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Abstract

Hydrological modeling plays a central role in water resource management
through access to risks and impacts of hydrological phenomena, where the
model itself represents a simplified representation of a realworld system.
The hydrological models are classified into many different groups depending
on different factors. This study will be focusing on the performances of a
conceptual lumped rainfall-runoff model. The main objective of this study
is to extend and test an existing modular modelling framework, dHRUM
which stands for Distributed Hydrological Response Unit Model, used for de-
scription of water balance in small and midsize catchments. This modelling
framework was initially developed by the Department of Water Resources
and Environmental Modelling at the Faculty of Environmental Sciences
(Czech University of Life Sciences Prague) and furtherly extended with
seven groundwater structures and three soil water structures. The analyzed
time-series is the CAMELS (Catchment Attributes and MEteorology for
Large-sample Studies) dataset. For measuring the quality of the model’s
performance, calibration and validation were performed with the model
using the differential split sample test, where calibration was applied for
the dry period, and validation was applied for the wet period and vice
versa. Three different single objective functions were used: KGE, NSE,
MAE. The Differential Evolution algorithm was used as an optimization
algorithm. The different structures were compared based on the three
different goodness-of-fit criteria: KGE (Kling Gupta Efficiency), NSE (Nash
Sutcliffe Efficiency), MAE (Mean Absolute Error) which were results from
using the gof (goodness-of-fit) package in R. The results were very success-
full when using the KGE objective function, as the validations were more
successfull when the calibration was done on the wet period. An analysis
of the different groundwater and soil-water structures were made, where
’superior’ and ’non-superior’ structures were chosen.

Keywords: Hydrological modelling, Differential split sample test, KGE,
NSE, MAE, CAMELS dataset, rainfall-runoff modelling, DE, modelling
framework
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Abstract

Hydrologické modelování hraje ústřední roli v řízení vodních zdrojů
prostřednictvím přístupu k rizikům a dopadům hydrologických jevů, kdy
samotný model představuje zjednodušenou reprezentaci systému reálného
světa. Hydrologické modely jsou klasifikovány do mnoha různých skupin v
závislosti na různých faktorech. Tato studie se zaměří na výkony koncepčního
modelu soustředěných srážek a odtoků. Hlavním cílem této studie je rozšířit
a otestovat stávající modulární modelovací rámec dHRUM, což je zkratka pro
Distributed Hydrological Response Unit Model, používaný pro popis vodní
bilance v malých a středně velkých povodích. Tento modelovací rámec byl
původně vyvinut Katedrou vodních zdrojů a environmentálního modelování
Fakulty životního prostředí (ČZU) a dále rozšířen o sedm podzemních
vodních struktur a tři půdní vodní stavby. Analyzovanou časovou řadou
je datový soubor CAMELS (Catchment Attributes and MEteorology for
Large-sample Studies). Pro měření kvality výkonu modelu byla s modelem
provedena kalibrace a validace pomocí diferenciálního testu děleného vzorku,
kde byla použita kalibrace pro suché období a validace byla aplikována na
vlhké období a naopak. Byly použity tři různé jednoúčelové funkce: KGE,
NSE, MAE. Algoritmus diferenciální evoluce byl použit jako optimalizační
algoritmus. Různé struktury byly porovnány na základě tří různých kritérií
dobré shody: KGE (účinnost Kling Gupta), NSE (účinnost Nash Sutcliffe),
MAE (střední absolutní chyba), které byly výsledkem použití gof (dobrá
shoda ) balíček v R. Výsledky byly velmi úspěšné při použití objektivní
funkce KGE, protože validace byly úspěšnější, když byla kalibrace provedena
ve vlhkém období. Byla provedena analýza různých podzemních a půdně-
vodních struktur, kde byly vybrány „nadřazené“ a „nadřazené“ struktury.

Klíčová slova: Hydrologické modelování, Diferenciální dělený vzorkový
test, KGE, NSE, MAE, CAMELS dataset, modelování srážek a odtoků, DE,
modelovací rámec
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CHAPTER 1
Introduction

The continuous movement of water on Earth and the atmosphere, commonly
known as the natural water cycle, is a complex system consisting of many different
processes. Climate change largely depends on the redistribution of solar energy
which is directly influenced by the movement of water in the atmosphere and
on land. Thus, understanding the movement of the water along with its many
different processes is fundamental for hydrological modeling.

A hydrological system is a system consisting of different components and
processes over a particular region, which are to be modeled by the modeler. The
region is commonly known as watershed/drainage basin/catchment, defined as an
area that contributes surface runoff to any point.

Hydrological modeling plays a central role in water resource management
through access to risks and impacts of hydrological phenomena (Beven, 2006),
where the model itself represents a simplified representation of a real world system
(Sorooshian et al., 2008). This study will be focusing on the performances of a
conceptual lumped rainfall-runoff model.

The main objective of this study is to extend and test an existing modular mod-
elling framework, dHRUM, which stands for Distributed Hydrological Response
Unit Model, used for description of water balance in small and midsize catchments.
In this thesis the modelling framework was used for testing conceptual lumped
rainfall-runoff models. This modelling framework was initially developed by the
Department of Water Resources and Environmental Modelling at the Faculty of
Environmental Sciences (Czech University of Life Sciences Prague).

The first objective of the thesis is the development and testing of seven
groundwater models defined by Stoelzle et al. (2015). The second objective of
this thesis is the development and testing of three soil water structures defined
in Knoben et al. (2019a). The third objective of the study is to use the different
model structures for testing the performance of the modelling framework, using

1



CHAPTER 1. INTRODUCTION 2

the CAMELS dataset. The fourth objective is to access the performances of the
modeling framework by using different objective functions, different goodness-of-fit
criteria, an optimization algorithm and the differential split sample test as defined
by Klemeš (1986).

More information can be found in the Objectives and Literature Review parts
of the thesis.



CHAPTER 2
Objectives

The main objective of this study is to extend and test an existing modular
modelling framework used for description of water balance in small and midsize
catchments. DHRUM (Distributed Hydrological response Unit Model) was used
for the purposes of this study. DHRUM is a modelling framework developed
by the Department of Water Resources and Environmental Modelling at the
Faculty of Environmental Sciences (Czech University of Life Sciences Prague).
The modelling framework was developed with R and Rcpp package, allowing an
integration between R and C++. The main objectives of this study are:

• Extend the already existing dHRUM modelling framework by adding seven
groundwater modules defined by Stoelzle et al. (2015)

• Extend the already existing dHRUM modelling framework by adding three
soil water modules defined by Knoben et al. (2019a)

• Comparison of different structures of dHRUM models using the CAMELS
dataset

• Use different techniques for the models comparison: differential split sample
test, objective functions, goodness-of-fit criteria, exploratory data analysis.

The first objective is the development of 7 groundwater models defined in Stoel-
zle et al. (2015). The following perceptual groundwater models were implemented:
Linear reservoir with leakage (LINLRES), Linear reservoir with a direct-by-pass
(LINBYRES), Two serial linear reservoirs (LIN2SE), Two parallel linear reservoirs
(LIN2PA), Non linear power law reservoirs (POWRES), Exponential reservoir
(EXPRES), Linear reservoir with threshold - controlled increased storage outflow
(FLEXRES).

3



CHAPTER 2. OBJECTIVES 4

Additionally, the linear reservoir (LINRES) was also included in the analysis
as the eight model which was already defined in the framework.

The second objective is the development of 3 soil water models defined
in Knoben et al. (2019a): Collie River Basin 2 (COLLIEV2), New Zealand
(NEWZEALAND), GR4J.

Additionally, the probability distributed model (PDM) was used as a fourth
modeling structure which was already defined in the framework.

The third objective of the study is to use the different model structures for
testing the performance of the different lumped models by using the dHRUM
modelling framework, using the CAMELS dataset, where only the nldas forcing
data was used (North American Land Data Assimilation System). This objective
is very closely connected to the fourth objective, where again the performance of
the model was being accessed by:

• applying the differential split sample test, where calibration was applied on
the dry period, validation was applied on the wet period, and vice versa

• applying three different single-objective functions: Kling Gupta Efficiency
(KGE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute Error (MAE)

• applying three different goodness-of-fit measures: Kling Gupta Efficiency
(KGE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute Error (MAE)

• applying optimization algorithm used for searching the optimal parameters
values by maximizing or minimizing the single objective functions using the
previously mentioned goodness-of-fit measures

• applying exploratory data analysis.



CHAPTER 3
Literature review

Hydrological modeling plays a central role in water resource management through
access to risks and impacts of hydrological phenomena (Beven, 2006).

A model is a simplified representation of a real world system (Sorooshian et al.,
2008). Hydrological models represent a complex hydrological system over a region.
There are different types of classification of hydrological models among which they
can be recognized as physical models, conceptual models and empirical models
(Devia et al., 2015). They are classified into many different groups depending on
different factors. This study will be focusing on the performances of a conceptual
lumped rainfall-runoff model.

Rainfall-runoff models have been generally used for research purposes. Rainfall-
runoff models main focus is gaining knowledge about the movement of water in
and out of the catchments (Beven, 2011). Conceptual rainfall-runoff models are
used for forecasts such as streamflow forecast.

A very common idea among hydrologists which is continuously discussed is
whether we should pursue an approach where “one model fits all” (Kavetski and
Fenicia, 2011). This idea was based on the assumption that hydrological processes
are the same everywhere (Perrin et al., 2003). So, the development of rainfall-
runoff models was born from the idea that rainfall-runoff models could be applied
to any catchment (Knoben et al., 2020). In contrast, Beven stands behind the idea
of “uniqueness of place” (Beven, 2000) and he states that we don’t have enough
information of the fundamental processes undergoing a catchment which makes
it unique. Given these two fundamentally different approaches to hydrological
modelling into consideration, choosing the model for representation of the natural
phenomena is the first critical step that each modeler has to make.

The Distributed Hydrological Response Unit Model (dHRUM) in this thesis
is used as a framework for testing 32 different conceptual lumped rainfall-runoff
models. The dHRUM model was at first inspired by the variable infiltration

5



CHAPTER 3. LITERATURE REVIEW 6

capacity water balance model, VIC, which was built under the assumption that in-
filtration capacity, runoff and evapotranspiration are dependent on the catchment’s
properties such as vegetation and soil (Wood et al., 1992).

Many conceptual rainfall-runoff models were being developed due to the reason
that these models are easy-to-use when it comes to runoff prediction in large-
scale regions with sufficient observed streamflow data used for calibrating the
model (Chiew, 2010). Our knowledge about how one model functions, had been
extended by many hydrologists who have taken an active research into large-scale
catchments (Addor et al., 2020; Coxon et al., 2019; Lane et al., 2019; Seiller et al.,
2012).

In this study, the existing dHRUM was extended with development of multiple
model structures, which contributed to creating a modeling framework for evaluat-
ing the performance of the model in large-scale catchments. This type of approach
for hydrological modeling was motivated by many existent modeling frameworks
that serve us as tools for comparing different modeling practices - “The diversity of
hydrologic modeling approaches motivates our effort to develop a unified modeling
framework to integrate and compare competing modeling approaches” - Clark
et al. (2015).

There have been many modeling frameworks developed for the same purposes
among which are the Structure for Unifying Multiple Modeling Alternatives
SUMMA (Clark et al., 2015), Framework for Understanding Structural Errors
FUSE (Saavedra et al., 2021), Modular Assessment of Rainfall–Runoff Models
Toolbox MARRMoT (Knoben et al., 2019a), SuperflexPy (Dal Molin et al., 2021),
Machine Learning Rainfall-Runoff Model Induction ML-RR-MI (Herath et al.,
2021) and many others with the ability to choose different model structures for
accessing the performance of the model.

Accessing the model performance by testing different model structures has
been used for gaining knowledge to better understanding of the drainage area
dynamics such as low-flows simulation, streamflow forecast, baseflow generation
etc. (Fenicia et al., 2006; Nicolle et al., 2014; Staudinger et al., 2011; Stoelzle
et al., 2015).

Many rainfall-runoff models were designed to represent the main hydrological
processes in a catchment thus each one of them holds a different aspect about
which are the main or dominant hydrological processes in a catchment, which
is directly connected to the level of uncertainty depending on the choice of the
model (Andréassian et al., 2009; Fenicia et al., 2008; Van Esse et al., 2013).

In this study, eight different groundwater storage structures were implemented
and four soil water storage structures. DHRUM holds in total six storage struc-
tures: groundwater, soil, surface, vegetation, snow and interception storage. This
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approach was inspired by Stoelzle et al. (2015) and his idea that developing
various reliable storage-discharge relationships is crucial for understanding the
underground processes of movement of water because it is directly connected to
accessing the availability of water and the responsiveness to future changes.

In hydrological modeling, the performance of the model is accessed by calibra-
tion on the parameters descriptors of the system behavior with the aim to estimate
the optimal model parameters in enabling the hydrological model to match the
observations. With the rise of the computers and the digital era, hydrologists
increasingly use automatic procedures for calibration. Different optimization
techniques were applied by hydrologists for parameter calibrations of the model
such as Genetic Algorithms (Duan et al., 1992; Liu et al., 2007), Particle Swarm
Optimization (Gill et al., 2006) etc. In this study, the DE (Differential Evolution)
algorithm was used. DE algorithm is a nature-inspired algorithm used for solving
global optimizations problems (Ardia et al., 2011).

Optimization algorithms are used for searching the optimal parameters values
by maximizing or minimizing the objective function using numerous goodness-of-fit
measures. Goodness-of-fit measures such as Kling-Gupta Efficiency (KGE) (Gupta
et al., 2009), Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970),
Mean Annual Error (MAE), Weighted Sum of Squared Residual (WSSR), Root
Mean Square Error (RMSE) are commonly used among modellers depending on
the single objective function’s purpose (Gupta et al., 2009; Knoben et al., 2019b;
Moriasi et al., 2015; Razavi and Tolson, 2013; Ritter and Munoz-Carpena, 2013).
In this study, KGE, NSE and MAE are used for the measure of fit of the dHRUM
model.

So, accessing the model performance has been done by hydrologists in numerous
ways among which (as we mentioned before) are building modelling frameworks for
testing different modelling structures and using different optimization algorithms
for the goodness-of-fit measures. Understanding the model’s weaknesses and
strengths is essential when building such models thus by using different conditions
and approaches to access the model’s performance lead us not only to better
understanding the model, but also to better understanding the catchment hydro-
logical characteristics (Knoben et al., 2020). So, in this study, for accessing the
model performance the differential split sample test is used (Klemeš, 1986). The
dataset was calibrated on the dry period in the given time-range, and validated
on the wet period and vice versa. For the purposes of this study, the CAMELS
dataset Newman et al. (2015) is used for calibrating and validating the model,
described in the study area section of this study.

Only by extending our knowledge on the weaknesses of our model we will be
able to build better models.



CHAPTER 4
Characteristics of study area

The analyzed time-series is the CAMELS (Catchment Attributes and MEteorology
for Large-sample Studies) dataset. The CAMELS dataset consists of 671 drainage
areas in the contiguous United States (CONUS) where human activities have
minimum impact (Newman et al., 2015). The drainage areas are represented by
the following sets of attributes: land cover, soil, climate, streamflow, topography
and geology. The large number of drainage areas which are evenly distributed,
together with its landscape descriptors make this dataset ‘a perfect’ dataset for
large-scale hydrological analysis.

The basin’s metadata contains information for the basin physical characteristics
such as: size of the basin, elevation, slope and forest fraction percentage, but
also gauge information such as: latitude, longitude and the area of the basin.
Elevations vary between 10 and 3,600 meters above sea level, while drainage
areas vary between 5 and 26,000 square kilometers. The data set has been
revised by Addor et al. (2017) with information on the basin’s attributes and their
interrelationships, based on the basin’s topographic characteristics.
Additionally three different forcing data are included in the CAMELS dataset:
Maurer, Nldas and Daymet. In this study, the Nldas forcing data was used (North
American Land Data Assimilation System), where information about the minimum
temperature, maximum temperature, precipitation, shortwave radiation, humidity,
and snow water equivalent is contained, starting from 01.01.1980 to 31.12.2014.
For the same time range, information for the daily discharges are contained in the
CAMELS dataset from USGS (The United States Geological Survey).

For the purposes of this study, only the temperature and precipitation were
used as inputs to the model. The temperature value was calculated as the mean
value between the minimum and maximum temperature of the selected day. The
daily discharge used for calibration was converted appropriately into millimeters
per day. During the data cleaning part, fifty one basins were excluded due to the

8
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Figure 4.1: Chosen basins from the CAMEL dataset

missing data for the daily discharge in a total of more than five years from the
thirty five years time range. For measuring the quality of the model’s performance,
calibration and validation were performed with the model using the differential
split sample test (Klemeš, 1986), where calibration was applied for the dry period,
and validation was applied for the wet period and vice versa. For calibrating
the model on the dry period, an algorithm for finding the ten consecutive years
with lowest precipitation was implemented, and accordingly the validation was
performed on the years remaining. For calibrating the model on the wet period,
an algorithm for finding the ten consecutive years with highest precipitation was
implemented, and accordingly the validation was performed on the remaining
years. It’s crucial to take into consideration that the time period on which the
calibration and validation were performed varies between different basins due to
missing data, but no more than five years, giving the model at least twenty five
years time range, and at most thirty years time range, from which calibration was
always performed on a 10 years consecutive periods.
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Figure 4.2: The area of the basins from CAMEL dataset

Figure 4.3: The runoff of the basins from the CAMELS dataset



CHAPTER 5
Methodology

In this section, each methodological step that was used for the purposes of the
study will be described in details accordingly. The first section contains the
description of the existing dHRUM model, along with all of its concepts described
in detail. The second section contains the description of the different water
balance structures which were implemented during this study. The third section
contains detailed information about the calibration and evaluation steps using
the CAMELS dataset, information about the basins that were chosen for this
study, and the differential split sample test approach. The fourth section contains
information about the three different objective functions used for the study. The
fifth section contains information about the implemented data analysis and the
wholesome assessment of the model.

5.1 Definition and description of dHRUM

As previously mentioned, for the purposes of this study the existing dHRUM
model was used. Even though dHRUM stands for Distributed Hydrological
Response Unit Model, this modelling framework can be used as a distributed,
semi-distributed or lumped version, depending on the choice of the modeler. In
this study, the lumped version was used. The distributed hydrological reponse
unit model consists of six main storages: groundwater storage, soil water storage,
surface retention storage, stem storage, snow storage and canopy storage. The
models takes only the precipitation and the temperature as inputs, and gives us
22 outputs which are described in Table 5.1

The model also has 27 parameter inputs for calibration which are described
in Table 5.2, of which 15 already existed in the original framework, and 12 more
were added for the purposes of this study.

11
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Table 5.1: Description of dHRUM outputs

OUTPUTS DEFINITION
1 Prec Precipitation
2 Snow Snow depth
3 PET Potential Evapotranspiration
4 AET Actual Evapotranspiration
5 Temp Temperature
6 SteF Stem flow
7 TroF Through fall
8 SteS Stem-storage
9 EvaC Canopy Evaporation
10 EvaS Stem-evaporation
11 EvbS Bare soil Evapotranspiration
12 CanF Canopy drainage
13 CanS Canopy storage
14 IntS Interception storage
15 GroS Groundwater storage
16 SoiS Soil storage
17 SurS Surface retention
18 TotR Total-runoff
19 DirR Direct Runoff
20 Basf Base-flow
21 Melt Melting
22 Perc Percolation

To get a better understanding of the structure of dHRUM, the following section
will contain explanation of the water balance equations in each of the six storages:
3 inerception storages (canopy, stem and snow storage) and 3 linear storages for
groundwater, soil and surface storage.

The dHRUM model follows the continuity equation for calculating the water
balance:

dS

dt
= Iin −Oout (5.1)

where:
dS

dt
is the change of state variable of particular accumulation space,

Iin is the sum of input fluxes, Oout is the sum of output fluxes, The equation is
dicretized on daily time step and solved using Euler method in each time-step. All
units are in mm. The equation is upplied for updating all state variables: Snow,
EvaC, SteS, SurS, SoiS, and GroS.

In the following section, different annotations are gonna be used for represent-
ing the state variables, each of them defined and described in details.

Potential Evapotranspiration
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Table 5.2: Description of dHRUM input parameters
INPUTS DEFINITION

1 B_SOIL Parameter controlling shape of Pareto distribution of soil storage [0.inf]
2 C_MAX Max storage of storages distributed by Pareto distribution [0,inf]
3 B_EVAP Parameter controlling soil evapotranspiration [0,inf]
4 SMAX Max soil storage calculate using Cmax and b_soil
5 KS Storage coefficient of groundwater storage [0,1]
6 KF Storage coefficient of runoff response reservoirs [0,1]
7 ADIV Divider of percolation into the direct runoff [0,1]
8 CDIV Divider of gross rainfall as a Canopy input [0,1]
9 SDIV Divider of gross rainfall as a Trunk input [0,1]
10 CAN_ST The Max canopy storage [0,inf]
11 STEM_ST The Max stem and trunk storage [0,inf]
12 CSDIV The divider of canopy outflow to throughflow and stemflow storage [0,1]
13 TETR The threshold temperature for determining snow [-inf,inf]
14 DDFA The day degree model for snow melt [o, inf]
15 TMEL The threshold temperature for determining melting process [-inf, inf]
16 RETCAP The maximum capacity of surface retention [0, inf]
17 L The amount of groundwater recharge removed from the linear reservoir [0,1]
18 D_BYPASS The amount of groundwater recharge removed from the linear reservoir [0,1]
19 B_EXP Power coefficient
20 KS2 Storage coefficient of groundwater storage [0,1]
21 THR Threshold coefficient for threshold-controlled linear storage [0,inf]
22 ALPHA Divider for two parallel linear reservoirs
23 CMIN For pdm soil reservoir [0,inf]
24 FC Field capacity [mm] [0,inf)
25 FOREST_FRACT Forest fraction [0,1]
26 KF2 Storage coefficient of runoff response reservoirs [0,1]
27 KF_NONLIN Runoff non-linearity parameter [-] [0,inf)

Before continuing to the water balance equations for each of the components, to
get a better understanding of the model we will put focus on the calculation of the
evapotranspiration in dHRUM. There are six methods for calculating the potential
evapotranspiration: Oudin, Hamon, Thornthwaite, Blaney-Criddle, Jensen-Haise
and McGuinnessBordne. For the purposes of this study, the Hamon potential
evapotranspiration was used.

The Hamon potential evapotranspiration equations is implemented into dHRUM
as:

PET = k(0.1651)(216.7)
N

12

es
T + 273.3

(5.2)

Description of Hamon PET formula:
PET - Potential Evapotranspiration [mm

day
]

k - Coefficient of proportionality [-]
es - Saturation vapor pressure [millibars] which is equal to 6.108e

17.27T
T+273.3

T - Monthly average temperature [◦C]
N - Length of daytime calculated in units of 12 hours which is equal to N = (24

π
)ω,

where ω - sunset hour angle [radians]

ω = cos−1[− tan(δ) tan(ϕ)]

where, ϕ - the latitude [radians], δ - the declination [radians]
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δ = 0.409 sin

(
2π

365

)
J − 1.39)

where, J is the Julian Day of the year.
A description of each of the storage dynamics of dHRUM will be described

through the following subsections.

Canopy storage
The canopy storage is described with the following water balance equation:

∆W = CDIV (P + Pm)− Ec −Rc (5.3)

where:
W - canopy intercepted water [mm],
Ec - evaporation from canopy layer [mm],
Rc - the overflow from canopy,
CDIV - divider of gross rainfall as a canopy input,
Pm - snow melt [mm],
P - precipitation [mm].

Maximum evaporation from the canopy is produced when there is intercepted
water, thus the maximum canopy evaporation Ec is calculated with:

Ec =

(
Wi

Wim

) 2
3

(5.4)

where Wim = CANST which is the maximum canopy storage defined within
the interval [0,inf] [mm], and the power of 2

3
is described by Deardorff (1978).

The canopy overflow is calculated as:

OFcan = CANS[i]− CANST (5.5)

where CANS - the canopy storage, CANST - the max canopy storage
Furthermore:

CanOut =

(
Wi

Wim

)
∗ Ec (5.6)

so the total flow from canopy is the sum of CanOut and OFcan.

Stem storage
The stem storage is described with the following water balance equation:

∆W = s(P + Pm) + (1− c) ∗Rc − Es −Rs (5.7)
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where:
W - stem intercepted water, [mm]

s - the divider of gross rainfall as a trunk input,
P - precipitation [mm],
Pm - snow melt [mm],
c - divider of gross rainfall as a Canopy input,
Rs - overflow from stem [mm],
Rc - overflow from canopy [mm],
Es - evaporation from the stem layer [mm].

The maximum stem evaporation (Es, mm) from each vegetation tile is calcu-
lated using the following formulation:

Es =

(
Wi

Wim

) 2
3

(5.8)

where Wim = STEMST is the maximum stem storage defined within the
interval [0,inf] in [mm], and the power of 2

3
is described by Deardorff (1978).

The stem overflow is calculated as:

StemOut =

(
Wi

Wim

)
∗ Es (5.9)

OFstem = StemS[i]− STEMST (5.10)

where StemS is stem storage and STEMST is the maximum stem storage.
Then the total flow from the stem storage is the sum of StemOut and OFstem.
Now, we get the total througflow from canopy and stem reservoirs in the following
form:

TROF = cRc +Rs (5.11)

Snow storage
The snow storage is described with the following water balance equation:

∆S = P −R (5.12)

where:
∆S - the change in snow storage,
P - the precipitation as snow,
R - the snow melt calculated as:

MELT = DDFA ∗ (TEMP − TMEL) (5.13)
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where DDFA represents the day degree model for snow melt, TEMP is the tem-
perature at time t, TMEL is the threshold temperature for determining melting
processes.

Surface retention storage
The surface storage is described with the following water balance equation:

∆S = (1− CDIV − SDIV )(P + Pm) + TROF − Es −R (5.14)

where:
∆S is the change of the surface storage, CDIV is the divider of gross rainfall as a
canopy input within interval [0,1], SDIV is the divider of gross rainfall as a trunk
input within the interval [0,1], P is the precipitation, P_m is the precipitation
as snow melt, E_s is the evaporation from the surface, TROF is the through
fall surface retention and R is the runoff. All units are calculated in [mm]. The
actual evaporation is represented by the following equation:

AET =

(
Wi

RETCAP

)
∗ PET (5.15)

where: Wi is the surface storage, RETCAP is the maximum capacity of surface
retention which is withing the interval [0, inf], PET is the potential evapotranspri-
taion calculated from Hamon method.

Soil water storage 1
The soil water storage is described with the following water balance equation:

∆S = P − Es −R (5.16)

where P - effective precipitation calculated from the surface storage, Es - evapo-
ration from the bare soil, R is the total overflow from the soil reservoir which is
also referred to as percolation.

C = Cmax ∗
(

1−
(

1− S1(t)

Smax

) 1
B_EV AP+1

)
(5.17)

Smax =
Cmax
b+ 1

(5.18)

where Cmax - the maximum storage capacity of the catchment, b - a dimensionless
parameter, BEV AP - parameter controlling soil evapotranspiration. So, the
overflow from soil storage is calculated as:

OF1 = (C + PREF − Cmax) (5.19)
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where C - critical storage capacity, PREF - effective precipitation which is
calculated from the surface reservoir, Cmax - the maximum storage capacity of
the catchment.

Furthermore, the infiltration is calculated as:

Infiltration = PREF −OF1 (5.20)

The soil water depth is a sum of the Infiltration and C. The soil buffer can be
represented by the following formula (not affected by evapotranspiration)

SOIS = Smax ∗
(

1−
(

1− C

Cmax

)(Bsoil+1))
(5.21)

where Bsoil - a parameter controlling shape of Pareto distribution of soil storage
within the interval [0,inf], C - the soil water depth, Cmax - the maximum storage
capacity, Smax - the maximum soil storage calculated using Cmax and Bsoil. The
overflow can be calculated with the following equation:

OF2 = Infiltration− SOIS + SOIS(0) (5.22)

The evaporation from the bare soil is calculated with the following equation:

Ebs =

(
1−

(
Smax− SOIS

Smax

)Bevap
)
∗ PET (5.23)

where Smax is the maximum soil storage. Now, the critical storage capacity C*(t)
can be calculated as the perculation (total overflow)

PERC = OF1 +OF2 (5.24)

This soil water storage is defined as PDM which stands for Probability Distributed
Model.

Groundwater storage 1
The groundwater storage is described with the following water balance equation:

∆S = (1− ADIV )Perc−R (5.25)

where:
∆S - the change in the groundwater storage,
Perc is the percolation from the groundwater reservoir,
R - the runoff as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input. This
groundwater storage is defined as LINRES which stands for linear reservoir.
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5.2 Definition and description of the extended

water-balance structures for groundwater

and soil water storages in dHRUM

In the following section, the three additional soil water structures and the seven
groundwater structures for describing the water balance will be described in details.

Groundwater storage 2: Linear reservoir with leakage (LINLRES)
The linear reservoir with leakage is described with the following water balance
equation:

∆S = L+ (1− ADIV )Perc−R (5.26)

where
R = S ∗KS (5.27)

where:
∆S - the change in the groundwater storage,
S - the current storage,
L - the leakage coefficient describing the amount of groundwater recharge removed
from the linear reservoir in the interval [0,1],
Perc - the percolation from the groundwater reservoir,
R - the runoff as a base flow, ADIV - divider of percolation into the direct runoff
and groundwater input,
KS - storage coefficient of groundwater storage.

Groundwater storage 3: Linear reservoir with a direct-by-pass (LIN-
BYRES)
The linear reservoir with a direct-by-pass is described with the following water
balance equation:

∆S = (1−D_BY PASS) ∗ (1− ADIV )Perc−R (5.28)

where
R = S ∗KS +D_BY PASS(1− ADIV )Perc (5.29)

where:
∆S - the change in the groundwater storage,
S - the current storage,
D_BY PASS - the amount of groundwater recharge removed from the linear
reservoir in the interval [0,1],
Perc - the percolation from the groundwater reservoir,
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R - the runoff as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input, KS
- storage coefficient of groundwater storage.

Groundwater storage 4: Two serial linear reservoirs (LIN2SE)
The two serial linear reservoirs are described with the following water balance
equation:

∆S1 = (1− ADIV )Perc−R1 (5.30)

∆S2 = R1 −R2 (5.31)

where
R1 = KsS1 (5.32)

R2 = Ks2S2, for Ks2 < Ks (5.33)

where:
∆S1 - the change in the first serial linear reservoir,
∆S2 - the change in the second serial linear reservoir,
S1, S2 - the current storage in the first and second reservoir respectively,
Perc - the percolation from both serial linear groundwater reservoirs,
R1 - the runoff from the first serial linear reservoir as a base flow,
R2 - the runoff from the second serial linear reservoir as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input,
Ks - storage coefficient of groundwater storage in the first serial linear reservoir
defined within the interval [0,1],
Ks2 - storage coefficient of groundwater storage in the second serial linear reservoir
defined within the interval [0,1]

Groundwater storage 5: Two parallel linear reservoirs (LIN2PA)
The two parallel linear reservoirs are described with the following water balance
equation:

∆S1 = (1− ADIV ) ∗ ALPHA ∗ Perc−R1 (5.34)

∆S2 = (1− ADIV ) ∗ (1− ALPHA) ∗ Perc−R2 (5.35)

where,

R1 = S1 ∗KS (5.36)
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R2 = S2 ∗KS2 (5.37)

R = R1 +R2 (5.38)

where:
∆S1 - the change in the first parallel linear reservoir,
∆S2 - the change in the second parallel linear reservoir,
S1, S2 - the current storage in the first and second reservoir respectively,
Perc - the percolation from both parallel linear groundwater reservoirs,
R1 - the runoff from the first parallel linear reservoir as a base flow,
R2 - the runoff from the second parallel linear reservoir as a base flow,
R - the total runoff from the groundwater reservoir,
ADIV - divider of percolation into the direct runoff and groundwater input,
KS - storage coefficient of groundwater storage in the first parallel linear reservoir
defined within the interval [0,1],
KS2 - storage coefficient of groundwater storage in the second parallel linear
reservoir defined within the interval [0,1],
ALPHA - the divider for two parallel linear reservoirs.

Groundwater storage 6: Non linear power law reservoir (POWRES)
The non linear power law reservoir is described with the following water balance
equation:

∆S = (1− ADIV ) ∗ Perc−R (5.39)

R = SB_EXP ∗KS (5.40)

where
1

3
< B_EXP < 1 (5.41)

where:
∆S - the change in the groundwater storage,
S - the current storage,
B_EXP - the power cofficient,
Perc - the percolation from the groundwater reservoir,
R - the runoff as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input,
KS - storage coefficient of groundwater storage.
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Groundwater storage 7: Exponential reservoir (EXPRES)
The exponential reservoir is described with the following water balance equation:

∆S = (1− ADIV ) ∗ Perc−R (5.42)

R = KS ∗ e
S

B_EXP (5.43)

where
B_EXP 6= 0

where:
∆S - the change in the groundwater storage,
S - the current storage,
B_EXP - the power cofficient,
Perc - the percolation from the groundwater reservoir,
R - the runoff as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input,
KS - storage coefficient of groundwater storage.

Groundwater storage 8: Linear reservoir with threshold controlled
increased storage outflow (FLEXRES)
The FLEX reservoir is described with the following water balance equation:

∆S = (1− ADIV ) ∗ Perc−R (5.44)

R =


KsS, for THR > S

Ks2 ∗ (S − THR) +KsS for THR ≤ S,

(5.45)

where:
∆S - the change in the groundwater storage,
S - the current groundwater storage,
THR - the threshold cofficient within an interval [0,inf],
Perc - the percolation from the groundwater reservoir,
R - the runoff as a base flow,
ADIV - divider of percolation into the direct runoff and groundwater input,
Ks, Ks2 - storage coefficients of groundwater storage.

Soil water storage 2: Collie River Basin 2 (COLLIEV2)
This soil storage reservoir, known as Collie River Basin version 2, describes the
bare soil evaporation and the vegetation evaporation. In our implementation,



CHAPTER 5. METHODOLOGY 22

they are distinct, but their sum is counted as the total evaporation. Also, in this
model the total runoff is the sum of subsurface runoff, and the saturation excess
from the surface runoff. The soil storage of type COLLIEV2 is represented by the
following water balance equation:

∆S = P − Eb − Ev −Rse −Rss (5.46)

where
Eb =

S

SMAX
∗ (1− FOREST_FRACT ) ∗ PET (5.47)

Ev =

FOREST_FRACT ∗ PET, if S > FC

S
FC
∗ FOREST_FRACT ∗ PET, otherwise

(5.48)

Rse =

P, if S > SMAX

0, otherwise
(5.49)

Rss =

KF ∗ (S − FC), if S > FC

0, otherwise
(5.50)

where: ∆S - the change of soil storage,
P - effective precipitation,
Eb - evaporation from bare soil,
Ev - evaporation from vegetation,
Rse - saturation excess surface flow,
Rss - subsurface runoff,
S - current soil storage,
SMAX - maximum soil storage,
FOREST_FRACT - forest fraction defined within the interval [0,1],
FC - field capaity in mm within the interval [0,inf),
KF - storage coefficient of runoff response reservoir within the interval [0,1].

Soil water storage 3: New Zealand (NEWZEALAND)
This soil storage reservoir, known as New Zealand version 1, describes the bare
soil evaporation and the vegetation evaporation. In our implementation, they are
distinct, but their sum is counted as the total evaporation. Also, in this model the
total runoff is the sum of subsurface runoff when soil moisture exceeds the field
capacity, the saturation excess from the surface flow and the baseflow. The soil
storage of type NEW_ZEALAND is represented by the following water balance
equation:

∆S = P − Eb − Ev −Rse −Rss −Rbf
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where
Ebs =

S

SMAX
∗ (1− FORESTFRACT ) ∗ PET (5.51)

Ev =

FOREST_FRACT ∗ PET, if S > FC

S
FC
∗ FOREST_FRACT ∗ PET, otherwise

(5.52)

Rse =

P, if S ≥ SMAX

0, otherwise
(5.53)

Rss =

(KF ∗ (S − FC))KF_NONLIN , if S ≥ FC

0, otherwise
(5.54)

Rbf = KF2 ∗ S (5.55)

where:
∆S - the change of soil storage,
P - effective precipitation,
Eb - evaporation from bare soil,
Ev - evaporation from vegetation,
Rse - saturation excess surface flow,
Rss - subsurface runoff,
Rbf - baseflow,
S - current soil storage,
SMAX - maximum soil storage,
FOREST_FRACT - forest fraction defined within the interval [0,1],
FC - field capaity in mm within the interval [0,inf),
KF - storage coefficient of runoff response reservoir within the interval [0,1].
KF_NONLIN - runoff non-linearity parameter [-] within the interval [0,inf),
KF2 - storage coefficient of runoff response within [0,1]

Soil water storage 4: a daily four-parameter rainfall-runoff model
(GR4J)
This soil storage reservoir, known as GR4J, has two stores with four parameters.
The reservoir works with an explicit time-step. The following equations are used for
its implementation. The original model in Knoben et al. (2019a) have implemented
equations from Santos et al. (2018) but have used the original unit hydrograph by
Perrin et al. (2003). Here, we only use one store with one parameter, representing
only the soil reservoir of the model.
The soil storage of type GR4J is represented by the following water balance
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equation:

∆S = Ps − Es − Perc (5.56)

where

Ps = Pn

(
1−

(
S

SMAX

)2)
(5.57)

where

Pn =

P − PET, if P ≥ PET

0, otherwise
(5.58)

Es = En

(
2

S

SMAX
−
(

S

SMAX

)2)
(5.59)

where

En =

PET − P, if PET > P

0, otherwise
(5.60)

Perc =
SMAX−4

4
En ∗

(
4

9

)−4
S5 (5.61)

where:
∆S - the change of soil storage,
Ps - fraction of Pn, the net precipitation, diverted to soil moisture,
Es - the fraction of En, the net evaporation, taken away from the soil moisture,
Perc - percolation,
S - current soil storage,
SMAX - maximum soil storage,
PET - potential evapotranspiration,
P - effective precipitation.

It is very important to note that during the calculation of evaporation and
runoff in each time step, for each of the groundwater and soil water reservoir, a
water balance equation was implemented. The water balance equation is a simple
equation where we make sure that we are updating the storage correctly whenever
we have different types of evaporations (vegetation or bare soil), or different types
of runoff (surface, subsurface, baseflow), making sure our storage never becomes
negative. If the amount of bare soil evaporation and vegetation evaporation are
smaller than the current available storage, then we subtract them first, and then
we proceed with calculating whether the subsurface, surface runoff and baseflow
are smaller than the current available storage, and if they are, they are subtracted
respectively from the current storage.
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5.3 Usage of the differential split sample test

For accessing and testing the performance of the dHRUM modelling framework,
the CAMELS dataset was used. As prevoously described in the study area section,
only 620 out of 671 basins were included for the study, and the nldas forcing
data was used. The decision to exclude 51 basins lies on the fact that many of
the basins has missing or incomplete data. After the whole dataset was read in
R, both the forcing data and the observations, a data analysis was performed
for each of the basins during the time period between 01.01.1980 and 31.12.2014.
While processing the data for each basin and each year, additional columns were
added to a new table indicating: a negative discharge, a discharge with an NA
value, missing dates (in such a way that the forcing data dates could not overlap
with the dates of the observations). After processing this information, the results
were summarized indicating the basins where there were more than 5 years of
incomplete data. It was noticeable that for the year 2014, 411 out of 671 basins
had missing data, so this year was excluded for all basins. Then, 51 basins in
total had incomplete data for more than 4 years, so those basins were excluded
from the study. The basins that were used for this study have no more than 4
years of missing data, which left us with at least 25 years and at most 30 years
for calibration and validation, of which always the calibration was applied on a 10
year consecutive period, and the validation on the remaining years.

The differential split sample test was used as described in the literature review
for choosing the data for calibration and the data for validation. A simple
alghorithm was implemented to find the 10 consecutive years of each of the
basins where the average annual precipitation was the lowest from all possible 10
consecutive years period given. Those data were used for calibrating the model
on the dry period. The same alghorithm was used for finding the 10 consecutive
years period for each of the basins where the annual average precipitation was the
highest, and those data were used for calibrating the model on the wet period.

In conclusion, this whole study is performed separately on the data where the
calibration was done for the dry period and on the data where the calibration was
done on the wet period. By using this differential split sample test for calibration
on dry and on wet period, we want to access the difference of the performance of
the model depending on this factor. More information about the calibration and
validation can be found in the next secion.
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5.4 Calibration and validation of the model

In this study, 32 model structures were used for streamflow simulations for
calibrating and evaluating the performances dHRUM. The study was done on
620 basins from the CAMELS dataset. The calibration was performed on a 10
year consecutive period for each of the 620 basins from the CAMELS dataset
where the warming period was set to be the first year of each of the periods. The
validation was performed on the remaining years as explained in the previous
section and in the study area section. Three single-objective functions were used:
KGE (Kling-Gupta Efficiency), NSE (Nash-Sutcliffe Efficiency) and MAE (Mean
Absolute Error). Three goodness-of-fit criteria values were produced using the
gof(goodness of fit) R library which is a function that returns a goodness-of-fit
measures between the simulations and the observations, of which three values were
chosen as such: KGE, NSE, MAE. In this section, the three objective functions
will be furtherly described.

The goodness-of-fit of a parameter set depends on the different objective
functions chosen when calibrating the model. This means that a parameter set
can be a bad fit for the same objective function which can be a good fit for another
parameter set, and vice versa.

Kling-Gupta efficiency (KGE)
The Kling-Gupta efficiency (KGE) was developed by Gupta et al. (2009). KGE is
an objective function which in a balanced way combines three components of NSE
of model errors more specifically the following three: bias, correlation, coefficients
of variation. Those are correlation, bias, the ratio of variances). This objective
function has become very popular among hydrologists through the years. It is
represented by the following formula:

KGE = 1− EDs

EDs =
√

(s1(r − 1))2 + (s2(vr − 1))2 + (s3(β − 1))2)

β = us/uo

α = σs/σo

where:
EDs - Euclidean distance in scaled space
r - the Pearson product-moment correlation coefficient
β - the ratio between the means of the simulated values and observed values
vr - variability ratio
α - ratio between the standard deviations of the simulated and observed values
γ - ratio between the coefficient of variations of simulated and observed values.
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KGE values that are greater than -0.41 mean that the model is improving over
the average flow reference value, even if it is negative Knoben et al. (2019b).

Nash-Sutcliffe efficiency (NSE)
Nash-Sutcliff efficiency (NSE) is a normalized statistic that calculates magnitude
residual variance versus variance of measured data Nash and Sutcliffe (1970) Also
an indicator for show how well the observed versus simulated data fit. While NSE
= 1, it corresponds to a model that perfectly corresponds to the observed data,
NSE = 0, corresponds to the predictions of the model as accurate as the average
values of the observed data. To calibrate the NSE minimization model to 0 is
used as the main fitness function for calibration, which is formulated below.

Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that calculates the
magnitude of the residual variance versus the variance of the measured data Nash
and Sutcliffe (1970), and it is also an indicator of how well the observations fit
the simulations. When NSE = 1, it means that the observations perfectlt fit the
simulations, while when NSE = 0 means that the predictions of the model are
accurate as the mean value of the observed data.

NSE = 1−
∑M

n=1(obs− sim)2∑M
n=1(obs−mean(obs))2

where:
M - number of observation,
obs - observed values
sim - simulated values

Mean Absolute Error (MAE)
The mean absolute error (MAE) calculates the average absolute value of residual
errors between the simulated and the observed flows. The closer it is to 0, the
better it is.

MAE(θ) =
1

N

N∑
k=1

|yk − y′k(θ)|

where:
yk - the observed flow at time k
y′k(θ) - the flow at time k estimated with the set of parameters θ
N - the number of time steps in the event.

MAE takes into account the accuracy of the simulations at for low flows
Mediero et al. (2011).
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5.5 Optimization Algorithm

The Differential Evolution algorithm was used in this study as an optimization
algorithm for minimization of the objective functions. This algorithm is introduced
by Storn and Price (1997). The Differential Evolution algorithm consists of three
steps:

• 1. create a population of N in an m-dimensional space, randomly distributed.

• 2. replace the current population with a better fit new population

• 3. repeat step 2 until satisfactory results are obtained.

This algorithm had been explored and used my many as an algorithm for solving
global optimization problems Ardia et al. (2011). The Differential Evolution
algorithm (DE) in this study was used as a pre-build package in R Mullen et al.
(2011). The optimization algorithms purpose is to find the best model parameter
values based on minimizing or maximizing the objective function. In this study
minimizing objective functions are measured.



CHAPTER 6
Results and Discussion

In this study, exploratory data analysis was performed. The aim of the exploratory
data analysis was to try to understand the results in order to be able to describe
the strengths and weaknesses of the models and propose next steps. The results
from the three goodness-of-fit criteria generated with the gof package both for
calibration and validation are represented in the following 6 rows: calib_KGE,
valid_KGE, calib_NSE, valid_NSE, calib_MAE, valid_MAE.

6.1 Calibration on dry period, validation on wet

period

The first step that needed to be done was to find the incomplete or noisy data, so the
number of occurences of NA values were accessed for each of the resulting columns.
After the resulting dataset from the calibration done on the dry period was
processed in R and the is.na() function was applied to each column separately, NA
values were noticed in the calib_KGE and valid_KGE columns. For calib_KGE
there were 40 NA values out of 59520 values in total, and valid_KGE there were
35 NA values out of 59520 values in total. These values can be removed because
they only represent 0,0013% of the dataset in the worst case scenario (if 75 rows
in total were to be removed). After removing the NA values, the resulting dataset
was left with 59446 records.

Next step was to understand the minimum and maximum values of each of
the goodness-of-fit criteria. The decision behind this step was to understand the
extreme high and low values that the model had produced, and where exactly it
produced them.

It was observed that the maximum values for KGE and NSE both for calibration
and validation were < 1, which means that there were no extreme high values

29
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Figure 6.1: Overview of the results

Table 6.1: Min and max values from results on dry period

min max
calibKGE -17.09 0.88
validKGE -7.84 0.84
calibNSE -347.41 0.84
validNSE -6.12e+129 0.71
calibMAE 0.01 10.19
validMAE 0.01 3.45e+62

here. On the other hand, extreme low values exist, especially for NSE. In contrary,
MAE has 0.01 as the minimum value, but very high maximum values.

To get a better overview of the distribution of each of these results, it has to
be considered the total number of resulting records which is 59446. If these values
were to be plotted, the distribution of the data would be distorted, so in order
to be able to better understand the distribution of the data, the log() function
was used. After using the log() function, almost half of the data was removed
due to ’non-finite values’. So, it can be concluded that plotting the individual
distributions of the results in a form of a histogram is not a very elegant solution
while having so many values and outliers. The boxplot function could be used for
visualizing the differences between the samples, the ranges, the medians and the
outliers. In order to be able to proceed with the analysis, the boxplot() function
was be used for better understanding of the results, thus setting the direction of
the further analysis.
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Figure 6.2: Boxplot results from goodness-of-fit values when calibration is done
on dry period

The plotted outliers in Figure 6.2 in the case of KGE and NSE goodness-of-fit
criteria are negative values. The outliers for calibration and validation from MAE
goodness-of-fit criteria are positive values. There are 1265 outliers from the results
from calibration on dry period produced from KGE as a goodness-of-fit criteria,
5171 outliers from the calibration done on the dry period produced from NSE as
a goodness-of-fit criteria, and 4485 outliers from the calibration done on the dry
period produced from MAE as a goodness-of-fit criteria, when using the boxplot()
function for indicating the outliers. Even though this is a very small percentage
of the resulting dataset, these ourliers contain important information about the
model, so they will not be ommited from the analysis, but will be extracted later
in order to gain some insights about when and where they occur.

Next step was to individually examine the results from the three different
objective functions: KGE, NSE, MAE, where for each of them the model produced
three goodness-of-fit criteria both for calibration and validation.

The KGE values in this study are considered as ’acceptable’ values if they
are within the ranges -0.41 to 1. There are many discussion about which values
are considered as good values for KGE, in this study -0.41 is taken as a good
value because it means that the model is better or improves upon the mean flow
benchmark. The NSE values in this study are considered as acceptable values if
they are within the ranges 0 to 1, where if they are smaller than 0.5 than they are
considered as unsatisfactory values, if they are between 0.5 and 0.7 then they are
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considered as satisfactory values, while the values between 0.7 and 1 are considered
as good values. For MAE, the values which are considered as acceptable are values
between 0 and 1, but what is important here to mention is that the values that
are considered as good values that the model produced in this study don’t have a
fix range. Instead, for each of the basins, the MAE threshold is calculated from
the observables taken as a quantile function with 0.2 quantile, and accordingly to
each basin a different threshold value was assigned.
The exact amount of data which is within these acceptible values is still unknown,
so the next step of the analysis was to see how much of the resulting data is within
the acceptible range, to try and find a connection between the different structures
tested with dHRUM depending on the previous conditions.

For KGE goodness-of-fit criteria, there are 56485 values out of all resulting
values that are within the acceptible range. Respectively, for NSE there are 31252
which is almost 60% of the data within 0 and 1, and for MAE there are 1082
values whose MAE goodness-of-fit value was approximating the mae threshold for
each basin at most for 0.5 and at least 0, the acceptible range, where 0 indicated
the perfect fit. Now, a further analysis can be done on each of the calibrations
separately for each objective function in order to try to better understand the
results.

Summary of results (calibration on dry period)

In Figure 6.3 the results are grouped by their objective function and goodness-
of-fit criteria, summarized by the median. When KGE is used as an objective
function, best goodness-of-fit results are produced for KGE both for calibration
and validation. However, NSE and MAE also produce satisfactory goodness-of-fit
values when used KGE as an objectve function. When NSE is used as an objective
function, results are better with NSE goodness-of-fit criteria, but also with KGE
goodness-of-fit criteria. However, these results are not satisfactory since a good
NSE value is considered above 0.5. When using the MAE as an objective function,
the results are also not satisfactory, because the expected median threshold should
be around 0.2, and the values produced here are above 0.5. A lot of outliers can
be noticed for validation done with NSE objective function, and validation done
with MAE objective function. The summary of the results from the calibration
done on dry period can be found in Table 6.2

Next step was to examine the influence from the different groundwater and soil
water structures used in the study. The results were grouped by the groundwater
storage, soil water storage and the used objective function, summarized by their
median value. There are 96 result rows in total (3 objective functions, 4 soil
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Figure 6.3: Boxplot results from dry period

Table 6.2: Summary of results (median) for calibration done on dry period

obj calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
kge 0.21 0.17 -0.16 -0.13 0.86 1.06
nse 0.04 0.03 0.06 -0.01 0.73 0.88
mae -0.01 -0.02 0.01 0.0 0.7 0.84

water structures and 8 groundwater structures). The results done with KGE
objective function are most satisfactory out of all three objective functions. Most
dominant groundwater structures from the results with the KGE goodness-of-fit
criteria (Table 6.3) which are satisfactory include the FLEXRES, LINRES and
LINBYRES, while for soil are PDM, COLLIEV2 and NEWZEALAND. When
KGE is used as an objective function, the NSE and MAE goodness-of-fit criteria
values are not satisfactory.

From Table 6.4 and Table 6.5 it can be concluded, that the results are not
satisfactory enough neither when NSE is used as an objective function, nor when
MAE is used as an objective function. From 6.1 it is obvious that the model
produced satisfactory results both for NSE and for MAE. The reason why this
grouping is not showing good results for NSE and MAE is because of the many
outliers that exist there as seen from Figure 6.3. Also, some other external factors
may influence this, for an example the basin’s physical characteristics. In order
to better understand the results, they are plotted on a map, the goodness-of-fit
results from the calibration for each of the objective functions (Figure 6.4). The
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Table 6.3: Calibration done on dry period with KGE, grouped by different storages,
summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
EXPRES COLLIEV2 0.210 0.090 -0.295 -0.605 0.935 1.240
EXPRES GR4J 0.080 -0.300 -0.310 -1.915 0.845 1.240
EXPRES NEWZEALAND 0.200 -0.065 -0.285 -1.230 0.900 1.620
EXPRES PDM 0.195 0.030 -0.170 -0.970 0.810 1.100
FLEXRES COLLIEV2 0.340 0.280 -0.225 -0.255 0.900 1.090
FLEXRES GR4J 0.280 0.230 -0.190 -0.210 0.855 1.060
FLEXRES NEWZEALAND 0.320 0.240 -0.270 -0.360 0.870 1.065
FLEXRES PDM 0.390 0.350 0.025 -0.040 0.780 0.945
LIN2PA COLLIEV2 0.200 0.160 -0.130 -0.120 0.920 1.060
LIN2PA GR4J 0.080 0.060 -0.160 -0.130 0.845 1.015
LIN2PA NEWZEALAND 0.230 0.180 -0.270 -0.290 0.910 1.080
LIN2PA PDM 0.170 0.160 -0.010 0.000 0.835 0.960
LIN2SE COLLIEV2 0.200 0.170 -0.140 -0.120 0.920 1.090
LIN2SE GR4J 0.070 0.050 -0.160 -0.140 0.860 1.000
LIN2SE NEWZEALAND 0.230 0.180 -0.300 -0.300 0.915 1.090
LIN2SE PDM 0.170 0.170 0.005 0.000 0.830 0.980
LINBYRES COLLIEV2 0.280 0.240 -0.070 -0.080 0.880 1.040
LINBYRES GR4J 0.150 0.130 -0.100 -0.090 0.810 0.980
LINBYRES NEWZEALAND 0.320 0.270 -0.100 -0.140 0.870 1.040
LINBYRES PDM 0.290 0.290 0.125 0.130 0.785 0.920
LINLRES COLLIEV2 0.220 0.180 -0.160 -0.150 0.945 1.090
LINLRES GR4J 0.100 0.080 -0.170 -0.160 0.860 1.010
LINLRES NEWZEALAND 0.250 0.185 -0.290 -0.330 0.920 1.100
LINLRES PDM 0.215 0.200 -0.010 -0.010 0.830 0.990
LINRES COLLIEV2 0.310 0.260 -0.110 -0.115 0.895 1.070
LINRES GR4J 0.190 0.160 -0.120 -0.110 0.860 1.000
LINRES NEWZEALAND 0.300 0.240 -0.190 -0.230 0.850 1.090
LINRES PDM 0.320 0.290 0.030 0.010 0.820 0.970
POWRES COLLIEV2 0.200 0.170 -0.130 -0.100 0.920 1.070
POWRES GR4J 0.080 0.060 -0.170 -0.130 0.845 0.970
POWRES NEWZEALAND 0.240 0.180 -0.280 -0.290 0.910 1.095
POWRES PDM 0.180 0.175 -0.020 -0.010 0.830 0.980

MAE goodness-of-fit values were calculated depending on each basin’s threshold
value, the MAE values was substituted from the threshold value for each basin,
so a value which is closer to 0 but positive indicates that the value is not bigger
than the threshold value and the closer it is to 0, the better the result. As seen
from the map, such values are colored with a purple color, in the up right corner.
The NSE values which are considered as satisfactory, are also colored with purple
and pink color, very close to the border on the bottom right. In order to find the
structures which dominate when the model performs good (but also when the
model is not satisfactory enough), the appropriate ranges will be applied and the
values within those ranges will be extracted from the results, in a way that the
’winning’ and the ’bad’ structures shall be discussed.

For NSE we consider values to be satisfactory if they are bigger than 0.5. This
will be applied only to the calibration period for the sake of simplicity since the
calibration and the validation within the appropriate objective functions are very
similar. The total number of NSE values which satisfy the condition >= 0.5
are 1475 in total. The number of occurences for the objective functions are the
following: NSE goodness-of-fit value with 611 values, KGE wth 345 and MAE
with 519. The dominant groundwater structures are: LINBYRES with 335 values,
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Table 6.4: Calibration done on dry period with NSE, grouped by different storages,
summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
EXPRES COLLIEV2 -0.010 -0.130 0.000 -0.190 0.795 1.230
EXPRES GR4J -0.070 -0.190 0.000 -0.260 0.760 1.080
EXPRES NEWZEALAND 0.030 -0.415 0.030 -0.560 0.755 1.955
EXPRES PDM 0.070 -0.015 0.070 -0.060 0.710 0.940
FLEXRES COLLIEV2 0.170 0.150 0.060 0.020 0.740 0.915
FLEXRES GR4J 0.080 0.090 0.060 0.020 0.700 0.870
FLEXRES NEWZEALAND 0.160 0.125 0.050 -0.050 0.750 0.945
FLEXRES PDM 0.240 0.250 0.175 0.120 0.650 0.795
LIN2PA COLLIEV2 0.020 -0.010 0.040 0.010 0.770 0.920
LIN2PA GR4J -0.060 -0.070 0.010 -0.010 0.770 0.910
LIN2PA NEWZEALAND 0.040 0.010 0.050 -0.010 0.740 0.880
LIN2PA PDM 0.030 0.040 0.080 0.060 0.735 0.865
LIN2SE COLLIEV2 0.015 -0.010 0.030 0.010 0.780 0.900
LIN2SE GR4J -0.040 -0.055 0.010 -0.010 0.755 0.890
LIN2SE NEWZEALAND 0.030 0.010 0.060 -0.010 0.720 0.885
LIN2SE PDM 0.060 0.050 0.090 0.060 0.730 0.870
LINBYRES COLLIEV2 0.130 0.115 0.120 0.070 0.720 0.860
LINBYRES GR4J 0.030 0.040 0.070 0.030 0.720 0.860
LINBYRES NEWZEALAND 0.150 0.130 0.115 0.040 0.700 0.850
LINBYRES PDM 0.180 0.180 0.250 0.230 0.695 0.815
LINLRES COLLIEV2 0.050 0.020 0.040 0.010 0.775 0.920
LINLRES GR4J -0.040 -0.050 0.010 -0.010 0.755 0.880
LINLRES NEWZEALAND 0.060 0.025 0.060 -0.010 0.740 0.875
LINLRES PDM 0.060 0.070 0.100 0.080 0.730 0.860
LINRES COLLIEV2 0.150 0.120 0.100 0.070 0.710 0.850
LINRES GR4J 0.050 0.040 0.070 0.040 0.680 0.830
LINRES NEWZEALAND 0.130 0.110 0.100 0.050 0.710 0.880
LINRES PDM 0.180 0.180 0.170 0.140 0.640 0.780
POWRES COLLIEV2 0.020 -0.020 0.040 0.010 0.770 0.920
POWRES GR4J -0.050 -0.060 0.010 -0.010 0.750 0.890
POWRES NEWZEALAND 0.045 0.010 0.050 -0.010 0.720 0.880
POWRES PDM 0.040 0.040 0.090 0.060 0.730 0.870

LINRES with 328 values, FLEXRES with 282 values, and a smaller portion for the
rest of the groundwater structures. The dominant soil water structures are PDM
with 660 values and COLLIEV2 with 333 values. Accoridngly, the same analysis for
the number of occurences will be applied to the ’bad’ structures, with one difference
only: the values which are smaller than 0 will be taken into consideration, because
those are the values which are outliers for NSE goodness-of-fit measure. For KGE
as an objective functions, there are 13334 values which are smaller or equal to
0, after which follows the MAE objective function with 8370 values, and then
NSE objective function with 6490. The dominant underperforming groundwater
structures are EXPRES, POWRES, LIN2PA and LIN2SE with 4397, 3739, 3707
and 3714 accorgingly. The dominant underperforming soil water structures are
GR4J with 8065, COLLIEV2 with 7514 and NEWZEALAND with 7674 values.

For MAE we consider values to be satisfactory if they are positive and bigger
than 0, where 0 indicates that the calculated MAE goodness-of-fit value equals
the threshold. The values between 0 and 0.5 were taken as such, in total 1082
values. Regarding the dominance of the objective functions, best performing is
MAE with total of 438 values, followed by NSE 389 values and the rest with
KGE. The dominant satisfactory groundwater structures are LINRES, FLEXRES,
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Table 6.5: Calibration done on dry period with MAE, grouped by different storages,
summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
EXPRES COLLIEV2 -0.030 -0.300 -0.030 -0.555 0.780 1.250
EXPRES GR4J -0.070 -0.290 -0.020 -0.515 0.750 1.130
EXPRES NEWZEALAND -0.020 -0.425 -0.010 -0.355 0.710 1.630
EXPRES PDM 0.030 -0.080 0.040 -0.190 0.695 0.920
FLEXRES COLLIEV2 0.110 0.095 0.025 0.000 0.720 0.880
FLEXRES GR4J 0.030 0.040 0.030 0.000 0.700 0.850
FLEXRES NEWZEALAND 0.110 0.095 0.000 -0.070 0.690 0.880
FLEXRES PDM 0.140 0.175 0.140 0.110 0.610 0.750
LIN2PA COLLIEV2 -0.070 -0.090 0.010 0.000 0.760 0.890
LIN2PA GR4J -0.090 -0.085 0.000 -0.010 0.740 0.875
LIN2PA NEWZEALAND -0.020 -0.040 0.010 -0.030 0.670 0.810
LIN2PA PDM -0.010 -0.010 0.060 0.050 0.720 0.840
LIN2SE COLLIEV2 -0.055 -0.075 0.010 0.000 0.760 0.890
LIN2SE GR4J -0.090 -0.090 0.000 -0.010 0.750 0.880
LIN2SE NEWZEALAND -0.010 -0.030 0.010 -0.030 0.670 0.810
LIN2SE PDM -0.010 -0.010 0.070 0.050 0.710 0.830
LINBYRES COLLIEV2 0.080 0.070 0.080 0.060 0.700 0.835
LINBYRES GR4J -0.015 -0.010 0.040 0.030 0.700 0.820
LINBYRES NEWZEALAND 0.100 0.070 0.060 0.010 0.645 0.785
LINBYRES PDM 0.100 0.110 0.180 0.170 0.640 0.760
LINLRES COLLIEV2 -0.040 -0.060 0.010 0.000 0.750 0.890
LINLRES GR4J -0.070 -0.060 0.000 -0.010 0.745 0.865
LINLRES NEWZEALAND -0.010 -0.030 0.000 -0.040 0.680 0.820
LINLRES PDM 0.030 0.030 0.080 0.065 0.700 0.830
LINRES COLLIEV2 0.050 0.060 0.070 0.060 0.655 0.800
LINRES GR4J -0.015 -0.020 0.040 0.030 0.675 0.810
LINRES NEWZEALAND 0.100 0.080 0.050 0.020 0.660 0.840
LINRES PDM 0.080 0.075 0.120 0.115 0.600 0.720
POWRES COLLIEV2 -0.070 -0.080 0.010 0.000 0.750 0.890
POWRES GR4J -0.090 -0.080 0.000 -0.010 0.745 0.875
POWRES NEWZEALAND -0.050 -0.050 0.005 -0.030 0.685 0.825
POWRES PDM -0.020 -0.020 0.070 0.050 0.720 0.830

LINBYRES. The dominant soil water structures are NEWZEALAND and PDM.
Accordingly, the same analysis could be applied for the ’bad’ structures, which in
this case we consider everything below 0 or greater than 0.5, in total 58364 values,
which is 98% of our dataset.

However, this analysis of winning and lossing structures when NSE and MAE
are used as objective functions cannot be taken for granted and considered as an
appropriate analysis because the results for NSE and MAE goodness-of-fit values
are not satisfactory enough. In both cases, around 95% of the resulting dataset
has unsatisfactory goodness-of-fit measures.

6.2 Calibration on wet period, validation on dry

period

The same analysis was applied for the calibration performed on the wet period,
while the validation is performed on the dry period. First, the data from the
calibration on the wet period is processed in R. There are 9 NA values for the KGE
goodness-of-fit criteria on the calibration period, while 68 NA values for the KGE
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Figure 6.4: Distribution for goodness-of-fit values for calibration done with
KGE, NSE, MAE objective functions on dry period

goodness-of-fit criteria on the validation period. As such, these values were re-
moved from the resulting dataset, which left the dataset with 59451 records in total.

Summary of results (calibration on wet period)

The minimum and maximum values for each of the goodness-of-fit values is
used in order to access the extreme high and low values. The result is represented
in Table 6.6. It’s noticeable that the results for the validation on the dry period,
are better than the results for the validation on the wet period (Table 6.1), but
on the other hand, the minimum values are lower or the same.

In this case also, there are extreme low values for KGE and NSE, while
extremely high values for MAE. This can be further seen in the boxplot in Figure
6.5

In Figure 6.6 the results are grouped by their objective function and goodness-
of-fit criteria, summarized by the median. When KGE is used as an objective
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Table 6.6: Min and max values from results on wet period

min max
calibKGE -43.22 0.89
validKGE -1.187432e+85 0.82
calibNSE -1876.23 0.85
validNSE -1.386362e+170 0.73
calibMAE 0.01 8.93
validMAE 0.01 1.363783e+83

Figure 6.5: Boxplot results from goodness-of-fit values when calibration is done
on wet period

function, best goodness-of-fit results are produced for KGE both for calibration
and validation. Simimlar results where produced when calibration was done on
the dry period: NSE and MAE also produce satisfactory goodness-of-fit values
when used KGE as an objectve function, but the goodness-of-fit values when NSE
or MAE is used as an objective function seem to be unsatisfactory. This will be
again the subject of the analysis of the second part of the study.

Table 6.7: Summary of results (median) for calibration done on wet period

obj calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
kge 0.21 0.18 -0.14 -0.16 1.12 0.97
nse 0.045 0.035 0.04 0.015 0.93 0.8
mae -0.005 -0.02 0.005 0.005 0.88 0.76

The summary of the results from the calibration done on the wet period can
be found in Table 6.7. The combination of different groundwater and soil water
structures along with the three different objective functions is the next subject
of this analysis. As was done for the calibration on the dry period, the same
summarization will be applied on the results produced on the calibration for the
wet period. 96 results in total, indicating 3 objective functions, 8 groundwater
structures and 4 soil water structures.
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Figure 6.6: Boxplot results from wet period

In Table 6.8 the summarization by the median is performed on the different
storages when used KGE as an objective function. It is noticeable that the KGE
goodness-of-fit criteria values are higher than the ones from Table 6.3. For the
combination of PDM as a soil water storage, along with the FLEXRES as a
groundwater storage, the goodness-of-fit for KGE on the calibration is 0.41, while
for validation is 0.34. Taken in consideration the huge amount of outliers, these
results are satisfactory enough. The structures which have the highest KGE
goodness-of-fit values are for groundwater: FLEXRES, LINBYRES, LINRES
while for soil storage are PDM, NEWZEALAND and COLLIEV2. The same
structures showed satisfactory results in Table 6.3. The results from the NSE and
MAE goodness-of-fit values are still not wihin the satisfactory value ranges. Next
step, is to do the same summarization when using NSE as an objective function.

Both in Table 6.9 and Table 6.10 are the summarized results by their median
value for NSE and MAE objective functions for the different structures. The
highest NSE goodness-of-fit value when used NSE as an objective function is
0.26 when LINBYRES is used as a groundwater reservoir and PDM is used as
a soilwater reservoir. However this value is still unsatisfactory. When MAE is
used as an objective function, the MAE goodness-of-fit for calibration period is
best when the LINRES and PDM are used, respectively for groundwater and soil
water storage, with a total value of 0.76, which is still far from the threshold of
0.18. Three different maps are plotted in Figure 6.7 from the calibration periods
for each of the objective functions.
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Table 6.8: Calibration done on dry period with MAE, grouped by different storages,
summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
EXPRES COLLIEV2 0.200 0.100 -0.295 -0.510 1.190 1.120
EXPRES GR4J 0.080 -0.120 -0.320 -1.035 1.075 1.135
EXPRES NEWZEALAND 0.190 -0.015 -0.365 -1.185 1.200 1.500
EXPRES PDM 0.190 0.080 -0.170 -0.330 1.010 0.930
FLEXRES COLLIEV2 0.320 0.280 -0.210 -0.220 1.190 1.000
FLEXRES GR4J 0.290 0.230 -0.210 -0.200 1.100 0.950
FLEXRES NEWZEALAND 0.300 0.250 -0.285 -0.310 1.170 0.980
FLEXRES PDM 0.410 0.340 0.015 0.015 1.010 0.840
LIN2PA COLLIEV2 0.190 0.180 -0.150 -0.160 1.180 1.000
LIN2PA GR4J 0.080 0.060 -0.150 -0.130 1.090 0.905
LIN2PA NEWZEALAND 0.230 0.190 -0.340 -0.355 1.200 1.040
LIN2PA PDM 0.190 0.160 -0.010 0.000 1.030 0.880
LIN2SE COLLIEV2 0.190 0.170 -0.130 -0.150 1.175 1.000
LIN2SE GR4J 0.080 0.050 -0.140 -0.130 1.080 0.900
LIN2SE NEWZEALAND 0.220 0.185 -0.300 -0.340 1.180 1.000
LIN2SE PDM 0.200 0.160 -0.010 -0.010 1.050 0.870
LINBYRES COLLIEV2 0.270 0.250 -0.070 -0.110 1.175 1.000
LINBYRES GR4J 0.170 0.130 -0.080 -0.080 1.050 0.900
LINBYRES NEWZEALAND 0.325 0.270 -0.130 -0.200 1.140 0.965
LINBYRES PDM 0.320 0.290 0.150 0.110 0.950 0.830
LINLRES COLLIEV2 0.220 0.200 -0.140 -0.170 1.180 1.015
LINLRES GR4J 0.110 0.090 -0.180 -0.160 1.085 0.920
LINLRES NEWZEALAND 0.240 0.200 -0.330 -0.370 1.160 1.030
LINLRES PDM 0.230 0.200 -0.020 -0.030 1.055 0.900
LINRES COLLIEV2 0.290 0.270 -0.130 -0.140 1.170 1.000
LINRES GR4J 0.190 0.180 -0.140 -0.120 1.080 0.920
LINRES NEWZEALAND 0.285 0.260 -0.235 -0.270 1.150 0.995
LINRES PDM 0.340 0.300 0.040 0.010 1.030 0.870
POWRES COLLIEV2 0.190 0.170 -0.140 -0.160 1.170 1.020
POWRES GR4J 0.080 0.060 -0.140 -0.140 1.070 0.930
POWRES NEWZEALAND 0.220 0.180 -0.330 -0.355 1.215 1.020
POWRES PDM 0.200 0.170 -0.020 -0.030 1.050 0.890

When comparing Figure 6.7 and Figure 6.4, it is noticeable that KGE values
contain very extreme low values when calibration is done on the wet period, but
on the other hand there are better approximations with the high values than the
calibration done on the dry period. For NSE, there are also more extreme lower
values, but also more satisfactory high values, indicated with purple. The MAE
value is calculated in the same way as described in the previous section, and it is
noticeable that there are less satisfactory values in the calibration during the wet
period than the calibration done on the dry period.

Next step is to find the dominating ’good’ and ’bad’ structures for each of
the calibrations. The same ranges apply as described in the previous section.
There are 1912 NSE values which are bigger or equal to 0.5, which is a higher
number compared with the results for NSE satisfactory values from the calibration
done on the dry period. Most frequent groundwater structures are LINBYRES,
LINRES and FLEXRES with values of 418, 435 and 320 respectively while for soil
water structures are PDM, COLLIEV2 and GR4J with values of 844, 436 and 369
respectively. NSE is the most dominant objective function with 792 values, then
MAE with 642 structures and the last is KGE with 478 structures. Again, there
are too many values considered as unsatisfactory, so any attempt for interpreting
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Table 6.9: Calibration done on dry period with NSE, grouped by different storages,
summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
LINBYRES PDM 0.210 0.170 0.260 0.220 0.880 0.750
FLEXRES PDM 0.270 0.210 0.150 0.140 0.845 0.720
LINRES PDM 0.180 0.160 0.150 0.140 0.820 0.700
LINBYRES COLLIEV2 0.120 0.100 0.120 0.090 0.930 0.800
LINBYRES NEWZEALAND 0.160 0.140 0.100 0.060 0.890 0.760
LINRES NEWZEALAND 0.110 0.125 0.090 0.070 0.935 0.785
LINRES COLLIEV2 0.140 0.120 0.090 0.080 0.890 0.760
LINLRES PDM 0.090 0.060 0.090 0.080 0.900 0.790
LIN2SE PDM 0.070 0.050 0.080 0.060 0.900 0.780
LIN2PA PDM 0.070 0.040 0.080 0.070 0.905 0.790
POWRES PDM 0.070 0.040 0.080 0.070 0.900 0.780
EXPRES PDM 0.060 -0.070 0.060 -0.040 0.930 0.955
FLEXRES COLLIEV2 0.140 0.160 0.050 0.020 0.960 0.840
LINRES GR4J 0.050 0.040 0.050 0.050 0.870 0.760
LINBYRES GR4J 0.040 0.030 0.050 0.030 0.895 0.790
FLEXRES GR4J 0.120 0.070 0.040 0.020 0.900 0.790
LINLRES NEWZEALAND 0.040 0.040 0.040 0.010 0.930 0.790
FLEXRES NEWZEALAND 0.130 0.130 0.030 0.000 1.000 0.830
POWRES NEWZEALAND 0.030 0.030 0.030 0.010 0.935 0.800
LIN2SE NEWZEALAND 0.020 0.030 0.030 0.010 0.940 0.810
LINLRES COLLIEV2 0.030 0.020 0.030 0.020 0.980 0.840
LIN2PA COLLIEV2 0.010 0.020 0.020 0.010 0.990 0.830
LIN2PA NEWZEALAND 0.010 0.020 0.020 0.010 0.930 0.795
POWRES COLLIEV2 0.010 0.010 0.020 0.010 0.990 0.830
LIN2SE COLLIEV2 0.000 0.010 0.020 0.010 0.980 0.830
LINLRES GR4J -0.040 -0.050 0.010 0.000 0.940 0.810
EXPRES NEWZEALAND 0.000 -0.255 0.010 -0.230 0.960 1.500
POWRES GR4J -0.060 -0.060 0.000 0.000 0.955 0.815
LIN2SE GR4J -0.055 -0.070 0.000 -0.010 0.950 0.815
LIN2PA GR4J -0.070 -0.070 0.000 -0.010 0.960 0.825
EXPRES COLLIEV2 -0.010 -0.300 0.000 -0.430 1.010 1.245
EXPRES GR4J -0.070 -0.200 -0.010 -0.190 0.960 1.090

this results, cannot be valid.
For MAE, there are only 591 values which are considered as satisfactory values,
which proves the previous assumption from the map analysis, that MAE does not
perform good on the calibration on the wet period. Thus, any further analysis in
this direction can only lead to wrong assumptions. In both cases for NSE and
MAE, the goodness-of-fit values which are condsidered to be satisfactory values
represent a very small portion of the resulting data, thus conclusions cannot be
made.
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Table 6.10: Calibration done on dry period with MAE, grouped by different
storages, summarized on median value

gwStor swStor calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE
LINBYRES PDM 0.150 0.125 0.190 0.170 0.795 0.670
FLEXRES PDM 0.160 0.140 0.120 0.110 0.790 0.680
LINRES PDM 0.105 0.080 0.120 0.120 0.760 0.660
LINBYRES COLLIEV2 0.070 0.080 0.080 0.080 0.860 0.750
LINLRES PDM 0.040 0.020 0.070 0.070 0.880 0.760
LINRES COLLIEV2 0.040 0.050 0.060 0.060 0.830 0.720
LIN2PA PDM 0.000 -0.020 0.060 0.060 0.880 0.770
LIN2SE PDM 0.000 -0.020 0.060 0.060 0.890 0.770
POWRES PDM 0.000 -0.020 0.060 0.050 0.880 0.760
LINBYRES NEWZEALAND 0.090 0.100 0.045 0.030 0.830 0.700
LINRES NEWZEALAND 0.090 0.090 0.040 0.050 0.870 0.735
LINBYRES GR4J -0.010 -0.020 0.040 0.030 0.860 0.750
LINRES GR4J -0.010 -0.015 0.030 0.030 0.830 0.715
EXPRES PDM 0.060 -0.030 0.030 -0.010 0.890 0.855
FLEXRES COLLIEV2 0.100 0.110 0.020 0.020 0.920 0.770
FLEXRES GR4J 0.040 0.030 0.010 0.010 0.880 0.760
LINLRES COLLIEV2 -0.040 -0.040 0.000 0.010 0.940 0.810
POWRES COLLIEV2 -0.060 -0.060 0.000 0.000 0.950 0.800
LIN2PA COLLIEV2 -0.070 -0.070 0.000 0.000 0.930 0.810
LIN2SE COLLIEV2 -0.080 -0.070 0.000 0.000 0.940 0.810
FLEXRES NEWZEALAND 0.090 0.120 -0.010 -0.020 0.920 0.760
LINLRES NEWZEALAND 0.005 0.010 -0.010 -0.010 0.875 0.740
LIN2PA NEWZEALAND -0.040 -0.010 -0.010 -0.005 0.870 0.735
LIN2SE NEWZEALAND -0.030 -0.020 -0.010 0.000 0.880 0.745
POWRES NEWZEALAND -0.030 -0.020 -0.010 0.000 0.880 0.730
LINLRES GR4J -0.060 -0.070 -0.010 -0.010 0.920 0.790
LIN2SE GR4J -0.070 -0.085 -0.010 -0.010 0.930 0.800
LIN2PA GR4J -0.080 -0.090 -0.010 -0.010 0.920 0.800
POWRES GR4J -0.080 -0.095 -0.010 -0.010 0.930 0.795
EXPRES COLLIEV2 -0.030 -0.350 -0.020 -0.370 0.980 1.170
EXPRES NEWZEALAND -0.030 -0.350 -0.020 -0.525 0.900 1.520
EXPRES GR4J -0.060 -0.245 -0.030 -0.405 0.950 1.075

6.3 Discussion

The overall performance of the structures differs. The ’winning’ groundwater
structures were FLEXRES, LINBYRES and LINRES, and the ’winning’ soil water
structure was PDM. This can be seen in the summary table Table 6.11, where
all the results were grouped by the groundwater and soil water storage for both
wet and dry period, summed by their median value, regardless of the choice of
the objective function. The best performance was the structure where FLEXRES
was used as a groundwater reservoir and PDM was used as a soil water reservoir.
The FLEXRES is a groundwater linear reservoir where the storage outflow is
controlled by a threshold. The reason behind the outperformance of this reservoir
is because of its complexity, its structure means that groundwater storage can be
controlled by multiple aquifers. Second in place comes the LINBYRES, a linear
storage with a direct by pass, again in combination with PDM. Third in place
comes the structure with LINRES and PDM reservoirs. What connects these three
groundwater reservoirs is their ability to drain faster and more directly (Stoelzle
et al., 2015). Also, whenever there is a recharge, the groundwater reservoir empties
faster than initially estimated, which makes the storage-discharge relationship
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Figure 6.7: Distribution for goodness-of-fit values for calibration done with
KGE, NSE, MAE objective functions on wet period

more linear (Fenicia et al., 2006) thus the reason why particularly these reservoirs
had the best performance.

Regarding the groundwater storage, the findings about the superior models
were also consistent with Stoelzle et al. (2015), where FLEXRES was defined to be
the model with the highest performance, because this type of reservoir is designed
with a threshold where as long as the linear reservoir is above this threshold, faster
depletion will occur. LIN2SE was found to be the with the poorest performance.
The influence of the different combinations of the groundwater storages can be
seen in Table 6.12, where the results were grouped by the groundwater storage
only, summed by their median value.

Regarding the soil water structures, the results were higher for PDM model,
but also in the second place with the exact same performance is NEWZEALAND,
which is then followed by COLLIEV2. The summary results where the grouping
was performed on the soil water structures can be seen in Table 6.13. The PDM
reservoir is a lumped model and it describes the spatial distribution (variability)
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Table 6.11: Summary results of both periods, grouped by groundwater and soil
water storage

gwStor swStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
EXPRES COLLIEV2 0.080 -0.05 0.95 -0.090 -0.46 1.200
EXPRES GR4J 0.000 -0.05 0.89 -0.215 -0.56 1.120
EXPRES NEWZEALAND 0.090 -0.04 0.88 -0.310 -0.78 1.600
EXPRES PDM 0.110 0.01 0.84 -0.020 -0.17 0.950
FLEXRES COLLIEV2 0.210 0.00 0.89 0.180 -0.02 0.910
FLEXRES GR4J 0.160 0.01 0.85 0.130 -0.01 0.870
FLEXRES NEWZEALAND 0.195 -0.03 0.89 0.160 -0.10 0.910
FLEXRES PDM 0.280 0.11 0.78 0.260 0.09 0.790
LIN2PA COLLIEV2 0.060 -0.01 0.91 0.050 -0.01 0.920
LIN2PA GR4J -0.020 -0.02 0.88 -0.030 -0.03 0.885
LIN2PA NEWZEALAND 0.110 -0.01 0.87 0.080 -0.05 0.890
LIN2PA PDM 0.080 0.05 0.85 0.070 0.04 0.850
LIN2SE COLLIEV2 0.070 -0.01 0.92 0.050 -0.01 0.920
LIN2SE GR4J -0.010 -0.02 0.88 -0.020 -0.03 0.890
LIN2SE NEWZEALAND 0.110 -0.01 0.87 0.080 -0.04 0.890
LIN2SE PDM 0.090 0.05 0.84 0.075 0.04 0.850
LINBYRES COLLIEV2 0.170 0.06 0.86 0.150 0.04 0.870
LINBYRES GR4J 0.070 0.02 0.83 0.060 0.01 0.850
LINBYRES NEWZEALAND 0.200 0.04 0.84 0.170 0.00 0.850
LINBYRES PDM 0.210 0.19 0.79 0.200 0.18 0.790
LINLRES COLLIEV2 0.090 -0.01 0.92 0.080 -0.01 0.930
LINLRES GR4J 0.020 -0.02 0.87 0.000 -0.02 0.880
LINLRES NEWZEALAND 0.120 -0.02 0.87 0.090 -0.07 0.880
LINLRES PDM 0.120 0.06 0.84 0.110 0.05 0.860
LINRES COLLIEV2 0.180 0.05 0.84 0.170 0.04 0.850
LINRES GR4J 0.090 0.02 0.83 0.080 0.01 0.840
LINRES NEWZEALAND 0.180 0.03 0.84 0.160 0.01 0.860
LINRES PDM 0.210 0.11 0.76 0.200 0.11 0.770
POWRES COLLIEV2 0.070 -0.01 0.92 0.050 -0.01 0.930
POWRES GR4J -0.010 -0.02 0.87 -0.025 -0.02 0.890
POWRES NEWZEALAND 0.110 -0.01 0.87 0.080 -0.04 0.890
POWRES PDM 0.090 0.05 0.85 0.070 0.04 0.860

Table 6.12: All results grouped by groundwater storage by median value
gwStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
EXPRES 0.07 -0.03 0.89 -0.135 -0.43 1.17
FLEXRES 0.21 0.02 0.85 0.180 0.00 0.87
LIN2PA 0.06 0.00 0.88 0.040 -0.01 0.89
LIN2SE 0.06 0.00 0.88 0.040 -0.01 0.89
LINBYRES 0.17 0.07 0.83 0.150 0.05 0.84
LINLRES 0.09 0.00 0.88 0.070 -0.01 0.89
LINRES 0.16 0.05 0.82 0.150 0.04 0.83
POWRES 0.06 0.00 0.88 0.040 -0.01 0.89

of the soil capacity, unlike the other three soil water storages where buckets are
being used. It is noticeable that GR4J did not perform so well, unlike in Pagano
et al. (2010) were GR4J outperformed every other model. This could be because
the form in which the GR4J model in this study was implemented, was by taking
only the soil water structure storage, which might have a huge affect on the
performance of the model overall. So, this must not be overlooked and must be a
subject for study for any future analysis in dHRUM.

As previously noted in the summary of the results section, the results where
the KGE objective was used, were the most satisfactory ones, with 95% coverage
of the resulting dataset, so taking this as a fact a summary of the results from
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Table 6.13: All results grouped by soil water storage by median value
swStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
COLLIEV2 0.11 0.00 0.90 0.09 -0.02 0.94
GR4J 0.03 -0.01 0.86 0.00 -0.03 0.89
NEWZEALAND 0.14 -0.01 0.86 0.09 -0.06 0.92
PDM 0.14 0.08 0.82 0.12 0.06 0.84

both periods, grouped by their groundwater structure, and later by their soil
water structure are shown in Table 6.14 and Table 6.15.

Table 6.14: Results obtained from using KGE as an objective function grouped
by ground water storage by median value

gwStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
FLEXRES 0.33 -0.16 0.980 0.28 -0.190 0.990
LINRES 0.28 -0.10 0.970 0.24 -0.110 0.980
LINBYRES 0.27 -0.04 0.945 0.24 -0.060 0.960
LINLRES 0.20 -0.16 1.000 0.17 -0.160 1.000
LIN2PA 0.18 -0.13 1.000 0.15 -0.130 0.990
LIN2SE 0.18 -0.14 0.990 0.15 -0.130 0.990
POWRES 0.18 -0.14 1.000 0.15 -0.130 0.990
EXPRES 0.17 -0.27 0.990 -0.01 -0.805 1.195

Table 6.15: Results obtained from using KGE as an objective function grouped
by soil water storage by median value

swStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
NEWZEALAND 0.25 -0.27 1.02 0.20 -0.33 1.08
PDM 0.25 0.00 0.92 0.22 -0.01 0.92
COLLIEV2 0.24 -0.15 1.05 0.20 -0.16 1.05
GR4J 0.13 -0.17 0.96 0.09 -0.17 0.98

The results are ordered in a descending order. The outliers were also included
in all summary results. However, in the results grouped by both groundwater
and soil water structures, only when KGE was used as an objective function, it is
noticeable that GR4J performs good in combination with the FLEXRES (Table
6.16)

The structures with the lowest performance were indicated to be structures
where GR4J was used as a soil-water storage in combination with the LIN2PA and
LIN2SE reservoirs. Also, it is noticeable that the structure with lower performance
were indicated to be also the POWRES and EXPRES especially when used with
PDM, while when in combination with NEWZEALAND and COLLIEV2 that
had a better performance.

Regarding the performance of the calibrations on the dry period versus the
calibration on the wet period, the results in Table 6.17 were obtained, where all
of the summary results were grouped by the period on their median value.

The results show that when calibration was done on the wet period, the results
from the validation period were higher than the results from the validation when
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Table 6.16: Results obtained from using KGE as an objective function grouped
by soil water storage and groundwater storage by median value

swStor swStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
FLEXRES PDM 0.395 0.020 0.890 0.35 -0.010 0.890
LINRES PDM 0.330 0.030 0.910 0.29 0.010 0.920
FLEXRES COLLIEV2 0.330 -0.220 1.040 0.28 -0.240 1.050
LINBYRES NEWZEALAND 0.320 -0.120 0.990 0.27 -0.180 1.005
LINBYRES PDM 0.310 0.130 0.860 0.29 0.120 0.870
LINRES COLLIEV2 0.300 -0.120 1.020 0.26 -0.120 1.035
FLEXRES NEWZEALAND 0.300 -0.270 1.030 0.25 -0.330 1.020
LINRES NEWZEALAND 0.290 -0.210 1.010 0.25 -0.250 1.030
FLEXRES GR4J 0.280 -0.200 0.990 0.23 -0.200 0.990
LINBYRES COLLIEV2 0.270 -0.070 1.020 0.24 -0.090 1.030
LINLRES NEWZEALAND 0.250 -0.305 1.020 0.20 -0.350 1.060
LIN2SE NEWZEALAND 0.230 -0.300 1.020 0.18 -0.330 1.050
POWRES NEWZEALAND 0.230 -0.310 1.040 0.18 -0.320 1.060
LIN2PA NEWZEALAND 0.230 -0.310 1.050 0.18 -0.320 1.060
LINLRES PDM 0.220 -0.010 0.940 0.20 -0.020 0.950
LINLRES COLLIEV2 0.220 -0.150 1.070 0.19 -0.160 1.060
EXPRES NEWZEALAND 0.200 -0.330 1.050 -0.04 -1.210 1.560
POWRES COLLIEV2 0.200 -0.140 1.055 0.17 -0.120 1.040
LIN2PA COLLIEV2 0.200 -0.140 1.060 0.17 -0.130 1.030
EXPRES COLLIEV2 0.200 -0.295 1.070 0.09 -0.540 1.170
LIN2SE COLLIEV2 0.200 -0.140 1.070 0.17 -0.130 1.030
EXPRES PDM 0.190 -0.170 0.910 0.07 -0.520 1.010
LIN2SE PDM 0.190 0.000 0.925 0.16 0.000 0.930
LINRES GR4J 0.190 -0.130 0.950 0.17 -0.120 0.970
LIN2PA PDM 0.180 -0.010 0.930 0.16 0.000 0.920
POWRES PDM 0.180 -0.020 0.930 0.17 -0.020 0.920
LINBYRES GR4J 0.160 -0.090 0.920 0.13 -0.080 0.940
LINLRES GR4J 0.110 -0.180 0.980 0.08 -0.160 0.960
EXPRES GR4J 0.080 -0.315 0.950 -0.18 -1.395 1.170
POWRES GR4J 0.080 -0.150 0.955 0.06 -0.140 0.950
LIN2PA GR4J 0.080 -0.150 0.970 0.06 -0.130 0.970
LIN2SE GR4J 0.070 -0.150 0.960 0.05 -0.130 0.955

Table 6.17: All results grouped by period by median value
calib_period objfunction calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE
dry kge 0.22 -0.14 0.87 0.17 -0.15 1.05
wet kge 0.22 -0.14 1.11 0.18 -0.16 0.97
dry nse 0.06 0.06 0.73 0.03 0.02 0.90
wet nse 0.06 0.05 0.93 0.04 0.03 0.82
wet mae 0.01 0.02 0.89 -0.01 0.02 0.79
dry mae 0.00 0.03 0.70 -0.02 0.00 0.86

the calibration was done on the dry period. For an example, as seen from the
Table 6.11 when KGE was used as an objective function, the calibration produced
the same goodness-of-fit KGE values (calib_KGE) for both periods, but the
validation (valid_KGE) had a higher score for when the calibration was done on
the wet period (0.18). Even when the calibration produced higher goodness-of-fit
criteria for the dry period calibrations (for an example NSE objective function,
NSE goodness-of-fit criteria - calib_NSE column), still the validation (valid_NSE
column) produced higher values when the calibration was done for the wet period
(0.03). Similar results regarding the usage of the split of the periods between wet
and dry periods were found by Gao et al. (2018).

The influence of using the differential split sample test for separating the dry
and the wet periods shows how these very contrasting periods influence the model
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performance. However, it is important to note that in this study, distinguishing
the dry from the wet period was done in a very specific way, where 10-years of
consecutive periods were taken, and the average precipitation was measured and
compared within all available 10 year consecutive periods. The wetter period had
a higher performance, but also has higher extreme values (in this case the extreme
values were negative values). This is due to overestimating and underestimating
of the discharges because of the calibration done on the wet period (Coron et al.,
2012). This tendency to overestimate and underestimate should be a concern of
any future study proceeding in this direction, because it may greatly influence any
analysis on climate impact or hydrologic predictions, since the error predictions
could be very large (Merz et al., 2011).

These results suggest the need for more detailed future modelling which
should be based on hydrological processes. Many models are similar in terms of
efficiency, but what informaton is not visible here is the internal representation of
the processes. This opens up a door for further investigations about dominant
processes (Knoben et al., 2019a).



CHAPTER 7
Conclusion and contribution

The distributed hydrological response unit model was used as a modelling frame-
work for testing lumped hydrological models in this study. The framework was
extended by implementing additional seven groundwater structures and three soil
water structures which gave us in total 32 lumped conceptual models for testing
their modeling performance. The differential split sample test was implemented
where calibration and validation was done on the wet and the dry period and vice
versa using the CAMELS dataset and NLDAS data as forsing data.

The calibration was based on three different objective functions: KGE, NSE,
MAE. The Differential Evolution algorithm was used as an optimization algorithm.
Three goodness-of-fit criteria were chosen for evaluating the performance of the
different lumped structures which were generated from the GOF (goodness of fit)
package in R: KGE, NSE, MAE.

From the results, it can be concluded that satisfactory results were obtained
only when KGE was used as an objective function.

The ’winning’ groundwater structures were FLEXRES, LINBYRES and LIN-
RES, and the ’winning’ soil water structure were PDM, NEWZEALAND and
COLLIEV2. In contrary, the LIN2PA, LIN2SE as groundwater structures and
GR4J as soil water structure were found to have a poorer performance in this
study. The structures with the lowest performance were indicated to be structures
where GR4J was used as a soil-water storage in combination with the LIN2PA
and LIN2SE reservoirs. From the results of this study it can be concluded that
the structure with lower performance were indicated to be also the POWRES
and EXPRES especially when used with PDM, while when in combination with
NEWZEALAND and COLLIEV2 had a better performance.

The results also show that when calibration was done on the wet period, the
validations of the model were better than the ones where calibration was done on
the dry period.

48
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Taking in consideration that the data analysis was performed only after all
the lumped models were formulated and a proper calibration and validation was
performed, along which the hypothesis of ’winning’ and losing’ structures emerged,
this study only opens the door to more detailed research for the differences between
these structures or any future structures that may be developed as part of the
distributed hydrological reponse unit modelling framework.
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