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Abstract 

Hydrological modeling plays a central role in water resource management 
through access to risks and impacts of hydrological phenomena, where the 
model itself represents a simplified representation of a realworld system. 
The hydrological models are classified into many different groups depending 
on different factors. This study will be focusing on the performances of a 
conceptual lumped rainfall-runoff model. The main objective of this study 
is to extend and test an existing modular modelling framework, dHRUM 
which stands for Distributed Hydrological Response Unit Model, used for de­
scription of water balance in small and midsize catchments. This modelling 
framework was initially developed by the Department of Water Resources 
and Environmental Modelling at the Faculty of Environmental Sciences 
(Czech University of Life Sciences Prague) and furtherly extended with 
seven groundwater structures and three soil water structures. The analyzed 
time-series is the CAMELS (Catchment Attributes and MEteorology for 
Large-sample Studies) dataset. For measuring the quality of the model's 
performance, calibration and validation were performed with the model 
using the differential split sample test, where calibration was applied for 
the dry period, and validation was applied for the wet period and vice 
versa. Three different single objective functions were used: KGE, NSE, 
M A E . The Differential Evolution algorithm was used as an optimization 
algorithm. The different structures were compared based on the three 
different goodness-of-fit criteria: KGE (Kling Gupta Efficiency), NSE (Nash 
Sutcliffe Efficiency), M A E (Mean Absolute Error) which were results from 
using the gof (goodness-of-fit) package in R. The results were very success-
full when using the K G E objective function, as the validations were more 
successfull when the calibration was done on the wet period. An analysis 
of the different groundwater and soil-water structures were made, where 
'superior' and 'non-superior' structures were chosen. 

Keywords: Hydrological modelling, Differential split sample test, KGE, 
NSE, M A E , CAMELS dataset, rainfall-runoff modelling, DE, modelling 
framework 
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Abstract 

Hydrologické modelování hraje ústřední roli v řízení vodních zdrojů 
prostřednictvím přístupu k rizikům a dopadům hydrologických jevů, kdy 
samotný model představuje zjednodušenou reprezentaci systému reálného 
světa. Hydrologické modely jsou klasifikovány do mnoha různých skupin v 
závislosti na různých faktorech. Tato studie se zaměří na výkony koncepčního 
modelu soustředěných srážek a odtoků. Hlavním cílem této studie je rozšířit 
a otestovat stávající modulární modelovací rámec dHRUM, což je zkratka pro 
Distributed Hydrological Response Unit Model, používaný pro popis vodní 
bilance v malých a středně velkých povodích. Tento modelovací rámec byl 
původně vyvinut Katedrou vodních zdrojů a environmentálního modelování 
Fakulty životního prostředí (CZU) a dále rozšířen o sedm podzemních 
vodních struktur a tři půdní vodní stavby. Analyzovanou časovou řadou 
je datový soubor CAMELS (Catchment Attributes and MEteorology for 
Large-sample Studies). Pro měření kvality výkonu modelu byla s modelem 
provedena kalibrace a validace pomocí diferenciálního testu děleného vzorku, 
kde byla použita kalibrace pro suché období a validace byla aplikována na 
vlhké období a naopak. Byly použity tři různé jednoúčelové funkce: KGE, 
NSE, MAE. Algoritmus diferenciální evoluce byl použit jako optimalizační 
algoritmus. Různé struktury byly porovnány na základě tří různých kritérií 
dobré shody: KGE (účinnost Kling Gupta), NSE (účinnost Nash Sutcliffe), 
M A E (střední absolutní chyba), které byly výsledkem použití gof (dobrá 
shoda ) balíček v R. Výsledky byly velmi úspěšné při použití objektivní 
funkce KGE, protože validace byly úspěšnější, když byla kalibrace provedena 
ve vlhkém období. Byla provedena analýza různých podzemních a půdně-
vodních struktur, kde byly vybrány „nadřazené" a „nadřazené" struktury. 

Klíčová slova: Hydrologické modelování, Diferenciální dělený vzorkový 
test, KGE, NSE, MAE, CAMELS dataset, modelování srážek a odtoků, DE, 
modelovací rámec 
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CHAPTER 

Introduction 

The continuous movement of water on Earth and the atmosphere, commonly 
known as the natural water cycle, is a complex system consisting of many different 
processes. Climate change largely depends on the redistribution of solar energy 
which is directly influenced by the movement of water in the atmosphere and 
on land. Thus, understanding the movement of the water along with its many 
different processes is fundamental for hydrological modeling. 

A hydrological system is a system consisting of different components and 
processes over a particular region, which are to be modeled by the modeler. The 
region is commonly known as watershed/drainage basin/catchment, defined as an 
area that contributes surface runoff to any point. 

Hydrological modeling plays a central role in water resource management 
through access to risks and impacts of hydrological phenomena (Beven, 2006), 
where the model itself represents a simplified representation of a real world system 
(Sorooshian et al., 2008). This study will be focusing on the performances of a 
conceptual lumped rainfall-runoff model. 

The main objective of this study is to extend and test an existing modular mod­
elling framework, dHRUM, which stands for Distributed Hydrological Response 
Unit Model, used for description of water balance in small and midsize catchments. 
In this thesis the modelling framework was used for testing conceptual lumped 
rainfall-runoff models. This modelling framework was initially developed by the 
Department of Water Resources and Environmental Modelling at the Faculty of 
Environmental Sciences (Czech University of Life Sciences Prague). 

The first objective of the thesis is the development and testing of seven 
groundwater models defined by Stoelzle et al. (2015). The second objective of 
this thesis is the development and testing of three soil water structures defined 
in Knoben et al. (2019a). The third objective of the study is to use the different 
model structures for testing the performance of the modelling framework, using 

1 



CHAPTER 1. INTRODUCTION 2 

the CAMELS dataset. The fourth objective is to access the performances of the 
modeling framework by using different objective functions, different goodness-of-fit 
criteria, an optimization algorithm and the differential split sample test as defined 
by Klemes (1986). 

More information can be found in the Objectives and Literature Review parts 
of the thesis. 



CHAPTER 

Objectives 

The main objective of this study is to extend and test an existing modular 
modelling framework used for description of water balance in small and midsize 
catchments. DHRUM (Distributed Hydrological response Unit Model) was used 
for the purposes of this study. DHRUM is a modelling framework developed 
by the Department of Water Resources and Environmental Modelling at the 
Faculty of Environmental Sciences (Czech University of Life Sciences Prague). 
The modelling framework was developed with R and Repp package, allowing an 
integration between R and C++. The main objectives of this study are: 

• Extend the already existing dHRUM modelling framework by adding seven 
groundwater modules defined by Stoelzle et al. (2015) 

• Extend the already existing dHRUM modelling framework by adding three 
soil water modules defined by Knoben et al. (2019a) 

• Comparison of different structures of dHRUM models using the CAMELS 
dataset 

• Use different techniques for the models comparison: differential split sample 
test, objective functions, goodness-of-fit criteria, exploratory data analysis. 

The first objective is the development of 7 groundwater models defined in Stoel­
zle et al. (2015). The following perceptual groundwater models were implemented: 
Linear reservoir with leakage (LINLRES), Linear reservoir with a direct-by-pass 
(LINBYRES), Two serial linear reservoirs (LIN2SE), Two parallel linear reservoirs 
(LIN2PA), Non linear power law reservoirs (POWRES), Exponential reservoir 
(EXPRES), Linear reservoir with threshold - controlled increased storage outflow 
(FLEXRES). 

3 
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Additionally, the linear reservoir (LINRES) was also included in the analysis 
as the eight model which was already defined in the framework. 

The second objective is the development of 3 soil water models defined 
in Knoben et al. (2019a): Collie River Basin 2 (COLLIEV2), New Zealand 
(NEWZEALAND), GR4J. 

Additionally, the probability distributed model (PDM) was used as a fourth 
modeling structure which was already defined in the framework. 

The third objective of the study is to use the different model structures for 
testing the performance of the different lumped models by using the dHRUM 
modelling framework, using the CAMELS dataset, where only the nldas forcing 
data was used (North American Land Data Assimilation System). This objective 
is very closely connected to the fourth objective, where again the performance of 
the model was being accessed by: 

• applying the differential split sample test, where calibration was applied on 
the dry period, validation was applied on the wet period, and vice versa 

• applying three different single-objective functions: Kling Gupta Efficiency 
(KGE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute Error (MAE) 

• applying three different goodness-of-fit measures: Kling Gupta Efficiency 
(KGE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute Error (MAE) 

• applying optimization algorithm used for searching the optimal parameters 
values by maximizing or minimizing the single objective functions using the 
previously mentioned goodness-of-fit measures 

• applying exploratory data analysis. 



CHAPTER 

Literature review 

Hydrological modeling plays a central role in water resource management through 
access to risks and impacts of hydrological phenomena (Beven, 2006). 

A model is a simplified representation of a real world system (Sorooshian et al., 
2008). Hydrological models represent a complex hydrological system over a region. 
There are different types of classification of hydrological models among which they 
can be recognized as physical models, conceptual models and empirical models 
(Devia et al., 2015). They are classified into many different groups depending on 
different factors. This study will be focusing on the performances of a conceptual 
lumped rainfall-runoff model. 

Rainfall-runoff models have been generally used for research purposes. Rainfall-
runoff models main focus is gaining knowledge about the movement of water in 
and out of the catchments (Beven, 2011). Conceptual rainfall-runoff models are 
used for forecasts such as streamflow forecast. 

A very common idea among hydrologists which is continuously discussed is 
whether we should pursue an approach where "one model fits all" (Kavetski and 
Fenicia, 2011). This idea was based on the assumption that hydrological processes 
are the same everywhere (Perrin et al., 2003). So, the development of rainfall-
runoff models was born from the idea that rainfall-runoff models could be applied 
to any catchment (Knoben et al., 2020). In contrast, Beven stands behind the idea 
of "uniqueness of place" (Beven, 2000) and he states that we don't have enough 
information of the fundamental processes undergoing a catchment which makes 
it unique. Given these two fundamentally different approaches to hydrological 
modelling into consideration, choosing the model for representation of the natural 
phenomena is the first critical step that each modeler has to make. 

The Distributed Hydrological Response Unit Model (dHRUM) in this thesis 
is used as a framework for testing 32 different conceptual lumped rainfall-runoff 
models. The dHRUM model was at first inspired by the variable infiltration 
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capacity water balance model, VIC, which was built under the assumption that in­
filtration capacity, runoff and evapotranspiration are dependent on the catchment's 
properties such as vegetation and soil (Wood et al., 1992). 

Many conceptual rainfall-runoff models were being developed due to the reason 
that these models are easy-to-use when it comes to runoff prediction in large-
scale regions with sufficient observed streamflow data used for calibrating the 
model (Chiew, 2010). Our knowledge about how one model functions, had been 
extended by many hydrologists who have taken an active research into large-scale 
catchments (Addor et al., 2020; Coxon et al., 2019; Lane et al., 2019; Seiller et al., 
2012). 

In this study, the existing dHRUM was extended with development of multiple 
model structures, which contributed to creating a modeling framework for evaluat­
ing the performance of the model in large-scale catchments. This type of approach 
for hydrological modeling was motivated by many existent modeling frameworks 
that serve us as tools for comparing different modeling practices - "The diversity of 
hydrologic modeling approaches motivates our effort to develop a unified modeling 
framework to integrate and compare competing modeling approaches" - Clark 
et al. (2015). 

There have been many modeling frameworks developed for the same purposes 
among which are the Structure for Unifying Multiple Modeling Alternatives 
SUMMA (Clark et al., 2015), Framework for Understanding Structural Errors 
FUSE (Saavedra et al., 2021), Modular Assessment of Rainfall-Runoff Models 
Toolbox MARRMoT (Knoben et al., 2019a), SuperflexPy (Dal Molin et al., 2021), 
Machine Learning Rainfall-Runoff Model Induction ML-RR-MI (Herath et al., 
2021) and many others with the ability to choose different model structures for 
accessing the performance of the model. 

Accessing the model performance by testing different model structures has 
been used for gaining knowledge to better understanding of the drainage area 
dynamics such as low-flows simulation, streamflow forecast, baseflow generation 
etc. (Fenicia et al., 2006; Nicolle et al., 2014; Staudinger et al., 2011; Stoelzle 
et al., 2015). 

Many rainfall-runoff models were designed to represent the main hydrological 
processes in a catchment thus each one of them holds a different aspect about 
which are the main or dominant hydrological processes in a catchment, which 
is directly connected to the level of uncertainty depending on the choice of the 
model (Andreassian et al., 2009; Fenicia et al., 2008; Van Esse et al., 2013). 

In this study, eight different groundwater storage structures were implemented 
and four soil water storage structures. DHRUM holds in total six storage struc­
tures: groundwater, soil, surface, vegetation, snow and interception storage. This 
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approach was inspired by Stoelzle et al. (2015) and his idea that developing 
various reliable storage-discharge relationships is crucial for understanding the 
underground processes of movement of water because it is directly connected to 
accessing the availability of water and the responsiveness to future changes. 

In hydrological modeling, the performance of the model is accessed by calibra­
tion on the parameters descriptors of the system behavior with the aim to estimate 
the optimal model parameters in enabling the hydrological model to match the 
observations. With the rise of the computers and the digital era, hydrologists 
increasingly use automatic procedures for calibration. Different optimization 
techniques were applied by hydrologists for parameter calibrations of the model 
such as Genetic Algorithms (Duan et al., 1992; Liu et al., 2007), Particle Swarm 
Optimization (Gill et al., 2006) etc. In this study, the DE (Differential Evolution) 
algorithm was used. DE algorithm is a nature-inspired algorithm used for solving 
global optimizations problems (Ardia et al., 2011). 

Optimization algorithms are used for searching the optimal parameters values 
by maximizing or minimizing the objective function using numerous goodness-of-fit 
measures. Goodness-of-fit measures such as Kling-Gupta Efficiency (KGE) (Gupta 
et al., 2009), Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), 
Mean Annual Error (MAE), Weighted Sum of Squared Residual (WSSR), Root 
Mean Square Error (RMSE) are commonly used among modellers depending on 
the single objective function's purpose (Gupta et al., 2009; Knoben et al., 2019b; 
Moriasi et al., 2015; Razavi and Tolson, 2013; Ritter and Munoz-Carpena, 2013). 
In this study, KGE, NSE and MAE are used for the measure of fit of the dHRUM 
model. 

So, accessing the model performance has been done by hydrologists in numerous 
ways among which (as we mentioned before) are building modelling frameworks for 
testing different modelling structures and using different optimization algorithms 
for the goodness-of-fit measures. Understanding the model's weaknesses and 
strengths is essential when building such models thus by using different conditions 
and approaches to access the model's performance lead us not only to better 
understanding the model, but also to better understanding the catchment hydro-
logical characteristics (Knoben et a l , 2020). So, in this study, for accessing the 
model performance the differential split sample test is used (Klemes, 1986). The 
dataset was calibrated on the dry period in the given time-range, and validated 
on the wet period and vice versa. For the purposes of this study, the CAMELS 
dataset Newman et al. (2015) is used for calibrating and validating the model, 
described in the study area section of this study. 

Only by extending our knowledge on the weaknesses of our model we will be 
able to build better models. 
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Characteristics of study area 

The analyzed time-series is the CAMELS (Catchment Attributes and MEteorology 
for Large-sample Studies) dataset. The CAMELS dataset consists of 671 drainage 
areas in the contiguous United States (CONUS) where human activities have 
minimum impact (Newman et al., 2015). The drainage areas are represented by 
the following sets of attributes: land cover, soil, climate, streamflow, topography 
and geology. The large number of drainage areas which are evenly distributed, 
together with its landscape descriptors make this dataset 'a perfect' dataset for 
large-scale hydrological analysis. 

The basin's metadata contains information for the basin physical characteristics 
such as: size of the basin, elevation, slope and forest fraction percentage, but 
also gauge information such as: latitude, longitude and the area of the basin. 
Elevations vary between 10 and 3,600 meters above sea level, while drainage 
areas vary between 5 and 26,000 square kilometers. The data set has been 
revised by Addor et al. (2017) with information on the basin's attributes and their 
interrelationships, based on the basin's topographic characteristics. 
Additionally three different forcing data are included in the CAMELS dataset: 
Maurer, Nldas and Daymet. In this study, the Nldas forcing data was used (North 
American Land Data Assimilation System), where information about the minimum 
temperature, maximum temperature, precipitation, shortwave radiation, humidity 
and snow water equivalent is contained, starting from 01.01.1980 to 31.12.2014. 
For the same time range, information for the daily discharges are contained in the 
CAMELS dataset from USGS (The United States Geological Survey). 

For the purposes of this study, only the temperature and precipitation were 
used as inputs to the model. The temperature value was calculated as the mean 
value between the minimum and maximum temperature of the selected day. The 
daily discharge used for calibration was converted appropriately into millimeters 
per day. During the data cleaning part, fifty one basins were excluded due to the 

8 
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Leaflet | © OpenStreetMap contributors © CARTr 

F I G U R E 4.1: Chosen basins from the CAMEL dataset 

missing data for the daily discharge in a total of more than five years from the 
thirty five years time range. For measuring the quality of the model's performance, 
calibration and validation were performed with the model using the differential 
split sample test (Klemes, 1986), where calibration was applied for the dry period, 
and validation was applied for the wet period and vice versa. For calibrating 
the model on the dry period, an algorithm for finding the ten consecutive years 
with lowest precipitation was implemented, and accordingly the validation was 
performed on the years remaining. For calibrating the model on the wet period, 
an algorithm for finding the ten consecutive years with highest precipitation was 
implemented, and accordingly the validation was performed on the remaining 
years. It's crucial to take into consideration that the time period on which the 
calibration and validation were performed varies between different basins due to 
missing data, but no more than five years, giving the model at least twenty five 
years time range, and at most thirty years time range, from which calibration was 
always performed on a 10 years consecutive periods. 
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Leaflet | © OpenStreetMap contributors, CC-BY-SA, Tiles © Esri — Source: Esri, i-cubed, USDA. USGS, AEX, GeoEye, Getmapping, 
Aerogrid, IGN, IGP, UPR-EGP, and tbe GIS User Community 

F I G U R E 4.2: The area of the basins from C A M E L dataset 

Leaflet | © OpenStreetMap contributors, CC-BY-SA, Tiles © Esri — Source: Esri. i-cubed. USDA. USGS, AEX, GeoEye, Getmapping, 
Aerogrid, IGN, IGP, UPR-EGP, and tbe GIS User Community 

F I G U R E 4.3: The runoff of the basins from the C A M E L S dataset 
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Methodology 

In this section, each methodological step that was used for the purposes of the 
study will be described in details accordingly. The first section contains the 
description of the existing dHRUM model, along with all of its concepts described 
in detail. The second section contains the description of the different water 
balance structures which were implemented during this study. The third section 
contains detailed information about the calibration and evaluation steps using 
the CAMELS dataset, information about the basins that were chosen for this 
study, and the differential split sample test approach. The fourth section contains 
information about the three different objective functions used for the study. The 
fifth section contains information about the implemented data analysis and the 
wholesome assessment of the model. 

5.1 Definition and description of d H R U M 

As previously mentioned, for the purposes of this study the existing dHRUM 
model was used. Even though dHRUM stands for Distributed Hydrological 
Response Unit Model, this modelling framework can be used as a distributed, 
semi-distributed or lumped version, depending on the choice of the modeler. In 
this study, the lumped version was used. The distributed hydrological reponse 
unit model consists of six main storages: groundwater storage, soil water storage, 
surface retention storage, stem storage, snow storage and canopy storage. The 
models takes only the precipitation and the temperature as inputs, and gives us 
22 outputs which are described in Table 5.1 

The model also has 27 parameter inputs for calibration which are described 
in Table 5.2, of which 15 already existed in the original framework, and 12 more 
were added for the purposes of this study. 

11 
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Table 5.1: Description of dHRUM outputs 

OUTPUTS DEFINITION 
1 Prec Precipitation 
2 Snow Snow depth 
3 PET Potential Evapotranspiration 
4 AET Actual Evapotranspiration 
5 Temp Temperature 
6 SteF Stem flow 
7 TroF Through fall 
8 SteS Stem-storage 
9 EvaC Canopy Evaporation 
10 EvaS Stem-evaporation 
11 EvbS Bare soil Evapotranspiration 
12 CanF Canopy drainage 
13 CanS Canopy storage 
14 IntS Interception storage 
15 GroS Groundwater storage 
16 SoiS Soil storage 
17 SurS Surface retention 
18 Tot R Total-runoff 
19 DirR Direct Runoff 
20 Basf Base-flow 
21 Melt Melting 
22 Perc Percolation 

To get a better understanding of the structure of dHRUM, the following section 
will contain explanation of the water balance equations in each of the six storages: 
3 inerception storages (canopy, stem and snow storage) and 3 linear storages for 
groundwater, soil and surface storage. 

The dHRUM model follows the continuity equation for calculating the water 
balance: 

dS 
= I in Oout (5-1) 

dS 
where: — is the change of state variable of particular accumulation space. 

at 
Iin is the sum of input fluxes, Oout is the sum of output fluxes, The equation is 
dicretized on daily time step and solved using Euler method in each time-step. All 
units are in mm. The equation is upplied for updating all state variables: Snow, 
EvaC, SteS, SurS, SoiS, and GroS. 

In the following section, different annotations are gonna be used for represent­
ing the state variables, each of them defined and described in details. 

Potential Evapotranspiration 
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Table 5.2: Description of dHRUM input parameters 
INPUTS DEFINITION 

1 B_SOIL Parameter controlling shape of Pareto distribution of soil storage [O.inf] 
2 C M A X Max storage of storages distributed by Pareto distribution [0,inf] 
3 B _ E V A P Parameter controlling soil evapotranspiration [0,inf] 
4 SMAX Max soil storage calculate using Cmax and b soil 
5 KS Storage coefficient of groundwater storage [0,1] 
6 KF Storage coefficient of runoff response reservoirs [0,1] 
7 ADIV Divider of percolation into the direct runoff [0,1] 
8 CDIV Divider of gross rainfall as a Canopy input [0,1] 
9 SDIV Divider of gross rainfall as a Trunk input [0,1] 
10 CAN ST The Max canopy storage [0,inf] 
11 STEM ST The Max stem and trunk storage [0,inf] 
12 CSDIV The divider of canopy outflow to throughnow and stemflow storage [0,1] 
13 TETR The threshold temperature for determining snow [-inf,inf] 
14 DDFA The day degree model for snow melt [o, inf] 
15 TMEL The threshold temperature for determining melting process [-inf, inf] 
16 RETCAP The maximum capacity of surface retention [0, inf] 
17 L The amount of groundwater recharge removed from the linear reservoir [0,1] 
18 D_BYPASS The amount of groundwater recharge removed from the linear reservoir [0,1] 
19 B EXP Power coefficient 
20 KS2 Storage coefficient of groundwater storage [0,1] 
21 THR Threshold coefficient for threshold-controlled linear storage [0,inf] 
22 ALPHA Divider for two parallel linear reservoirs 
23 CMIN For pdm soil reservoir [0,inf] 
24 FC Field capacity [mm] [0,inf) 
25 FOREST_FRACT Forest fraction [0,1] 
26 KF2 Storage coefficient of runoff response reservoirs [0,1] 
27 KF_NONLIN Runoff non-linearity parameter [-] [0,inf) 

Before continuing to the water balance equations for each of the components, to 
get a better understanding of the model we will put focus on the calculation of the 
evapotranspiration in dHRUM. There are six methods for calculating the potential 
evapotranspiration: Oudin, Hamon, Thornthwaite, Blaney-Criddle, Jensen-Haise 
and McGuinnessBordne. For the purposes of this study, the Hamon potential 
evapotranspiration was used. 

The Hamon potential evapotranspiration equations is implemented into dHRUM 
as: 

TV e 
PET = fc(0.1651)(216.7)-T + 2

s

7 3 3 (5.2) 
Description of Hamon PET formula: 
PET - Potential Evapotranspiration 
k - Coefficient of proportionality [-] 

17.27T 
1.3 es - Saturation vapor pressure [millibars] which is equal to 6.108eT+273-: 

T - Monthly average temperature [°C] 
N - Length of daytime calculated in units of 12 hours which is equal to TV = (—)uu, 
where u - sunset hour angle [radians] 

u> = cos - 1 [— tan((5) tan(</?)] 

where, ip - the latitude [radians], <5 - the declination [radians] 
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5 = 0.409 sin ( — ) J - 1.39) 
\365 / 

where, J is the Julian Day of the year. 
A description of each of the storage dynamics of dHRUM will be described 

through the following subsections. 

Canopy storage 

The canopy storage is described with the following water balance equation: 

AW = CDIV(P + Pm) -Ec-Rc (5.3) 

where: 

W - canopy intercepted water [mm], 
Ec - evaporation from canopy layer [mm], 
Rc - the overflow from canopy, 
CDIV - divider of gross rainfall as a canopy input, 
Pm - snow melt [mm], 
P - precipitation [mm]. 

Maximum evaporation from the canopy is produced when there is intercepted 
water, thus the maximum canopy evaporation Ec is calculated with: 

where Wim = CANST which is the maximum canopy storage defined within 

the interval [0,inf] [mm], and the power of | is described by Deardorff (1978). 

The canopy overflow is calculated as: 

OFcan = CANS[i] - CANST (5.5) 

where CANS - the canopy storage, CANST - the max canopy storage 
Furthermore: 

CanOut = ( ) * Ec (5-6) 

so the total flow from canopy is the sum of CanOut and OFcan. 

Stem storage 
The stem storage is described with the following water balance equation: 

AW = s(P + Pm) + (l-c)*Rc-Es-Rs (5.7) 
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where: 
W - stem intercepted water, [mm] 
s - the divider of gross rainfall as a trunk input, 
P - precipitation [mm], 
Pm - snow melt [mm], 
c - divider of gross rainfall as a Canopy input, 
Rs - overflow from stem [mm], 
Rc - overflow from canopy [mm], 
Es - evaporation from the stem layer [mm]. 

The maximum stem evaporation (Es, mm) from each vegetation tile is calcu­
lated using the following formulation: 

* - ( £ ) ' 
where Wim = STEMST is the maximum stem storage defined within the 

interval [0,inf] in [mm], and the power of | is described by Deardorff (1978). 
The stem overflow is calculated as: 

StemOut = (-p- J * ES (5.9) 

0Fstem = StemS'[i] - STEMST (5.10) 

where StemS is stem storage and STEMST is the maximum stem storage. 
Then the total flow from the stem storage is the sum of StemOut and OFstem. 
Now, we get the total througflow from canopy and stem reservoirs in the following 
form: 

TROF = cRc + Rs (5.11) 

Snow storage 
The snow storage is described with the following water balance equation: 

AS = P-R (5.12) 

where: 
AS - the change in snow storage, 
P - the precipitation as snow, 
R - the snow melt calculated as: 

MELT = DDF A * (TEMP - TMEL) (5.13) 
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where DDF A represents the day degree model for snow melt, TEMP is the tem­
perature at time t, TMEL is the threshold temperature for determining melting 
processes. 

Surface retention storage 
The surface storage is described with the following water balance equation: 

AS=(1- CDIV - SDIV)(P + PM) + TROF — ES — R (5.14) 

where: 
AS is the change of the surface storage, CDIV is the divider of gross rainfall as a 
canopy input within interval [0,1], SDIV is the divider of gross rainfall as a trunk 
input within the interval [0,1], P is the precipitation, P_m is the precipitation 
as snow melt, E_s is the evaporation from the surface, TROF is the through 
fall surface retention and R is the runoff. Al l units are calculated in [mm]. The 
actual evaporation is represented by the following equation: 

AET = ( ——^— ) * PET (5.15) 
\RETCAP) V ; 

where: is the surface storage, RET CAP is the maximum capacity of surface 
retention which is withing the interval [0, inf], PET is the potential evapotranspri-
taion calculated from Hamon method. 

Soil water storage 1 
The soil water storage is described with the following water balance equation: 

AS = P - ES - R (5.16) 

where P - effective precipitation calculated from the surface storage, ES - evapo­
ration from the bare soil, R is the total overflow from the soil reservoir which is 
also referred to as percolation. 

Sl(t) B EVAP+1 

C = Cmax * [ 1 - ( 1 - —Al ) ) (5.17) 

Cmax 
Smax = ^ ^ (5.18) 

where Cmax - the maximum storage capacity of the catchment, b - a dimensionless 
parameter, BEVAP - parameter controlling soil evapotranspiration. So, the 
overflow from soil storage is calculated as: 

OF1 = (C + PREF - Cmax) (5.19) 
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where C - critical storage capacity, PREF - effective precipitation which is 
calculated from the surface reservoir, Cmax - the maximum storage capacity of 
the catchment. 

Furthermore, the infiltration is calculated as: 

Infiltration = PREF - OF1 (5.20) 

The soil water depth is a sum of the Infiltration and C. The soil buffer can be 
represented by the following formula (not affected by evapotranspiration) 

SOIS = S m a x * [ l - [ l - —— (5.21) 
\ \ ^max / / 

where Bsou - a parameter controlling shape of Pareto distribution of soil storage 
within the interval [0,inf], C - the soil water depth, Cmax - the maximum storage 
capacity, Smax - the maximum soil storage calculated using Cmax and B s o i i . The 
overflow can be calculated with the following equation: 

OF2 = Infiltration - SOIS + SOIS(0) (5.22) 

The evaporation from the bare soil is calculated with the following equation: 

/ fSmax- SOIS\Bevav\ „ ^ . 
^ = ( ! - ( S m a x ) ) * P E T <5'23> 

where Smax is the maximum soil storage. Now, the critical storage capacity C*(t) 
can be calculated as the perculation (total overflow) 

PERC = OF1 + OF2 (5.24) 

This soil water storage is defined as PDM which stands for Probability Distributed 
Model. 

Groundwater storage 1 
The groundwater storage is described with the following water balance equation: 

AS =(1- ADIV)Perc - R (5.25) 

where: 
AS - the change in the groundwater storage, 
Perc is the percolation from the groundwater reservoir, 
R - the runoff as a base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input. This 
groundwater storage is defined as LINRES which stands for linear reservoir. 
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5.2 Definition and description of the extended 
water-balance structures for groundwater 
and soil water storages in d H R U M 

In the following section, the three additional soil water structures and the seven 
groundwater structures for describing the water balance will be described in details. 

Groundwater storage 2: Linear reservoir with leakage (LINLRES) 
The linear reservoir with leakage is described with the following water balance 
equation: 

AS = L + (1 - ADIV)Perc- R (5.26) 

where 
R = S*KS (5.27) 

where: 
AS - the change in the groundwater storage, 
S - the current storage, 
L - the leakage coefficient describing the amount of groundwater recharge removed 
from the linear reservoir in the interval [0,1], 
Perc - the percolation from the groundwater reservoir, 
R - the runoff as a base flow, ADIV - divider of percolation into the direct runoff 
and groundwater input, 
KS - storage coefficient of groundwater storage. 

Groundwater storage 3: Linear reservoir with a direct-by-pass (LIN-
BYRES) 
The linear reservoir with a direct-by-pass is described with the following water 
balance equation: 

AS = (1 - D_BYPASS) * (1 - ADIV)Perc - R (5.28) 

where 
R = S * KS + D_BYPASS(1 - ADIV)Perc (5.29) 

where: 
AS - the change in the groundwater storage, 
S - the current storage, 
D_BYPASS - the amount of groundwater recharge removed from the linear 
reservoir in the interval [0,1], 
Perc - the percolation from the groundwater reservoir, 
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R - the runoff base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input, KS 
- storage coefficient of groundwater storage. 

Groundwater storage 4: Two serial linear reservoirs (LIN2SE) 
The two serial linear reservoirs are described with the following water balance 
equation: 

ASX = (1 - ADIV)Perc - Rx (5.30) 

A S 2 = R1-R2 (5.31) 
where 

Ri = KsSl (5.32) 

R2 = Ks2S2, for Ks2 < Ks (5.33) 

where: 
A Si - the change in the first serial linear reservoir, 
AS2 - the change in the second serial linear reservoir, 
SI, S2 - the current storage in the first and second reservoir respectively, 
Perc - the percolation from both serial linear groundwater reservoirs, 
Ri - the runoff from the first serial linear reservoir as a base flow, 
R2 - the runoff from the second serial linear reservoir as a base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input, 
Ks - storage coefficient of groundwater storage in the first serial linear reservoir 
defined within the interval [0,1], 
Ks2 - storage coefficient of groundwater storage in the second serial linear reservoir 
defined within the interval [0,1] 

Groundwater storage 5: Two parallel linear reservoirs (LIN2PA) 
The two parallel linear reservoirs are described with the following water balance 
equation: 

A S i = (1 - ADIV) * ALPHA * Perc - Rx (5.34) 

A S 2 = (1 - ADIV) * (1 - ALPHA) * Perc - R2 (5.35) 
where, 

Rl = S I * KS (5.36) 
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R2 = S2* KS2 (5.37) 

R = RX + R2 (5.38) 

where: 
A Si - the change in the first parallel linear reservoir, 
AS2 - the change in the second parallel linear reservoir, 
SI, S2 - the current storage in the first and second reservoir respectively, 
Perc - the percolation from both parallel linear groundwater reservoirs, 
Ri - the runoff from the first parallel linear reservoir as a base flow, 
R2 - the runoff from the second parallel linear reservoir as a base flow, 
R - the total runoff from the groundwater reservoir, 
ADIV - divider of percolation into the direct runoff and groundwater input, 
KS - storage coefficient of groundwater storage in the first parallel linear reservoir 
defined within the interval [0,1], 
KS2 - storage coefficient of groundwater storage in the second parallel linear 
reservoir defined within the interval [0,1], 
ALPHA - the divider for two parallel linear reservoirs. 

Groundwater storage 6: Non linear power law reservoir (POWRES) 
The non linear power law reservoir is described with the following water balance 
equation: 

A S = (l-ADIV)*Perc-R (5.39) 

R = SB-EXP * KS (5.40) 
where 

^ < B_EXP < 1 (5.41) 
where: 
A S - the change in the groundwater storage, 
S - the current storage, 
B_EXP - the power cofficient, 
Perc - the percolation from the groundwater reservoir, 
R - the runoff base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input, 
KS - storage coefficient of groundwater storage. 
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Groundwater storage 7: Exponential reservoir (EXPRES) 
The exponential reservoir is described with the following water balance equation: 

AS = (l-ADIV)*Perc-R (5.42) 

R = KS *eB-EXP (5.43) 

where 
B_EXP ^ 0 

where: 
AS - the change in the groundwater storage, 
S - the current storage, 
B_EXP - the power comcient, 
Perc - the percolation from the groundwater reservoir, 
R - the runoff as a base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input, 
KS - storage coefficient of groundwater storage. 

Groundwater storage 8: Linear reservoir with threshold controlled 
increased storage outflow (FLEXRES) 
The FLEX reservoir is described with the following water balance equation: 

AS = {l-ADIV)* Perc -R (5.44) 

(KsS, for THR > S 
R = I (5.45) 

{Ks2* (S-THR) + KSS for THR < S, 

where: 
AS - the change in the groundwater storage, 
S - the current groundwater storage, 
THR - the threshold cofncient within an interval [0,inf], 
Perc - the percolation from the groundwater reservoir, 
R - the runoff base flow, 
ADIV - divider of percolation into the direct runoff and groundwater input, 
Ks, Ks2 - storage coefficients of groundwater storage. 

Soil water storage 2: Collie River Basin 2 (COLLIEV2) 
This soil storage reservoir, known as Collie River Basin version 2, describes the 
bare soil evaporation and the vegetation evaporation. In our implementation, 
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they are distinct, but their sum is counted as the total evaporation. Also, in this 
model the total runoff is the sum of subsurface runoff, and the saturation excess 
from the surface runoff. The soil storage of type COLLIEV2 is represented by the 
following water balance equation: 

where 

AS = P - Eb - Ev - Rse - Rss (5.46) 

Eb = — * (1 - FOREST FRACT) * PET (5.47) 
SMAX y ~ ' y ' 

[FOREST FRACT* PET, if S > FC 
Ev = { ~ (5.48) 

[^* FOREST_FRACT * PET, otherwise 

[p, US>SMAX 
Rse = < (5.49) 

I 0, otherwise 

f KF*(S - FC), HS>FC 
Rss={ (5.50) 

I 0, otherwise 

where: AS - the change of soil storage, 
P - effective precipitation, 
Ej, - evaporation from bare soil, 
Ev - evaporation from vegetation, 
Rse - saturation excess surface flow, 
Rss - subsurface runoff, 
S - current soil storage, 
SMAX - maximum soil storage, 
FOREST_FRACT - forest fraction defined within the interval [0,1], 
FC - field capaity in mm within the interval [0,inf), 
KF - storage coefficient of runoff response reservoir within the interval [0,1]. 

Soil water storage 3: New Zealand (NEWZEALAND) 
This soil storage reservoir, known as New Zealand version 1, describes the bare 
soil evaporation and the vegetation evaporation. In our implementation, they are 
distinct, but their sum is counted as the total evaporation. Also, in this model the 
total runoff is the sum of subsurface runoff when soil moisture exceeds the field 
capacity, the saturation excess from the surface flow and the baseflow. The soil 
storage of type NEW_ZEALAND is represented by the following water balance 
equation: 

AS — P — Eb — Ev — Rse — Rss — R< bf 
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where 
EBS = * (1 - FORESTFRACT) * PET (5.51) 

(FOREST FRACT*PET, HS>FC 
EV= < - (5.52) 

[-fy * FOREST_FRACT * PET, otherwise 

(P, if S>SM AX 
Rse = < (5.53) 

I 0, otherwise 

( (KF * (S - F C ) ) K F - N O N L I N , HS>FC 
RSS = \ (5.54) 

0, otherwise 

RBF = KF2 * S (5.55) 

where: 
AS - the change of soil storage, 
P - effective precipitation, 
Eb - evaporation from bare soil, 
EV - evaporation from vegetation, 
RSE - saturation excess surface flow, 
RSS - subsurface runoff, 
Rbf - baseflow, 
S - current soil storage, 
SMAX - maximum soil storage, 
FOREST_FRACT - forest fraction defined within the interval [0,1], 
FC - field capaity in mm within the interval [0,inf), 
KF - storage coefficient of runoff response reservoir within the interval [0,1]. 
KF_NONLIN - runoff non-linearity parameter [-] within the interval [0,inf), 
KF2 - storage coefficient of runoff response within [0,1] 

Soil water storage 4: a daily four-parameter rainfall-runoff model 
(GR4J) 
This soil storage reservoir, known as GR4J, has two stores with four parameters. 
The reservoir works with an explicit time-step. The following equations are used for 
its implementation. The original model in Knoben et al. (2019a) have implemented 
equations from Santos et al. (2018) but have used the original unit hydrograph by 
Perrin et al. (2003). Here, we only use one store with one parameter, representing 
only the soil reservoir of the model. 
The soil storage of type GR4J is represented by the following water balance 
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equation: 

where 

where 

AS = Ps - Es - Perc (5.56) 

, P - PET, if P > PET 
Pn = { (5.58) 

0, otherwise 

S ( S x 2 

E- = E-\2SMAX-{SMAX) ) <5'59» 
where 

[PET-P, iiPET>P 
En = I (5.60) 

I 0, otherwise 

p m = s M £ ± E . . ( * y i
! ? , 5 , i , 

where: 
AS - the change of soil storage, 
Ps - fraction of Pn, the net precipitation, diverted to soil moisture, 
Es - the fraction of En, the net evaporation, taken away from the soil moisture, 
Perc - percolation, 
S - current soil storage, 
SMAX - maximum soil storage, 
PET - potential evapotranspiration, 
P - effective precipitation. 

It is very important to note that during the calculation of evaporation and 
runoff in each time step, for each of the groundwater and soil water reservoir, a 
water balance equation was implemented. The water balance equation is a simple 
equation where we make sure that we are updating the storage correctly whenever 
we have different types of evaporations (vegetation or bare soil), or different types 
of runoff (surface, subsurface, baseflow), making sure our storage never becomes 
negative. If the amount of bare soil evaporation and vegetation evaporation are 
smaller than the current available storage, then we subtract them first, and then 
we proceed with calculating whether the subsurface, surface runoff and baseflow 
are smaller than the current available storage, and if they are, they are subtracted 
respectively from the current storage. 
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5.3 Usage of the differential split sample test 

For accessing and testing the performance of the dHRUM modelling framework, 
the CAMELS dataset was used. As prevoously described in the study area section, 
only 620 out of 671 basins were included for the study, and the nldas forcing 
data was used. The decision to exclude 51 basins lies on the fact that many of 
the basins has missing or incomplete data. After the whole dataset was read in 
R, both the forcing data and the observations, a data analysis was performed 
for each of the basins during the time period between 01.01.1980 and 31.12.2014. 
While processing the data for each basin and each year, additional columns were 
added to a new table indicating: a negative discharge, a discharge with an NA 
value, missing dates (in such a way that the forcing data dates could not overlap 
with the dates of the observations). After processing this information, the results 
were summarized indicating the basins where there were more than 5 years of 
incomplete data. It was noticeable that for the year 2014, 411 out of 671 basins 
had missing data, so this year was excluded for all basins. Then, 51 basins in 
total had incomplete data for more than 4 years, so those basins were excluded 
from the study. The basins that were used for this study have no more than 4 
years of missing data, which left us with at least 25 years and at most 30 years 
for calibration and validation, of which always the calibration was applied on a 10 
year consecutive period, and the validation on the remaining years. 

The differential split sample test was used as described in the literature review 
for choosing the data for calibration and the data for validation. A simple 
alghorithm was implemented to find the 10 consecutive years of each of the 
basins where the average annual precipitation was the lowest from all possible 10 
consecutive years period given. Those data were used for calibrating the model 
on the dry period. The same alghorithm was used for finding the 10 consecutive 
years period for each of the basins where the annual average precipitation was the 
highest, and those data were used for calibrating the model on the wet period. 

In conclusion, this whole study is performed separately on the data where the 
calibration was done for the dry period and on the data where the calibration was 
done on the wet period. By using this differential split sample test for calibration 
on dry and on wet period, we want to access the difference of the performance of 
the model depending on this factor. More information about the calibration and 
validation can be found in the next secion. 
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5.4 Calibration and validation of the model 

In this study, 32 model structures were used for streamflow simulations for 
calibrating and evaluating the performances dHRUM. The study was done on 
620 basins from the CAMELS dataset. The calibration was performed on a 10 
year consecutive period for each of the 620 basins from the CAMELS dataset 
where the warming period was set to be the first year of each of the periods. The 
validation was performed on the remaining years as explained in the previous 
section and in the study area section. Three single-objective functions were used: 
KGE (Kling-Gupta Efficiency), NSE (Nash-Sutcliffe Efficiency) and MAE (Mean 
Absolute Error). Three goodness-of-fit criteria values were produced using the 
gof(goodness of fit) R library which is a function that returns a goodness-of-fit 
measures between the simulations and the observations, of which three values were 
chosen as such: KGE, NSE, MAE. In this section, the three objective functions 
will be furtherly described. 

The goodness-of-fit of a parameter set depends on the different objective 
functions chosen when calibrating the model. This means that a parameter set 
can be a bad fit for the same objective function which can be a good fit for another 
parameter set, and vice versa. 

Kling-Gupta efficiency (KGE) 
The Kling-Gupta efficiency (KGE) was developed by Gupta et al. (2009). KGE is 
an objective function which in a balanced way combines three components of NSE 
of model errors more specifically the following three: bias, correlation, coefficients 
of variation. Those are correlation, bias, the ratio of variances). This objective 
function has become very popular among hydrologists through the years. It is 
represented by the following formula: 

KGE = 1 - EDS 

EDS = y/(Sl(r - l ) ) 2 + (s2(vr - l ) ) 2 + (s3((3 - l )) 2 ) 

(3 = us/uD 

a = (J si (T0 

where: 
EDS - Euclidean distance in scaled space 
r - the Pearson product-moment correlation coefficient 
(3 - the ratio between the means of the simulated values and observed values 
vr - variability ratio 
a - ratio between the standard deviations of the simulated and observed values 
7 - ratio between the coefficient of variations of simulated and observed values. 
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KGE values that are greater than -0.41 mean that the model is improving over 
the average flow reference value, even if it is negative Knoben et al. (2019b). 

Nash-Sutcliffe efficiency (NSE) 
Nash-Sutcliff efficiency (NSE) is a normalized statistic that calculates magnitude 
residual variance versus variance of measured data Nash and Sutcliffe (1970) Also 
an indicator for show how well the observed versus simulated data fit. While NSE 
= 1, it corresponds to a model that perfectly corresponds to the observed data, 
NSE = 0, corresponds to the predictions of the model as accurate as the average 
values of the observed data. To calibrate the NSE minimization model to 0 is 
used as the main fitness function for calibration, which is formulated below. 

Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that calculates the 
magnitude of the residual variance versus the variance of the measured data Nash 
and Sutcliffe (1970), and it is also an indicator of how well the observations fit 
the simulations. When NSE = 1, it means that the observations perfectlt fit the 
simulations, while when NSE = 0 means that the predictions of the model are 
accurate as the mean value of the observed data. 

NSE=1- P ^ 0 b s - S i m ^ 
^n = 1(o6s — mean(obs))2 

where: 
M - number of observation, 
obs - observed values 
sim - simulated values 

Mean Absolute Error (MAE) 
The mean absolute error (MAE) calculates the average absolute value of residual 
errors between the simulated and the observed flows. The closer it is to 0, the 
better it is. 

1 N 

MAE{0) = -Y,\Vk-l/kW)\ 
k=i 

where: 
Uk - the observed flow at time k 
y'k{0) - the flow at time k estimated with the set of parameters 6 
N - the number of time steps in the event. 

M A E takes into account the accuracy of the simulations at for low flows 
Mediero et al. (2011). 
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5.5 Optimization Algorithm 

The Differential Evolution algorithm was used in this study as an optimization 
algorithm for minimization of the objective functions. This algorithm is introduced 
by Storn and Price (1997). The Differential Evolution algorithm consists of three 
steps: 

• 1. create a population of N in an m-dimensional space, randomly distributed. 

• 2. replace the current population with a better fit new population 

• 3. repeat step 2 until satisfactory results are obtained. 

This algorithm had been explored and used my many as an algorithm for solving 
global optimization problems Ardia et al. (2011). The Differential Evolution 
algorithm (DE) in this study was used as a pre-build package in R Mullen et al. 
(2011). The optimization algorithms purpose is to find the best model parameter 
values based on minimizing or maximizing the objective function. In this study 
minimizing objective functions are measured. 
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Results and Discussion 

In this study, exploratory data analysis was performed. The aim of the exploratory 
data analysis was to try to understand the results in order to be able to describe 
the strengths and weaknesses of the models and propose next steps. The results 
from the three goodness-of-fit criteria generated with the gof package both for 
calibration and validation are represented in the following 6 rows: calib_KGE, 
valid_KGE, calib_NSE, valid_NSE, calib_MAE, valid_MAE. 

6.1 Calibration on dry period, validation on wet 
period 

The first step that needed to be done was to find the incomplete or noisy data, so the 
number of occurences of NA values were accessed for each of the resulting columns. 
After the resulting dataset from the calibration done on the dry period was 
processed in R and the is.na() function was applied to each column separately, NA 
values were noticed in the calib_KGE and valid_KGE columns. For calib_KGE 
there were 40 NA values out of 59520 values in total, and valid_KGE there were 
35 NA values out of 59520 values in total. These values can be removed because 
they only represent 0,0013% of the dataset in the worst case scenario (if 75 rows 
in total were to be removed). After removing the NA values, the resulting dataset 
was left with 59446 records. 

Next step was to understand the minimum and maximum values of each of 
the goodness-of-fit criteria. The decision behind this step was to understand the 
extreme high and low values that the model had produced, and where exactly it 
produced them. 

It was observed that the maximum values for KGE and NSE both for calibration 
and validation were < 1, which means that there were no extreme high values 

29 
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• dry 59520 obs. of 23 variables • 

S b a s i n i d : in t 1013508 1322500 1030500 1031500 1047000 1052503 1054200 1055038 1057000 107380... 
S period : chr "dry" "dry" "dry" "dry" ... 

S obj_fjnctlon: chr "kge" "kge" "kge" "kge" ... 

S gwStor : chr "EXPRES" "EXPRES" "EXPRES" "EXPRES" ... 

S swStor : chr "C0LLIEV2" "C0LLIEV2" "C0LLIEV2" "C0LLIEV2" ... 

S calibKCE : nun 0.42 0.22 0.36 0.27 0.29 0.28 0.17 0.23 0.19 0.29 ... 

S calibNSE : nun 0.51 -8.04 0.34 -0.44 0.06 -0.29 0.08 0.1 -8.01 0.11 ... 

S calibMAE : nun 0.91 1.61 1.04 1.43 1.56 1.74 2.09 1.56 1.3 1.03 ... 

S validKCE : nun 0.46 0.19 0.4 0.28 0.32 -4.96 0.14 0.22 0.26 0.26 ... 

S validNSE : nun 0.42 -8.26 0.36 -0.3 -0.13 ... 

S validMAE : nun 1.12 1.67 1.14 1.6 1.89 2.1 2.54 1.91 1.63 1.25 ... 

S Runoff : nun 1.66 2.09 1.77 1.98 2.09 ... 
$ Precip : nun 2.78 3.19 3.12 3.25 3.43 ... 

S PET : nun 1.95 2.09 2.01 2.03 2.07 ... 

S Temp : nun 3.93 6.73 5.61 5.42 5.38 ... 

S Size : nun 2304 620 3676 767 905 ... 

S Elevation : nun 250.3 92.7 143.8 247.8 310.4 ... 

S Slope : nun 21.6 17.8 12.8 29.6 49.9 ... 

S FracForest : nun 0.906 0.923 0.878 0.955 0.991 ... 

S Lat : nun 47.2 44.6 45.5 45.2 44.9 . .. 

S Long : nun -68.6 -67.9 -68.3 -69.3 -70 ... 

S area : nun 2253 574 3676 769 909 ... 

S description : chr "1013580_dry_kge_EXPRES_COLLIEV2" "lO2250O_d^y_kge_EXPRES_COLLIEV2•, " 133O50O_d... 

F I G U R E 6.1: Overview of the results 

Table 6.1: Min and max values from results on dry period 

min max 
calibKGE -17.09 0.88 
validKGE -7.84 0.84 
calibNSE -347.41 0.84 
validNSE -6.12e+129 0.71 
calibMAE 0.01 10.19 
validMAE 0.01 3.45e+62 

here. On the other hand, extreme low values exist, especially for NSE. In contrary, 
MAE has 0.01 as the minimum value, but very high maximum values. 

To get a better overview of the distribution of each of these results, it has to 
be considered the total number of resulting records which is 59446. If these values 
were to be plotted, the distribution of the data would be distorted, so in order 
to be able to better understand the distribution of the data, the log() function 
was used. After using the logQ function, almost half of the data was removed 
due to 'non-finite values'. So, it can be concluded that plotting the individual 
distributions of the results in a form of a histogram is not a very elegant solution 
while having so many values and outliers. The boxplot function could be used for 
visualizing the differences between the samples, the ranges, the medians and the 
outliers. In order to be able to proceed with the analysis, the boxplotQ function 
was be used for better understanding of the results, thus setting the direction of 
the further analysis. 
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Calibration KGE Validation KGE 

Calibration NSE Validation N5E 

Calibration MAE Validation MAE 

1 i 

F I G U R E 6.2: Boxplot results from goodness-of-flt values when calibration is done 
on dry period 

The plotted outliers in Figure 6.2 in the case of KGE and NSE goodness-of-flt 
criteria are negative values. The outliers for calibration and validation from MAE 
goodness-of-flt criteria are positive values. There are 1265 outliers from the results 
from calibration on dry period produced from KGE as a goodness-of-fit criteria. 
5171 outliers from the calibration done on the dry period produced from NSE as 
a goodness-of-flt criteria, and 4485 outliers from the calibration done on the dry 
period produced from MAE as a goodness-of-flt criteria, when using the boxplot () 
function for indicating the outliers. Even though this is a very small percentage 
of the resulting dataset, these ourliers contain important information about the 
model, so they will not be ommited from the analysis, but will be extracted later 
in order to gain some insights about when and where they occur. 

Next step was to individually examine the results from the three different 
objective functions: KGE, NSE, MAE, where for each of them the model produced 
three goodness-of-flt criteria both for calibration and validation. 

The K G E values in this study are considered as 'acceptable' values if they 
are within the ranges -0.41 to 1. There are many discussion about which values 
are considered as good values for KGE, in this study -0.41 is taken as a good 
value because it means that the model is better or improves upon the mean flow 
benchmark. The NSE values in this study are considered as acceptable values if 
they are within the ranges 0 to 1, where if they are smaller than 0.5 than they are 
considered as unsatisfactory values, if they are between 0.5 and 0.7 then they are 
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considered as satisfactory values, while the values between 0.7 and 1 are considered 
as good values. For MAE, the values which are considered as acceptable are values 
between 0 and 1, but what is important here to mention is that the values that 
are considered as good values that the model produced in this study don't have a 
fix range. Instead, for each of the basins, the M A E threshold is calculated from 
the observables taken as a quantile function with 0.2 quantile, and accordingly to 
each basin a different threshold value was assigned. 
The exact amount of data which is within these acceptible values is still unknown, 
so the next step of the analysis was to see how much of the resulting data is within 
the acceptible range, to try and find a connection between the different structures 
tested with dHRUM depending on the previous conditions. 

For K G E goodness-of-fit criteria, there are 56485 values out of all resulting 
values that are within the acceptible range. Respectively, for NSE there are 31252 
which is almost 60% of the data within 0 and 1, and for M A E there are 1082 
values whose MAE goodness-of-fit value was approximating the mae threshold for 
each basin at most for 0.5 and at least 0, the acceptible range, where 0 indicated 
the perfect fit. Now, a further analysis can be done on each of the calibrations 
separately for each objective function in order to try to better understand the 
results. 

Summary of results (calibration on dry period) 

In Figure 6.3 the results are grouped by their objective function and goodness-
of-fit criteria, summarized by the median. When K G E is used as an objective 
function, best goodness-of-fit results are produced for K G E both for calibration 
and validation. However, NSE and MAE also produce satisfactory goodness-of-fit 
values when used KGE as an objectve function. When NSE is used as an objective 
function, results are better with NSE goodness-of-fit criteria, but also with KGE 
goodness-of-fit criteria. However, these results are not satisfactory since a good 
NSE value is considered above 0.5. When using the MAE as an objective function, 
the results are also not satisfactory, because the expected median threshold should 
be around 0.2, and the values produced here are above 0.5. A lot of outliers can 
be noticed for validation done with NSE objective function, and validation done 
with M A E objective function. The summary of the results from the calibration 
done on dry period can be found in Table 6.2 

Next step was to examine the influence from the different groundwater and soil 
water structures used in the study. The results were grouped by the groundwater 
storage, soil water storage and the used objective function, summarized by their 
median value. There are 96 result rows in total (3 objective functions, 4 soil 
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F I G U R E 6.3: Boxplot results from dry period 

Table 6.2: Summary of results (median) for calibration done on dry period 

obj calib_KGE valid_KGE calib_NSE valid_NSE calib_MAE valid_MAE 
kge 0.21 0.17 -0.16 -0.13 0.86 1.06 
nse 0.04 0.03 0.06 -0.01 0.73 0.88 
mae -0.01 -0.02 0.01 0.0 0.7 0.84 

water structures and 8 groundwater structures). The results done with K G E 
objective function are most satisfactory out of all three objective functions. Most 
dominant groundwater structures from the results with the KGE goodness-of-fit 
criteria (Table 6.3) which are satisfactory include the FLEXRES, LINRES and 
LINBYRES, while for soil are PDM, COLLIEV2 and NEWZEALAND. When 
KGE is used as an objective function, the NSE and MAE goodness-of-fit criteria 
values are not satisfactory. 

From Table 6.4 and Table 6.5 it can be concluded, that the results are not 
satisfactory enough neither when NSE is used as an objective function, nor when 
M A E is used as an objective function. From 6.1 it is obvious that the model 
produced satisfactory results both for NSE and for MAE. The reason why this 
grouping is not showing good results for NSE and M A E is because of the many 
outliers that exist there as seen from Figure 6.3. Also, some other external factors 
may influence this, for an example the basin's physical characteristics. In order 
to better understand the results, they are plotted on a map, the goodness-of-fit 
results from the calibration for each of the objective functions (Figure 6.4). The 
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Table 6.3: Calibration done on dry period with KGE, grouped by different storages, 
summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
EXPRES COLLIEV2 0.210 0.090 -0.295 -0.605 0.935 1.240 
EXPRES GR4J 0.080 -0.300 -0.310 -1.915 0.845 1.240 
EXPRES NEWZEALAND 0.200 -0.065 -0.285 -1.230 0.900 1.620 
EXPRES PDM 0.195 0.030 -0.170 -0.970 0.810 1.100 
FLEXRES COLLIEV2 0.340 0.280 -0.225 -0.255 0.900 1.090 
FLEXRES GR4J 0.280 0.230 -0.190 -0.210 0.855 1.060 
FLEXRES NEWZEALAND 0.320 0.240 -0.270 -0.360 0.870 1.065 
FLEXRES PDM 0.390 0.350 0.025 -0.040 0.780 0.945 
LIN2PA COLLIEV2 0.200 0.160 -0.130 -0.120 0.920 1.060 
LIN2PA GR4J 0.080 0.060 -0.160 -0.130 0.845 1.015 
LIN2PA NEWZEALAND 0.230 0.180 -0.270 -0.290 0.910 1.080 
LIN2PA PDM 0.170 0.160 -0.010 0.000 0.835 0.960 
LIN2SE COLLIEV2 0.200 0.170 -0.140 -0.120 0.920 1.090 
LIN2SE GR4J 0.070 0.050 -0.160 -0.140 0.860 1.000 
LIN2SE NEWZEALAND 0.230 0.180 -0.300 -0.300 0.915 1.090 
LIN2SE PDM 0.170 0.170 0.005 0.000 0.830 0.980 
LINBYRES COLLIEV2 0.280 0.240 -0.070 -0.080 0.880 1.040 
LINBYRES GR4J 0.150 0.130 -0.100 -0.090 0.810 0.980 
LINBYRES NEWZEALAND 0.320 0.270 -0.100 -0.140 0.870 1.040 
LINBYRES PDM 0.290 0.290 0.125 0.130 0.785 0.920 
LINLRES COLLIEV2 0.220 0.180 -0.160 -0.150 0.945 1.090 
LINLRES GR4J 0.100 0.080 -0.170 -0.160 0.860 1.010 
LINLRES NEWZEALAND 0.250 0.185 -0.290 -0.330 0.920 1.100 
LINLRES PDM 0.215 0.200 -0.010 -0.010 0.830 0.990 
LINRES COLLIEV2 0.310 0.260 -0.110 -0.115 0.895 1.070 
LINRES GR4J 0.190 0.160 -0.120 -0.110 0.860 1.000 
LINRES NEWZEALAND 0.300 0.240 -0.190 -0.230 0.850 1.090 
LINRES PDM 0.320 0.290 0.030 0.010 0.820 0.970 
POWRES COLLIEV2 0.200 0.170 -0.130 -0.100 0.920 1.070 
POWRES GR4J 0.080 0.060 -0.170 -0.130 0.845 0.970 
POWRES NEWZEALAND 0.240 0.180 -0.280 -0.290 0.910 1.095 
POWRES PDM 0.180 0.175 -0.020 -0.010 0.830 0.980 

MAE goodness-of-fit values were calculated depending on each basin's threshold 
value, the M A E values was substituted from the threshold value for each basin, 
so a value which is closer to 0 but positive indicates that the value is not bigger 
than the threshold value and the closer it is to 0, the better the result. As seen 
from the map, such values are colored with a purple color, in the up right corner. 
The NSE values which are considered as satisfactory, are also colored with purple 
and pink color, very close to the border on the bottom right. In order to find the 
structures which dominate when the model performs good (but also when the 
model is not satisfactory enough), the appropriate ranges will be applied and the 
values within those ranges will be extracted from the results, in a way that the 
'winning' and the 'bad' structures shall be discussed. 

For NSE we consider values to be satisfactory if they are bigger than 0.5. This 
will be applied only to the calibration period for the sake of simplicity since the 
calibration and the validation within the appropriate objective functions are very 
similar. The total number of NSE values which satisfy the condition >= 0.5 
are 1475 in total. The number of occurences for the objective functions are the 
following: NSE goodness-of-fit value with 611 values, K G E wth 345 and M A E 
with 519. The dominant groundwater structures are: LINBYRES with 335 values, 
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Table 6.4: Calibration done on dry period with NSE, grouped by different storages, 
summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
EXPRES COLLIEV2 -0.010 -0.130 0.000 -0.190 0.795 1.230 
EXPRES GR4J -0.070 -0.190 0.000 -0.260 0.760 1.080 
EXPRES NEWZEALAND 0.030 -0.415 0.030 -0.560 0.755 1.955 
EXPRES PDM 0.070 -0.015 0.070 -0.060 0.710 0.940 
FLEXRES COLLIEV2 0.170 0.150 0.060 0.020 0.740 0.915 
FLEXRES GR4J 0.080 0.090 0.060 0.020 0.700 0.870 
FLEXRES NEWZEALAND 0.160 0.125 0.050 -0.050 0.750 0.945 
FLEXRES PDM 0.240 0.250 0.175 0.120 0.650 0.795 
LIN2PA COLLIEV2 0.020 -0.010 0.040 0.010 0.770 0.920 
LIN2PA GR4J -0.060 -0.070 0.010 -0.010 0.770 0.910 
LIN2PA NEWZEALAND 0.040 0.010 0.050 -0.010 0.740 0.880 
LIN2PA PDM 0.030 0.040 0.080 0.060 0.735 0.865 
LIN2SE COLLIEV2 0.015 -0.010 0.030 0.010 0.780 0.900 
LIN2SE GR4J -0.040 -0.055 0.010 -0.010 0.755 0.890 
LIN2SE NEWZEALAND 0.030 0.010 0.060 -0.010 0.720 0.885 
LIN2SE PDM 0.060 0.050 0.090 0.060 0.730 0.870 
LINBYRES COLLIEV2 0.130 0.115 0.120 0.070 0.720 0.860 
LINBYRES GR4J 0.030 0.040 0.070 0.030 0.720 0.860 
LINBYRES NEWZEALAND 0.150 0.130 0.115 0.040 0.700 0.850 
LINBYRES PDM 0.180 0.180 0.250 0.230 0.695 0.815 
LINLRES COLLIEV2 0.050 0.020 0.040 0.010 0.775 0.920 
LINLRES GR4J -0.040 -0.050 0.010 -0.010 0.755 0.880 
LINLRES NEWZEALAND 0.060 0.025 0.060 -0.010 0.740 0.875 
LINLRES PDM 0.060 0.070 0.100 0.080 0.730 0.860 
LINRES COLLIEV2 0.150 0.120 0.100 0.070 0.710 0.850 
LINRES GR4J 0.050 0.040 0.070 0.040 0.680 0.830 
LINRES NEWZEALAND 0.130 0.110 0.100 0.050 0.710 0.880 
LINRES PDM 0.180 0.180 0.170 0.140 0.640 0.780 
POWRES COLLIEV2 0.020 -0.020 0.040 0.010 0.770 0.920 
POWRES GR4J -0.050 -0.060 0.010 -0.010 0.750 0.890 
POWRES NEWZEALAND 0.045 0.010 0.050 -0.010 0.720 0.880 
POWRES PDM 0.040 0.040 0.090 0.060 0.730 0.870 

LINRES with 328 values, FLEXRES with 282 values, and a smaller portion for the 
rest of the groundwater structures. The dominant soil water structures are PDM 
with 660 values and COLLIEV2 with 333 values. Accoridngly, the same analysis for 
the number of occurences will be applied to the 'bad' structures, with one difference 
only: the values which are smaller than 0 will be taken into consideration, because 
those are the values which are outliers for NSE goodness-of-fit measure. For KGE 
as an objective functions, there are 13334 values which are smaller or equal to 
0, after which follows the M A E objective function with 8370 values, and then 
NSE objective function with 6490. The dominant underperforming groundwater 
structures are EXPRES, POWRES, LIN2PA and LIN2SE with 4397, 3739, 3707 
and 3714 accorgingly. The dominant underperforming soil water structures are 
GR4J with 8065, COLLIEV2 with 7514 and NEWZEALAND with 7674 values. 

For MAE we consider values to be satisfactory if they are positive and bigger 
than 0, where 0 indicates that the calculated M A E goodness-of-fit value equals 
the threshold. The values between 0 and 0.5 were taken as such, in total 1082 
values. Regarding the dominance of the objective functions, best performing is 
M A E with total of 438 values, followed by NSE 389 values and the rest with 
KGE. The dominant satisfactory groundwater structures are LINRES, FLEXRES, 
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Table 6.5: Calibration done on dry period with MAE, grouped by different storages, 
summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
EXPRES COLLIEV2 -0.030 -0.300 -0.030 -0.555 0.780 1.250 
EXPRES GR4J -0.070 -0.290 -0.020 -0.515 0.750 1.130 
EXPRES NEWZEALAND -0.020 -0.425 -0.010 -0.355 0.710 1.630 
EXPRES PDM 0.030 -0.080 0.040 -0.190 0.695 0.920 
FLEXRES COLLIEV2 0.110 0.095 0.025 0.000 0.720 0.880 
FLEXRES GR4J 0.030 0.040 0.030 0.000 0.700 0.850 
FLEXRES NEWZEALAND 0.110 0.095 0.000 -0.070 0.690 0.880 
FLEXRES PDM 0.140 0.175 0.140 0.110 0.610 0.750 
LIN2PA COLLIEV2 -0.070 -0.090 0.010 0.000 0.760 0.890 
LIN2PA GR4J -0.090 -0.085 0.000 -0.010 0.740 0.875 
LIN2PA NEWZEALAND -0.020 -0.040 0.010 -0.030 0.670 0.810 
LIN2PA PDM -0.010 -0.010 0.060 0.050 0.720 0.840 
LIN2SE COLLIEV2 -0.055 -0.075 0.010 0.000 0.760 0.890 
LIN2SE GR4J -0.090 -0.090 0.000 -0.010 0.750 0.880 
LIN2SE NEWZEALAND -0.010 -0.030 0.010 -0.030 0.670 0.810 
LIN2SE PDM -0.010 -0.010 0.070 0.050 0.710 0.830 
LINBYRES COLLIEV2 0.080 0.070 0.080 0.060 0.700 0.835 
LINBYRES GR4J -0.015 -0.010 0.040 0.030 0.700 0.820 
LINBYRES NEWZEALAND 0.100 0.070 0.060 0.010 0.645 0.785 
LINBYRES PDM 0.100 0.110 0.180 0.170 0.640 0.760 
LINLRES COLLIEV2 -0.040 -0.060 0.010 0.000 0.750 0.890 
LINLRES GR4J -0.070 -0.060 0.000 -0.010 0.745 0.865 
LINLRES NEWZEALAND -0.010 -0.030 0.000 -0.040 0.680 0.820 
LINLRES PDM 0.030 0.030 0.080 0.065 0.700 0.830 
LINRES COLLIEV2 0.050 0.060 0.070 0.060 0.655 0.800 
LINRES GR4J -0.015 -0.020 0.040 0.030 0.675 0.810 
LINRES NEWZEALAND 0.100 0.080 0.050 0.020 0.660 0.840 
LINRES PDM 0.080 0.075 0.120 0.115 0.600 0.720 
POWRES COLLIEV2 -0.070 -0.080 0.010 0.000 0.750 0.890 
POWRES GR4J -0.090 -0.080 0.000 -0.010 0.745 0.875 
POWRES NEWZEALAND -0.050 -0.050 0.005 -0.030 0.685 0.825 
POWRES PDM -0.020 -0.020 0.070 0.050 0.720 0.830 

LINBYRES. The dominant soil water structures are NEWZEALAND and PDM. 
Accordingly, the same analysis could be applied for the 'bad' structures, which in 
this case we consider everything below 0 or greater than 0.5, in total 58364 values, 
which is 98% of our dataset. 

However, this analysis of winning and lossing structures when NSE and MAE 
are used as objective functions cannot be taken for granted and considered as an 
appropriate analysis because the results for NSE and MAE goodness-of-fit values 
are not satisfactory enough. In both cases, around 95% of the resulting dataset 
has unsatisfactory goodness-of-fit measures. 

6.2 Calibration on wet period, validation on dry 
period 

The same analysis was applied for the calibration performed on the wet period, 
while the validation is performed on the dry period. First, the data from the 
calibration on the wet period is processed in R. There are 9 NA values for the KGE 
goodness-of-fit criteria on the calibration period, while 68 NA values for the KGE 
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F I G U R E 6.4: Distribution for goodness-of-fit values for calibration done with 
KGE, NSE, MAE objective functions on dry period 

goodness-of-fit criteria on the validation period. As such, these values were re­
moved from the resulting dataset, which left the dataset with 59451 records in total. 

Summary of results (calibration on wet period) 

The minimum and maximum values for each of the goodness-of-fit values is 
used in order to access the extreme high and low values. The result is represented 
in Table 6.6. It's noticeable that the results for the validation on the dry period, 
are better than the results for the validation on the wet period (Table 6.1), but 
on the other hand, the minimum values are lower or the same. 

In this case also, there are extreme low values for K G E and NSE, while 
extremely high values for MAE. This can be further seen in the boxplot in Figure 
6.5 

In Figure 6.6 the results are grouped by their objective function and goodness-
of-fit criteria, summarized by the median. When K G E is used as an objective 
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Table 6.6: Min and max values from results on wet period 

min max 
calibKGE -43.22 0.89 
validKGE -1.187432e-| -85 0.82 
calibNSE -1876.23 0.85 
validNSE -1.386362e-l -170 0.73 
calibMAE 0.01 8.93 
validMAE 0.01 1.363783e+83 

Calibration KGE Validation KQE 

F I G U R E 6.5: Boxplot results from goodness-of-fit values when calibration is done 
on wet period 

function, best goodness-of-fit results are produced for K G E both for calibration 
and validation. Simimlar results where produced when calibration was done on 
the dry period: NSE and M A E also produce satisfactory goodness-of-fit values 
when used KGE as an objectve function, but the goodness-of-fit values when NSE 
or M A E is used as an objective function seem to be unsatisfactory. This will be 
again the subject of the analysis of the second part of the study. 

Table 6.7: Summary of results (median) for calibration done on wet period 

obj calib_KGE val idKGE calib_NSE valid_NSE calib_MAE valid_MAE 
kge 0.21 0.18 -0.14 -0.16 1.12 0.97 
nse 0.045 0.035 0.04 0.015 0.93 0.8 
mae -0.005 -0.02 0.005 0.005 0.88 0.76 

The summary of the results from the calibration done on the wet period can 
be found in Table 6.7. The combination of different groundwater and soil water 
structures along with the three different objective functions is the next subject 
of this analysis. As was done for the calibration on the dry period, the same 
summarization will be applied on the results produced on the calibration for the 
wet period. 96 results in total, indicating 3 objective functions, 8 groundwater 
structures and 4 soil water structures. 
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F I G U R E 6.6: Boxplot results from wet period 

In Table 6.8 the summarization by the median is performed on the different 
storages when used KGE as an objective function. It is noticeable that the KGE 
goodness-of-fit criteria values are higher than the ones from Table 6.3. For the 
combination of P D M as a soil water storage, along with the FLEXRES as a 
groundwater storage, the goodness-of-fit for KGE on the calibration is 0.41, while 
for validation is 0.34. Taken in consideration the huge amount of outliers, these 
results are satisfactory enough. The structures which have the highest K G E 
goodness-of-fit values are for groundwater: FLEXRES, LINBYRES, LINRES 
while for soil storage are PDM, NEWZEALAND and COLLIEV2. The same 
structures showed satisfactory results in Table 6.3. The results from the NSE and 
MAE goodness-of-fit values are still not wihin the satisfactory value ranges. Next 
step, is to do the same summarization when using NSE as an objective function. 

Both in Table 6.9 and Table 6.10 are the summarized results by their median 
value for NSE and M A E objective functions for the different structures. The 
highest NSE goodness-of-fit value when used NSE as an objective function is 
0.26 when LINBYRES is used as a groundwater reservoir and P D M is used as 
a soilwater reservoir. However this value is still unsatisfactory. When M A E is 
used as an objective function, the M A E goodness-of-fit for calibration period is 
best when the LINRES and PDM are used, respectively for groundwater and soil 
water storage, with a total value of 0.76, which is still far from the threshold of 
0.18. Three different maps are plotted in Figure 6.7 from the calibration periods 
for each of the objective functions. 
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Table 6.8: Calibration done on dry period with MAE, grouped by different storages, 
summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
EXPRES COLLIEV2 0.200 0.100 -0.295 -0.510 1.190 1.120 
EXPRES GR4J 0.080 -0.120 -0.320 -1.035 1.075 1.135 
EXPRES NEWZEALAND 0.190 -0.015 -0.365 -1.185 1.200 1.500 
EXPRES PDM 0.190 0.080 -0.170 -0.330 1.010 0.930 
FLEXRES COLLIEV2 0.320 0.280 -0.210 -0.220 1.190 1.000 
FLEXRES GR4J 0.290 0.230 -0.210 -0.200 1.100 0.950 
FLEXRES NEWZEALAND 0.300 0.250 -0.285 -0.310 1.170 0.980 
FLEXRES PDM 0.410 0.340 0.015 0.015 1.010 0.840 
LIN2PA COLLIEV2 0.190 0.180 -0.150 -0.160 1.180 1.000 
LIN2PA GR4J 0.080 0.060 -0.150 -0.130 1.090 0.905 
LIN2PA NEWZEALAND 0.230 0.190 -0.340 -0.355 1.200 1.040 
LIN2PA PDM 0.190 0.160 -0.010 0.000 1.030 0.880 
LIN2SE COLLIEV2 0.190 0.170 -0.130 -0.150 1.175 1.000 
LIN2SE GR4J 0.080 0.050 -0.140 -0.130 1.080 0.900 
LIN2SE NEWZEALAND 0.220 0.185 -0.300 -0.340 1.180 1.000 
LIN2SE PDM 0.200 0.160 -0.010 -0.010 1.050 0.870 
LINBYRES COLLIEV2 0.270 0.250 -0.070 -0.110 1.175 1.000 
LINBYRES GR4J 0.170 0.130 -0.080 -0.080 1.050 0.900 
LINBYRES NEWZEALAND 0.325 0.270 -0.130 -0.200 1.140 0.965 
LINBYRES PDM 0.320 0.290 0.150 0.110 0.950 0.830 
LINLRES COLLIEV2 0.220 0.200 -0.140 -0.170 1.180 1.015 
LINLRES GR4J 0.110 0.090 -0.180 -0.160 1.085 0.920 
LINLRES NEWZEALAND 0.240 0.200 -0.330 -0.370 1.160 1.030 
LINLRES PDM 0.230 0.200 -0.020 -0.030 1.055 0.900 
LINRES COLLIEV2 0.290 0.270 -0.130 -0.140 1.170 1.000 
LINRES GR4J 0.190 0.180 -0.140 -0.120 1.080 0.920 
LINRES NEWZEALAND 0.285 0.260 -0.235 -0.270 1.150 0.995 
LINRES PDM 0.340 0.300 0.040 0.010 1.030 0.870 
POWRES COLLIEV2 0.190 0.170 -0.140 -0.160 1.170 1.020 
POWRES GR4J 0.080 0.060 -0.140 -0.140 1.070 0.930 
POWRES NEWZEALAND 0.220 0.180 -0.330 -0.355 1.215 1.020 
POWRES PDM 0.200 0.170 -0.020 -0.030 1.050 0.890 

When comparing Figure 6.7 and Figure 6.4, it is noticeable that KGE values 
contain very extreme low values when calibration is done on the wet period, but 
on the other hand there are better approximations with the high values than the 
calibration done on the dry period. For NSE, there are also more extreme lower 
values, but also more satisfactory high values, indicated with purple. The MAE 
value is calculated in the same way as described in the previous section, and it is 
noticeable that there are less satisfactory values in the calibration during the wet 
period than the calibration done on the dry period. 

Next step is to find the dominating 'good' and 'bad' structures for each of 
the calibrations. The same ranges apply as described in the previous section. 
There are 1912 NSE values which are bigger or equal to 0.5, which is a higher 
number compared with the results for NSE satisfactory values from the calibration 
done on the dry period. Most frequent groundwater structures are LINBYRES, 
LINRES and FLEXRES with values of 418, 435 and 320 respectively while for soil 
water structures are PDM, COLLIEV2 and GR4J with values of 844, 436 and 369 
respectively. NSE is the most dominant objective function with 792 values, then 
MAE with 642 structures and the last is KGE with 478 structures. Again, there 
are too many values considered as unsatisfactory, so any attempt for interpreting 
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Table 6.9: Calibration done on dry period with NSE, grouped by different storages, 
summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
LINBYRES PDM 0.210 0.170 0.260 0.220 0.880 0.750 
FLEXRES PDM 0.270 0.210 0.150 0.140 0.845 0.720 
LINRES PDM 0.180 0.160 0.150 0.140 0.820 0.700 
LINBYRES C0LLIEV2 0.120 0.100 0.120 0.090 0.930 0.800 
LINBYRES NEWZEALAND 0.160 0.140 0.100 0.060 0.890 0.760 
LINRES NEWZEALAND 0.110 0.125 0.090 0.070 0.935 0.785 
LINRES C0LLIEV2 0.140 0.120 0.090 0.080 0.890 0.760 
LINLRES PDM 0.090 0.060 0.090 0.080 0.900 0.790 
LIN2SE PDM 0.070 0.050 0.080 0.060 0.900 0.780 
LIN2PA PDM 0.070 0.040 0.080 0.070 0.905 0.790 
POWRES PDM 0.070 0.040 0.080 0.070 0.900 0.780 
EXPRES PDM 0.060 -0.070 0.060 -0.040 0.930 0.955 
FLEXRES C0LLIEV2 0.140 0.160 0.050 0.020 0.960 0.840 
LINRES GR4J 0.050 0.040 0.050 0.050 0.870 0.760 
LINBYRES GR4J 0.040 0.030 0.050 0.030 0.895 0.790 
FLEXRES GR4J 0.120 0.070 0.040 0.020 0.900 0.790 
LINLRES NEWZEALAND 0.040 0.040 0.040 0.010 0.930 0.790 
FLEXRES NEWZEALAND 0.130 0.130 0.030 0.000 1.000 0.830 
POWRES NEWZEALAND 0.030 0.030 0.030 0.010 0.935 0.800 
LIN2SE NEWZEALAND 0.020 0.030 0.030 0.010 0.940 0.810 
LINLRES C0LLIEV2 0.030 0.020 0.030 0.020 0.980 0.840 
LIN2PA C0LLIEV2 0.010 0.020 0.020 0.010 0.990 0.830 
LIN2PA NEWZEALAND 0.010 0.020 0.020 0.010 0.930 0.795 
POWRES C0LLIEV2 0.010 0.010 0.020 0.010 0.990 0.830 
LIN2SE C0LLIEV2 0.000 0.010 0.020 0.010 0.980 0.830 
LINLRES GR4J -0.040 -0.050 0.010 0.000 0.940 0.810 
EXPRES NEWZEALAND 0.000 -0.255 0.010 -0.230 0.960 1.500 
POWRES GR4J -0.060 -0.060 0.000 0.000 0.955 0.815 
LIN2SE GR4J -0.055 -0.070 0.000 -0.010 0.950 0.815 
LIN2PA GR4J -0.070 -0.070 0.000 -0.010 0.960 0.825 
EXPRES C0LLIEV2 -0.010 -0.300 0.000 -0.430 1.010 1.245 
EXPRES GR4J -0.070 -0.200 -0.010 -0.190 0.960 1.090 

this results, cannot be valid. 
For MAE, there are only 591 values which are considered as satisfactory values, 
which proves the previous assumption from the map analysis, that MAE does not 
perform good on the calibration on the wet period. Thus, any further analysis in 
this direction can only lead to wrong assumptions. In both cases for NSE and 
MAE, the goodness-of-fit values which are condsidered to be satisfactory values 
represent a very small portion of the resulting data, thus conclusions cannot be 
made. 
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Table 6.10: Calibration done on dry period with M A E , grouped by different 
storages, summarized on median value 

gwStor swStor c a l i b K G E v a l i d K G E ca l ibNSE valid_NSE c a l i b M A E valid_MAE 
LINBYRES PDM 0.150 0.125 0.190 0.170 0.795 0.670 
FLEXRES PDM 0.160 0.140 0.120 0.110 0.790 0.680 
LINRES PDM 0.105 0.080 0.120 0.120 0.760 0.660 
LINBYRES C0LLIEV2 0.070 0.080 0.080 0.080 0.860 0.750 
LINLRES PDM 0.040 0.020 0.070 0.070 0.880 0.760 
LINRES C0LLIEV2 0.040 0.050 0.060 0.060 0.830 0.720 
LIN2PA PDM 0.000 -0.020 0.060 0.060 0.880 0.770 
LIN2SE PDM 0.000 -0.020 0.060 0.060 0.890 0.770 
POWRES PDM 0.000 -0.020 0.060 0.050 0.880 0.760 
LINBYRES NEWZEALAND 0.090 0.100 0.045 0.030 0.830 0.700 
LINRES NEWZEALAND 0.090 0.090 0.040 0.050 0.870 0.735 
LINBYRES GR4J -0.010 -0.020 0.040 0.030 0.860 0.750 
LINRES GR4J -0.010 -0.015 0.030 0.030 0.830 0.715 
EXPRES PDM 0.060 -0.030 0.030 -0.010 0.890 0.855 
FLEXRES C0LLIEV2 0.100 0.110 0.020 0.020 0.920 0.770 
FLEXRES GR4J 0.040 0.030 0.010 0.010 0.880 0.760 
LINLRES C0LLIEV2 -0.040 -0.040 0.000 0.010 0.940 0.810 
POWRES C0LLIEV2 -0.060 -0.060 0.000 0.000 0.950 0.800 
LIN2PA C0LLIEV2 -0.070 -0.070 0.000 0.000 0.930 0.810 
LIN2SE C0LLIEV2 -0.080 -0.070 0.000 0.000 0.940 0.810 
FLEXRES NEWZEALAND 0.090 0.120 -0.010 -0.020 0.920 0.760 
LINLRES NEWZEALAND 0.005 0.010 -0.010 -0.010 0.875 0.740 
LIN2PA NEWZEALAND -0.040 -0.010 -0.010 -0.005 0.870 0.735 
LIN2SE NEWZEALAND -0.030 -0.020 -0.010 0.000 0.880 0.745 
POWRES NEWZEALAND -0.030 -0.020 -0.010 0.000 0.880 0.730 
LINLRES GR4J -0.060 -0.070 -0.010 -0.010 0.920 0.790 
LIN2SE GR4J -0.070 -0.085 -0.010 -0.010 0.930 0.800 
LIN2PA GR4J -0.080 -0.090 -0.010 -0.010 0.920 0.800 
POWRES GR4J -0.080 -0.095 -0.010 -0.010 0.930 0.795 
EXPRES C0LLIEV2 -0.030 -0.350 -0.020 -0.370 0.980 1.170 
EXPRES NEWZEALAND -0.030 -0.350 -0.020 -0.525 0.900 1.520 
EXPRES GR4J -0.060 -0.245 -0.030 -0.405 0.950 1.075 

6.3 Discussion 

The overall performance of the structures differs. The 'winning' groundwater 
structures were FLEXRES, LINBYRES and LINRES, and the 'winning' soil water 
structure was PDM. This can be seen in the summary table Table 6.11, where 
all the results were grouped by the groundwater and soil water storage for both 
wet and dry period, summed by their median value, regardless of the choice of 
the objective function. The best performance was the structure where FLEXRES 
was used as a groundwater reservoir and PDM was used as a soil water reservoir. 
The FLEXRES is a groundwater linear reservoir where the storage outflow is 
controlled by a threshold. The reason behind the outperformance of this reservoir 
is because of its complexity, its structure means that groundwater storage can be 
controlled by multiple aquifers. Second in place comes the LINBYRES, a linear 
storage with a direct by pass, again in combination with PDM. Third in place 
comes the structure with LINRES and PDM reservoirs. What connects these three 
groundwater reservoirs is their ability to drain faster and more directly (Stoelzle 
et al., 2015). Also, whenever there is a recharge, the groundwater reservoir empties 
faster than initially estimated, which makes the storage-discharge relationship 
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F I G U R E 6.7: Distribution for goodness-of-fit values for calibration done with 
KGE, NSE, MAE objective functions on wet period 

more linear (Fenicia et al., 2006) thus the reason why particularly these reservoirs 
had the best performance. 

Regarding the groundwater storage, the findings about the superior models 
were also consistent with Stoelzle et al. (2015), where FLEXRES was defined to be 
the model with the highest performance, because this type of reservoir is designed 
with a threshold where as long as the linear reservoir is above this threshold, faster 
depletion will occur. LIN2SE was found to be the with the poorest performance. 
The influence of the different combinations of the groundwater storages can be 
seen in Table 6.12, where the results were grouped by the groundwater storage 
only, summed by their median value. 

Regarding the soil water structures, the results were higher for PDM model, 
but also in the second place with the exact same performance is NEWZEALAND, 
which is then followed by COLLIEV2. The summary results where the grouping 
was performed on the soil water structures can be seen in Table 6.13. The PDM 
reservoir is a lumped model and it describes the spatial distribution (variability) 
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Table 6.11: Summary results of both periods, grouped by groundwater and soil 
water storage 

gwStor swStor c a l i b K G E cal ibNSE c a l i b M A E v a l i d K G E val idNSE v a l i d M A E 
EXPRES COLLIEV2 0.080 -0.05 0.95 -0.090 -0.46 1.200 
EXPRES GR4J 0.000 -0.05 0.89 -0.215 -0.56 1.120 
EXPRES NEWZEALAND 0.090 -0.04 0.88 -0.310 -0.78 1.600 
EXPRES PDM 0.110 0.01 0.84 -0.020 -0.17 0.950 
FLEXRES COLLIEV2 0.210 0.00 0.89 0.180 -0.02 0.910 
FLEXRES GR4J 0.160 0.01 0.85 0.130 -0.01 0.870 
FLEXRES NEWZEALAND 0.195 -0.03 0.89 0.160 -0.10 0.910 
FLEXRES PDM 0.280 0.11 0.78 0.260 0.09 0.790 
LIN2PA COLLIEV2 0.060 -0.01 0.91 0.050 -0.01 0.920 
LIN2PA GR4J -0.020 -0.02 0.88 -0.030 -0.03 0.885 
LIN2PA NEWZEALAND 0.110 -0.01 0.87 0.080 -0.05 0.890 
LIN2PA PDM 0.080 0.05 0.85 0.070 0.04 0.850 
LIN2SE COLLIEV2 0.070 -0.01 0.92 0.050 -0.01 0.920 
LIN2SE GR4J -0.010 -0.02 0.88 -0.020 -0.03 0.890 
LIN2SE NEWZEALAND 0.110 -0.01 0.87 0.080 -0.04 0.890 
LIN2SE PDM 0.090 0.05 0.84 0.075 0.04 0.850 
LINBYRES COLLIEV2 0.170 0.06 0.80 0.150 0.04 0.870 
LINBYRES GR4J 0.070 0.02 0.83 0.060 0.01 0.850 
LINBYRES NEWZEALAND 0.200 0.04 0.84 0.170 0.00 0.850 
LINBYRES PDM 0.210 0.19 0.79 0.200 0.18 0.790 
LINLRES COLLIEV2 0.090 -0.01 0.92 0.080 -0.01 0.930 
LINLRES GR4J 0.020 -0.02 0.87 0.000 -0.02 0.880 
LINLRES NEWZEALAND 0.120 -0.02 0.87 0.090 -0.07 0.880 
LINLRES PDM 0.120 0.06 0.84 0.110 0.05 0.860 
LINRES COLLIEV2 0.180 0.05 0.84 0.170 0.04 0.850 
LINRES GR4J 0.090 0.02 0.83 0.080 0.01 0.840 
LINRES NEWZEALAND 0.180 0.03 0.84 0.160 0.01 0.860 
LINRES PDM 0.210 0.11 0.76 0.200 0.11 0.770 
POWRES COLLIEV2 0.070 -0.01 0.92 0.050 -0.01 0.930 
POWRES GR4J -0.010 -0.02 0.87 -0.025 -0.02 0.890 
POWRES NEWZEALAND 0.110 -0.01 0.87 0.080 -0.04 0.890 
POWRES PDM 0.090 0.05 0.85 0.070 0.04 0.860 

Table 6.12: All result s grouped by groundwater storag ;e by median value 
gwStor c a l i b K G E calib NSE calib M A E v a l i d K G E valid_NSE val id_MAE 
EXPRES 0.07 -0.03 0.89 -0.135 -0.43 1.17 
F L E X R E S 0.21 0.02 0.85 0.180 0.00 0.87 
LIN2PA 0.06 0.00 0.88 0.040 -0.01 0.89 
LIN2SE 0.06 0.00 0.88 0.040 -0.01 0.89 
LINBYRES 0.17 0.07 0.83 0.150 0.05 0.84 
LINLRES 0.09 0.00 0.88 0.070 -0.01 0.89 
LINRES 0.16 0.05 0.82 0.150 0.04 0.83 
POWRES 0.06 0.00 0.88 0.040 -0.01 0.89 

of the soil capacity, unlike the other three soil water storages where buckets are 
being used. It is noticeable that GR4J did not perform so well, unlike in Pagano 
et al. (2010) were GR4J outperformed every other model. This could be because 
the form in which the GR4J model in this study was implemented, was by taking 
only the soil water structure storage, which might have a huge affect on the 
performance of the model overall. So, this must not be overlooked and must be a 
subject for study for any future analysis in dHRUM. 

As previously noted in the summary of the results section, the results where 
the KGE objective was used, were the most satisfactory ones, with 95% coverage 
of the resulting dataset, so taking this as a fact a summary of the results from 
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Table 6.13: All results grouped by soil water storage by median value 
swStor calib_KGE calib_NSE calib_MAE valid_KGE valid_NSE valid_MAE 
COLLIEV2 0.11 0.00 0.90 0.09 -0.02 0.94 
GR4J 0.03 -0.01 0.86 0.00 -0.03 0.89 
NEWZEALAND 0.14 -0.01 0.86 0.09 -0.06 0.92 
PDM 0.14 0.08 0.82 0.12 0.06 0.84 

both periods, grouped by their groundwater structure, and later by their soil 
water structure are shown in Table 6.14 and Table 6.15. 

Table 6.14: Results obtained from using K G E as an objective function grouped 
by ground water storage by median value 

gwStor c a l i b K G E c a l i b N S E c a l i b M A E v a l i d K G E v a l i d N S E v a l i d M A E 
F L E X R E S 0.33 -0.16 0.980 0.28 -0.190 0.990 
LINRES 0.28 -0.10 0.970 0.24 -0.110 0.980 
LINBYRES 0.27 -0.04 0.945 0.24 -0.060 0.960 
LINLRES 0.20 -0.16 1.000 0.17 -0.160 1.000 
LIN2PA 0.18 -0.13 1.000 0.15 -0.130 0.990 
LIN2SE 0.18 -0.14 0.990 0.15 -0.130 0.990 
POWRES 0.18 -0.14 1.000 0.15 -0.130 0.990 
E X P R E S 0.17 -0.27 0.990 -0.01 -0.805 1.195 

Table 6.15: Results obtained from using K G E as an objective function grouped 
by soil water storage by median value 

swStor calib K G E calib NSE calib_MAE valid K G E valid NSE valid M A E 
NEWZEALAND 0.25 -0.27 1.02 0.20 -0.33 1.08 
PDM 0.25 0.00 0.92 0.22 -0.01 0.92 
COLLIEV2 0.24 -0.15 1.05 0.20 -0.16 1.05 
GR4J 0.13 -0.17 0.96 0.09 -0.17 0.98 

The results are ordered in a descending order. The outliers were also included 
in all summary results. However, in the results grouped by both groundwater 
and soil water structures, only when KGE was used as an objective function, it is 
noticeable that GR4J performs good in combination with the FLEXRES (Table 
6.16) 

The structures with the lowest performance were indicated to be structures 
where GR4J was used as a soil-water storage in combination with the LIN2PA and 
LIN2SE reservoirs. Also, it is noticeable that the structure with lower performance 
were indicated to be also the POWRES and EXPRES especially when used with 
PDM, while when in combination with NEWZEALAND and COLLIEV2 that 
had a better performance. 

Regarding the performance of the calibrations on the dry period versus the 
calibration on the wet period, the results in Table 6.17 were obtained, where all 
of the summary results were grouped by the period on their median value. 

The results show that when calibration was done on the wet period, the results 
from the validation period were higher than the results from the validation when 
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Table 6.16: Results obtained from using K G E as an objective function grouped 
by soil water storage and groundwater storage by median value 

swStor swStor c a l i b K G E ca l ibNSE c a l i b M A E v a l i d K G E valid_NSE valid_MAE 
FLEXRES PDM 0.395 0.020 0.890 0.35 -0.010 0.890 
LINRES PDM 0.330 0.030 0.910 0.29 0.010 0.920 
FLEXRES C0LLIEV2 0.330 -0.220 1.040 0.28 -0.240 1.050 
LINBYRES NEWZEALAND 0.320 -0.120 0.990 0.27 -0.180 1.005 
LINBYRES PDM 0.310 0.130 0.860 0.29 0.120 0.870 
LINRES C0LLIEV2 0.300 -0.120 1.020 0.26 -0.120 1.035 
FLEXRES NEWZEALAND 0.300 -0.270 1.030 0.25 -0.330 1.020 
LINRES NEWZEALAND 0.290 -0.210 1.010 0.25 -0.250 1.030 
FLEXRES GR4J 0.280 -0.200 0.990 0.23 -0.200 0.990 
LINBYRES C0LLIEV2 0.270 -0.070 1.020 0.24 -0.090 1.030 
LINLRES NEWZEALAND 0.250 -0.305 1.020 0.20 -0.350 1.060 
LIN2SE NEWZEALAND 0.230 -0.300 1.020 0.18 -0.330 1.050 
POWRES NEWZEALAND 0.230 -0.310 1.040 0.18 -0.320 1.060 
LIN2PA NEWZEALAND 0.230 -0.310 1.050 0.18 -0.320 1.060 
LINLRES PDM 0.220 -0.010 0.940 0.20 -0.020 0.950 
LINLRES C0LLIEV2 0.220 -0.150 1.070 0.19 -0.160 1.060 
EXPRES NEWZEALAND 0.200 -0.330 1.050 -0.04 -1.210 1.560 
POWRES C0LLIEV2 0.200 -0.140 1.055 0.17 -0.120 1.040 
LIN2PA C0LLIEV2 0.200 -0.140 1.060 0.17 -0.130 1.030 
EXPRES C0LLIEV2 0.200 -0.295 1.070 0.09 -0.540 1.170 
LIN2SE C0LLIEV2 0.200 -0.140 1.070 0.17 -0.130 1.030 
EXPRES PDM 0.190 -0.170 0.910 0.07 -0.520 1.010 
LIN2SE PDM 0.190 0.000 0.925 0.16 0.000 0.930 
LINRES GR4J 0.190 -0.130 0.950 0.17 -0.120 0.970 
LIN2PA PDM 0.180 -0.010 0.930 0.16 0.000 0.920 
POWRES PDM 0.180 -0.020 0.930 0.17 -0.020 0.920 
LINBYRES GR4J 0.160 -0.090 0.920 0.13 -0.080 0.940 
LINLRES GR4J 0.110 -0.180 0.980 0.08 -0.160 0.960 
EXPRES GR4J 0.080 -0.315 0.950 -0.18 -1.395 1.170 
POWRES GR4J 0.080 -0.150 0.955 0.06 -0.140 0.950 
LIN2PA GR4J 0.080 -0.150 0.970 0.06 -0.130 0.970 
LIN2SE GR4J 0.070 -0.150 0.960 0.05 -0.130 0.955 

Table 6.17: All result s grouped by period by median value 
calibperiod obj junction c a l i b K G E calib_NSE cal ib_MAE v a l i d K G E valid_NSE val id_MAE 
dry kge 0.22 -0.14 0.87 0.17 -0.15 1.05 
wet kge 0.22 -0.14 1.11 0.18 -0.16 0.97 
dry nse 0.06 0.06 0.73 0.03 0.02 0.90 
wet nse 0.06 0.05 0.93 0.04 0.03 0.82 
wet mae 0.01 0.02 0.89 -0.01 0.02 0.79 
dry mae 0.00 0.03 0.70 -0.02 0.00 0.86 

the calibration was done on the dry period. For an example, as seen from the 
Table 6.11 when KGE was used as an objective function, the calibration produced 
the same goodness-of-fit K G E values (calib_KGE) for both periods, but the 
validation (valid_KGE) had a higher score for when the calibration was done on 
the wet period (0.18). Even when the calibration produced higher goodness-of-fit 
criteria for the dry period calibrations (for an example NSE objective function, 
NSE goodness-of-fit criteria - calib_NSE column), still the validation (valid_NSE 
column) produced higher values when the calibration was done for the wet period 
(0.03). Similar results regarding the usage of the split of the periods between wet 
and dry periods were found by Gao et al. (2018). 

The influence of using the differential split sample test for separating the dry 
and the wet periods shows how these very contrasting periods influence the model 
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performance. However, it is important to note that in this study, distinguishing 
the dry from the wet period was done in a very specific way, where 10-years of 
consecutive periods were taken, and the average precipitation was measured and 
compared within all available 10 year consecutive periods. The wetter period had 
a higher performance, but also has higher extreme values (in this case the extreme 
values were negative values). This is due to overestimating and underestimating 
of the discharges because of the calibration done on the wet period (Coron et al., 
2012). This tendency to overestimate and underestimate should be a concern of 
any future study proceeding in this direction, because it may greatly influence any 
analysis on climate impact or hydro logic predictions, since the error predictions 
could be very large (Merz et al., 2011). 

These results suggest the need for more detailed future modelling which 
should be based on hydrological processes. Many models are similar in terms of 
efficiency, but what informaton is not visible here is the internal representation of 
the processes. This opens up a door for further investigations about dominant 
processes (Knoben et al., 2019a). 



CHAPTER 

Conclusion and contribution 

The distributed hydrological response unit model was used as a modelling frame­
work for testing lumped hydrological models in this study. The framework was 
extended by implementing additional seven groundwater structures and three soil 
water structures which gave us in total 32 lumped conceptual models for testing 
their modeling performance. The differential split sample test was implemented 
where calibration and validation was done on the wet and the dry period and vice 
versa using the CAMELS dataset and NLDAS data as forsing data. 

The calibration was based on three different objective functions: KGE, NSE, 
MAE. The Differential Evolution algorithm was used as an optimization algorithm. 
Three goodness-of-fit criteria were chosen for evaluating the performance of the 
different lumped structures which were generated from the GOF (goodness of fit) 
package in R: KGE, NSE, MAE. 

From the results, it can be concluded that satisfactory results were obtained 
only when KGE was used as an objective function. 

The 'winning' groundwater structures were FLEXRES, LINBYRES and LIN-
RES, and the 'winning' soil water structure were PDM, NEWZEALAND and 
COLLIEV2. In contrary, the LIN2PA, LIN2SE as groundwater structures and 
GR4J as soil water structure were found to have a poorer performance in this 
study. The structures with the lowest performance were indicated to be structures 
where GR4J was used as a soil-water storage in combination with the LIN2PA 
and LIN2SE reservoirs. From the results of this study it can be concluded that 
the structure with lower performance were indicated to be also the POWRES 
and EXPRES especially when used with PDM, while when in combination with 
NEWZEALAND and COLLIEV2 had a better performance. 

The results also show that when calibration was done on the wet period, the 
validations of the model were better than the ones where calibration was done on 
the dry period. 

18 
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Taking in consideration that the data analysis was performed only after all 
the lumped models were formulated and a proper calibration and validation was 
performed, along which the hypothesis of 'winning' and losing' structures emerged, 
this study only opens the door to more detailed research for the differences between 
these structures or any future structures that may be developed as part of the 
distributed hydrological reponse unit modelling framework. 
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