
autoencoders are used to encode the embeddings to an appropriate space based on minimized 
reconstruction-loss, while U M A P is only employed for the visualization purpose. 

This paper [10] explores the application of the Bidirectional Encoder Representation from 
Transformers (BERT) model for text clustering, comparing it wi th the commonly used Term 
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3 Related Work 

Frequency Inverse Document Frequency (TFIDF) method. Their results indicate that BERT 
outperforms TFIDF in 28 out of 36 metrics, highlighting its effectiveness in representing textual 
data for clustering. Additionally, the paper emphasizes the importance of adapting feature 
extraction and normalization techniques based on the chosen text clustering algorithm. 

A study [11] investigated the utilization of pre-trained Transformer-based word embeddings 
in the context of text clustering. The authors introduce a clustering ensemble approach that 
incorporates embeddings from all layers of the network. Numerical experiments conducted 
on datasets wi th various Transformer models demonstrate the effectiveness of the proposed 
method when compared to several baseline methods. 

Prior research work explored using encoded A M R graph information. In a recent study 
by Joseph Gatto and Sarah M . Preum [12], A M R graphs were leveraged to model low-resource 
health Natural Language Processing tasks. Through the augmentation of text embeddings wi th 
semantic graph embeddings, the authors demonstrated improved performance across six classi­
fication tasks. Inspired by their work, this study explores whether encoding A M R information 
can yield any interesting findings. The process of linearizing Abstract Meaning Representa­
tion (AMR) structures enables the application of traditional sentence embedding techniques, 
such as contrastive learning, to construct meaningful A M R representation vectors. Contrastive 
learning involves creating a dataset of triplets comprising an anchor, a positive example, and a 
negative example. The objective is to encourage the model to bring the embeddings of the an­
chor and positive example closer while pushing the anchor and negative example embeddings 
further apart. This approach yields semantically rich text embeddings that are analyzable in 
high-dimensional space. Unlike Gatto et al.'s approach, this work involves encoding A M R infor­
mation using an A M R parser, specifically focusing on the encodings produced by the parser's 
encoder component. 
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4 Methodology 

This chapter focuses on the detailed steps of the implementation process. In this chapter the 
focus purely on the methods, while the next chapter w i l l show the results of the experimenta­
tions. 

4.1 Dataset Exploration 

The scientific publication database at DIT consists of a total 1500 publications that include 
an abstract section. To ensure consistency i n language, 175 entries identified as non-English 
are excluded from the dataset, resulting in a remaining 1325 publications for analysis. The 
language filtering process utilizes langdetect, a library designed to detect the language of a 
given text. Despite this automated approach, a few German papers were identified during 
manual verification, resulting i n manual exclusion for those cases. 

W i t h regards to the length of the analyzed abstracts, Figure 4.1 shows a histogram illustrating 
the frequency of the number of tokens. This is a crucial consideration due to context length 
restrictions imposed by Transformer models. However, the majority of abstracts fall wi th in 
an acceptable range, wi th an average token count of 189 tokens. BERT models have a context 
length limitation of 512 tokens, i f the token count crosses this threshold, truncation occurs, 
resulting i n the loss of valuable information. In the case of TinyLlama, this concern is alleviated, 
as its context window length is 2048 tokens, ensuring that no truncation w i l l happen since all 
analyzed abstracts are already below that limit. 
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Figure 4.1: Histogram of token count per abstract 
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4 Methodology 

4.2 General Overview 

While the used models are different in their architecture and learning objectives, the steps are 
generally similar. Figure 4.2 shows a diagram that illustrates the overall process applied in this 
work. 

Abstracts Model H D Encodings 

KeyBERT 

k-means f t k-means 

Autoencoder 

Keywords Reduced Encodings 

U M A P 

Plots 

J 

Figure 4.2: Methodology Overview 

The abstracts are fed to BERT-base, mBERT, TinyLlama, and the A M R Parser to obtain the 
encodings, as wel l as to KeyBERT in order to obtain the most relevant keywords from each 
abstract. The acquired information is then stored for the next stage, which is the clustering 
using k-means and visualization using U M A P . In addition to the clustering and visualization 
of the high-dimensional encodings, a reduced set of encodings is explored as well. The choice 
of the most suitable set of embeddings to be reduced is decided based on the Autoencoder 
Reconstruction-Loss Assessment. The following subsections describe the process in more de­
tails. 

4.2.1 Encoding of Scientific Publications 

To obtain the contextualized text embeddings of DIT's scientific publication database, each 
model is fed wi th the abstract of each publication. The output of the last encoder layer is 
of particular interest; it comprises a sequence of vectors, wi th each vector representing an 
input token i n its surrounding context. Following this, an average vector is calculated from the 
word-level embeddings, resulting in a single vector serving as the overall sentence embedding. 
Figure 4.3 that illustrates this process. 

[ x i , x 2 , . . . , x „ ] 
Model [ x i , x 2 , . . . , x „ ] r , 

Abstract > _ , > > [avg 1 ; a v g 2 , . . . , a v g j 
Encoder : 

[ x i , x 2 , . . . , x „ ] 

Average Vector 
Sequence of Token Vectors (Sentence Embedding) 

Figure 4.3: Encoding of Scientific Publications 
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4.2 General Overview 

4.2.2 Clustering and Plotting of The Encoded Scientific Publications 

Following the inference of each model and the storage of the resulting embeddings, the next 
step involves applying the k-means clustering algorithm. The number of clusters k w i l l vary 
based on the nature of the embeddings and their ability to effectively group data points. Instead 
of relying on intuition in choosing k, the value that yields the best possible Silhouette score for 
each set of embeddings w i l l be selected. To achieve this, each set of embeddings is clustered 
multiple times wi th k ranging from 2 to 20. Afterwards, the optimal value for each case is 
determined. 

For the visualization purpose, the dimensionality of the clustered embeddings needs to be 
reduced to a 2-dimensional space suitable for plotting. The python library umap-learn1 is used 
for the dimensionality reduction task, while matplotlib2, a well-known Python library, w i l l be 
employed for the visualization part. 

4.2.3 Keyword Extraction 

In order to determine the primary theme or field of study characterizing the content of each 
cluster, KeyBERT w i l l be employed to extract the top 3 relevant keywords from each abstract. 
Following the clustering of abstracts, the most frequent words in each cluster can be computed. 
A number of 4 to 6 keywords are sufficient to identify the relevant topic of a cluster. These 
keywords are then displayed in the legend of each plot, along wi th their corresponding topics. 

4.2.4 Determining Topics 

Assigning a relevant topic to each cluster primarily involves analyzing the top frequent key­
words wi th in the cluster. In addition to common sense and manual checks on the content of 
each cluster, arriving to the final topic is also done in consultation wi th a generative model. 
ChatGPT is a suitable option for this task since this is only for confirmation and no scalable 
solution is required here. It has the capability to recognize the main topic or field of study 
based on a given list of keywords. The prompting method can be controlled to decide whether 
ChatGPT should provide a general topic characterized by the keywords, or a more specific one. 
For example, keywords like "classification," "algorithm," "prediction," and "kernel" may result 
in the general topic of Computer Science, but on a more detailed level, it can also be "Machine 
Learning". Table 4.1 presents lists of possible keywords and their corresponding topics. This 
predefined list is utilized to automatically assign the field of study, which is then displayed in 
each plot's legend. The topic is assigned to a cluster when its top 4 most frequent keywords 
overlap wi th at least 3 words from the list. 

4.2.5 Autoencoders for Dimensionality Reduction 

This work includes the training and utilization of autoencoders to effectively reduce the di­
mensional space of the encoded abstracts. This reduction aims to boost the performance of 
k-means and improve the separation of topics. It is known that any dimensionality reduction 

'https://umap-learn.readthedocs.io/en/latest/  
2

https://matplotlib.org/ 

15 

https://umap-learn.readthedocs.io/en/latest/
https://matplotlib.org/


4 Methodology 

Keywords Topic 

recommender, recommendations, personalized, analytics Big Data 
rna, cell, cells, melanoma, myelin, melanoma Biology 
tourist, cultural, motivation, satisfaction Crowdsourcing 
digital, biomimetics, mobile, data, health, participatory Digital Health 
laser, dielectric, microscopy, capacitors, silicon, ghz, electrode Electronics 
renewable, electricity, energy, solar Energy 
biopsy, therapy, fmri, health, training, exercise, overweight, Health 
lifestyle, patients, aerobic, metabolic 
network, virtual, visual izat ion, security, digital IT 
classification, algorithms, features, clustering, prediction, kernel Machine Learning 
quantum, exciton, silicon, photoluminescence, irradiation, man­ Materials Science 
ufacturing, calibration 
quality, video, 3d, visual, bitrate, bitstream, mpeg Media 
reactor, thermal, coolant, reactors, nuclear, fusion, bubbles Molecular Physics 
nanowire, nanoporous, microlenses, micro, laser, plasma Nanote chnology 
polishing, optical, optics, surfaces, surface, laser, precision Optical Engineering 
piezoelectric, actuators, buckling, stability, piezoelectric Structural Engineering 

Table 4.1: Topic assignment based on frequent keywords 

technique involves a degree of information loss. To minimize this loss, it is important to care­
fully select the optimal number of components that can still retain the internal structure of 
the data. This is achieved through the Autoencoder Reconstruction-Loss Assessment which 
measures the reconstruction loss while having different number of components in the latent 
space of the autoencoder, and then encode the embeddings into a lower space after deciding 
on the appropriate latent space size. 

Autoencoder Reconstruction-Loss Assessment 

The approach taken involves training multiple autoencoders for each set of embeddings gen­
erated by the models. These autoencoders vary in the number of components on the latent 
space (encoder output layer), ranging from 1 component up to 140 wi th a step of 10. Each au­
toencoder consists of input and output layers adapting to the specific embeddings' hidden size, 
along wi th five hidden layers, including the latent space layer. The hidden layer sizes are set as 
256,128, X , 128, 256, where X represents the encoded latent space which is assigned a different 
value in each iteration. The purpose of this process is to assess the validation loss for each au­
toencoder and determine the optimal number of components that minimize information loss 
and retain the essential structure of the original embeddings. 
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4.2 General Overview 

Encoding The Embeddings Into A Lower Space 

Following the autoencoder reconstruction-loss assessment and the determination of the opti­
mal number of components for the encoder latent space, the next step involves encoding the 
original embeddings into this lower-dimensional latent space. This is accomplished using a 
deep autoencoder comprising 7 hidden layers set as 512, 256,128, Xoptima\, 128, 256, 512, where 
-^optimal is the previously identified optimal value. The resulting reduced set of embeddings is 
then subjected to clustering and plotted i n a similar approach applied to the original embed­
dings. 
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5 Experiments 

This chapter reveals the results of the experiments. To present the findings in an organized 
manner, the clustered encodings in their original high-dimensional space are shown first. Fol­
lowing that, the advantages of encoding a set of embeddings into a lower space through the 
utilization of autoencoders is explored. 

5.1 Original Embeddings Findings 

This first section is going to show the findings of the embedded abstracts in their original high-
dimensional space, without any dimensionality reduction applied prior to k-means clustering. 
The results begin by conducting the Silhouette score assessment where the optimal number of 
clusters is decided for each set of embeddings. After that, the clustering results of BERT-base, 
mBERT, TinyLlama, and A M R parser are presented. 

5.1.1 Silhouette Score Assessment 

As discussed in the Methodology chapter, the most suitable value for the number of clusters k is 
the one that results i n a high Silhouette score. Figure 5.1 shows the Silhouette score assessment 
result. It is important to highlight that the selection of the optimal value is not solely based on 
the highest score but involves consideration of the entire plot shape. 

w 0.06-

=•= BERT-base 
- • - mBERT 
-•— TinyL lama 
-•— A M R Parser 

9 10 11 12 13 14 
Number of Clusters 

Figure 5.1: Silhouette Score Assessment 

Based on the assessment, k values of 8, 7, 14, and 6 for BERT-base, mBERT, TinyLlama, and 
the A M R Parser, respectively, are chosen. This approach ensures a fair comparison, as each 
model is evaluated based on the most suitable number of clusters for its specific characteristics. 
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5 Experiments 

5.1.2 BERT-base-uncased 

Figure 5.2 presents the clustering results of the transformer-encoded scientific publications 
using the model BERT-base-uncased. It is possible to discover 8 different topics wi th BERT-
base. In terms of cluster quality, BERT-base achieves Silhouette, Calinski-Harabasz, and Davies-
Bouldin scores of 0.083,87.036, and 2.593 respectively. The identified topics are Energy, Material 
Science, Health, Electronics, IT, Media, Optical Engineering, and Biology. Looking at the most 
frequent keywords for each cluster shows confidence in the topic assignment, which indicates 
an appropriate choice of 8 clusters. 

15 -" 

Energy: ['electricity', 'renewable', 'energy', 'data', 'renewable', 'solar'] 
Materials Science: ['quantum', 'magnetic', "exciton", 'photoluminescence', semiconductor', 'energies'] 
Health: ['metabolic', 'biopsy', 'health', 'fmri', 'therapy', aerobic] 
Electronics: ['dielectric', 'optical', 'nanowires', 'electrode', 'silicon', carbon'] 
IT: ['virtual', 'video', 'visualization', 'classification', 'network', 'quality'] 
Media: ['quality', 'visual', '3d', 'stereoscopic', 'subjective', 'quality'] 
Optical Engineering: ['polishing', 'optical', "optics', 'tomography', surfaces', 'surface'] 
Biology: ['ma', 'cells', melanoma', 'myelin', 'melanoma', genes'] 

Figure 5.2: BERT-base-uncased Encodings 

5.1.3 mBERT 

Figure 5.3 shows the clustering results of mBERT encodings, it is possible to discover 7 clusters 
with mBERT. It achieves Silhouette, Calinski-Harabasz, and Davies-Bouldin scores of 0.093, 
88.243, and 2.772 respectively. BERT-base, i n comparison, was capable of recognizing one ad­
ditional cluster "IT", which probably most of its content got embedded wi th the "Media" cluster, 
considering their high similarity. 

A n argument favoring BERT-base over mBERT for this specific analysis is that the input text 
is entirely in English, giving BERT-base an advantage wi th more exposure to English training 
samples compared to mBERT, which was trained on 104 different languages. A n interesting 
observation i n the mBERT plot is the distinct green cluster on the left, labeled as "Health." This 
cluster contains mainly health-related publications, along wi th some publications in the Energy 
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5.1 Original Embeddings Findings 

and a few other topics, as indicated by the keywords "renewable" and "dielectric". While there 
is no clear explanation for this behavior at the moment, it raises a question mark that could be 
investigated in future analyses involving multilingual data. 

2 A 6 B 10 12 

Optical Engineering: I'optical', polishing', 'laser', 'magnetorheological', 'surface', tomography] 
Materials Science: I'quantum', 'magnetic', 'exciton', 'semiconductor', 'energies', 'photoluminescence'] 
Health: ['metabolic', 'renewable', 'health', biopsy', 'aerobic', 'dielectric'] 
Electronics: ['dielectric', 'electrode', 'silicon', 'carbon', superconducting', 'oxide'] 
Bidogy: ['melanoma', 'rna', 'melanocytes', cells', transcription", 'schizotypy'] 
Energy: ['network', 'electricity', 'virtual', 'renewable', 'virtualization', 'energy'] 
Media: ['quality', '3d', video', visual', 'stereoscopic', 'classification'] 

Figure 5.3: mBERT Encodings 

5.1.4 TinyLlama-1.IB-Chat 

Figure 5.4 shows the results of clustering the scientific publications using the model TinyLlama-
l . lB-Chat . The results were comparable to BERT-base in terms of clustering scores. TinyLlama 
achieves Silhouette, Calinski-Harabasz, and Davies-Bouldin scores of 0.098, 64.815, and 2.532 
respectively. However, the number of identified clusters is 14, which is significantly higher 
than the BERT models. A n important consideration here is that TinyLlama encodes the input 
text into a 2048-dimensional space, while BERT encodings are in 768 dimensions. Despite 
the potential disadvantage of the significantly high dimensionality i n TinyLlama (almost 2.6 
times higher than BERT), exposing it to the Curse of Dimensionality effect, it still achieved 
comparable clustering scores, and that certainly counts for TinyLlama. 

W i t h TinyLlama, it was possible to discover interesting detailed topics, such as: 

• Digital Health: A discipline that includes digital care programs, integrating technologies 
and health, and analyzing public health. 

• Crowdsourcing: A topic that involve studying social and cultural topics of a group of 
people. 
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5 Experiments 

0 Big Data: ["recommender", "recommendations', "personalized", "recommendation", "quality1, 'data'] 
0 Electronics: [dielectric", "electrode', 'carbon', 'silicon', plasma", "superconducting'] 
0 Optical Engineering; I'polishing", "optical", 'surfaces', 'surface', 'optics', 'magnetorhealogical'] 
0 IT: [network", 'virtualization', 'virtual', 'embedding', Vne ' , 'security'] 

Machine Learning: ['classification', 'statistical', 'algorithms', 'kernel', 'classifier', 'choquet'] 
0 Structural Engineering: ['uncertainty', 'reactor', 'simulation', 'damping', piezoelectric', stability'] 
0 Nanotechnalogy: ['optical', laser', 'ghz', 'nanowire', rf, 'micro'] 

Crowdsourcing: ['training', 'motivation', transfer', satisfaction', 'cultural', 'bargaining'] 
0 Energy: ['renewable', 'electricity', 'solar', 'renewable', 'energy', 'renewables'] 

Biology: ['ma', 'cells', melanoma', 'myelin', 'melanoma', genes'] 
Health: ['metabolic', 'biopsy', 'fmri', 'therapy', 'aerobic', 'psychosis'] 
Media; ['quality', '3d', visual', 'video', stereoscopic', 'quality'] 

0 Digital Health: ['digital', 'biomimetics', 'health', 'mobile', 'participatory', 'participation'] 
0 Materials Science: ['quantum', 'magnetic', 'exciton', 'photoluminescence', semiconductor', 'energies'] 

Figure 5.4: T inyLlama- l . lB-Cha t Encodings 

• Big Data: Involves analyzing large amounts of data, as seen in recommender systems. 

• Structural Engineering: A branch of civi l engineering that focuses on the design and 
analysis of structures such as buildings, reactors, and other infrastructure. 

To grasp the overall shift i n the distribution of abstracts across topics between TinyLlama 
and BERT-base, a visual representation of the mapping between the two clustering methods is 
provided using the sankey diagram i n Figure 5.5. The diagram illustrates that the diversity in 
TinyLlama's technology-related topics primarily originates from what was initially assigned to 
"IT," "Media," and "Energy" clusters according to BERT-base. Additionally, TinyLlama success­
fully separated the "Nanotechnology" from "Electronics", as wel l as "Structural Engineering" 
topic from what was mistakenly included wi th "Optical Engineering." The rest of topics, namely 
"Material Science," "Health," and "Biology," generally remain consistent wi th minor differences. 
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izziESiology« 

BERT-base 

Healthl 

B ia l o ' gyJZD 

Tiny Llama 

Figure 5.5: Sankey diagram for topic assignment comparison of BERT-base and TinyLlama 

These interesting findings demonstrate the effectiveness of the chat model TinyLlama in the 
task of topic modeling, outperforming BERT-base in this specific task, due to its capability of 
revealing the diversity of topics covered wi th in the DIT publication database while achieving 
comparable clustering scores. It is also a motivation to extend this work and include larger 
variations of Llama2 in future analyses. 

5.1.5 AMR Parser 

The result of clustering the encodings coming from the A M R parser did not perform as good 
as the previous models in the task of topic modeling. The parser achieves Silhouette, Calinski-
Harabasz, and Davies-Bouldin scores of 0.052, 77.416, and 2.901 respectively. It is clear that 
some data points were assigned the wrong cluster, and it is possible to confirm that by looking 
at the "Health" cluster where keywords like "renewable" and "electricity" should not appear 
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there, at least wi th in the most frequent keywords for the cluster. 

Si lh 
CaT 
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Electronics: [ 'dielectric', 'e lectrode' , 'a l ' , 'carbon' , capaci tance' , 'capacitors' ] 
Materials Science: [ 'magnetic', 'quantum' , 'opt ical ' , 'nanowires' , 'photoluminescence' , 
Optical Engineer ing: [ 'optical', 'pol ishing', 'magnet ic ' , ' laser', 'surfaces', 'calibration'] 
Health: [ 'metabolic', biopsy', ' renewable' , 'health ' , 'aerobic' , 'electricity'] 
Energy: ['quality', ' renewable' , 'v ideo', 'electricity', 'energy', '3d'] 
IT: ['quality', 'virtual ' , 'network', vir tual izat ion', pol ishing', '3d'] 

'exciton' l 

Figure 5.6: A M R Parser Encodings 

It is possible that A M R ' s tendency to generalize concepts lead to encodings being closer to 
each other, making it harder to distinguish detailed topics. As a result, this A M R encodings 
didn't turn out to be a good fit for the task at hand. 

5.2 Reduced Embeddings Findings 

This section explores the advantages of encoding the embeddings into a lower-dimensional 
space using autoencoders, followed by clustering the reduced embeddings and presenting them 
in a manner similar to the previous approach. The primary objective is to enhance the per­
formance of the clustering algorithm and assess whether improved clustering results can be 
achieved. Opting for the appropriate set of embeddings and latent size is achieved in two 
steps: 

1. A u t o e n c o d e r Recons t ruc t ion-Loss Assessment : Determining the optimal number 
of components that still preserves essential information from the original embeddings 
is crucial. This w i l l be accomplished through the Autoencoder Reconstruction-Loss A s ­
sessment, which aids in selecting the appropriate set of embeddings and determining the 
number of components of the latent space of the autoencoder. 

2. T r a i n i n g and V a l i d a t i o n Losses: The training and validation losses of the autoencoder 
responsible for the dimensionality reduction process are examined. This step ensures that 
overfitting is not occurring. If the autoencoder exhibits signs of overfitting the training 
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5.2 Reduced Embeddings Findings 

set while reconstructing the embeddings, it w i l l be excluded from the reduction process. 
This ensures the effectiveness of the dimensionality reduction technique employed i n the 
clustering process. 

5.2.1 Autoencoder Reconstruction-Loss Assessment 

Figure 5.7 illustrates the reconstruction validation losses of the trained autoencoders across the 
number of encoded components. The analysis reveals that BERT-base excels in reconstructing 
the input wi th minimal loss, followed by TinyLlama. While mBERT shows comparable re­
sults, it is going to be excluded from the next experiment since BERT-base and TinyLlama are 
expected to be reliable options. On the other hand, the A M R parser shows the highest recon­
struction errors, wi th an unexpected behavior after 60 components. Therefore, it makes sense 
to exclude the A M R parser from the reduction process. 
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Figure 5.7: Autoencoder Reconstruction-Loss Assessment 

Based on the assessment, the encodings of BERT-base and TinyLlama are chosen to move 
to the next round, selecting a value of 60 components for both cases. This choice ensures 
minimum reconstruction errors of 0.73 and 0.75 for BERT-base and TinyLlama respectively. 

5.2.2 Autoencoder Training and Validation Loss 

Another necessary step in opting for the appropriate set of embeddings to be encoded into a 
lower space is the training and validation loss of the autoencoder responsible for the reduc­
tion process. Figure 5.8 shows the training and validation loss when training two different 
autoencoders to reconstruct BERT-base and TinyLlama encodings. 

In the case of BERT-base, the training and validation loss curves exhibit remarkable similar­
ity, indicating a high capability to perform the task wi th a strong generalization to new data. 
On the other hand, TinyLlama is showing a significant gap between the training and validation 
losses, this could be a sign of overfitting because its encodings may be too complex and fitting 
noise i n the training data. Despite TinyLlama's prior success i n clustering, it is going to be 

25 



5 Experiments 

Train ing Loss 

Va l ida t ion Loss 

Tra in ing Loss 

Va l ida t ion Loss 

\ 
V . 

LO 15 20 25 30 35 40 45 

Epochs 

0.875 

•.a so 

0 32 5 

£j 0.300 

•.775 

0.750 

0.725 

— Training Loss 

Uli LUbl 

L0 L5 20 25 30 35 40 45 

Epochs 

(a) BERT-base-uncased (b) TinyLlama (Excluded due to overfitting) 

Figure 5.8: Autoencoder Training and Validation Loss 

excluded from the reduction process due to the overfitting issue, and BERT-base encodings are 
the final choice to proceed wi th the reduction task. 

5.2.3 Silhouette Score Assessment 

In a similar sense as seen previously, the appropriate number of clusters for the reduced set 
of embeddings is decided based on the Silhouette score assessment. Figure 5.9 shows the as­
sessment for the BERT-base encodings reduced to 60 components. A k value of 13 clusters is 
selected as it yields a silhouette score of 0.182, being the highest Silhouette score achieved in 
this analysis. 

3 9 10 11 12 13 
Number of Clusters 

Figure 5.9: Silhouette Score Assessment (Reduced BERT-base) 

5.2.4 Reduced BERT-base Encodings 

Finally, the clustering outcomes of the encoded publication using BERT-base encodings after 
reducing to 60 components are shown in Figure 5.10. The reduced set of embeddings resulted in 
the best clustering scores i n this analysis, achieving Silhouette, Calinski-Harabasz, and Davies-
Bouldin scores of 0.18, 205.249, and 1.597 respectively. 
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5.3 TinyLlama vs Reduced BERT-base Comparison 
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Machine Learning: ['classification', 'classification', 'simulation', 'kernels', 'algorithms', 'kernel'] 
Optical Engineering: ['polishing', 'optical', 'optics', 'surfaces', 'surface', 'magnetorhealogical'] 
Electronics: ['dielectric', 'electrode', 'silicon', 'carbon', 'superconducting', 'nanowires'] 
Crowdsourcing: ['training', 'motivation', 'recommendation', 'tourist', 'transfer', 'satisfaction'] 
Health: ['metabolic', 'biopsy', 'therapy', 'aerobic', 'psychosis', 'prostate] 
Biology: ['ma', 'cells', 'melanoma', 'myelin', 'melanoma', 'genes'] 
Energy: ['renewable', 'electricity', energy', 'solar', 'renewable', 'renewables'] 
Nanotechnology: ['optical', 'laser', 'ghz', 'rf, 'nanowire', 'nanowires'] 
Structural Engineering: ['uncertainty', 'reactor', damping', 'actuators', 'piezoelectric', 'buckling'] 
IT: ['network', 'virtualization', 'virtual', 'embedding', 'vne', 'security'] 
Media: ['quality', 'video', '3d 1, 'stereoscopic', visual', 'bitrate'] 
Materials Science: ['quantum', 'magnetic', 'exciton', 'photoluminescence', semiconductor', 'energies'] 
Digital Health: ['data1, 'recommender', 'digital1, 'biomimetics1, 'recommendations', 'participatory'] 

Figure 5.10: BERT-base Encodings Reduced to 60 Components 

The 13 identified topics wi th the reduced BERT-base encodings align closely wi th the 14 top­
ics discovered wi th TinyLlama, wi th the exception of the additional "Big Data" cluster found by 
TinyLlama. This illustrates the efficiency of encoding BERT embeddings into a lower space of 
60 components. The reduced encodings demonstrate the capability to identify nearly identical 
topics while notably enhancing the clustering scores. The next section provides a comparative 
analysis of the two methods (TinyLlama and the reduced BERT-base encodings). 

5.3 TinyLlama vs Reduced BERT-base Comparison 

The final piece of analysis in this work presents a comparison between the two high achieving 
methods i n this study. Up to this point, both TinyLlama and the reduced set of BERT-base 
encodings have demonstrated outstanding results. Figure 5.11 presents a bar chart, illustrating 
differences i n cluster volumes between the two methods, wi th the difference in cluster size 
displayed as data labels. Despite minor variations i n cluster sizes, the two methods exhibit a 
remarkably similar distribution of abstracts across topics. 
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Topic 

Figure 5.11: Reduced BERT vs TinyLlama topic distribution 

For a more insightful perspective, a comparison between the findings of the two methods 
using the Sankey diagram is provided i n Figure 5.12. The diagram illustrates how topics from 
the reduced set of BERT encodings correspond to the topics obtained from TinyLlama. The 
flow shows high consistency in topic assignment between the two methods, except of a few 
minor differences which is expected. 

It is important to be aware that certain abstracts may fit to more than one suitable topic. 
For instance, a scientific publication wi th in the energy sector util izing big data or machine 
learning techniques might be considered as "Energy," "Big Data," or "Machine Learning" based 
on the semantics employed in its abstract text. Additionally, differences in specific encoding 
characteristics and the k-means random initialization of centroids contribute to variations in 
cluster assignment between any two methods. However, it's important to emphasize that such 
differences don't necessarily mean that one of them is completely wrong. The key insight from 
this comparison is that the overall distribution is largely similar i n both methods. 
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BERT Reduced TinyLlama 

Figure 5.12: Sankey diagram for topic assignment comparison of Reduced BERT and TinyLlama 
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6 Results and Discussion 

During this analysis, transformer encoded research publications were utilized to perform topic 
modeling which aims to group these documents into meaningful clusters based on their main 
topic. Table 6.1 summarizes the performances of the used models. It includes the number of 
clusters or topics identified as wel l as the clustering scores for all of the methods. 

Model Clusters Silhouette Calinski-Harabasz Davies-Bouldin 

BERT-base-uncased 8 0.083 87.036 2.593 
mBERT 7 0.093 88.243 2.772 
TinyLlama-1. IB-Chat 14 0.098 64.815 2.532 
AMR Parser 6 0.052 77.416 2.901 
Reduced BERT (60 components) 13 0.18 205.25 1.597 

Table 6.1: Clustering scores of the different models 

The chat model TinyLlama as well as the BERT-base encodings reduced to 60 components, 
have demonstrated interesting results, being able to group the documents into more detailed 
clusters and achieving better clustering scores compared to the base-line method using orig­
inal BERT encodings. TinyLlama's encodings were able to form 14 clusters representing dif­
ferent topics, while the reduced BERT-base encodings formed 13 clusters. TinyLlama achieved 
clustering scores comparable to those obtained wi th original BERT-base encodings. On the 
other hand, the reduced BERT-base encodings achieved significant improvements i n cluster­
ing scores, improving Silhouette, Calinski-Harabasz, and Davies-Bouldin scores by 116%, 135%, 
and 38% respectively, compared to the common BERT-base method of using high dimensional 
embeddings. On the other hand, the A M R parser was not a suitable option for this specific anal­
ysis since it did not introduce reliable results due to A M R s tendency i n generalizing concepts, 
resulting in encodings being closer to each other, which then result in less clustering efficiency. 
The model mBERT showed some confusion in its results, grouping Health and Energy-related 
publications in one isolated cluster. However, mBERT could serve as a suitable option, partic­
ularly when processing multilingual data, as demonstrated in previous works. 

Based on these findings, it is clear that TinyLlama and the reduced set of BERT encodings 
yield favorable outcomes. While the reduced BERT encodings demonstrate superior cluster­
ing scores compared to TinyLlama, it is noteworthy that TinyLlama excels in identifying an 
additional cluster. 
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7 Conclusion 

This thesis conducted topical clustering on a library of scientific publications, aiming to cluster 
and group these publications into their main topics. The focus was on the publication database 
at the Deggendorf Institute of Technology (DIT), which contained 1325 scientific publications 
that include an abstract section written in English. 

Previous methods mainly involved the use of the BERT family of models in encoding texts, 
being the base-line method for such tasks. However, and in addition to the traditional method 
using BERT, this work extended the experiments wi th the use of a the chat model TinyLlama-
l . lB-Chat , which adopts the architecture of Llama2, as wel l as encoded Abstract Meaning Rep­
resentation information through the use of an A M R parser. The work also explored the possible 
advantages of reducing the dimensional space of BERT encodings aiming to boost the perfor­
mance of k-means clustering algorithm through the use of autoencoders. 

The experiments demonstrated a notable potential of the chat model TinyLlama i n topical 
modeling since it showed the capability to identify 14 different topics while achieving clus­
tering scores comparable to those obtained wi th BERT. Also, the reduced set of BERT-base 
encodings demonstrated the ability to cluster the publications into 13 topics, wi th significant 
enhancement in clustering scores, achieving score improvement of 116%, 135%, and 38% in 
Silhouette, Calinski-Harabasz, and Davies-Bouldin scores respectively, compared to the con­
ventional BERT encodings. 

In summary, this analysis has provided valuable insights into effective methods for topi­
cal clustering, highlighting the strengths of large chat models such as TinyLlama, as wel l as 
the benefits of dimensionality reduction wi th autoencoders. These findings contribute to the 
existing methods and tools available for in-depth exploration of text and topic modeling. 

Future analyses may explore the capabilities offered by larger Llama2 models, such as those 
wi th 7B, 13B, and 70B parameters, to further enhance the efficacy of topical clustering tasks. 
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