
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

FINANCIAL TIME SERIES ANALYSIS BASED ON
INNOVATIVE MACHINE LEARNING SIGNAL PROCESSING
APPROACHES
FINANCIAL TIME SERIES ANALYSIS BASED ON INNOVATIVE MACHINE LEARNING SIGNAL PROCESSING
APPROACHES

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Reagan Kasonsa
Tshiangomba

SUPERVISOR
VEDOUCÍ PRÁCE

Dr. Antonio Cicone

BRNO 2024

Brno 2024

2

Assignment Master's Thesis

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Financial time series analysis based on innovative Machine Learning
Signal Processing approaches

Brief Description:
The forecasting of financial time series is a challenging and open problem in Finance. Several
techniques have been developed and are commonly used, like ARIMA and ARMA. In this work,
we plan to, starting from a recent work published by Prof. Feng Zhou and collaborators, develop
a brand new approach for financial time series forecasting. The idea is to develop a new kind of
machine learning approach that combines signal decomposing approach, artificial neural network
and convolutional neural network to produce the extension of a time series frequency by
frequency. The newly developed method will be tested against artificial and real life financial data
set.

Master's Thesis goals:
Development of a brand new approach of machine learning based on signal processing for the
forecasting of financial time series.

Recommended bibliography:
ZHOU, F. et al. EMD2FNN: A strategy combining empirical mode decomposition and factorization
machine based neural network for stock market trend prediction. Expert Syst. Appl. 115 (2019),
136-151.

ZHOU, F. et al. A 2-stage strategy for non-stationary signal prediction and recovery using Iterative
Filtering and neural network. J. Comput. Sci. Technol. 34 (2019), 318-338.

ZHOU, F. et al. IF2CNN: Towards non-stationary time series feature extraction by integrating
iterative filtering and convolutional neural networks. Expert Syst. Appl. 170 (2021), Article ID
114527, 13 pp.

Institut: Institute of Mathematics
Student: Reagan Kasonsa Tshiangomba
Degree programm: Applied and Interdisciplinary Mathematics
Branch: no specialisation
Supervisor: Dr. Antonio Cicone
Academic year: 2023/24

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Code:

EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based
neural network for stock market trend prediction. https://github.com/zhoudafa08/EMD2FNN

A 2-stage strategy for non-stationary signal prediction and recovery using iterative filtering and
neural network. The code is not available online.

IF2CNN: Towards non-stationary time series feature extraction by integrating iterative filtering and
convolutional neural networks. https://github.com/zhoudafa08/IF2CNN

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2023/24

In Brno,

L. S.

doc. Mgr. Petr Vašík, Ph.D.
Director of the Institute

doc. Ing. Jiří Hlinka, Ph.D.
FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Abstract
Forecasting financial time series has been classified as one of the most challenging problems in
the last decade due to its non-stationarity and non-linear properties. On one hand, statistical
techniques have been found incapable of accurately predicting financial time series. On the other
hand, machine learning techniques have achieved remarkable results, but they do not provide
an explicit way of handling the non-stationarity property of financial time series. The proposed
approach leverages the capabilities of signal processing decomposition techniques to address the
non-stationarity property of financial time series. The signal decomposition technique employed
in this work is iterative filtering (IF), which generates intrinsic mode functions (IMFs). These
generated IMFs, along with the original signal, are used to produce a time-frequency representation
of the financial time series, called IMFogram. Two types of data, namely the IMFs and IMFogram,
are utilized to train a fusion neural network for predicting the financial time series. One entry
component of the fusion neural network is an artificial neural network (ANN) taking the IMFs as
input. The other entry component of the fusion neural network is a convolutional neural network
(CNN), which takes the IMFogram as input. The outputs of the ANN and the CNN are concatenated
for a regression task. We show the application of this newly developed approach to financial data,
NASDAQ series to be precise. And we report its performance in different scenarios of boundary
conditions.

Keywords
Artificial neural network (ANN), Convolutional neural network (CNN), Fusion Neural Network, Iter-
ative Filtering (IF), Intrinsic Mode Functions (IMFS), IMFogram, symmetric extension, asymmetric
extension, Time series,...

Tshiangomba, Reagan Kasonsa: Financial time series based on innovative Machine Learning Signal
Processing approach, Brno University of Technology, Faculty of Mechanical Engineering, 2024. xx
pp. Supervisor: Antonio Cicone.

I declare that I wrote the diploma thesis Financial time series based on innovative Machine Learning
Signal Processing approach independently under the guidance of Antonio Cicone using the literature
included in the list of references.

Reagan Tshiangomba Kasonsa

I would like to express my gratitude for having the opportunity to work under the supervision of
Professor Antonio Cicone. His guidance has been of great importance, always ready to discuss
and clarify any misunderstood subjects. Once again, I thank him for his supervision.

Reagan Kasonsa Tshiangomba

10 Contents

Contents

1 Introduction 11
1.1 Literature review . 11

1.1.1 Literature review with respect to statistical techniques 11
1.1.2 Literature review concerning Machine learning 12
1.1.3 Literature review regarding hybrid model 13
1.1.4 Literature review about non-stationary signal processing 14

1.2 Proposed work . 15

2 Iterative Filtering and IMFogram 16
2.1 Iterative Filtering . 16
2.2 IMFogram . 26

3 Artificial neural network and Convolutional Neural Networks 27
3.1 Neural Network . 27
3.2 Convolutional Neural Network . 30

3.2.1 Convolutional Layer . 31
3.2.2 Non Linear Activation Layer . 31
3.2.3 Batch Normalization Layer . 32
3.2.4 Pooling Layer . 32
3.2.5 Dropout Layer . 32
3.2.6 FC Layer . 32

4 Proposed Approach 33
4.1 Artificial neural network (ANN) . 33
4.2 Convolutional neural network (CNN) . 35
4.3 Fusion neural network (FNN) . 38
4.4 Back propagation of FNN . 40

5 Datasets and the simulation results 44
5.1 Datasets . 44
5.2 Simulation Results . 50

5.2.1 Experimental setting . 50
5.2.2 Evaluation criteria . 51
5.2.3 Prediction of FTS based on asymetric extension 51
5.2.4 Prediction of FTS based on symmetric extension 52
5.2.5 Prediction of FTS based on asymmetric and symmetric extension 52
5.2.6 Prediction of FTS based on symmetric and asymmetric extension 53

6 Conclusion and future work 55

1 Introduction 11

1 Introduction

Financial Time Series (FTS) describes the evolution of the stock market over time. FTS is affected
by microeconomic and macroeconomic factors, which makes it difficult to predict. These factors
make FTS non-linear, noisy, non-stationary, and time-dependent. It is really difficult to understand
the mechanism underlying FTS. The processing of FTS requires new techniques for handling
non-stationarity and noise since the existing techniques, such as Fast Fourier Transform (FFT),
autoregressive integrated moving average (ARIMA), generalized autoregressive conditional het-
eroskedasticity (GARCH) volatility [1], smooth transition autoregressive model (STAR) [2], and
hidden Markov model (HMM) [3], are not well-suited for FTS. The limitations of traditional time
series forecasting models arise from their reliance on the assumptions of stationarity and linearity,
which often do not hold true in reality. Advances in financial transactions and information systems
have led to a substantial increase in available data, enabling practitioners to make more accurate
Financial Time Series (FTS) predictions [4, 5, 6]. The primary motivation behind forecasting FTS
lies in the significant impact that even a slight improvement in accuracy can have on the profits of
financial institutions and individuals engaged in financial transactions. Hence, the pursuit of the
ability to predict FTS with substantial accuracy is considered highly valuable.

1.1 Literature review

In this section, we explore the literature with a specific focus on feature extraction and prediction
accuracy of FTS. The difficulty of extracting features and the low prediction accuracy in FTS
forecasting are major problems. Several techniques and critical work have been proposed to
improve the forecasting of FTS. The practical techniques for forecasting FTS can be grouped into
three categories: models based on statistical techniques, those based on Machine Learning (ML),
and those focusing on hybrid techniques. The state-of-the-art ML bases approached achieved
significant prediction accuracy in recent years and performs better than statistical techniques,
especially in market predictions, risk management, and derivative pricing [7].

1.1.1 Literature review with respect to statistical techniques

The process of forecasting a time-series is intimately related to the specification of a model. This
model is in fact a statistical formulation of the dynamic relationship between the observed in-
formation and the variable related to these observations. Linearity among normally distributed
variables is the cornerstone of traditional statistical models [8]. One of the popular and widely
used time series models is the Auto-Regressive Integrated Moving Average (ARIMA) [9, 10]. As a
statistical model ARIMA can implement various exponential smoothing models, has the advantages
of accurate forecasting over short period of time and easy to implement, but suffer to correctly
predict a time series generated by a non-linear source. It is well documented that real world
systems are often generated by nonlinear sources[11, 10].

The fact that non-linearity is an intrinsic property of real world times series lead to the
formulation of several class of nonlinear models in the literature to overcome the linear limitation
of the time series models. Among these models there are the bilinear model [12], the threshold
autoregressive (TAR) model [13], the autoregressive conditional heteroscedastic (ARCH) model
[14], general autoregressive conditional heteroscedastic (GARCH) [15], and chaotic dynamics
[16].

12 1 Introduction

1.1.2 Literature review concerning Machine learning

The popularity of FTS forecasting among ML researchers has been growing in the last 40 years. Re-
searchers have built several ML models, and a tremendous number of studies have been published.
The comparison of ML techniques with respect to different financial applications, including stock
market prediction, has been studied in [17]. The use of evolutionary computation (EC) and artifi-
cial neural networks (ANN) has gained a lot of consideration in a number of papers. Chen proposed
a wonderful book on genetic algorithms (GAs) and genetic programming (GP) in computational
finance based on EC [18]. In [19, 20] the authors surveyed the use of Multi-objective Evolutionary
Algorithms (MOEAs) to tackle financial applications comprising FTS forecasting. In [21], the
potential use of ANN was appraised and implemented for the forecast of stock price and other finan-
cial applications. In [22], it has been highlighted that ANN is established as a well-known method
in financial applications, including FTS forecasting, and the improvement of their functioning
and the amelioration of our understanding of this marvelous area require more additional research.

The use of text mining for financial applications and FTS prediction was the concern of some
authors. Using text mining for the stock or forex market, Nassirtoussi et al. surveyed how sen-
timent in social media and online news could determine the predictability of financial markets
and cause huge gains or losses [23]. In [24], the author used textual sentiment for time series
forecasting and trading strategies. A state-of-the-art survey of FTS forecasting and FOREX rate
prediction was provided in [25].

FTS has gained a lot of attention compared to other financial applications, and the use of
ML provides flexible frameworks to tackle FTS forecasting. A huge amount of surveys has been
published for the forecast of FTS studies based on several soft computing techniques at different
times. The same techniques were used to summarize and visualize stock market data for indi-
viduals and financial institutions to gain useful information about market behavior and to make
investment decisions [26, 27, 28, 29, 30, 31]. In the past ten years, ML has developed different
novel techniques to analyze useful features from a large amount of data [32]. The main aim of
those techniques is to model complex real-world data by extracting robust features that capture
the pertinent information [33].

In order to extract robust features from data more effectively, the use of deep learning (DL)
algorithms is necessary. DL is a subset of machine learning (ML) that processes complex data
using multi-layered neural networks, mimicking the biological structure of the human brain. It is
divided into three stages. In the first stage, called the input layer, neurons receive the input data,
process it, and transfer the result to the next stage, known as the hidden layer. The hidden layer
then processes the received result and sends it to the third stage, called the output layer [34]. In
the literature, DL is predominantly used in applications such as image processing [35, 36, 37],
natural language processing [38, 39], healthcare [40], and more.

DL has made considerable advancements over the past decade, and important details are
surveyed in [41]. The introduction of DL in the financial community has proven to be significant,
especially for FTS prediction, and has resulted in numerous high-quality publications [42]. Various
types of DL models have been proposed in the literature, including Deep Multilayer Perceptron
(DMLP), Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Convolutional
Neural Network (CNN), Restricted Boltzmann Machines (RBMs), Deep Belief Network (DBN),
Autoencoder (AE), and Deep Reinforcement Learning (DRL) [41, 43].

1 Introduction 13

The first work out ANN is DMLP; its architecture consists of principally three layers: the input,
hidden, and output. The hyperparameters of DMLP are the number of neurons appearing in
each layer and the number of layers in the network [44, 41, 42]. DMLP can solve regression and
classification problems easily just by modeling the input data [45].

DL has several types of architectures, and another commonly used one is RNN. RNN is often
used for time series or language and speech recognition. The analysis of time series data is often
done using RNN in various fields such as handwriting recognition, speech recognition, etc. [41, 44].

RNN is best fitted for learning long-term dependencies. One issue highlighted in the literature
is that when knowledge is stored for long time periods, it is really complicated to learn with RNN
[46]. LSTM is another ANN architecture that solves this issue. LSTM is a version of RNN with the
property of remembering both short and long-term values. LSTM appears to be the most used
DL architecture, especially for tackling time-series data and FTS analysis [47]. LSTM introduces
cells to store data indefinitely, and in this way, the architecture can decide to remember or forget.
LSTM is efficient in machine translation [48, 49].

Apart LSTM, Convolutional Neural Network (CNN) is another type of Deep Neural Network
(DNN) architecture that uses convolutional layers based on convolution operations between the
filter, or weight matrix, and the input, with the ability to act directly on the raw inputs. CNN, as a
cutting-edge DNN architecture, is frequently used for computer vision or image processing-based
feature extraction such as image classification.

Due to its complex architecture, CNN can learn filters that are capable of recognizing specific
features in the input data. This ability has currently attracted considerable attention. In [50],
a one-dimensional CNN is used to extract robust features from one-dimensional time series. In
the work by Mittel and Roni [1], a novel time-series model using a convolutional neural network
architecture was introduced. Specifically, this innovative model adopts a fully convolutional
network (FCN) structure employing causal filtering operations, enabling the output signal rate to
match that of the input signal. Additionally, drawing inspiration from the undecimated wavelet
transform, the authors put forth an undecimated variant of the FCN, referred to as the undecimated
fully convolutional neural network (UFCNN).

1.1.3 Literature review regarding hybrid model

We can remark from the literature that the chronological order of data is the essential consideration
of models based on 1-dimensional Convolution operation, ignoring other factors. Another major
problem arising in 2-dimensional CNN models is the lack of handling the non-stationarity side of
FTS accordingly. To solve this issue, some authors prefer to use hybrid systems or focus on not
completely abandoning statistical methods. A hybrid combination of statistical models and ML
techniques is used to predict FTS in [51, 52]. A work by Zang, which was the combination of
ARIMA and Support Vector Machine (SVM), appeared to be a superior technique for improving
forecasting accuracy when applied to real datasets [53]. The combination of ANN and genetic
algorithm (GA) using evolutionary search to determine the spatial features of the time series
was used in [54]. In [55], the authors developed a tool to address in-depth analysis of the stock
market. The developed tool combines the Hidden Markov Model (HMM), ANN, and GA. In [56],
the authors proposed a fusion of Empirical Mode Decomposition (EMD) and ANN for the purpose
of forecasting and applied these techniques to the Baltic Dry Index. In [57], the authors developed
a hybrid end-to-end approach combining EMD and Factorization Machine-based Neural Network

14 1 Introduction

(EMD2FNN) to predict stock market trends.

Afterwards, they proposed another hybrid version, a two-stage approach, namely IF2FNN,
combining Iterative Filtering (IF) and Factorization Machine-based Neural Network, to predict
(including short-term and long-term predictions) and recover the general types of time series
[58]. Then, they came up with the idea of combining IF methods with CNN for automatic feature
learning for FTS forecasting, called IF2CNN [59].

Plunging into the literature studies of FTS forecasting, we can understand that hybrid prediction
approaches can improve prediction performance by overcoming the shortcomings of single models,
handling model uncertainty, and increasing generalization ability simultaneously [60]. In [61],
the study on the effectiveness of several ML techniques and their one-step prediction methods
of a series of financial data discovered that the hybrid model obtained combining some linear
statistical models and nonlinear ML algorithms is powerful in predicting the future value of
sequence data, especially in the future direction of the sequence. Notwithstanding, hybrid models,
despite performing well, have some limitations with respect to time complexity and computational
efficiency [62].

1.1.4 Literature review about non-stationary signal processing

Real-world systems often exhibit nonlinear characteristics [11]. This phenomenon is evident in
various real-world signals, including FTS, machine vibrations, speech, radar and sonar acoustic
waves, seismic acoustic waves, and biomedical signals such as the electrocardiogram (ECG) or
neonatal seizures. Additionally, non-stationarity is observed in the impulse response of wireless
communications channels, biological signals, vocals in speech, notes in music, and engine noises
[63, 64].

In the realm of biological signals, a diverse range of sensors has been developed to measure
biosignals reflecting various underlying physiological phenomena. For instance, gyroscopes and
accelerometers are utilized to measure pathological and physiological tremor signals [65], ac-
celerometers are employed for monitoring cardiac mechanical vibrations [66], infrared sensors
are utilized for monitoring respiratory motion [67], and standard electrodes are employed for
measuring electrical activity in the brain and heart [68, 69]. All the mentioned physiological
signals are non-stationary due to the complex nature of biological systems [70].

To address non-stationary signals, the scientific community has introduced various signal
decomposition techniques. Huang proposed the empirical mode decomposition (EMD) for an-
alyzing nonlinear and non-stationary data. EMD breaks down complex datasets into a finite
number of intrinsic mode functions (IMFs) that undergo well-behaved Hilbert transforms [71].
However, EMD has shown instability under perturbations. To overcome this challenge, Huang et
al. introduced the ensemble empirical mode decomposition, which involves adding noise to the
original signal. EMD is then applied to the noisily obtained signal to generate IMFs. This process
is repeated for different realizations of noise, and the final IMFs are obtained by averaging those
from different noisy signal realizations [72]. Another signal decomposition method inspired by
EMD is iterative filtering (IF). Instead of computing the average of the upper and lower envelopes
of the signal, IF applies a filter to the signal and subtracts the filtered signal from the original
[73].

In the quest for methods to analyze non-stationary signals, the synchrosqueezed transform was

1 Introduction 15

proposed in [74], known for its robustness to bounded perturbations and Gaussian white noise.
Another approach, presented in [75], is the variational mode decomposition (VMD), which is
entirely non-recursive, enabling concurrent extraction of modes. However, VMD’s reliance on the
narrow-band property of signal modes limits its effectiveness in analyzing wide-band nonlinear
chirp signals (NCSs). Addressing this limitation, [76] proposed an alternative method called
variational nonlinear chirp mode decomposition (VNCMD) [77].

Singular spectrum analysis (SSA) is yet another signal decomposition technique designed to
break down signals into interpretable and physically meaningful components. In [78], the sliding
SSA method was introduced, providing both theoretical and practical insights into the separability
of SSA [77].

1.2 Proposed work
This work is a contribution to the community of FTS prediction, since it provides the use of two
different type of datasets as input of a fusion neural network to predict the FTS. The proposed
framework can serve as baseline for the combination of other sophisticated neural network archi-
tectures for time series prediction.

This work is based on innovative machine learning signal processing approach. It takes ad-
vantage on the hybrid framework combining the Iterative Filtering (IF) [79, 80, 81], IMFogram
[82, 83], ANN and the CNN. IF has a tremendous advantages of reducing the influence of noise
and non-stationarity of the times series in some extent. Furthermore, signal processing approach
provides two type of datasets, (1) the intrinsic mode functions (IMFs) through the IF algorithm
and an (2) IMFogram time-frequency representation of the time series.

Given these two types of datasets, the goal of this work is to predict the financial time series.
To achieve this goal we start producing an IMFs decomposition of a FTS via IF the sum of all the
IMFs is the underlying FTS itself. Then, using the IMFogram algorithm [82, 83], we produce a
time-frequency representation of the FTS.

Given the two datasets, we build a deep neural network that concatenates a ANN (taking
as input all the IMFs) and a CNN (taking as input the IMFogram). The output of the ANN is
concatenated with the output of the CNN which is flatten to have the same dimension as the
output of the ANN. The squared loss for regression purpose and the back-propagation are applied
to learn from the data.

The rest of the work is organized as follows: In Section 2, we present a general review of IF
and IMFogram, whereas in Section 3 we provide a mathematical definition of neural networks and
CNN. Section 4 details the main approach used to predict the underlying FTS. In Section 5, we
present the two type of datasets and the simulation results. Section 6 presents a brief conclusion
and key points of open issues for further studies.

16 2 Iterative Filtering and IMFogram

2 Iterative Filtering and IMFogram

2.1 Iterative Filtering

Data and signal analysis are ubiquitous nowadays; therefore, creating tools to tackle them is of
great importance. Data is rarely perfect and can be subject to various sources of noise. It can also
be non-linear due to the complex, non-linear behavior of real-world phenomena, and natural pro-
cesses. Additionally, data can be non-stationary, which means that the mean, variance, and other
statistical properties do not remain constant over time. Non-stationarity and non-linearity are
common and important features of many real-world datasets, and it is important for researchers
and analysts to be aware of this when developing models and interpreting results. Furthermore,
when the data is non-stationary and non-linear, the decomposition of the signal and the extraction
of features are very challenging.

The Fourier spectral analysis and wavelet have been found not well suited tackling non-linear
and non-stationary data due to the fact that these two approaches require data to be stationary
and generated by linear systems. To surmount this issue, several decomposition techniques have
been proposed for analyzing non-linear and non-stationary time series. The leading rule of all
these approaches is common: first, the signal is decomposed into simpler components, and second,
time-frequency analysis is applied to each component separately. Two ways characterize the
decomposition of a signal: either by iteration or optimization.

The earliest iterative algorithms for signal decomposition is the Empirical Mode Decomposition
(EMD) [71], developed by Norden Huang in the late 1990s. EMD is a data-driven, non-parametric
method that decomposes a signal into a finite number of intrinsic mode functions (IMFs) using an
iterative sifting process.

The IMFs are defined as a set of oscillator functions fulfilling three properties: the number of
extrema and zero crossings must be equal or differ by at most one; at any point in the signal, the
mean value of the envelope defined by the local maxima and the envelope defined by the local
minima must be zero; the waveform defined by the IMF should be symmetrical around the mean
value of the envelope [71].

The EMD algorithm works by first identifying the extrema (maxima and minima) of the signal
and connecting them with cubic splines to form upper and lower envelopes. The mean of these
envelopes is then subtracted from the original signal to obtain the approximation of the first IMF,
which represents the high-frequency component of the signal. The computation of the envelopes
is reapplied to this first approximation of the first IMF and a new moving average is computed and
subtracted from it. This procedure is iterated until a stopping criterion is fulfilled. This process is
repeated on the residual signal (the original signal minus the first IMF) to obtain the second IMF,
and so on until a stopping criterion is met.

The iterative structure of the EMD is described as follows: consider an operator O performing
the moving average of a signal 𝑆 (𝑥), and an operator G getting the fluctuation part, G(𝑆) (𝑥) =
𝑆 (𝑥) − O(𝑆) (𝑥). We obtain the first IMF from the sifting process

𝐼1(𝑥) = lim
𝑛→∞

G1,𝑛 (𝑆𝑛) (𝑥) (2.1)

we denote 𝑆𝑛 (𝑥) = G1,𝑛−1(𝑆𝑛−1) (𝑥) and 𝑆1 = 𝑆 (𝑥). The limit ensure that the signal remain

2 Iterative Filtering and IMFogram 17

the same when applied G one more time.

By iterative sifting process, we obtain the remaining IMFs as follows:

𝐼𝑘 (𝑥) = lim
𝑛→∞

G𝑘,𝑛 (𝑟𝑛) (𝑥), (2.2)

with 𝑟𝑛 = G𝑘,𝑛 (𝑟𝑛−1) (𝑥) and 𝑟1(𝑥) = 𝑟 (𝑥) which is the remainder 𝑆 (𝑥) − 𝐼1(𝑥) − · · · − 𝐼𝑘−1(𝑥).
The sifting process stop when 𝑟 (𝑥) = 𝑆 (𝑥) − 𝐼1(𝑥) − · · · − 𝐼𝑚 (𝑥) has at most one local maximum
or minimum. It is easy to reconstruct the signal 𝑆 (𝑥) from its IMFs and the remainder by

𝑆 (𝑥) =
𝑚∑︁
𝑗=1

𝐼 𝑗 (𝑥) + 𝑟 (𝑥). (2.3)

The operator O is obtained as the mean function of the upper and lower envelope, where one
identifies first the extrema (maxima and minima) of the signal 𝑆 (𝑥) and then connects them with
cubic splines to form an upper and lower envelope.

The stopping criterion is typically based on the amplitude of the last IMF relative to the noise
level of the residual signal. Meaning that the algorithm stops when the last IMF become a trend
that is further iteration has at most one local maximum or minimum [79]. Once the IMFs are
obtained, they can be reconstructed by simply summing them up in order.

The EMD algorithm has been successfully applied to a wide range of signal processing tasks,
including signal denoising, trend analysis, and feature extraction. However, it does have some
limitations, such as sensitivity to noise and the potential for mode mixing (i.e., the presence of
multiple frequencies in a single IMF). Several variants and extensions of the EMD algorithm have
been proposed to address these issues.

An obvious perturbation problem is generated from the fact of repeatedly applying the cubic
spline in each iteration, leading to an unstable method under perturbation. As a solution to
the EMD issue, Huang et al. proposed the ensemble Empirical Mode Decomposition (EEMD)
[72]. The main idea behind EEMD is to add noise to the original signal and then decompose the
resulting noisy signal into IMFs using EMD. This process is repeated many times with different
realizations of noise, and the resulting IMFs are averaged to obtain a more robust decomposition.

EEMD has several advantages over EMD, including the ability to handle signals with nonsta-
tionary and non-periodic components and the ability to reduce mode mixing, which occurs when
different modes of a signal are mixed together in a single IMF. EEMD is also less susceptible
to edge effects than EMD, which can lead to spurious modes at the beginning and end of the signal.

Another type of iterative decomposition is Iterative Filtering (IF), inspired by EMD [73]. The
iterative filtering technique works by applying a filter to an image or signal, then subtracting the
filtered version from the original. This difference is then added back to the original signal, and
the process is repeated multiple times.

Each iteration helps to remove more noise or artifacts from the signal, resulting in a cleaner
and clearer output. Iterative filtering is commonly used in applications such as image denoising,
image restoration, and signal processing.

18 2 Iterative Filtering and IMFogram

IF is based on the same framework as EMD, but the operator performing the moving average
of a signal 𝑆 (𝑥) is obtained by convolving 𝑆 (𝑥) with low-pass filters, instead of computing the
average of the upper and lower envelop as in EMD, thus creating the IMFs.

Let’s consider a signal 𝑆 (𝑥), 𝑥 ∈ ℝ, and O(𝑆 (𝑥)) as a moving average of the signal 𝑆 (𝑥),
where O is an operator. Let 𝐿(𝑡) be a low pass filter (the double average filter) defined for instance
by

𝐿(𝑡) = 𝑙 + 1 − |𝑡 |
(𝑙 + 1)2 , 𝑡 ∈ [−𝑙, 𝑙] (2.4)

we therefore define the moving average of the signal 𝑆 (𝑥) as the convolution

O(𝑆 (𝑥)) =
∫ 𝑙

−𝑙
𝑆 (𝑥 + 𝑡)𝐿(𝑡)𝑑𝑡 . (2.5)

More in general, O(𝑆 (𝑥)), can be defined as a convolution of the signal 𝑆 (𝑥) and some filter
𝜔 in the IF method. A function 𝜔 : [−𝑙, 𝑙] → ℝ is called a filter if it is nonnegative i.e. 𝜔 (𝑡) > 0,
enven i.e. 𝜔 (−𝑡) = 𝜔 (𝑡), bounded i.e ∃0 < 𝑀 ∈ ℝ such that |𝜔 (𝑡) | ≤ 𝑀,∀𝑡 ∈ [−𝑙, 𝑙], continuous,
and

∫
ℝ
𝜔 (𝑡)𝑑𝑡 = 1 [83].

Let define 𝑆1(𝑥) = 𝑆 (𝑥) and

G1,𝑛 (𝑆𝑛) = 𝑆𝑛 − O1
𝑛 (𝑆𝑛) = 𝑆𝑛+1, (2.6)

the operator capturing the fluctuation part of 𝑆𝑛 for 𝑛 = 1, 2 · · · , one obtain the first IMF as
𝐼1 = lim𝑛→∞ G1,𝑛 (𝑆𝑛), here the operator O1

𝑛 is linked to the mask length 𝑙𝑛 which is the length of
the filter during step 𝑛, the superscript 1 refer to the first IMF.

The mask length of iterative filtering is typically determined by the size of the kernel or filter
used in the filtering process. The mask length refers to the number of elements in the filter that
are used to perform the filtering operation. The mask length can be computed based on the
specific requirements of the iterative filtering operation, such as the level of smoothing or detail
preservation needed in the output image.

Following [73], the mask length is computed as

𝑙𝑛 =

⌊
a
𝑁

𝑘𝑛

⌋
(2.7)

Where 𝑁 represents the total number of sample points of the signal 𝑆𝑛 (𝑥), 𝑘𝑛 represents the
number of its extremum points, a is a parameter fixed around 1.6, and ⌊·⌋ rounds a positive
number to the nearest integer part close to zero [79].

In a similar way we obtain the second IMF 𝐼2 by applying the operator G to the remaining
signal 𝑆 − 𝐼1. We therefore iterate the process to obtain the 𝑘-th IMF as 𝐼𝑘 = lim𝑛→∞ G𝑘,𝑛 (𝑟𝑘),
where 𝑟𝑘 = 𝑆 − 𝐼1 − · · · − 𝐼𝑘−1. We stop the IF when 𝑟𝑚+1 = 𝑆 − 𝐼1 − · · · − 𝐼𝑚, 𝑚 ∈ N, becomes

2 Iterative Filtering and IMFogram 19

a trend signal which means that further iteration has at most one local maximum orminimum [79].

In practice, several conditions can be considered. Firstly, a maximum number of iterations
should be predetermined in advance, and the iterative process is stopped once this number of
iterations is reached. Another way to determine the stopping point is to consider a signal-to-noise
ratio (SNR) improvement. In this case, the iterative process is stopped when the SNR of the filtered
signal reaches a predefined level. Alternatively, visual inspection can be employed, meaning that
the iterative process is stopped when the filtered signal visually meets the desired filtering goals.

Given a signal 𝑆 (𝑥), 𝑥 ∈ ℝ the IF algorithm is performed by applying two nested loops: the
inner one performs the necessary operations to obtain an IMF, and the outer one computes all the
IMFs [79].

IF algorithm IMF=IF(S)
IMF = {}
while the number of extrema of 𝑆 ≥ 2 do

𝑆1 = 𝑆
while the stopping criterion is not satisfied do

compute the first length 𝑙𝑛 for 𝑆𝑛
𝑆𝑛+1(𝑥) = 𝑆𝑛 (𝑥) −

∫ 𝑙𝑛

−𝑙𝑛
𝑆𝑛 (𝑥 + 𝑡)𝜔𝑛 (𝑡)d𝑡

𝑛 = 𝑛 + 1
end while
IMF = IMF∪{𝑆𝑛}
𝑆 = 𝑆 − 𝑆𝑛

end while
IMF = IMF∪{𝑆}

In [79], to implement the IF algorithm, the mask length is only computed in the first step, and
then the same value is used for all the remaining steps. There is a reason for doing so: to ensure
that each IMF produced by the framework contains a well-defined set of instantaneous frequencies
[79]. By following this idea, one can observe that the operators G and O do not depend on the
step number 𝑛. Therefore, for a given signal 𝑆 (𝑥), where 𝑥 ∈ ℝ, the first IMF is obtained simply
by 𝐼1 = lim𝑛→∞ G𝑛 (𝑆), with G(𝑆) = 𝑆 −O(𝑆) and O(𝑆) =

∫ 𝑙

−𝑙 𝑆 (𝑥 + 𝑡)𝜔 (𝑡)d𝑡 , where 𝑙 is the mask
length computed only in the first step of the inner loop, and 𝜔 (𝑡) is a convenient filter function.
In the inner loop of the IF algorithm, the convergence is guaranteed for a periodic signal, and this
convergence has been studied in the space of functions 𝑙∞ in [84].

Let’s explore this idea in depth. Consider a continuous signal 𝑆 (𝑥) ∈ ℝ, and a uniform filter
𝜔 (𝑡), compactly supported on 𝑡 ∈ [−𝑙, 𝑙]. The operator O is computed as follow

O(𝑆) (𝑥) =
∫ 𝑙

−𝑙
𝑆 (𝑥 + 𝑡)𝜔 (𝑡)d𝑡, (2.8)

we can define the operator G as

G(𝑆) = 𝑆 − O(𝑆) = (𝟙 − O) (𝑆). (2.9)

20 2 Iterative Filtering and IMFogram

The first step of the IF algorithm is the application of the operator G to the current signal.
Furthermore, by fixing the mask length 𝑙 throughout all the steps of an inner loop, we obtain a
function sequence G𝑛 (𝑆). We summarize this idea in the following proposition to obtain a nice
form of the sequence {G𝑛 (𝑆)} in order to think about its convergence.
Proposition 2.1. Let 𝑙 be the fixed mask length throughout all the steps of an inner loop, then the
following equality hold

G𝑛 (𝑆) = (𝟙 − O)𝑛 (𝑆) . (2.10)
Proof. Recall our first characterization of the 𝑛 + 1 terms obtained by sifting the operator G 𝑛

times, i.e

𝑆𝑛+1 = G𝑛 (𝑆𝑛) = G𝑛 (𝑆) = (𝑆 − O(𝑆))𝑛 and 𝑆1 = 𝑆. (2.11)

Let us prove the proposition by recurrence. For 𝑛 = 1, 𝑆2 = (𝑆 − O(𝑆))1 = (𝟙 − O) (𝑆). For 𝑛 = 2
and using the equation (2.6) we have

𝑆3 = G2(𝑆2) = 𝑆2 − O(𝑆2) = (𝟙 − O)𝑆2
= (𝟙 − O)(𝟙 − O)𝑆1
= (𝟙 − O)2𝑆1, (2.12)

from (2.11) and (2.12) 𝑆3 = G2(𝑆2) = (𝟙 − O)2(𝑆). Let us suppose that the (2.10) it is true for
𝑛 = 𝑘 − 1 i.e. 𝑆𝑘−1 = (𝟙 − O)𝑘−2𝑆1 and now let us show that it remain true for 𝑛 = 𝑘

𝑆𝑘 = G𝑘−1(𝑆𝑘−1) = G𝑘−1(𝑆𝑘−1) = (𝑆𝑘−1 − O(𝑆𝑘−1)) = (𝟙 − O)𝑆𝑘−1 = (𝟙 − O)𝑘−1𝑆1, (2.13)

So from (2.11) and (2.13) we have 𝑆𝑘+1 = G𝑘 = G𝑘 = (𝟙 − O)𝑘𝑆1.
If we assume the sequence {G𝑛 (𝑆)} is convergent then we compute the first IMF as

𝐼1 = lim
𝑛→∞

G𝑛 (𝑆) . (2.14)

In [84] the authors provides a proof on the convergence of the sequence G𝑛 (𝑆). In [79] a
proof of the sequence G𝑛 (𝑆) is provided when the signal 𝑆 is in 𝐿2. The idea developed in [79]
is to take a continuous filter 𝜔 (𝑡) that is symmetric and compactly supported. By symmetry, we
mean 𝜔 (−𝑡) = 𝜔 (𝑡) for 𝑡 ∈ [−𝑙, 𝑙]. Such 𝜔 satisfying all the mentioned properties implies that
𝜔 (𝑡) ∈ 𝐿2(ℝ). It now appears clearly that (2.8) is the convolution of the signal 𝑆 and the filter 𝜔:

O(𝑆) (𝑥) =
∫ 𝑙

−𝑙
𝑆 (𝑥 + 𝑡)𝜔 (𝑡)d𝑡 =

∫ 𝑙

−𝑙
𝑆 (𝑥 − 𝑡)𝜔 (𝑡)d𝑡

=

∫ ∞

−∞
𝑆 (𝑥 + 𝑡)𝜔 (𝑡)d𝑡 = (𝑆 ∗ 𝜔) (𝑥) . (2.15)

Since 𝜔 (𝑡) ∈ 𝐿2(ℝ), we compute its Fourier transform as F (𝜔) (b) =
∫ ∞
−∞𝜔 (𝑡)e

−2𝜋𝑖𝑡bd𝑡, b ∈
ℝ. We can apply the convolution theorem of the Fourier transform, to obtain F (O(𝑆)) (b) =

F (𝑆 ∗ 𝜔) (b) = F (𝑆) (b)F (𝜔) (b), b ∈ ℝ. The ensuing proposition provide a nice form of the
the Fourier transform of the equation (2.10).

2 Iterative Filtering and IMFogram 21

Proposition 2.2. Let G be the sifting operator of the signal 𝑆 satisfying the equation (2.10), then
the Fourier transform of the (2.10) is given by

F (G𝑛 (𝑆)) (b) = F ((𝐼 − O)𝑛 𝑆) (b) = [1 − F (𝜔) (b)]𝑛 F (𝑆) (b), b ∈ ℝ. (2.16)

Proof. We can apply the equation (2.10), (2.15) and use the linearity and convolutional property
of the Fourier transform to obtain

F (G𝑛 (𝑆)) (b) = F ((𝑆 − O(𝑆))𝑛) (b) = F ((𝑆 − 𝜔 ∗ 𝑆)𝑛) (b) = F ((𝑆 − 𝜔 ∗ 𝑆) · · · (𝑆 − 𝜔 ∗ 𝑆)) (b)
= F ((𝛿 − 𝜔) ∗ · · · ∗ (𝛿 − 𝜔) ∗ 𝑆) (b)
= F (𝛿 − 𝜔) (b) · · · F (𝛿 − 𝜔) (b)F (𝑆) (b) (2.17)
= [1 − F (𝜔) (b)] · · · [1 − F (𝜔) (b)] F (𝑆) (b)
= [1 − F (𝜔) (b)]𝑛 F (𝑆) (b)

We have the necessary ingredient to present the convergence theorem of the sequence {G𝑛 (𝑆)}.

Theorem 2.3. Consider a symmetric non negative filter𝜔 (𝑡) ∈ 𝐿2(ℝ), 𝑡 ∈ [−𝑙, 𝑙] with
∫ 𝑙

−𝑙 𝜔 (𝑡)d𝑡 =
1, and let the signal 𝑆 (𝑥) be square integrable i.e 𝑆 (𝑥) ∈ 𝐿2(ℝ). If | 1 − F (𝜔) (b) |< 1 or
F (𝜔) (b) = 0. Then the sequence {G𝑛 (𝑆)} converges and

lim
𝑛→∞

G𝑛 (𝑆) (𝑥) =
∫ ∞

−∞
F (𝑆) (b)𝜒{F (𝜔) (b)=0} e2𝜋𝑖b𝑥d𝑡 (2.18)

Proof. For 𝑆 (𝑥) 𝑥 ∈ ℝ we can apply a result from Plancherel theorem stating that the integral
of the square of the Fourier transform of a function is equal to the integral of the square of the
function itself, i.e ∫ ∞

−∞
| F (𝑆) (b) |2 db =

∫ ∞

−∞
| 𝑆 (𝑥) |2 d𝑥 < ∞. (2.19)

We have two cases to take into account, either | 1 − F (𝜔) (b) |< 1 or F (𝜔) (b) = 0.
Let us consider the case | 1 − F (𝜔) (b) |< 1

| F (G𝑛 (𝑆)) (b) =| [1 − F (𝜔) (b)]𝑛 F (𝑆) (b) |=| 1 − F (𝜔) (b) |𝑛 | F (𝑆) (b) |
< | F (𝑆) (b) |, (2.20)

we now possess two nice information to infer on the convergence of the sequence F (L𝑛 (𝑆)) (b),
which is: | 1 − F (𝜔) (b) |𝑛 is a geometric sequence and 𝑆 is in 𝐿2, so we have

lim
𝑛→∞

| F (G𝑛 (𝑆)) (b) |= 0, (2.21)

by the property of convergent sequence lim𝑛→∞ F (G𝑛 (𝑆)) (b) = 0.
Now for the case F (𝜔) (b) = 0, we have

| F (G𝑛 (𝑆)) (b) =| 1 − F (𝜔) (b) |𝑛 | F (𝑆) (b) |= F (𝑆) (b). (2.22)

Combining the two cases we have

22 2 Iterative Filtering and IMFogram

lim
𝑛→∞

F (G𝑛 (𝑆)) (b) =
{
0 for | 1 − F (𝜔) (b) |< 1,
F (𝑆) (b) for F (𝜔) (b) = 0. (2.23)

From the fact that Fourier transform is an invertible operator, the sequence {G𝑛 (𝑆)} is also
convergent as an inverse Fourier transform of the convergent sequence {F (G𝑛 (𝑆)) (b)} and admit
as limit

lim
𝑛→∞

G𝑛 (𝑆) (𝑥) =
∫ ∞

−∞
F (𝑆) (b)𝜒{b:F (𝜔) (b)=0}e2𝜋𝑖b𝑥db (2.24)

This theorem is of great importance, since it provides sufficient conditions on the filter that
guaranty the convergence of the inner loop of the IF algorithm. We emphasize that (2.24) is
actually an explicit formula for the IMF of a signal 𝑆 based on IF algorithm with a filter 𝜔 . Recall
that our previous assumption on the sufficient conditions on the filter i.e. assuming it to be a low
pass filter, for example the double average filter 𝐿(𝑡) is not unrealistic. In fact 𝐿(𝑡) satisfies the
condition of the above theorem if b = 𝑘

𝑙 + 1, 1 ≤ 𝑘 ≤ 𝑙 + 1 under this requirement F (𝐿) (b) = 0.
By exploring the world of kernel we realize that filters satisfying properties | 1 − F (𝜔) (b) |< 1
and F (𝜔) (b) = 0 are not unique and can be easily found. To explore a litle bit this world, let us
consider a symmetric and non negative filter 𝜔 , with

∫ 𝑙

−𝑙 𝜔 (𝑡)d𝑡 = 1 we can compute its Fourier
transform

F (𝜔) (b) =
∫ ∞

−∞
𝜔 (𝑡) cos (−2𝜋𝑖𝑡b) d𝑡 . (2.25)

The modulus of (2.25) equals

| F (𝜔) (b) |=|
∫ ∞

−∞
𝜔 (𝑡) cos(−2𝜋𝑖𝑡b)d𝑡 | ≤

∫ ∞

−∞
| 𝜔 (𝑡) cos(−2𝜋𝑖𝑡b) | d𝑡

<

∫ ∞

−∞
| 𝜔 (𝑡) | d𝑡 =

∫ 𝑙

−𝑙
𝜔 (𝑡)d𝑡 = 1. (2.26)

From (2.26) we infer that for a non-negative and symmetric filter 𝜔 (𝑡), 𝑡 ∈ [−𝑙, 𝑙] , −1 <

F (𝜔) (b) < 1, for every b ∈ ℝ. For 𝜔 (𝑡) such that | 1 − F (𝜔) (b) |< 1 we need a particular 𝜔 (𝑡)
such that 0 ≤ F (𝜔) (b) < 1, to have such a condition we can chose a filter 𝑢 (𝑡), 𝑡 ∈ [−2𝑙, 2𝑙],
obtained as a convolution of a symmetric non-negative filter 𝜔 (𝑡), 𝑡 ∈ [−𝑙, 𝑙] with itself, so we
have

𝑢 (𝑡) = 𝜔 (𝑡) ∗ 𝜔 (𝑡). (2.27)

We obtain the expected result by computing the Fourier transform of𝑢 (𝑡) , which is F (𝑢) (b) =
F (𝜔) (b).F (𝜔) (b), and it is now clear that 0 ≤ F (𝑢) (b) < 1, ∀b ∈ ℝ. Therefore, any filter given
as convolution of a symmetric, non-negative and compactly supported filter in 𝐿2 space with itself

2 Iterative Filtering and IMFogram 23

satisfies the conditions of Theorem 2.3.

Let’s consider the artificial signal 𝑆 (𝑡) = sin(4𝜋𝑡) + 0.5 cos(5𝜋 |𝑡 | − 40𝜋𝑡2), depicted in the
Figure 2.1. This signal is a sum of two components: one with amplitude 1 and zero phase, and
the other with an amplitude of 0.5. After applying the IF algorithm, the signal reveals three IMFs,
as shown in the Figure 2.2.

The first IMF, 𝑐1 corresponds to the signal component 0.5 cos(5𝜋 |𝑡 | − 40𝜋𝑡2), the second IMF,
𝑐2 capture the portion of the signal sin(4𝜋𝑡), and the third IMF, 𝑐3,represent the mean of the
original signal.

Figure 2.1: Example of the artificial signal 𝑆 (𝑡) = sin(4𝜋𝑡) + 0.5 cos(5𝜋 |𝑡 | − 40𝜋𝑡2)

The Iterative filtering has also its generalizations. Among them there is the so called adaptive
local iterative filter (ALIF) [79]. The ALIF algorithm is based on the IF method. The working
difference are just the way the filter mask is computed.

It is of great importance to study the convergence of the inner loop of the IF for obtaining each
IMF. IF is stable under perturbation and the convergence is guaranteed for periodic and 𝑙∞ signals
using uniform filters. However, the convergence for general signals with uniform and non-uniform
filters cannot be proven under IF. The ALIF technique relies on computing the mask length 𝑙𝑛 (𝑥).
This mask length is required to be a positive function, giving rise to two perspectives:

1. The mask length is a positive constant function, essentially transforming the ALIF technique
into the IF method.

2. The mask length varies from point to point, resulting in a non-uniform mask length.
The convergence of the ALIF method is assured in the case of a constant mask length, as stated in
Theorem 2.3. However, for the convergence of the ALIF method with a non-uniform mask, it is
necessary to remove the high-frequency oscillations present in the mask length 𝑙𝑛 (𝑥). Therefore,
convergence is guaranteed when dealing with a slowly varying mask length [79].

The ALIF algorithm is the same as IF, the only change is in the way the operator capturing the
fluctuation part is computed. This operator is given for a signal 𝑆 (𝑥) 𝑥 ∈ ℝ by

G1,𝑛 (𝑆𝑛) = 𝑆𝑛 − O1
𝜔,𝑙𝑛

(𝑆𝑛) = 𝑆𝑛+1, (2.28)

24 2 Iterative Filtering and IMFogram

Figure 2.2: The IMFs of the artificial signal 𝑆 (𝑡)

and the moving average operator is given by

O1
𝜔,𝑙𝑛

(𝑆𝑛) =
∫ 𝑙𝑛 (𝑥)

−𝑙𝑛 (𝑥)
𝑆𝑛 (𝑥 + 𝑡)𝜔 (𝑥)

𝑛 (𝑡)d𝑡 (2.29)

The first IMF is computed in a similar way as in IF i.e 𝐼1 = lim𝑛→∞ G1,𝑛 (𝑆𝑛), the operator G1,𝑛
depends on the mask length 𝑙𝑛 (𝑥) computed at step 𝑛. The mask length 𝑙𝑛 (𝑥) is a crucial aspect of
the ALIF process. It must be a strictly positive function. When it remains constant for every 𝑥 , it
results in a uniform mask length, rendering the ALIF method equivalent to IF. On the other hand,
when the mask length 𝑙𝑛 (𝑥) varies from point to point, it generates a non-uniform mask length.

We can remind that the process applied to obtain the first IMF is a kind of sift for separating
the finest local mode from the data. It is also natural that in practice we need a stopping criterion
since we cannot let 𝑛 tends to infinity in a computer for example. We first iteratively compute
the quantity 𝐼1,𝑛 = G1,𝑛 (𝑆𝑛), where at step 𝑛 of the first inner loop G1,𝑛 stands for an operator
capturing the fluctuation part. To set a stopping criterion we use the standard deviation

𝑆𝐷 := ∥ 𝐼𝑛 − 𝐼𝑛−1 ∥2
∥ 𝐼𝑛−1 ∥2

. (2.30)

In [71] the authors suggest to set this value between [0.2, 0.3]. Whereas in [81] 𝑆𝐷 is set in
the interval [0.001, 0.2]. Different stopping criteria can also be considered for each inner loops.
To obtain all the IMFs with ALIF, we proceed in the same way as we do for IF, by applying the
previous sifting process to the remainder signal 𝑟 = 𝑆 − 𝐼1 − · · · 𝐼𝑘−1 𝑘 ∈ ℕ. The algorithm stop
when the remainder signal 𝑟 remain with at most one local extremum.

2 Iterative Filtering and IMFogram 25

We can notice at this point the difference between the ALIF and the IF reside on the mask
length 𝑙𝑛 (𝑥) depending on 𝑥 to perform the moving average using the operator O. The mask
length 𝑙𝑛 (𝑥) has to be a strictly positive function. However, it can also be a strictly positive constant
and in that case the ALIF reduces to IF framework. We can notice that the choice of the mask
length 𝑙𝑛 (𝑥) is not unique.

One of the crucial problem we cannot ignore since we adopt the same idea for computing the
IMFs is that of the convergence of the ALIF. It is worth to notice that in the ALIF we are concerned
with a non-uniform mask length, we need a slowly varying mask length. We have pointed out that
when the mask length 𝑙𝑛 (𝑥) is constant the ALIF reduces to IF and if in a limit case 𝑙𝑛 (𝑥) does not
change at all, so the ALIF reduces to IF and without disquiet we apply Theorem 2.3.

Let consider the ALIF algorithm with a non-uniform mask length and let consider the operator

O𝜔, 𝑙 (𝑆) =
∫ 𝑙 (𝑥)

−𝑙 (𝑥)
𝑆 (𝑥 + 𝑡)𝜔 (𝑥) (𝑡)d𝑡, (2.31)

and consider the sifting operator G𝑛 (𝑆𝑛) given by

𝑆𝑛+1 = G𝑛 (𝑆𝑛) (𝑥) = 𝑆𝑛 (𝑥) −
∫ 𝐿

−𝐿
𝑆𝑛 (𝑥 + 𝑔𝑛 (𝑥,𝑦))𝑊 (𝑦)d𝑦, (2.32)

we precise that𝑊 (𝑦), ∈ [−𝐿, 𝐿] is a filter and 𝑔𝑛 (𝑥,𝑦) is a scaling function defined on ℝ ×
[−𝐿, 𝐿] having value on ℝ × [−𝑙𝑛 (𝑥), 𝑙𝑛 (𝑥)], and can be seen as a linear function 𝑔𝑛 (𝑥,𝑦) =

𝑙𝑛 (𝑥)𝑦/𝐿 or it also can be regarded as cubic function 𝑔𝑛 (𝑥,𝑦) = 𝑙𝑛 (𝑥)𝑦3/𝐿3

Theorem 2.4. Let consider a continuous signal 𝑆 (𝑥) 𝑥 ∈ ℝ in 𝐿∞(ℝ). Let consider the sequence

𝜖𝑛 =
∥ O𝜔𝑛+1, 𝑙𝑛+1 (𝑆𝑛+1) ∥𝐿∞
∥ O𝜔𝑛, 𝑙𝑛 (𝑆𝑛) ∥𝐿∞

, 𝛿𝑛 =
∥ O𝜔𝑛+1, 𝑙𝑛+1 (| 𝑆𝑛+1 |) ∥𝐿∞
∥ O𝜔𝑛, 𝑙𝑛 (| 𝑆𝑛 |) ∥𝐿∞

. (2.33)

If

𝑛∏
𝑖=1

𝜖𝑖 → 0,
𝑛∏
𝑖=1

𝜎𝑖 → 𝑐 > 0, 𝑎𝑠𝑛 → ∞. (2.34)

Then {𝑆𝑛 (𝑥)} converge almost every where to an IMF.
It is worthwhile to notice once more that even the mask length 𝑙𝑛 (𝑥) inside the inner loop

can be computed at each step 𝑛, we only compute it in the first step in the implemented code
and use that mask length for following steps. This way of doing lead the operators G and O
to be independent on the steps 𝑛, which is to say, given a signal 𝑆 (𝑥) 𝑥 ∈ ℝ the operators are
given by G(ℎ) = ℎ −O(ℎ), and O(ℎ) (𝑥) =

∫ 𝑙 (𝑥)
−𝑙 (𝑥) ℎ(𝑥 + 𝑡)𝜔

(𝑥) (𝑡)d𝑡 , where 𝑙 (𝑥) is the mask length
computed in the first step of the sifting process, ℎ = 𝑆 − 𝐼1 · · · 𝐼𝑘−1, and 𝜔 (𝑥) (𝑡) a convenient filter
with compact support in the interval [−𝑙 (𝑥), 𝑙 (𝑥)].

In this framework we generate the moving average of a given signal by making use of the FP
filters obtained as a solution of Fokker-Plank equations. Another way of computing filters is to use
in fact partial differential equations (PDEs). This is because PDEs are used to model diffusion

26 2 Iterative Filtering and IMFogram

processes. Therefore given a diffusion PDEs we can make use of it fundamental solution to build
a filter for the ALIF or IF framework. A better candidate for generating a smooth compactly
supported filters is the state-of-the-art Fokker-Plank equation and we call these filter FP filters.
Let be given a Fokker-Plank equation

𝑝𝑡 = −𝛼 (𝑓 (𝑥)𝑝)𝑥 + 𝛽
(
𝑔2(𝑥)𝑝

)
𝑥𝑥
, 𝛼, 𝛽 > 0, (2.35)

where the function ℎ(𝑥) and 𝑔(𝑥) are smooth enough and for 𝑎 < 0 < 𝑏 the following
conditions are satisfied:

• 𝑔(𝑎) = 𝑔(𝑏), 𝑔(𝑥) > 0 for 𝑥 ∈ (𝑎, 𝑏) (2.36)
• ℎ(𝑎) < 0 < ℎ(𝑏) (2.37)

There exist a non-trivial smooth solution of the homogeneous problem

−𝛼 (𝑓 (𝑥)𝑝)𝑥 + 𝛽
(
𝑔2(𝑥)𝑝

)
𝑥𝑥

= 0, (2.38)

where 𝑝 (𝑥) satisfy the two conditions 𝑝 (𝑥) ≥ 0 for 𝑥 ∈ (𝑎, 𝑏) and 𝑝 (𝑥) = 0 for 𝑥 ∉ (𝑎, 𝑏).

2.2 IMFogram
The time-frequency representation of the intrinsic mode functions (IMFs) appears to be a chal-
lenging task, as each IMF lacks fixed frequencies and is not orthogonal to one another. This differs
from the periodogram and its localized counterpart, the spectrogram, which are indeed graphical
representations tailored for Fourier analysis. Since each Fourier component possesses a distinct
frequency, and these components are independent of each other, the total energy of the signal
results from the sum of the energy of each component. The IMFogram is a straightforward analog
of the spectrogram, designed for rapid computation based on IMF decompositions. Its definition
is as follows:

Let consider [as a parameter between 5 to 20 in practice, and let denote by f an IMF produced
with a filter length 𝑙 . The approximation of its local energy at 𝑡 is given as follow:

𝐸 𝑓 (𝑡) =
1
2[𝑙

∫ 𝑡+[𝑙

𝑡−[𝑙
𝑓 (𝜏)2𝑑𝜏 . (2.39)

The fact that an IMF focuses on a narrow frequency section, this fact provide an intuition on an
approximation of 𝑓 by

Ω𝑓 (𝑡) =
1
4[𝑙 × number of zero-crossings of 𝑓 over the interval [𝑡 − [𝑙, 𝑡 + [𝑙]. (2.40)

It is worth noting that the approximation described in (2.40) is not unique. There are many
other very well highlighted in [84, 82]. The above local energy and frequency approximation of 𝑓
provide the frequency, time, and energy triples,

(
𝑡𝑖,Ω𝑓 (𝑡𝑖), 𝐸 𝑓 (𝑡𝑖)

)
𝑖∈ℤ𝑁

for 𝑓 [82].

Let consider a signal 𝛼 defined on [0, 𝐿] sampled at rate 𝐵 per time unit. We represent it as
vector of size 𝑁 = 𝐵𝐿. We wrap it on a discrete circle: consider a quotient group ℤ𝑁 = ℤ/𝑁ℤ

and set 𝑡𝑖 = 𝑖/𝐵, 𝑖 ∈ ℤ𝑁 . The discretized and wrapped signal is 𝑠 = (𝛼 (𝑡𝑖))𝑖∈ℤ𝑁
with time domain

3 Artificial neural network and Convolutional Neural Networks 27

{𝑖/𝐵 : 𝑖 ∈ ℤ𝑁 } and frequency domain (ℤ𝑁 /𝐿) ∩ [0, 𝐵/2]. Let partition the time-frequency
domain in rectangles in order to obtain a time-frequency representation of the signal. For a given
rectangle 𝑅, we denote by Π𝑡𝑅 the projection of the rectangle onto the time coordinate and Π𝜔𝑅
the projection onto the frequency coordinate. Let 𝑠1, 𝑠2, · · · , 𝑠𝑘 be the IMF decomposition of 𝑠. We
define an energy associated to a rectangle 𝑅 as a sum of the average local energies of each IMF
when the local frequency lies in Π𝜔 , i.e

𝐸𝑠 (𝑅) =
∑︁

1≤ 𝑗≤𝑘

1
#Π𝑡𝑅

∑︁
𝜏∈Π𝑡𝑅

𝐸𝑠 𝑗 (𝜏)𝟙{Ω𝑠 𝑗 (𝜏) ∈ Π𝜔𝑅} (2.41)

It is important to choose the length of Π𝑡𝑅 to be comparable to the smallest filter length 𝑙 (𝜔1), in
this case changes in high frequencies are well represented. The choice of the rectangle 𝑅 to cover
the time and frequency domain is subject to the type of application [82].

The IMFogram of the signal 𝑠 is nothing else than the plot of the step function that equals to
𝐸𝑠 (𝑅) on each rectangle 𝑅. The IMFogram of the artificial signal depicted in Figure 2.1 and its
IMFs illustrated in the Figure 2.2 is depicted in the Figure 2.3 [82].

Figure 2.3: The IMFogram of the figure 2.1 and 2.2

3 Artificial neural network and Convolutional Neural Net-
works

3.1 Neural Network
A neural network (NN) is a collection of weights, together with the associated realization of the
NN. A precise definition of a NN is given in the Definition 3.1 above.

28 3 Artificial neural network and Convolutional Neural Networks

Definition 3.1. [85, 86] A neural networks Φ with input dimension 𝑑 and 𝐿 layers is a collection
of matrix-vector tuples

Φ = ((𝐴1, 𝑏1), · · · , (𝐴𝐿, 𝑏𝐿)) , (3.1)

where 𝑁0 = 𝑑, 𝐿 ∈ ℕ and 𝑁1, · · · , 𝑁𝐿 ∈ ℕ and each 𝐴 𝑗 are matrices of type (𝑁 𝑗 , 𝑁 𝑗−1) and 𝑏 𝑗 is
vector of dimension 𝑁 𝑗 for 𝑗 = 1, · · · , 𝐿. If Φ is neural network as described above, we define the
realization of the NN Φ as a function defined from ℝ𝑁0 to ℝ𝑁𝐿 , such that:

𝑅𝜚 (Φ) : ℝ𝑑 −→ ℝ𝑁𝐿 : 𝑥 ↦−→ 𝑥𝐿 =: 𝑅𝜚 (Φ) (𝑥),

it is worth noting that 𝑥𝐿 is generated from the following design:

𝑥0 : = 𝑥
𝑥 𝑗 : = 𝜚

(
𝐴 𝑗𝑥 𝑗−1 + 𝑏 𝑗

)
𝑗 = 1 · · · 𝐿 − 1 (3.2)

𝑥𝐿 : = 𝐴𝐿𝑥𝐿−1 + 𝑏𝐿,

it is of great importance to emphasize that 𝜚 is a special function usually called an activation
function, which can be of different types, e.g., ReLU, sigmoid, and tangent hyperbolic. This
special function act component-wise on vector-valued input, i.e., 𝜚 (𝑧) = (𝜚 (𝑧1), · · · , 𝜚 (𝑧𝐿)) for
𝑧 = (𝑧1, · · · , 𝑧𝐿) ∈ ℝ𝐿. The number 𝑁 (Φ) = 𝑑 +∑𝐿

𝑖=1 𝑁𝑖 is the total number of neurons in the NN
Φ, 𝐿(Φ) := 𝐿 is the number of layers, also referred to as the depth of NN, 𝑀 𝑗 = ∥𝐴 𝑗 ∥0 + ∥𝑏 𝑗 ∥0 is
the total number of nonzero weights in the 𝑗−th layer, and finally 𝑀 (Φ) = ∑𝐿

𝑗=1𝑀 𝑗 is the total
number of nonzero weights in the NN Φ, also called the size of the NN. The number 𝑁𝐿 represent
the output dimension of the NN Φ [85, 86].

It is worthwhile to remark that if the product 𝐴 𝑗𝑥 𝑗−1 in equation (3.2) is replaced by a
convolutional or cross-correlation operation with some addition ingredient as described bellow,
then the NN Φ is called a convolutional NN (CNN). The cross-correlation or the convolutional
operation is described by

(
𝐴 𝑗 ∗ 𝑥 𝑗

)
𝑡,𝑝

=

𝑁 𝑗∑︁
𝑖=1

𝑁 𝑗−1∑︁
𝑙=1

𝐴 𝑗,𝑖,𝑙𝑥 𝑗,𝑡+𝑖,𝑝+𝑙

Neural networks can also be constructed from existing ones by applying operations such as
concatenation and parallelization. This is a way of building complex neural networks rather than
just using simpler blocks.
Definition 3.2. Consider two natural numbers 𝐿1, 𝐿2, and Φ1, Φ2 be two NNs of respective depth
𝐿1 and 𝐿2 with

Φ1 = ((𝐴1
1, 𝑏

1
1), · · · , (𝐴1

𝐿1, 𝑏
1
𝐿1)), Φ2 = ((𝐴2

1, 𝑏
2
1), · · · , (𝐴2

𝐿2, 𝑏
2
𝐿2)),

Such that 𝑁 1
0 = 𝑁 2

𝐿2
= 𝑑, meaning that the input layer of the NN Φ1 has the same dimension as

the output layer of the NN Φ2. Then there exists an NN Φ1 • Φ2 called the concatenation of Φ1

and Φ2, which is defined as follows:

Φ1 • Φ2 = ((𝐴2
1, 𝑏

2
1), · · · , (𝐴2

𝐿2−1, 𝑏
2
𝐿2−1), (𝐴

1
1𝐴

2
𝐿2, 𝐴

1
1𝑏

2
𝐿2 + 𝑏

1
1), (𝐴1

2, 𝑏
1
2), · · · , (𝐴1

𝐿1, 𝑏
1
𝐿1)) . (3.3)

The concatenation Φ1 • Φ2 has 𝐿1 + 𝐿2 − 1 layers, 𝑅𝜚 (Φ1 • Φ2) = 𝑅𝜚 (Φ1) ◦ 𝑅𝜚 (Φ2)[85, 86]

3 Artificial neural network and Convolutional Neural Networks 29

Proposition 3.3. For any natural numbers 𝑑 and 𝐿, there exists an NN Φ𝐼d
𝑑,𝐿

with 𝐿 layers, where the
total number of nonzero weights is less than or equal to 2𝑑𝐿. Furthermore, the associated realization
is simply the identity on ℝ𝑑 , i.e., 𝑅𝜚 (Φ𝑖d𝑑,𝐿) = 𝐼dℝ𝑑 . It is worth noting that this definition is only true
if the activation function 𝜚 is of the ReLU type. Specifically, Φ𝑖d

𝑑,𝐿
is defined as follows:

Φ𝑖d
𝑑,𝐿

=
©«
((
𝐼dℝ𝑑

−𝐼dℝ𝑑

)
, 0

)
, (𝐼dℝ2𝑑 , 0), . . . , (𝐼dℝ2𝑑 , 0)︸ ︷︷ ︸

𝐿−2 𝑡𝑖𝑚𝑒𝑠

, (
[
𝐼dℝ𝑑 | − 𝐼dℝ𝑑

]
, 0)

ª®®¬ . (3.4)

We can now define a sparse concatenation [85, 86].
Definition 3.4. Let 𝐿1, 𝐿2 be in ℕ, 𝜚 : ℝ −→ ℝ be a ReLU, and let Φ1 = ((𝐴1

1, 𝑏
1
1), . . . , (𝐴1

𝐿1
, 𝑏1
𝐿1
))

and Φ2 = ((𝐴2
1, 𝑏

2
1), . . . , (𝐴2

𝐿1
, 𝑏2
𝐿1
)) be neural networks with the property that the input of the

NN Φ1 has the same dimension 𝑑 as the output layer of the NN Φ2. Then there exist a NN
Φ1⊙Φ2 := Φ1•Φ𝐼d•Φ2 called the space concatenation of the NNΦ1 andΦ2, andΦ𝐼d is defined as in
Proposition 3.3, the sparse concatenation Φ1⊙Φ2 has 𝐿1+𝐿2 layers, 𝑅𝜚 (Φ1⊙Φ2) = 𝑅𝜚 (Φ1)◦𝑅𝜚 (Φ2)
and the total number on nonzero weights𝑀 (Φ1⊙Φ2) ≤ 2𝑀 (Φ1) +2𝑀 (Φ2). Another fundamental
operation over NN is parallelization and one can construct it as follows [85, 86];
Proposition 3.5. Consider the natural numbers 𝐿 and 𝑑, and let Φ1 and Φ2 be two NNs, each having
𝐿 layers and a 𝑑-dimensional input. Then there exists an NN 𝑃 (Φ1,Φ2) with 𝐿 layers and input
dimension 𝑑, called the parallelization of Φ1 and Φ2, defined as follows:

𝑃 (Φ1,Φ2) :=
(
(𝐴1, 𝑏1), . . . , (𝐴𝐿, 𝑏𝐿)

)
,

where

𝐴1 := ©«
𝐴1

1

𝐴2
1

ª®¬ , 𝑏1 := ©«
𝑏11

𝑏21

ª®¬ , 𝑎𝑛𝑑 𝐴 𝑗 :=
(
𝐴1
𝑗 0
0 𝐴2

𝑗

)
, 𝑏 𝑗 := ©«

𝑏1𝑗

𝑏2𝑗

ª®¬ , 𝑓 𝑜𝑟 1 < 𝑗 ≤ 𝐿.

Where
𝑅𝜚 (𝑃 (Φ1,Φ2)) (𝑥) =

(
𝑅𝜚 (Φ1) (𝑥), 𝑅𝜚 (Φ2) (𝑥)

)
∀𝑥 ∈ ℝ𝑑

and 𝑀 (𝑃 (Φ1,Φ2)) = 𝑀 (Φ1) +𝑀 (Φ2) [85, 86].
It is sometimes of great importance to use a parallelization that has two different inputs, and

this scheme is defined as follows:
Proposition 3.6. Let 𝐿 ∈ ℕ and consider

Φ1 =
(
(𝐴1

1, 𝑏
1
1) . . . , (𝐴1

𝐿, 𝑏
1
𝐿)

)
, 𝑎𝑛𝑑 Φ2 =

(
(𝐴2

1, 𝑏
2
1) . . . , (𝐴2

𝐿, 𝑏
2
𝐿)

)
Let Φ1 and Φ2 be two NNs, both having 𝐿 layers and inputs 𝑁 1

0 = 𝑑1 and 𝑁 2
0 = 𝑑2, respectively. Then

there exists an NN 𝐹𝑃 (Φ1,Φ2) called the full parallelization of Φ1 and Φ2, possessing 𝐿 layers and an
input dimension of 𝑑 = 𝑑1 + 𝑑2. For all 𝑥 = (𝑥1, 𝑥2) ∈ ℝ𝑑 , where 𝑥𝑖 ∈ ℝ𝑑𝑖 for 𝑖 = 1, 2, it is defined
as follows:

𝐹𝑃 (Φ1,Φ2) := ((𝐴3
1, 𝑏

3
1), . . . , (𝐴3

𝐿, 𝑏
3
𝐿))

where, for 𝑗 = 1, . . . , 𝐿 we set

𝐴3
𝑗 :=

(
𝐴1
𝑗 0
0 𝐴2

𝑗

)
𝑏3𝑗 :=

©«
𝑏1𝑗

𝑏2𝑗

ª®¬

30 3 Artificial neural network and Convolutional Neural Networks

We can now provide more details on the design of the convolutional neural network, which is
a special case of the NN described above.

Figure 3.1: the artificial neural network ANN

3.2 Convolutional Neural Network

Convolutional neural networks (CNN), also called convolutional networks (ConvNet), are a type
of neural network for processing data that have a grid topology. Typical examples include time
series data defined as a one-dimensional grid at regular time intervals and image data defined
as a two-dimensional pixel grid. The name convolutional neural networks is not accidental, it is
used to refer to the use of the mathematical convolution operation in the network.

The idea of the CNN comes from a groundbreaking discovery of the visual cortex system by
David Hubel and Torsten Wiesel. The CNN analyzes images by following the map of the visual
cortex by adding convolution operations in some layers.

A Convolutional Neural Network (CNN) is composed of neurons that incorporate nonlinearity,
weight parameters, biases, and a loss function to evaluate the overall errors of the system. The net-
work employs backpropagation to rearrange its layers. CNN also uses multiple three-dimensional
kernels that can slide through the input tensor like a window. The goal of sharing kernels is to
reduce the number of parameters that the system needs to learn. Each layer’s kernels extract
features from the input tensor. The CNN architecture typically includes a Convolutional layer,
a layer for nonlinear activation functions, a Batch Normalization layer (BN), a Pooling layer, a
Dropout layer, and a Fully Connected layer (FC). We will briefly describe these layers below.

3 Artificial neural network and Convolutional Neural Networks 31

3.2.1 Convolutional Layer

A convolutional layer is a key building block of convolutional neural networks (CNNs) and is
designed with the ultimate goal of extracting features from images or other spatial data. The
layer contains of a set of learnable filters (kernels) that convolve over the input data to generate a
set of output feature maps. The size of the kernels are always smaller than the size of the input
tensor otherwise the CNN is just a normal neural network [87].

Throughout the convolution operation, the filter passes over the input data, multiplying it
element-by-element with the filter weights. The result of these multiplications is a single value
that is then shown in the appropriate location on the output feature map.

The structures of the input data are conserved in the output feature maps which also comprises
the needed information related to the spatial patterns, which are both feed to the subsequent
layers of the CNN for multiple tasks comprising classification, object detection, and segmentation.
An alternative way of creating deeper network for the ultimate purposes of learning complex
representations of the input tensor is to stack convolutional layers on top of each other. Let us
describe now the architecture of the convolutional layer.

As an essential compartment of the CNN, the convolutional layer takes as input a 3𝐷, 2𝐷 or
even 1𝐷 tensor data, and can have 𝑐 channels of 2𝐷 or even 1𝐷 feature maps of size ℎ ×𝑚. The
input is denoted by 𝑋 ∈ ℝ𝑐×ℎ×𝑚. Each of the 𝑐 feature maps convolves with a set of 𝑛 kernels of
size 3 i.e. each kernel is 𝐾𝑖 ∈ ℝ𝑐×𝑠×𝑠 1 ≤ 𝑖 ≤ 𝑛 to produce the output. The output obtained from
the convolution operation is a 3𝐷 tensor 𝑌 of size ℎ̃ × �̃� where ℎ̃ = (ℎ − 𝑠 + 2𝑝)/𝑡 + 1 = ℎ − 𝑠 + 1
and �̃� = (𝑚−𝑠 +2𝑝)/𝑡 +1 =𝑚−𝑠 +1. Here, 𝑝 represents padding taken as zero, and 𝑡 represents
the stride taken as 1. The output 𝑌 is obtained by computing the convolution of the input data
𝑋 𝑗 , 1 ≤ 𝑗 ≤ 𝑐, with the kernel 𝐾𝑖, 1 ≤ 𝑖 ≤ 𝑐, so

𝑌𝑖 =

𝑐∑︁
𝑗=1

𝐾𝑖, 𝑗 ∗ 𝑋 𝑗 , (3.5)

here ∗ stand for a 2𝐷 discrete convolutional operator, explicitly this operation is defined as

𝑌𝑖,𝑡,𝑝 =

(
𝑐∑︁
𝑗=1

𝐾𝑖, 𝑗 ∗ 𝑋 𝑗 ,
)
𝑡,𝑝

=

𝑐∑︁
𝑗=1

𝑠∑︁
𝑗1=1

𝑠∑︁
𝑗2=1

𝐾𝑖, 𝑗, 𝑗1, 𝑗2 .𝑋 𝑗,𝑡+ 𝑗1,𝑝+ 𝑗2 (3.6)

3.2.2 Non Linear Activation Layer

An essential component of the activation layer is the activation function which is a kind of master
chief giving order to a neuron to activate or not. The activation function decide on the importance
of the input to the network by applying simple mathematical functions. An activation function
also called transfer function in artificial intelligence is a kind of mathematical gate separating
the input data through the current neuron and its output moving to the next layer. Non-linear
activation function allow the network to learn and extract complex feature from the input data. It
models and approximate non-linear relationships in the input data. It also empower the network
with the ability to solve a wide range of problems.

32 3 Artificial neural network and Convolutional Neural Networks

The non-linear activation function enables complex decision boundaries, meaning the network
is now capable of capturing complex decision-making processes and classifying inputs that are
not linearly separable. It is worth noticing that the choice of an activation function affects the
quality of the given network to be expressive. This expressiveness empowers the network with
the ability to learn and represent more involved features, ameliorating its ability to generalize
and make accurate predictions on invisible data patterns.

The quality of the activation function eases the overall training ability of the network through
backpropagation. The derivative of the activation function directly affects the magnitude of the
gradient propagated through the learning process. We can use a specific activation function to
alleviate the problem of vanishing or exploding gradients to ensure an efficiently stable learning
process. Recent implementations prefer the use of non-linear activation functions such as Rectified
Linear Unit (ReLU) [41] and PReLu [35].

3.2.3 Batch Normalization Layer

The distribution of the networks changes with respect to the learning process through each epoch.
This change makes the training of the network cumbersome. To alleviate this issue one need to
incorporate to the network batch normalization layer which will perform normalization for each
training mini batch, which in turn will accelerate the convergence of the learning.

3.2.4 Pooling Layer

Pooling layers offer a method for downsampling feature maps by summarizing the presence of
features within patches of the feature map. Two commonly used pooling techniques are average
pooling, which provides an overview of the average presence of a feature, and max pooling, which
highlights the most activated presence of a feature.

It is a common practice to incorporate a pooling layer after the convolutional layer, forming a
recurring pattern in the layer arrangement of a convolutional neural network. This pooling layer
independently processes each feature map, generating a new set of pooled feature maps with the
same quantity.

The pooling operation entails selecting a specific operation, akin to a filter, to be applied to
feature maps. Typically, the size of the pooling operation or filter is smaller than that of the feature
map, specifically almost always a 2 × 2 pixel configuration applied with a 2-pixel stride.

3.2.5 Dropout Layer

In some circumstance the network can behave in weird way by identifying unwanted features
and this lead the network to confuse some objects to others. This is what we call overfitting and it
is a crucial problem when training a CNN. To alleviate this issue we need to close some neuron in
order the network stop to identify unwanted features. This technique is what we call dropout
layer. The network through the dropout layer will automatically with respect some probability
switch off some neurons.

3.2.6 FC Layer

This part discusses the fully connected layer in CNN, and it should not be confused with the
fully connected neural network architecture, where all neurons in the input layer are connected

4 Proposed Approach 33

to the neurons in the next layer. This compartment in CNN plays a crucial role in the overall
network by predicting the best label to describe the input data. The fully connected layer of a
CNN recognizes and classifies the input data and, more importantly, drives the final classification
decision. This special compartment of the CNN receives a flattened version of the data coming
from either the convolutional or pooling layer. Flattening the data leads to the loss of spatial infor-
mation, and thus, the fully connected layer operates only on a vectorized representation of the data.

The fully connected layer in CNN contains neurons, and each neuron has its own set of weights.
The output of each neuron is computed by applying a linear transformation, which is simply a
dot product, followed by a non-linear activation function that allows the network to learn more
complex relationships in the data.

It often happens to tune the hyperparameters of the fully connected layer during the network
design process. Having more neurons in the layer leads, of course, to more complex representations
that the network has to learn in the process. However, the number of parameters drastically
increases and may lead to higher computational requirements and possible overfitting if the
underlying model is not properly regularized.

Figure 3.2: The convolutional neural network CNN

4 Proposed Approach

Signal decomposition techniques which in this case are IF and IMFogram have provided two
types of datasets. We take advantage of them and build a fusion neural network consisting of a
concatenation of ANN and a CNN.

4.1 Artificial neural network (ANN)

Artificial neural network has gained a lot of popularity during recent decades, due to its ability to
solve complex problems from financial prediction to machine vision and so on [11]. An ANN is a

34 4 Proposed Approach

combination of different layers (input, hidden and output), activation and loss function.

The structure of an ANN depend on the number of network layers, type of loss and activation
function. Choosing different number of layers or different activation functions can generate
different models. This work uses a neural network with 4 layers as illustrated in Figure 4.1.
Among four layers, we have one input layer, two hidden layers and one output layer [57].

In Figure 4.1 each neuron of the input layer characterize the input feature, neurons in the
hidden layers and output layer compute the information obtained from neurons of the previous
layer multiplied by the connection weights and apply the activation function to the combined
product. The activation function is of great importance, it introduces non-linearity into the
network. There exist several activation functions and each has its specificity. We refer the reader
to the paper [88] for more details on these functions.

Figure 4.1: Architecture of ANN

To describe how information is processed into the network, we consider that there are 𝑛
neurons in the input layer, ℎ1 neurons in the first hidden layer, ℎ2 in the second hidden layer, and
𝑜 neurons in the output layer. The forward process of the network is described in the following
three steps:

1. As depicted in the input layer of the Figure 4.1, we consider𝑛 input features𝑋 = (𝑥1, · · · , 𝑥𝑛) ∈
ℝ𝑛. The output of each neurons in the first hidden layer are processed by the following
expression:

𝑧
𝐻1
𝑗

= 𝑓 (𝜔𝐻1
𝑗

· 𝑋) = 𝑓
(
𝑛∑︁
𝑖=1

𝜔
𝐻1
𝑖 𝑗
𝑥𝑖

)
, 𝑗 = 1, · · · , ℎ1 (4.1)

where 𝐻1 denote the first hidden layer, and 𝜔𝐻1
𝑗

= (𝜔𝐻1
1 𝑗 , · · · , 𝜔

𝐻1
𝑛𝑗
) ∈ ℝ𝑛 are adjustable

parameters or weights related to the 𝑗 th output neuron. 𝑧𝐻1
𝑗

is the output value computed
at the 𝑗 th neuron in the first hidden layer and 𝑓 represent the activation function.

2. The process is similar in the second hidden layer, where in this case the output of the first
hidden layer i.e. 𝑧𝐻1 = (𝑧𝐻1

1 , · · · , 𝑧
𝐻1
ℎ1
) are the input of the second hidden layer. So we

4 Proposed Approach 35

process neurons in the second hidden layer as follows:

𝑧
𝐻2
𝑗

= 𝑓 (𝜔𝐻2
𝑗

· 𝑧𝐻1) = 𝑓 (
ℎ1∑︁
𝑖=1

𝜔
𝐻2
𝑖 𝑗
𝑧
𝐻1
𝑖
), 𝑗 = 1, · · · , ℎ2 (4.2)

where 𝐻2 denote the second hidden layer. We denote by 𝜔𝐻2
𝑗

= (𝜔𝐻2
1 𝑗 , · · · , 𝜔

𝐻2
ℎ1 𝑗

) ∈ ℝℎ1 is
the undetermined weights related to the 𝑗 th output neuron.

3. Regarding the output layer, the process is similar as of the first and second hidden layer. For
this case the output of the second hidden layer, i.e. 𝑧𝐻2 = (𝑧𝐻2

1 , · · · , 𝑧
𝐻2
ℎ2
), are the input of

the output layer. The neurons of te output layer are computed as follow:

𝑧
𝑂𝑛𝑛

𝑗
= 𝑓 (𝜔𝑂𝑛𝑛

𝑗
· 𝑧𝐻2) = 𝑓 (

ℎ2∑︁
𝑖=1

𝜔
𝑂𝑛𝑛

𝑖 𝑗
𝑧
𝐻2
𝑖
), 𝑗 = 1, · · · , 𝑜𝑛𝑛, (4.3)

where 𝑂𝑛𝑛 denote the output of the neural networks.

4.2 Convolutional neural network (CNN)

The idea behind CNN is to learn kernels associated to each layer in order to extract feature from
the input data. The architecture of the CNN used in this work are depicted in the Figure 4.2 as
series of stages. It involves 3 convolutional layers, one flatten layer and one dense layer. The
output of each convolutional layer is followed by a pooling, batch normalization, and a dropout
layer [59]. Each compartment of the CNN is briefly described as follow:

1. As depicted in the Figure 4.2, the input of the convolutional layer is an image i.e. the
IMFogram in the case of this work, which is 3D array. Generally this input is considered to be
a 3D array of c channels composed of 2D arrays of sizeℎ×𝑤 , where each input is characterized
by 𝑋 ∈ ℝ𝑐×ℎ×𝑤 . The cross-correlation sometimes referred as a convolutional operation
is applied to the 𝑐 channels and the set of 𝑐0 filter bank also called kernel 𝐾𝐶1

𝑖
∈ ℝ𝑐×𝑡×𝑡

for 1 ≤ 𝑖 ≤ 𝑐0 to generate the local weighted sums. And superscript 𝐶1 refer to the first
convolutional layer of CNN. The local weighted sums are encoded in 3D array of 𝑐 feature
maps denoted by 𝑌 ∈ ℝℎ̃×�̃� , where ℎ̃ =

ℎ+2𝑝−𝑡
𝑠

+ 1 and �̃� =
𝑤+2𝑝−𝑡

𝑠
+ 1 in the case 𝑝 stand

for a padding parameter and 𝑠 for a stride parameter. The mathematical expression of the
cross-correlation is given as follow:

𝑧 𝑗 =

𝑐0∑︁
𝑖=1

𝐾
𝐶1
𝑖 𝑗

∗ 𝑋 𝑗 where 𝐾𝐶1
𝑖

(1 ≤ 𝑖 ≤ 𝑐0) is a kernel and 𝑋 𝑗 (1 ≤ 𝑗 ≤ 𝑐1) the input,

(4.4)

more generally for a 2D convolutional operation ∗ it follows

𝑧 𝑗,𝑘,𝑞 =

(
𝑐0∑︁
𝑖=1

𝐾
𝐶1
𝑖 𝑗

∗ 𝑋 𝑗

)
𝑘,𝑞

=

𝑐0∑︁
𝑖=1

𝑡∑︁
𝑜1=1

𝑡∑︁
𝑜2=1

𝐾
𝐶1
𝑖, 𝑗,𝑜1,𝑜2

· 𝑋 𝑗,𝑘+𝑜1,𝑞+𝑜2 . (4.5)

It is worth noting that the major role of the convolutional layer is to find the local combination
of feature from the previous layer [41, 59].

2. The weighted sums are then passed through an activation function 𝑓 to capture the non-
linearity of the model. It worth to acknowledge recent state-of-the-art activation function

36 4 Proposed Approach

such as ReLU [41] and PReLU [89] which solve the vanishing gradient problem [59]. The
output of the first convolutional layer after applying an activation function is given as follow:

𝑧
𝐶1
𝑗

= 𝑓 (𝑧 𝑗) = 𝑓
(
𝑐0∑︁
𝑖=1

𝐾
𝐶1
𝑖 𝑗

∗ 𝑋 𝑗

)
, (4.6)

where 𝑖 = 1, 2, · · · , 𝑐𝑜, 𝑗 = 1, 2, · · · , 𝑐1
3. The output of the first convolutional layer are feed to pooling layer as shown in the Figure

4.2. One of the specific role of the pooling layer is to put semantically similar feature into
one. This process reduce the dimension of the representation feature and thus creates
invariance to small shifts and distortions [41, 59]. The output of the first pooling layer is
given by:

𝑧𝑃1 =

(
𝑧
𝑃1
1 , · · · , 𝑧

𝑃1
𝑝1

)
, (4.7)

where 𝑝1 is the dimension of the output of the first pooling layer.
4. The output of the pooling layer is feed into the batch normalization layer. The batch

normalization layer solves the problem related to the change of the distribution of the output
layer during training, by performing normalization of each training mini-batch, furthermore
accelerates the convergence of learning as well [90, 59]. The output of the first batch
normalization layer is given by:

𝑧𝐵1 =

(
𝑧
𝐵1
1 , · · · , 𝑧

𝐵1
𝑏1

)
, (4.8)

where 𝑏1 is the dimension of the output of the first batch normalization layer.
5. The output of the batch normalization layer is used as an input of the dropout layer as

shown in Figure 4.2. It is well known from the literature that the dropout layer is one of the
regularization technique to overcome overfiting problem in the CNN. The idea behind a
dropout layer process is to randomly drop some neurons and their connections from the
network during training [91, 59]. The output of the first dropout layer is given by:

𝑧𝐷1 =

(
𝑧
𝐷1
1 , · · · , 𝑧

𝐷1
𝑑1

)
, (4.9)

where 𝑑1 is the dimension of the output of the first dropout layer.
6. The output of the dropout layer serve as an input of the second convolutional layer as

depicted in the Figure 4.2. The step 1 to 5 are repeated for the rest of compartments until
the flatten layer. It worth noting that the output of the second convolutional layer is given
as follow:

𝑧
𝐶2
𝑗

= 𝑓

(
𝑑1∑︁
𝑖=1

𝐾
𝐶2
𝑖 𝑗

∗ 𝑧𝐷1
𝑗

)
, (4.10)

where 𝑖 = 1, 2, · · · , 𝑑1, 𝑗 = 1, 2, · · · , 𝑐2, and 𝑧𝐷1 the output of the first dropout layer. The
output of the third convolutional layer is given as follow:

4 Proposed Approach 37

𝑧
𝐶3
𝑗

= 𝑓

(
𝑑2∑︁
𝑖=1

𝐾
𝐶3
𝑖 𝑗

∗ 𝑧𝐷2
𝑗

)
, (4.11)

where 𝑖 = 1, 2, · · · , 𝑑2, 𝑗 = 1, 2, · · · , 𝑐3, and 𝑧𝐷2 the output of the second dropout layer.
7. The third batch normalization layer receive input from the third pooling layer and normalize

this input. The output of the third batch normalization layer is given by:
𝑧𝐵3 =

(
𝑧
𝐵3
1 , · · · , 𝑧

𝐵3
𝑏3

)
(4.12)

where 𝑏3 is the output dimension of the batch normalization layer. This output serve as
input of the third dropout layer

8. The output of third dropout layer as depicted in the Figure 4.2 is used as an input of
the flatten layer. Flatten layer transform data into a 1D array, which is of a tremendous
importance in this study since we are predicting a time series which is also a 1D array. After
applying the dropout process the output is given by :

𝑧𝐷3 =

(
𝑧
𝐷3
1 , · · · , 𝑧

𝐷3
𝑑3

)
, (4.13)

where 𝑑3 is the number of neurons remained after the dropout process.
9. The output of the flatten layer is a 1D array and serves as input to the dense layer depicted

in the Figure 4.2. After flattened the output of the third dropout layer, the output of the
flatten layer is given by:

𝑧𝐹𝑙 =

(
𝑧
𝐹𝑙
1 , · · · , 𝑧

𝐹𝑙
𝑓𝑙

)
, (4.14)

where 𝑓𝑙 is the dimension of the obtained array after the flatten process.
10. To compute the output of the dense layer, we first precise that the input of the dense layer

is the output of te flatten layer i.e. 𝑧𝐹𝑙 =
(
𝑧
𝐹𝑙
1 , · · · , 𝑧

𝐹𝑙
𝑓𝑙

)
, therefore the output of the dense

layer is given by:

𝑧
𝐷𝑙

𝑗
= 𝑓 (𝜔𝐷𝑙

𝑗
· 𝑧𝐹𝑙) = 𝑓

(
𝑓𝑙∑︁
𝑖=1

𝜔
𝐷𝑙

𝑖 𝑗
· 𝑧𝐹𝑙
𝑖

)
, (4.15)

where 𝑗 = 1, 2, · · · , 𝑑𝑙 , 𝑓 is the activation function and 𝜔𝐷𝑙

𝑗
the weights associated to the

dense layer depicted in the Figure 4.2.
11. The output of the fourth dropout layer is given by

𝑧𝐷4 = (𝑧𝐷4
1 , · · · , 𝑧

𝐷4
𝑑4
), (4.16)

where the input is the output of the dense layer as depicted in the Figure 4.2 i.e. 𝑧𝐷𝑙

𝑗
for

𝑗 = 1, 2, · · · , 𝑑𝑙 , and 𝑑4 is the output dimension after the dropout process.
12. Regarding the output layer, the process is similar as of the output of the ANN. For this case

the output of the fourth dropout layer, i.e. 𝑧𝐷4 = (𝑧𝐷4
1 , · · · , 𝑧

𝐷4
𝑑4
), are the input of the output

layer and 𝑑4 is the number of neuron in the fourth dropout layer. The neurons of the output
layer are computed as follow:

𝑧
𝑂𝑐𝑛

𝑗
= 𝑓 (𝜔𝑂𝑐𝑛

𝑗
· 𝑧𝐷4) = 𝑓 (

𝑑4∑︁
𝑖=1

𝜔
𝑂𝑐𝑛

𝑖 𝑗
𝑧
𝐷4
𝑖
), 𝑗 = 1, · · · , 𝑜𝑐𝑛 (4.17)

38 4 Proposed Approach

Figure 4.2: The Architecture of the CNN

4.3 Fusion neural network (FNN)
The theory of statistical learning stipulates that, for two given datasets 𝑋 and 𝑌 in topological
spaces X and Y, respectively, predicting 𝑌 based on 𝑋 is meaningful when 𝑌 depends non-
trivially on 𝑋 . This task becomes easier when we have knowledge of the conditional distribution
of 𝑌 given 𝑋 , or when we employ statistical techniques to estimate 𝑌 given 𝑋 (Rigollet, [92]).
This work leverages two types of datasets generated using signal processing techniques which
depend non-trivially on the FTS and utilizes innovative machine learning techniques to predict FTS.

The novelty of this study lies in the fusion of two distinct neural networks to predict FTS.
The fusion neural network build in this work, takes two different sets of input data, each fed
into separate neural networks. One component of the Fusion Neural Network (FNN) is the
Artificial Neural Network (ANN), responsible for processing the 1D data generated by the Intrinsic
Mode Function (IMF) decomposition of the signal produced using the IF algorithm. The other
component of the FNN is the Convolutional Neural Network (CNN), which deals with the images
of the time-frequency representation of FTS. In this work we choose to use the IMFogram. The
component of the Figure 4.3 is described in the following steps:

1. The output of the ANN as depicted in Figure 4.1 and in point 3 of Section 4.1 is concatenated
with the output of the CNN depicted in Figure 4.2 and in point 8 of Section 4.2 to serve as
input to the architecture illustrated in Figure 4.3 which constitute the last block of the FNN.

4 Proposed Approach 39

The concatenation makes sense since the output of the ANN is a 1D array and the output of
the CNN is also a 1D array as explained in point 8 of Section 4.2.

2. The 1D concatenated array serves as input of the dense layer. Generally the output of the
dense layer is computed as a dot product between the concatenated 1D array and the weight
matrix𝑊 𝐷𝐹

𝑖
, to which a bias vector 𝑏𝑖 is added. We denote the concatenated 1D array by

𝑋 𝐹
𝑖 =

(
𝑧
𝑂𝑛𝑛

1 , · · · , 𝑧𝑂𝑛𝑛
𝑜𝑛𝑛 , 𝑧

𝑂𝑐𝑛

1 , · · · , 𝑧𝑂𝑐𝑛
𝑜𝑐𝑛

)
. It worth to precise again that

(
𝑧
𝑂𝑛𝑛

1 , · · · , 𝑧𝑂𝑛𝑛
𝑜𝑛𝑛

)
is the

output of the ANN and
(
𝑧
𝑂𝑐𝑛

1 , · · · , 𝑧𝑂𝑐𝑛
𝑜𝑐𝑛

)
is the output of the CNN, therefore, the output of

dense layer is given by:

𝑦
𝐷𝐹

𝑖
= 𝑓 (𝑊 𝐷𝐹

𝑖
· 𝑋 𝐹

𝑖) = 𝑓
(
𝑑𝑐∑︁
𝑗=1
𝑊

𝐷𝐹

𝑖 𝑗
· 𝑋 𝐹

𝑗

)
, 1 ≤ 𝑖 ≤ 𝑑𝐹 , (4.18)

where 𝑓 represent the activation function and 𝑑𝑐 = 𝑜𝑛𝑛 + 𝑜𝑐𝑛 the dimension of the concate-
nated 1D array, where 𝑜𝑛𝑛 is the dimension of the output of the ANN, 𝑜𝑐𝑛 is the dimension
of the output of the CNN and 𝑑𝐹 is the dimension of the final dense layer.

3. The output of the dense layer is used as the input of the output layer. The process is similar
as of the dense layer, but in this case the input of the output layer of the FNN is the vector
(𝑦𝐷𝐹

1 , · · · , 𝑦𝐷𝐹

𝑑𝐹
). The neurons of the output layer of FNN are computed as follow:

𝑦
𝑂𝐹

𝑖
= 𝑓 (𝑊 𝑂𝐹

𝑖
· 𝑦𝐷𝐹

𝑖
) = 𝑓

(
𝑑𝐹∑︁
𝑗=1
𝑊

𝑂𝐹

𝑖 𝑗
· 𝑦𝐷𝐹

𝑗

)
, 1 ≤ 𝑖 ≤ 𝑜𝐹 , (4.19)

where 𝑊 𝑂𝐹

𝑖
= (𝑊𝑂𝐹

𝑖1 , · · · ,𝑊
𝑂𝐹

𝑖𝑑𝐹
) is the undetermined weights related to the 𝑖th output

neuron, 𝑓 the activation function and 𝑑𝐹 is the output dimension of the previous layer.
4. The neurons of the output layer are fed into the loss layer. In general different loss functions

can be used in the loss layer depending on the required task to compute the error between
the estimated and the target value. Among the list of loss functions there is the squared
loss, softmax, binary cross-entropy [57]. The main loss function used for regression task is
the squared loss

Θ(𝑦𝑂𝐹

𝑖
, 𝑦𝑖) =

1
2 (𝑦

𝑂𝐹

𝑖
− 𝑦𝑖)2. (4.20)

Binary cross-entropy loss is the main loss function for the classification task. It is defined by:
Θ(𝑦𝑂𝐹

𝑖
, 𝑦𝑖) = −𝑦𝑖 log(𝑦𝑂𝐹

𝑖
) − (1 − 𝑦𝑖) log(1 − 𝑦𝑂𝐹

𝑖
) . (4.21)

The loss function in the loss layer is therefore computed as follows:

𝐿(𝑥,𝑦) =
𝑜𝐹∑︁
𝑖=1

Θ(𝑦𝑂𝐹

𝑖
, 𝑦𝑖) +

𝛼

2

𝑃∑︁
𝑗=1

∥ \ 𝑗 ∥2 (4.22)

where:
• Θ(𝑦𝑂𝐹

𝑖
, 𝑦𝑖) is the primary loss, which measures the difference between the predicted

and the target value.
• _

2 is the regularization parameter, which control the effect of regularization. This value
is choosed in this work according to the hyper-parameter optimization.

• ∑𝑃
𝑗=1 ∥ \ 𝑗 ∥2 is the sum of the square of all the parameters in the fusion neural network

(i.e. parameter of ANN, CNN and including the one in Figure 4.3). 𝑃 represents the
total number of parameters in the FNN.

40 4 Proposed Approach

Figure 4.3: The output of the FNN

4.4 Back propagation of FNN

The essence of learning in neural network is the back propagation. It is a fundamental algorithm
that train the network. It is also referred as a supervised algorithm used to update parameters
during training and thus provide the network with the ability to make more accurate predictions.
All parameters in the FNN are updated with respect to stochastic gradient descent (SGD) method
within back propagation process [57]. The learning process through back propagation is described
in the following steps:

1. The computation of gradient of the input and weights of output layer of FNN is given by:

𝜕𝐿

𝜕𝑦
𝑂𝐹

𝑖

=
𝜕L
𝜕𝑦
𝑂𝐹

𝑖

,
𝜕𝐿

𝜕𝑊
𝑂𝐹

𝑖 𝑗

=
𝜕𝐿

𝜕𝑦
𝑂𝐹

𝑖

· 𝜕𝑓
𝜕𝛽

· 𝑦𝐷𝐹

𝑖
+ 𝛼 ·𝑊𝑂𝐹

𝑖 𝑗
(4.23)

where 𝛽 =𝑊
𝑂𝐹

𝑖 𝑗
· 𝑦𝐷𝐹

𝑖
. The weights of the output layer of FNN are updates as follows:

𝑊
𝑂𝐹

𝑖 𝑗
=𝑊

𝑂𝐹

𝑖 𝑗
− [𝜕𝐿

𝜕𝑊
𝑂𝐹

𝑖 𝑗

(4.24)

where [represent the learning rate, and 1 ≤ 𝑖 ≤ 𝑑𝐹 , 1 ≤ 𝑗 ≤ 𝑜𝐹 .
2. To update the weights of the dense layer depicted in figure 4.3, it is necessary to first

compute the gradient of the input and weights of the dense layer in the figure 4.3 as follows:

𝜕𝐿

𝜕𝑦
𝐷𝐹

𝑗

=

𝑜𝐹∑︁
𝑖=1

𝜕𝐿

𝜕𝑦
𝑂𝐹

𝑖

·
𝜕𝑦
𝑂𝐹

𝑖

𝜕𝛽
·𝑊 𝑂𝐹

𝑖 𝑗
(4.25)

where 𝛽 =𝑊
𝑂𝐹

𝑖 𝑗
·𝑦𝐷𝐹

𝑖
and 𝑋 𝐹

𝑖 is the 1D concatenated array formed by the output of the ANN
depicted in the figure 4.1 and CNN depicted in the figure 4.2. The gradient with respect to

4 Proposed Approach 41

weights of the dense layer in the figure 4.3 is given by:

𝜕𝐿

𝜕𝑊
𝐷𝐹

𝑖 𝑗

=
𝜕𝐿

𝜕𝑦
𝐷𝐹

𝑗

·
𝜕𝑦

𝐷𝐹

𝑗

𝜕𝛽
𝑋 𝐹
𝑖 + 𝛼 ·𝑊 𝐷𝐹

𝑖 𝑗
, (4.26)

where 𝛽 =𝑊
𝐷𝐹

𝑖 𝑗
· 𝑋 𝐹

𝑖 the product between the weights elements of the dense layer in the
figure 4.3 and the concatenated 1D array elements. The weights of the dense layer in figure
4.3 are thus updated as follow:

𝑊
𝐷𝐹

𝑖 𝑗
=𝑊

𝐷𝐹

𝑖 𝑗
− [· 𝜕𝐿

𝜕𝑊
𝐷𝐹

𝑖 𝑗

(4.27)

where 𝑖 = 1, 2, · · · , 𝑑𝑐, 𝑗 = 1, 2, · · · , 𝑑𝐹 , and [is the learning rate.
3. This step update simultaneously the weights of the output layer of the ANN and the CNN

depicted in the figure 4.1 and 4.2 respectively. For the ANN we have:
𝜕𝐿

𝜕𝑧
𝑂𝑛𝑛

𝑗

=

𝑜𝑛𝑛∑︁
𝑖=1

𝜕𝐿

𝜕𝑦
𝐷𝐹

𝑖

·
𝜕𝑦

𝐷𝐹

𝑖

𝜕𝛽
·𝑊 𝐷𝐹

𝑖 𝑗
(4.28)

where 𝛽 =
∑𝑜𝑛𝑛
𝑖=1𝑊

𝐷𝐹

𝑖 𝑗
𝑋 𝐹
𝑖 =

∑𝑜𝑛𝑛
𝑖=1𝑊

𝐷𝐹

𝑖 𝑗
𝑧
𝑂𝑛𝑛

𝑖
, this is the case due to the equation (4.18), where

𝑋 𝐹
𝑖 =

(
𝑧
𝑂𝑛𝑛

1 , · · · , 𝑧𝑂𝑛𝑛
𝑜𝑛𝑛 , 𝑧

𝑂𝑐𝑛

1 , · · · , 𝑧𝑂𝑐𝑛
𝑜𝑐𝑛

)
and the contribution of the ANN to the dense layer

depicted in figure 4.3 is ∑𝑜𝑛𝑛
𝑖=1𝑊

𝐷𝐹

𝑖 𝑗
𝑧
𝑂𝑛𝑛

𝑖
. For the CNN we have:

𝜕𝐿

𝜕𝑧
𝑜𝑐𝑛
𝑗

=

𝑜𝑐𝑛∑︁
𝑖=1

𝜕𝐿

𝜕𝑦
𝐷𝐹

𝑖

·
𝜕𝑦

𝐷𝐹

𝑖

𝛽
·𝑊 𝐷𝐹

𝑖 𝑗
, (4.29)

where 𝛽 =
∑𝑜𝑐𝑛
𝑖=1𝑊

𝐷𝐹

𝑖 𝑗
𝑧
𝑂𝑐𝑛

𝑖
which represent the contribution of the CNN to the dense layer

shown in the figure 4.3. The gradient of the loss function with respect to the weights of the
output layer of the ANN is computed as follows:

𝜕𝐿

𝜕𝜔
𝑂𝑛𝑛

𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝑂𝑛𝑛

𝑗

·
𝜕𝑧
𝑂𝑛𝑛

𝑗

𝜕𝛽
.𝑧
𝐻2
𝑗

+ 𝛼𝜔𝑂𝑛𝑛

𝑖 𝑗
(4.30)

where 𝛽 = 𝜔
𝑂𝑛𝑛

𝑖 𝑗
· 𝑧𝐻2

𝑗
. The weights of the output layer of the ANN are updated as follows:

𝜔
𝑂𝑛𝑛

𝑖 𝑗
= 𝜔

𝑂𝑛𝑛

𝑖 𝑗
− [𝜕𝐿

𝜕𝜔
𝑂𝑛𝑛

𝑖 𝑗

(4.31)

where 𝑖 = 1, 2, · · · , ℎ2, 𝑗 = 1, 2, · · · , 𝑜𝑛𝑛, and [is the learning rate. For the output of the
CNN, the gradient of the loss function with respect to the weights of the output layer of the
CNN is computed as follows:

𝜕𝐿

𝜕𝜔
𝑂𝑐𝑛

𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝑂𝑐𝑛

𝑗

·
𝜕𝑧
𝑂𝑐𝑛

𝑗

𝜕𝛽
.𝑧
𝐷4
𝑗

+ 𝛼𝜔𝑂𝑐𝑛

𝑖 𝑗
(4.32)

where 𝛽 = 𝜔
𝑂𝑐𝑛

𝑖 𝑗
· 𝑧𝐷4

𝑗
. The weights of the output layer of the CNN are updated as follows:

𝜔
𝑂𝑐𝑛

𝑖 𝑗
= 𝜔

𝑂𝑐𝑛

𝑖 𝑗
− [𝜕𝐿

𝜕𝜔
𝑂𝑐𝑛

𝑖 𝑗

(4.33)

where 𝑖 = 1, 2, · · · , 𝑑4, 𝑗 = 1, 2, · · · , 𝑜𝑐𝑛, and [is the learning rate.

42 4 Proposed Approach

4. This step update simultaneously the second hidden layer of the ANN as depicted in figure
4.1 and the dense layer of the CNN according to the figure 4.2. For the second layer of the
ANN the gradient with respect to the output of the second layer is given as follows:

𝜕𝐿

𝜕𝑧
𝐻2
𝑗

=

𝑜𝑛𝑛∑︁
𝑖=1

𝜕𝐿

𝜕𝑧
𝑂𝑛𝑛

𝑖

·
𝜕𝑧
𝑂𝑛𝑛

𝑖

𝛽
· 𝜔𝑂𝑛𝑛

𝑖 𝑗
, (4.34)

where 𝛽 = 𝜔
𝑂𝑛𝑛

𝑖 𝑗
· 𝑧𝐻2

𝑗
the product between the weights of the output layer and the input of

the output layer of the ANN. For the dense layer of the CNN, we have:

𝜕𝐿

𝜕𝑧
𝐷𝑙

𝑗

=

𝑑4∑︁
𝑖=1

𝜕𝐿

𝜕𝑧
𝐷4
𝑖

𝜕𝑧
𝐷4
𝑖

𝜕𝑧
𝐷𝑙

𝑗

. (4.35)

The gradient of the loss function with respect to the weights of the second hidden layer of
the ANN is given by:

𝜕𝐿

𝜕𝜔
𝐻2
𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝐻2
𝑗

·
𝜕𝑧
𝐻2
𝑗

𝛽
· 𝑧𝐻1

𝑗
+ 𝛼𝜔𝐻2

𝑖 𝑗
, (4.36)

where 𝛽 = 𝜔
𝐻2
𝑖 𝑗

· 𝑧𝐻1
𝑗

the product between the weights of the second hidden and the input
layer of the ANN. The weights of the second hidden layer are therefore updated as follows:

𝜔
𝐻2
𝑖 𝑗

= 𝜔
𝐻2
𝑖 𝑗

− [𝜕𝐿

𝜕𝜔
𝐻2
𝑖 𝑗

(4.37)

where 𝑖 = 1, 2, · · · , ℎ1, 𝑗 = 1, 2, · · · , ℎ2, and [is the learning rate. For the dense layer of
the CNN, the gradient of the loss function with respect to the weights of the dense layer is
computed as follows:

𝜕𝐿

𝜕𝜔
𝐷𝑙

𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝐷𝑙

𝑗

·
𝜕𝑧
𝐷𝑙

𝑗

𝜕𝛽
.𝑧
𝐹𝑙
𝑗
+ 𝛼𝜔𝐷𝑙

𝑖 𝑗
(4.38)

where 𝛽 = 𝜔
𝐷𝑙

𝑖 𝑗
· 𝑧𝐹𝑙

𝑗
the product between the input and the weights of the dense layer of the

CNN as shown in the figure 4.2. We thus update the weights of the dense layer as follow:

𝜔
𝐷𝑙

𝑖 𝑗
= 𝜔

𝐷𝑙

𝑖 𝑗
− [𝜕𝐿

𝜕𝜔
𝐷𝑙

𝑖 𝑗

(4.39)

where 𝑖 = 1, 2, · · · , 𝑓𝑙 , 𝑗 = 1, 2, · · · , 𝑑𝑙 , and [is the learning rate.
5. This step update simultaneously the first hidden layer of the ANN as depicted in figure 4.1

and the third convolutional layer of the CNN according to the figure 4.2. For the first layer
of the ANN the gradient with respect to the output of the second layer is given as follows:

𝜕𝐿

𝜕𝑧
𝐻1
𝑗

=

ℎ2∑︁
𝑖=1

𝜕𝐿

𝜕𝑧
𝐻2
𝑖

·
𝜕𝑧
𝐻2
𝑖

𝛽
· 𝜔𝐻2

𝑖 𝑗
, (4.40)

4 Proposed Approach 43

where 𝛽 = 𝜔
𝐻2
𝑖 𝑗

· 𝑧𝐻1
𝑗

the product between the weights of the output layer and the input of
the output layer of the ANN. For the third convolutional layer of the CNN, we have:

𝜕𝐿

𝜕𝑧
𝐶1
𝑗

=

𝑑4∑︁
𝑖=1

𝜕𝐿

𝜕𝑧
𝑃3
𝑖

·
𝜕𝑧
𝑃3
𝑖

𝜕𝑧
𝐶1
𝑗

. (4.41)

The gradient of the loss function with respect ot respect to the weights 𝜔𝐻1
𝑖 𝑗

is given by:

𝜕𝐿

𝜕𝜔
𝐻1
𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝐻1
𝑗

·
𝜕𝑧
𝐻1
𝑗

𝜕𝛽
· 𝑋 𝑗 + 𝛼𝜔𝐻1

𝑖 𝑗
(4.42)

where 𝛽 = 𝜔
𝐻1
𝑖 𝑗

· 𝑋 𝑗 the product between the weights of the first hidden and the input data
of the ANN. The weights of the first hidden layer are therefore updated as follow:

𝜔
𝐻1
𝑖 𝑗

= 𝜔
𝐻1
𝑖 𝑗

− [𝜕𝐿

𝜕𝜔
𝐻1
𝑖 𝑗

(4.43)

where 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , ℎ1, and [is the learning rate. For the third convolutional
layer of the CNN, the gradient of the loss function with respect to the kernel of the third
convolutional layer is computed as follow:

𝜕𝐿

𝜕𝐾
𝐶3
𝑖 𝑗

=
𝜕𝐿

𝜕𝑧
𝐶3
𝑗

· 𝜕𝑓
𝜕𝛽

·
𝜕

(∑𝑑2
𝑖=1𝐾

𝐶3
𝑖 𝑗

∗ 𝑧𝐷2
𝑖

)
𝜕𝐾

𝐶3
𝑖 𝑗

+ 𝛼𝐾𝐶3
𝑖 𝑗

(4.44)

where 𝛽 =
∑𝑐2
𝑖=1𝐾

𝐶3
𝑖 𝑗

∗ 𝑧𝐷2
𝑖

the convolution between the kernel of the third convolutional
layer and the output of the second dropout layer as depicted in the figure 4.2. The kernels
of the first hidden layer are therefore updated as follow:

𝐾
𝐶3
𝑖 𝑗

= 𝐾
𝐶3
𝑖 𝑗

− [𝜕𝐿

𝜕𝐾
𝐶3
𝑖 𝑗

(4.45)

where 𝑖 = 1, 2, · · · , 𝑑2, 𝑗 = 1, 2, · · · , 𝑐3, and [is the learning rate.
6. The update of the first and second convolutional layer of the CNN are done in a similar way

as in step 5. The update for the second convolutional layer is given by:

𝐾
𝐶2
𝑖 𝑗

= 𝐾
𝐶2
𝑖 𝑗

− [𝜕𝐿

𝜕𝐾
𝐶2
𝑖 𝑗

(4.46)

where 𝑖 = 1, 2, · · · , 𝑑1, 𝑗 = 1, 2, · · · , 𝑐2, and [is the learning rate. The update for the first
convolutional layer is given by:

𝐾
𝐶1
𝑖 𝑗

= 𝐾
𝐶1
𝑖 𝑗

− [𝜕𝐿

𝜕𝐾
𝐶1
𝑖 𝑗

(4.47)

where 𝑖 = 1, 2, · · · , 𝑐0, 𝑗 = 1, 2, · · · , 𝑐1, and [is the learning rate.

44 5 Datasets and the simulation results

5 Datasets and the simulation results

5.1 Datasets
This work leverages two types of datasets generated by IF and IMFogram. As illustrated in figures
5.4 and 5.5, one can quickly observe some unusual effects in both figures. These effects stem
from the boundary effects. Naturally, these effects arise because FTS is a non-stationary signal
generated by a nonlinear source, and IF is used for its decomposition, which involves the subse-
quent subtraction of the original signal to obtain the IMFs [93]. The actual problem arises from
IF which requires periodicity at the boundary of the signal.

To address this issue, careful consideration of the boundary conditions is required, as both
datasets are based on a IF decomposition. To address boundary conditions, assumptions must be
made regarding the extension of the signal to the right and left. In other words, it is necessary to
extrapolate the FTS beyond its boundaries. Given that the signal has undergone decomposition
using IF-based methods, there exists the opportunity to select an optimal extension to minimize
errors associated with end effects in the decomposition process [93].

The signal can be extended periodically using symmetric (reflexive), anti-symmetric (anti-
reflexive) boundary extension, or a combination of both. We proceed to analyze each extension
in conjunction with the corresponding IMFs and IMFogram in the subsequent steps.

1. Anti-Symmetric (Anti-Reflective) extension: Consider a signal 𝑆 of length 𝑛, and let 𝐿
represent the extension length beyond the signal 𝑆 . To extend the signal 𝑆 in an anti-
symmetric manner beyond its boundary. The end point of the signal is used as point of
symmetry like the origin for an odd function.

Figure 5.1: Anti-symmetric extension of Nas-
daq

Figure 5.2: IMFs of the Anti-symmetric ex-
tension

Figure 5.3: NASDAQ time series from Jan-
uary 4th 2012 to December 30th 2016

5 Datasets and the simulation results 45

Figure 5.4: The IMFs of Nasdaq Financial
time series

Figure 5.5: The IMFogram of the figure 5.3
and 5.4

Figure 5.6: IMFogram generated from the
IMFs of the Anti-symmetric extension

It is worth noting, as emphasized in [93], that despite performing the extension, some end
effects may persist. To tackle this issue, one approach is to enforce the extended signal
to become periodic at the newly generated boundaries. Let’s refer to this as the "smart
extension", denoting the forced periodic signal obtained from the extended signal. The
following steps outline the key procedures to obtain the smart extended signal:
(a) Calculate the mean value𝑚 of the original signal 𝑆 and subsequently subtract it from

the signal.
(b) The subtracted signal, 𝑆 −𝑚, is extended beyond the boundaries, resulting in an

extended signal denoted as 𝑆ext.
(c) After obtaining the signal 𝑆ext, we then multiply it by a characteristic function that

takes on a value of one in the interval corresponding to the original signal 𝑆 and
smoothly diminishes to zero as we approach the new boundaries of 𝑆ext.

(d) The smart extended signal is obtained by reintroducing the mean value𝑚 of the original
signal [93].

𝑆new = X · 𝑆ext +𝑚. (5.1)

Figure 5.1 illustrates the anti-symmetric extension of the Nasdaq data. As observed, the
original signal is represented in green, the anti-symmetric signal in red, and the smart
extension, built upon the anti-symmetric extension, is depicted in blue. The smart extension
is two times longer than the original signal, 𝐿 = 2 × length(𝑆).

46 5 Datasets and the simulation results

Figure 5.2 illustrates the Intrinsic Mode Functions (IMFs) of the smart extension signal.
Notably, there are discernible differences between the IMFs of the original signal depicted
in Figure 5.4 and those of the smart extension shown in Figure 5.2. The primary distinction
lies in the number of IMFs generated, with 9 IMFs in Figure 5.2 compared to 8 IMFs in
Figure 5.4. Additionally, the end effects visible in Figure 5.4, especially in the first three
IMFs, are absent in Figure 5.2.

Furthermore, the IMFogram figures corresponding to the two sets of IMFs also exhibit
differences, as shown in Figure 5.5 and Figure 5.6. The end effects seen in Figure 5.4 have
repercussions on the IMFogram in Figure 5.5, noticeable in the higher energies on the two
horizontal lines. This contrast is not observed in Figure 5.6.

2. Symmetric (Reflective) extension or the Neumann boundary condition: Consider the
signal 𝑆 with indices ranging from 1 to 𝑛, representing a signal of length 𝑛. Let 𝐿 denote
the length by which we intend to extend 𝑆 beyond its boundaries. To symmetrically extend
it, we assume that the data outside 𝑆 mirror a reflection of the data inside 𝑆 [94]. For
instance, on the left-hand side of the signal 𝑆 , the first element in the extension, denoted as
𝑆0, is equal to the left boundary point of 𝑆 (𝑆1). Similarly, the second element of the left
extension, denoted as 𝑆−1, is equal to the second element of 𝑆 (𝑆2), and so forth. The same
principle applies to the right symmetric extension of 𝑆 . A precise mathematical description
is provided below:

𝑆1− 𝑗 = 𝑆 𝑗 for 𝑗 = 1, 2, · · · , 𝐿, (5.2)

the left extension of 𝑆 , and the right extension is given as

𝑆𝑛+ 𝑗 = 𝑆𝑛+1− 𝑗 for 𝑗 = 1, 2, · · · , 𝐿, (5.3)

Figure 5.7: symmetric extension of Nasdaq Figure 5.8: IMFs of the symmetric extension

The formulas outlined in (5.2) and (5.3) illustrate the process of symmetrically extending a
given signal. Following the application of these formulas, the smart extension, as described
in points (a) to (d) above, can be applied. This step enforces the symmetric extension to
become periodic at the boundaries, mitigating any remaining end effects.

Figure 5.7 illustrates the Nasdaq symmetric extension alongside the smart symmetric ex-
tension. The Nasdaq signal is presented in green, its symmetric extension in red, and the
smart symmetric extension in blue. Figure 5.8 depicts the IMFs generated from the smart

5 Datasets and the simulation results 47

Figure 5.9: IMFogram generated from the IMFs of the symmetric extension

symmetric extension of the Nasdaq time series. Once again, a noticeable difference can
be observed between the IMFs generated from the original Nasdaq time series (Figure
5.4) and those generated from the smart symmetric extension (Figure 5.8). Notably, there
are no end effects in Figure 5.8, which contrasts with the presence of end effects in Figure 5.4.

Furthermore, Figure 5.9 illustrates the IMFogram derived from the IMFs generated by the
smart symmetric extension, where higher energies manifest in the low frequencies.

3. Anti-symmetric and Symmetric extension: The anti-symmetric and symmetric extension
is a hybrid approach that involves a combination of both types of extension. The algorithm
initiates by extending the signal anti-symmetrically on the left, with the length of the
extension equal to the length of the Nasdaq signal (i.e., length(𝑆) = 1255). Subsequently,
after the 1255th left anti-symmetric extension, the algorithm proceeds to extend the signal
symmetrically on the left once again, also with a length of 1255.
This can be clearly observed in Figure 5.10, where the red signal represents the anti-
symmetric and symmetric extension of the Nasdaq time series. Specifically, from point 1255
to 2510 on the horizontal axis, the signal undergoes anti-symmetric extension (mirroring
the appearance in Figure 5.1 from point 1255 to 2510). Subsequently, the signal experiences
symmetric extension from point 0 to point 1255 on the horizontal axis, highlighting the
symmetry of the signal segment from point 1255 to 2510 on the horizontal axis.

The right extension in Figure 5.10 follows a similar procedure. In this instance, the signal
is initially extended symmetrically from points 3765 to 5020 on the horizontal axis and
subsequently extended anti-symmetrically from points 5020 to 6275. The Nasdaq signal
is represented by the green curve in Figure 5.10, while the blue curve corresponds to the
smart extension derived from the anti-symmetric and symmetric extension process.

48 5 Datasets and the simulation results

Figure 5.10: Asymmetric and Symmetric ex-
tension of Nasdaq

Figure 5.11: IMFs of the anti-symmetric sym-
metric extension

Figure 5.12: IMFogram generated from the IMFs of the anti-symmetric and symmetric extension

Figure 5.11 illustrates the IMFs generated from the smart anti-symmetric and symmetric
extension. Once again, a noticeable difference can be observed between the IMFs generated
from the original Nasdaq time series, as depicted in Figure 5.4, and those generated by the
smart anti-symmetric and symmetric extension, shown in Figure 5.11. Figure 5.11 displays
9 IMFs without any detectable boundary effects.

Figure 5.12 depicts the IMFogram of the IMFs generated by the smart anti-symmetric and
symmetric extension of the Nasdaq time series. This figure illustrates the distribution of
higher energies from low to high frequencies, with no discernible end effects.

4. Symmetric and Anti-symmetric extension: The symmetric and anti-symmetric extension
operates similarly to the anti-symmetric and symmetric extension explained in point 3 above.

5 Datasets and the simulation results 49

In this scenario, the signal on the left side of the Nasdaq time series, depicted in green in
Figure 5.13, is initially extended symmetrically from point 1255 to 2510 on the horizontal
axis. This symmetric extension is represented by the red signal in Figure 5.13, effectively mir-
roring the green portion of the signal. Subsequently, the remaining red portion of the signal
from point 0 to 1255 undergoes an anti-symmetric extension, completing the transformation.

Figure 5.13: Asymmetric and Symmetric ex-
tension of Nasdaq

Figure 5.14: IMFs of the symmetric and anti-
symmetric extension

Figure 5.15: IMFogram generated from the IMFs of the symmetric and anti-symmetric extension

The right symmetric and anti-symmetric extension of the Nasdaq time series, depicted in
green in Figure 5.13, follows a similar procedure as the left symmetric and anti-symmetric
extension. In this case, the signal is initially extended anti-symmetrically from points 3765
to 5020 and then symmetrically from points 5020 to 6275.

Figure 5.14 illustrates the IMFs generated from the symmetric and anti-symmetric extension
of the Nasdaq time series. This figure displays 9 IMFs without any apparent end effects,
whereas Figure 5.4 has 8 IMFs with visible end effects.

50 5 Datasets and the simulation results

Figure 5.15 illustrates the IMFogram associatedwith the smart symmetric and anti-symmetric
extension. This IMFogram depicts high energies in the low frequencies. A notable distinction
between the smart symmetric and anti-symmetric extension and the smart anti-symmetric
and symmetric extension can be readily observed by comparing the IMFograms presented
in Figure 5.15 and Figure 5.12.

5.2 Simulation Results

The data utilized for the experiments comprises the National Association of Securities Dealers
Automated Quotations (NASDAQ) index. The total number of NASDAQ values is 1214, collected
from January 4th, 2012, to December 30th, 2016. Figure 5.3 displays the original time series. The
data is divided into training sets (70% of the total trading days), evaluation sets (20% of the total
trading days), and testing sets (10% of the total trading days). The data’s statistics are detailed in
Table 5.1, where N𝑎𝑙𝑙 and N𝑜𝑢𝑡 represent the size of the entire dataset and the combination of the
testing and evaluation samples, respectively.

Table 5.1: The data and the descriptive statistical analysis

Name N𝑎𝑙𝑙 N𝑜𝑢𝑡 Mean Std. Data range
NASDAQ 1214 364 4161.88 825.13 2012.01.04-2016.12.30

5.2.1 Experimental setting

The proposed model is a hybrid system that initially employs the IF algorithm and a fusion neural
network for predicting FTS. The IF algorithm is implemented using Matlab1, while the fusion
neural network is developed using the Keras2 platform. The execution of the fusion neural network
takes place on Google Colab utilizing GPUs.

For training the suggested fusion neural network model, we employed Nesterov-based stochas-
tic gradient descent (SGD) [46] to adjust the weights. Each weight is updated with the inclusion
of a momentum parameter, which regulates the influence of the historical gradient direction on
the current gradient descent direction. To mitigate overfitting and enhance the model’s stability,
we implemented 𝐿2 regularization. Additionally, we incorporated a weights decay parameter to
account for the role of the regularization term in the neural networks.

The IF algorithm decomposes the time series into 𝑀 Intrinsic Mode Functions (IMFs). As
suggested in [57], it is practically advantageous to consider a set of 𝐿 consecutive values from
each IMF as the input samples. For the input of the Artificial Neural Network (ANN) segment in
the proposed fusion neural networks, we set 𝐿 to 4. Consequently, the input sample size of the
ANN is (1213, 4).

To cater to the input requirements of the Convolutional Neural Network (CNN) segment, we
reshape the IMFogram into a tensor of size (1213, 25, 25, 1). This reshaping is done to align
with the size of the label, which is a one-dimensional vector of size (1213, 1) extracted from the

1IF code:https://github.com/Acicone/FIF, Jan. 2020.
2Website of the Keras platform:https://keras.io, Jan. 2020.

https://github.com/Acicone/FIF
 https://keras.io

5 Datasets and the simulation results 51

original NASDAQ signal. It is essential to clarify that if the first dimension of the input sample
for the ANN differs from that of the input sample for the CNN, and the label, the fusion neural
network will not function correctly.

Regarding the hyperparameters described in Section 4 and those employed in the Nesterov-
based Stochastic Gradient Descent (SGD) method, we allowed Hyperopt3 to autonomously deter-
mine their values on the validation datasets. Hyperopt, a Python library, serves as a tool for both
serial and parallel optimization within complex search spaces for hyperparameters. Presently,
Hyperopt incorporates three implemented algorithms: random search, a tree of Parzen estimators,
and an adaptive tree of Parzen estimators.

5.2.2 Evaluation criteria

A metric is necessary to assess the values of the predicted time series 𝑦 ∈ ℝ𝑛, with the true values
denoted as 𝑦 ∈ ℝ𝑛. Three metrics are employed to evaluate the predicted values: mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). The
expressions for each metric are provided in Table 5.2.

Accurate predictions are presumed when the metric values are small. In this experiment, the
predictive performance is evaluated using the previously mentioned metrics. As highlighted in
[95], MAPE is relatively more stable. Therefore, when the results vary across criteria, we designate
MAPE as the benchmark, as suggested in [57].

Table 5.2: Evaluation indices

Metric expression
MAE 1

𝑁

∑𝑁
𝑛=1 |𝑦𝑛 − 𝑦𝑛 |

RMSE
√︃

1
𝑁

∑𝑁
𝑛=1 (𝑦𝑛 − 𝑦𝑛)2

MAPE 1
𝑁

∑𝑁
𝑛=1

���𝑦𝑛−𝑦𝑛𝑦𝑛

���
5.2.3 Prediction of FTS based on asymetric extension

We emphasize that the data utilized for predicting the FTS consists of IMFs derived through IF on
the asymmetric extension of the NASDAQ time series, along with the IMFogram obtained from the
time-frequency representation of the asymmetric extension of NASDAQ and the IMFs obtained
through IF on the asymmetric extension. Table 5.3 presents the performance of the proposed
fusion neural networks based on three metrics.

Table 5.3: The performance of different metric on asymmetric extension of NASDAQ

Training data Validating data Testing data
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
87.89 106.46 0.025 116.39 155.46 0.024 77.39 138.60 0.014

3Hyperopt github website: https://github.com/hyperopt/hyperopt, Nov. 2020.

https://github.com/hyperopt/hyperopt

52 5 Datasets and the simulation results

The model comprises a total of 105,657 parameters, with 105,611 being trainable and 46
non-trainable. Figure 5.16 illustrates both the NASDAQ signal and its corresponding prediction.
The prediction signal is represented in red, while the NASDAQ signal is depicted in blue.

Figure 5.16: NASDAQ and its asymmetric extension signal prediction

5.2.4 Prediction of FTS based on symmetric extension

Table 5.4: The performance of different metric on symmetric extension of NASDAQ

Training data Validating data Testing data
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
114.51 139.18 0.029 164.79 191.53 0.033 311.67 325.30 0.059

The input data for the proposed fusion neural networks is generated using the symmetric
extension of the NASDAQ time series. The IMFs are obtained from the symmetric extension
of NASDAQ using IF algorithm. These generated IMFs, along with the symmetric extension of
NASDAQ, are utilized to create the IMFogram. Both datasets then serve as inputs for the proposed
fusion neural networks. Table 5.4 presents the performance of the proposed fusion neural networks
based on three metrics.

The model consists of a total of 52,942 parameters, with 52,912 being trainable and 30 non-
trainable. Figure 5.17 illustrates both the NASDAQ signal and its corresponding prediction. The
prediction signal is shown in red, while the NASDAQ signal is depicted in blue.

5.2.5 Prediction of FTS based on asymmetric and symmetric extension

The Intrinsic Mode Functions (IMFs) are generated using IF algorithm applied to the asymmetric
and symmetric extensions. These obtained IMFs, along with the asymmetric and symmetric
extensions, are utilized to create the IMFogram. The resulting two datasets serve as inputs for
the proposed fusion neural network, aiming to predict the NASDAQ time series. The predicted
NASDAQ time series is represented in red in Figure 5.18, while the original NASDAQ time series
is depicted in blue.

5 Datasets and the simulation results 53

Figure 5.17: NASDAQ and its symmetric extension signal prediction

The model comprises a total of 88,855 parameters, with 88,799 being trainable and 56
non-trainable.

Table 5.5: The performance of different metric on asymmetric and symmetric extension of
NASDAQ

Training data Validating data Testing data
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
69.96 87.32 0.019 90.24 119.44 0.019 105.40 197.99 0.020

Figure 5.18: NASDAQ and its asymmetric and symmetric extension signal prediction

5.2.6 Prediction of FTS based on symmetric and asymmetric extension

The symmetric and asymmetric extensions are employed to mitigate boundary effects on NASDAQ.
The resulting extended signal is subsequently decomposed using the IF algorithm to produce the

54 5 Datasets and the simulation results

IMFs. These extended signals, along with the obtained IMFs, are utilized to create an IMFogram
a time-frequency representation of the symmetric and asymmetric extended signal. The two
datasets, namely the IMFs and IMFogram, serve as input data for the proposed fusion neural
network.

The model consists of a total of 107,776 parameters, with 107,730 being trainable and 46
non-trainable. Figure 5.19 illustrates both the NASDAQ signal and its corresponding prediction,
with the prediction signal shown in red and the NASDAQ signal depicted in blue.

Table 5.6: The performance of different metric on symmetric and asymmetric extension of
NASDAQ

Training data Validating data Testing data
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
101.90 123.85 0.026 150.81 176.53 0.030 294.23 318.19 0.056

Figure 5.19: NASDAQ and its symmetric and asymmetric extension signal prediction

The best predictions are obtained for metrics with small values, indicating low errors between
the predicted values and the true values. It appears that the asymmetric extension predicts better
than the other signal extensions across almost all metrics within all subdivisions of the training,
validation, and testing datasets. Refer to Table 5.3 and Figure 5.16 for details.

The model behaves quite strangely with both asymmetric and symmetric extensions. While it
predicts better than all other extensions on the training and validation sets, it does not generalize
well on the testing data, especially concerning the asymmetric extension, and performs poorly on
the testing set. The instability in the asymmetric and symmetric extensions is illustrated in Figure
5.18, where we observe that the model predicts a constant value of 2946.001 within the range
from 1 to 266.

The symmetric and asymmetric extensions perform better than the symmetric extension. Tables
5.4 and 5.6 illustrate how the symmetric and asymmetric extensions outperform the symmetric
extension.

6 Conclusion and future work 55

6 Conclusion and future work

Time series analysis has become increasingly prevalent over the last five decades across various
domains such as finance, weather, biology, earthquakes, and neuroscience. Time series data
originating from these fields tends to exhibit non-stationarity and is often generated by non-linear
sources. These characteristics contribute to the classification of time series processing as one of
the top 10 challenging problems [59]. Traditional statistical methods face limitations in process-
ing non-linear and non-stationary time series as they predominantly rely on the assumption of
stationarity and linearity in the data.

Numerous techniques have been proposed for processing non-stationary and non-linear time
series. Machine learning methods, in particular, have demonstrated remarkable results; however,
they often lack an explicit mechanism for handling the inherent non-stationarity of time series
data. Recent approaches leverage robust features that possess the capability to capture latent
information embedded in time series data. However, the utilization of domain-specific features
tailored to each field is both time-consuming and costly [59].

This work introduces a novel method for processing time series by integrating the IF and fusion
neural network techniques. The fusion neural networks, combining Artificial Neural Networks
(ANN) and Convolutional Neural Networks (CNN), are employed for time series prediction. The
IF technique is applied to decompose the signal into "quasi-stationary" IMFs. These resulting IMFs,
along with the original signal, are utilized to generate an IMFogram. Subsequently, the IMFs serve
as input for the ANN, while the IMFogram is used as input for the CNN. The outputs from the
ANN and CNN are combined, passed through a dense layer, and subjected to a loss function to
measure the error between the predicted and true values.

The proposed framework incorporates the advantages of the IF algorithm, Artificial Neural
Network (ANN), and Convolutional Neural Network (CNN) methods, emphasizing the following
three points:

1. The framework excels in handling non-stationary signals, thanks to the inherent capability
of IF in addressing non-stationarity.

2. The combination of resulting IMFs with the original signal yields an IMFogram. This, along
with the IMFs, serves as input for the fusion neural network, providing the framework with
the capacity to learn from two distinct data types.

3. The utilization of CNN and ANN enables the proposed framework to adaptively extract deep
and global features from time series data.

The proposed framework can be generalized into a universal approach, applicable for extracting
features from time series across diverse fields. Its versatility will be demonstrated by evaluating
the framework on various datasets exhibiting different instabilities. Additionally, the framework
can be adaptable for studying profitability, involving the computation of a single long-short trading
strategy to assess its trading performance, accounting for transaction costs or otherwise.

Furthermore, potential enhancements to the proposed framework include the integration of
specialized Convolutional Neural Network (CNN) systems to monitor and compare its performance
with various existing frameworks.

56 References

References

[1] P. H. Franses andH. Ghijsels, “Additive outliers, garch and forecasting volatility,” International
Journal of Forecasting, vol. 15, no. 1, pp. 1–9, 1999.

[2] N. Sarantis, “Nonlinearities, cyclical behaviour and predictability in stock markets: inter-
national evidence,” International Journal of Forecasting, vol. 17, no. 3, pp. 459–482, 2001.
Reassesing Modern Business Cycles.

[3] L. Rabiner and B. Juang, “An introduction to hidden markov models,” IEEE ASSP Magazine,
vol. 3, no. 1, pp. 4–16, 1986.

[4] Y. Chen and Y. Hao, “A feature weighted support vector machine and k-nearest neighbor
algorithm for stock market indices prediction,” Expert Systems with Applications, vol. 80,
pp. 340–355, 2017.

[5] T. Anbalagan and S. U. Maheswari, “Classification and prediction of stock market index
based on fuzzy metagraph,” Procedia Computer Science, vol. 47, pp. 214–221, 2015. Graph
Algorithms, High Performance Implementations and Its Applications (ICGHIA 2014).

[6] R. K. MacKinnon and C. K.-S. Leung, “Stock price prediction in undirected graphs using a
structural support vector machine,” 2015 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 548–555, 2015.

[7] H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations,” in Proceedings of the 26th Interna-
tional Conference On Machine Learning, ICML 2009, Proceedings of the 26th International
Conference On Machine Learning, ICML 2009, pp. 609–616, 2009. 26th International
Conference On Machine Learning, ICML 2009 ; Conference date: 14-06-2009 Through
18-06-2009.

[8] J.-Z. Wang, J.-J. Wang, Z.-G. Zhang, and S.-P. Guo, “Forecasting stock indices with back
propagation neural network,” Expert Systems with Applications, vol. 38, no. 11, pp. 14346–
14355, 2011.

[9] M. Khashei, M. Bijari, and G. A. Raissi Ardali, “Improvement of auto-regressive integrated
moving average models using fuzzy logic and artificial neural networks (anns),” Neurocom-
puting, vol. 72, no. 4, pp. 956–967, 2009. Brain Inspired Cognitive Systems (BICS 2006) /
Interplay Between Natural and Artificial Computation (IWINAC 2007).

[10] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

[11] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:: The
state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, 1998.

[12] C. W. J. Granger and A. Ap, “An introduction to bilinear time series models,” 1978.
[13] H. Tong and K. S. Lim, “Threshold autoregression, limit cycles and cyclical data,” Journal of

the Royal Statistical Society: Series B (Methodological), vol. 42, no. 3, pp. 245–268, 1980.
[14] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of

united kingdom inflation,” Econometrica: Journal of the econometric society, pp. 987–1007,
1982.

[15] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of econo-
metrics, vol. 31, no. 3, pp. 307–327, 1986.

[16] D. A. Hsieh, “Chaos and nonlinear dynamics: application to financial markets,” The journal
of finance, vol. 46, no. 5, pp. 1839–1877, 1991.

References 57

[17] D. Zhang and L. Zhou, “Discovering golden nuggets: data mining in financial application,”
IEEE Trans. Syst. Man Cybern. Part C, vol. 34, pp. 513–522, 2004.

[18] S.-H. Chen, Genetic Algorithms and Genetic Programming in Computational Finance: An
Overview of the Book, pp. 1–26. Boston, MA: Springer US, 2002.

[19] A. Ponsich, A. L. Jaimes, and C. A. C. Coello, “A survey on multiobjective evolutionary
algorithms for the solution of the portfolio optimization problem and other finance and
economics applications,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 3,
pp. 321–344, 2013.

[20] R. Aguilar-Rivera, M. Valenzuela-Rendón, and J. Rodríguez-Ortiz, “Genetic algorithms and
darwinian approaches in financial applications: A survey,” Expert Systems with Applications,
vol. 42, no. 21, pp. 7684–7697, 2015.

[21] Y. Li and W. Ma, “Applications of artificial neural networks in financial economics: A survey,”
in 2010 International Symposium on Computational Intelligence and Design, vol. 1, pp. 211–
214, 2010.

[22] M. Tkáč and R. Verner, “Artificial neural networks in business: Two decades of research,”
Applied Soft Computing, vol. 38, pp. 788–804, 2016.

[23] A. Khadjeh Nassirtoussi, S. Aghabozorgi, T. Ying Wah, and D. C. L. Ngo, “Text mining for
market prediction: A systematic review,” Expert Systems with Applications, vol. 41, no. 16,
pp. 7653–7670, 2014.

[24] C. Kearney and S. Liu, “Textual sentiment in finance: A survey of methods and models,”
International Review of Financial Analysis, vol. 33, no. C, pp. 171–185, 2014.

[25] B. S. Kumar and V. Ravi, “A survey of the applications of text mining in financial domain,”
Knowledge-Based Systems, vol. 114, pp. 128–147, 2016.

[26] B. Vanstone and C. Tan, “A survey of the application of soft computing to investment and
financial trading,” in Proceedings of the Eighth Australian and New Zealand Intelligent Infor-
mation Systems Conference (ANZIIS 2003) (B. Lovell, D. Campbell, C. Fookes, and A. Maeder,
eds.), pp. 211–216, The Australian Pattern Recognition Society, 2003. Copyright The
Australian Pattern Recognition Society 2003. All rights reserved. Permission granted. ;
Australian and New Zealnd Intelligent Information Systems Conference, ANZIIS 2003 ;
Conference date: 10-12-2003 Through 12-12-2003.

[27] E. Hajizadeh, H. Davari-Ardakani, and J. Shahrabi, “Application of data mining techniques in
stock markets: A survey,” Journal of Economics and International Finance, vol. 2, pp. 109–118,
08 2010.

[28] B. Nair and V. Mohandas, “Artificial intelligence applications in financial forecasting-a survey
and some empirical results,” Intelligent Decision Technologies, vol. 9, pp. 99–140, 01 2015.

[29] R. C. Cavalcante, R. C. Brasileiro, V. L. Souza, J. P. Nobrega, and A. L. Oliveira, “Computa-
tional intelligence and financial markets: A survey and future directions,” Expert Systems
with Applications, vol. 55, pp. 194–211, 2016.

[30] B. Krollner, B. Vanstone, and G. Finnie, “Financial time series forecasting with machine
learning techniques: A survey,” 01 2010.

[31] P. Yoo, M. Kim, and T. Jan, “Machine learning techniques and use of event information
for stock market prediction: A survey and evaluation,” in International Conference on Com-
putational Intelligence for Modelling, Control and Automation and International Conference
on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2,
pp. 835–841, 2005.

58 References

[32] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new per-
spectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

[33] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,”
Neural Computation, vol. 18, pp. 1527–1554, 07 2006.

[34] H. Saleh, The Deep Learning with PyTorch Workshop. July 2020.
[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,

vol. abs/1512.03385, 2015.
[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in Neural Information Processing Systems (F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

[38] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates,
G. Diamos, K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong,
A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu,
W. Li, X. Li, D. Ma, S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan,
J. Raiman, V. Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang,
L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao,
W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and Z. Zhu, “Deep speech 2 : End-to-end speech
recognition in english and mandarin,” in Proceedings of The 33rd International Conference
on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of
Machine Learning Research, (New York, New York, USA), pp. 173–182, PMLR, 20–22 Jun
2016.

[39] J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science,
vol. 349, no. 6245, pp. 261–266, 2015.

[40] J. Egger, C. Gsaxner, A. Pepe, K. L. Pomykala, F. Jonske, M. Kurz, J. Li, and J. Kleesiek,
“Medical deep learning—a systematic meta-review,” Computer Methods and Programs in
Biomedicine, vol. 221, p. 106874, 2022.

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, 05 2015.
[42] A. M. O. Omer Berat Sezer, M. Ugur Gudelek, “Financial time series forecasting with deep

learning : A systematic literature review: 2005-2019,” arXiv:1911.13288v1, 11 2019.
[43] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,

pp. 85–117, 2015.
[44] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and Trends® in

Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.
[45] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)—a review

of applications in the atmospheric sciences,” Atmospheric Environment, vol. 32, no. 14,
pp. 2627–2636, 1998.

[46] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural net-
works,” in Proceedings of the 30th International Conference on Machine Learning (S. Dasgupta
and D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning Research, (Atlanta,
Georgia, USA), pp. 1310–1318, PMLR, 17–19 Jun 2013.

References 59

[47] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, and Johnson, “Google’s neural machine translation system:
Bridging the gap between human and machine translation,” arXiv, 2016.

[48] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory
model,” Artificial Intelligence Review, vol. 53, 12 2020.

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in Advances in Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.

[50] C. A. Ronao and S.-B. Cho, “Human activity recognition with smartphone sensors using
deep learning neural networks,” Expert Systems with Applications, vol. 59, pp. 235–244,
2016.

[51] T. Kolarik and G. Rudorfer, “Time series forecasting using neural networks,” in APL Conference,
1994.

[52] J. Yao, C. L. Tan, and H.-L. Poh, “Neural networks for technical analysis: A study on klci,”
International Journal of Theoretical and Applied Finance, vol. 02, pp. 221–241, 1999.

[53] G. Zhang, “Time series forecasting using a hybrid arima and neural network model,” Neuro-
computing, vol. 50, pp. 159–175, 2003.

[54] T. A. E. Ferreira, G. C. Vasconcelos, and P. J. L. Adeodato, “A new intelligent system
methodology for time series forecasting with artificial neural networks,” Neural Processing
Letters, vol. 28, pp. 113–129, 2008.

[55] M. R. Hassan, B. Nath, and M. Kirley, “A fusion model of hmm, ann and ga for stock market
forecasting,” Expert Systems with Applications, vol. 33, no. 1, pp. 171–180, 2007.

[56] X. Zhang, M. Chen, M. Wang, Y. Ge, and H. Stanley, “A novel hybrid approach to baltic dry
index forecasting based on a combined dynamic fluctuation network and artificial intelligence
method,” Applied Mathematics and Computation, vol. 361, pp. 499–516, 2019.

[57] F. Zhou, H. min Zhou, Z. Yang, and L. Yang, “Emd2fnn: A strategy combining empirical
mode decomposition and factorization machine based neural network for stock market trend
prediction,” Expert Systems with Applications, vol. 115, pp. 136–151, 2019.

[58] F. Zhou, H. Zhou, Z.-H. Yang, and L.-H. Yang, “A 2-stage strategy for non-stationary signal
prediction and recovery using iterative filtering and neural network,” Journal of Computer
Science and Technology, vol. 34, pp. 318–338, 03 2019.

[59] F. Zhou, H. Zhou, Z. Yang, and L. Gu, “If2cnn: Towards non-stationary time series feature
extraction by integrating iterative filtering and convolutional neural networks,” Expert
Systems with Applications, vol. 170, p. 114527, 2021.

[60] Y. Tang, Z. Song, Y. Zhu, H. Yuan, M. Hou, J. Ji, C. Tang, and J. Li, “A survey on machine
learning models for financial time series forecasting,” Neurocomputing, vol. 512, pp. 363–380,
2022.

[61] S. McDonald, S. Coleman, T. McGinnity, Y. Li, and A. Belatreche, “A comparison of forecasting
approaches for capital markets,” in Unknown Host Publication, (United States), pp. 32–39,
IEEE, Mar. 2014. IEEE Computational Intelligence for Financial Engineering and Economics
; Conference date: 27-03-2014.

[62] R. S. TSAY, Analysis of Financial Time Series. Chicago: A JOHN WILEY, SONS, INC.,
PUBLICATION, 2005.

[63] A. Jablonski and K. Dziedziech, “Intelligent spectrogram – a tool for analysis of complex
non-stationary signals,” Mechanical Systems and Signal Processing, vol. 167, p. 108554, 2022.

60 References

[64] A. Papandreou-Suppappola, Applications in time-frequency signal processing. CRC press,
2018.

[65] J. A. Gallego, E. Rocon, J. O. Roa, J. C. Moreno, and J. L. Pons, “Real-time estimation of
pathological tremor parameters from gyroscope data,” Sensors, vol. 10, no. 3, pp. 2129–2149,
2010.

[66] G. Shafiq, S. Tatinati, W. T. Ang, and K. C. Veluvolu, “Automatic identification of systolic
time intervals in seismocardiogram,” Scientific reports, vol. 6, no. 1, p. 37524, 2016.

[67] G. Shafiq and K. C. Veluvolu, “Surface chest motion decomposition for cardiovascular
monitoring,” Scientific reports, vol. 4, no. 1, p. 5093, 2014.

[68] K. C. Veluvolu and W. T. Ang, “Estimation of physiological tremor from accelerometers for
real-time applications,” Sensors, vol. 11, no. 3, pp. 3020–3036, 2011.

[69] M. Tarvainen, S. Georgiadis, J. Lipponen, M. Hakkarainen, and P. Karjalainen, “Time-varying
spectrum estimation of heart rate variability signals with kalman smoother algorithm,” in
2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 1–4, IEEE, 2009.

[70] Y. Wang and K. C. Veluvolu, “Time-frequency analysis of non-stationary biological signals
with sparse linear regression based fourier linear combiner,” Sensors, vol. 17, no. 6, 2017.

[71] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung,
and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear
and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995, mar 1998.

[72] Z. Wu and N. Huang, “Ensemble empirical mode decomposition: a noise-assisted data
analysis method,” Advances in Adaptive Data Analysis, vol. 1, pp. 1–41, 01 2009.

[73] L. Lin, Y. Wang, and H. Zhou, “Iterative filtering as an alternative algorithm for empirical
mode decomposition.,” Advances in Adaptive Data Analysis, vol. 1, pp. 543–560, 10 2009.

[74] G. Thakur, E. Brevdo, N. S. Fučkar, and H.-T. Wu, “The synchrosqueezing algorithm for
time-varying spectral analysis: Robustness properties and new paleoclimate applications,”
Signal processing, vol. 93, no. 5, pp. 1079–1094, 2013.

[75] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE transactions on
signal processing, vol. 62, no. 3, pp. 531–544, 2013.

[76] S. Chen, X. Dong, Z. Peng, W. Zhang, and G. Meng, “Nonlinear chirp mode decomposition: A
variational method,” IEEE Transactions on Signal Processing, vol. 65, no. 22, pp. 6024–6037,
2017.

[77] T. Eriksen and N. ur Rehman, “Data-driven signal decomposition approaches: A comparative
analysis,” 2022.

[78] J. Harmouche, D. Fourer, F. Auger, P. Borgnat, and P. Flandrin, “The sliding singular spectrum
analysis: A data-driven nonstationary signal decomposition tool,” IEEE Transactions on Signal
Processing, vol. 66, no. 1, pp. 251–263, 2017.

[79] A. Cicone, J. Liu, and H. Zhou, “Adaptive local iterative filtering for signal decomposition and
instantaneous frequency analysis,” Applied and Computational Harmonic Analysis, vol. 41,
no. 2, pp. 384–411, 2016. Sparse Representations with Applications in Imaging Science,
Data Analysis, and Beyond, Part II.

[80] A. Cicone and H. Zhou, “Multidimensional iterative filtering method for the decomposition
of high–dimensional non–stationary signals,” Numerical Mathematics: Theory, Methods and
Applications, vol. 10, no. 2, p. 278–298, 2017.

References 61

[81] L. Lin, Y. Wang, and H. Zhou, “Iterative filtering as an alternative algorithm for empirical
mode decomposition,” Adv. Data Sci. Adapt. Anal., vol. 1, pp. 543–560, 2009.

[82] P. Barbe, A. Cicone, W. S. Li, and H. Zhou, “Time-frequency representation of nonstationary
signals: the imfogram,” 2021.

[83] A. Cicone, W. S. Li, and H. Zhou, “New theoretical insights in the decomposition and
time-frequency representation of nonstationary signals: the imfogram algorithm,” 2022.

[84] Y. Wang and Z. Zhou, “On the convergence of iterative filtering empirical mode decomposi-
tion,” Excursions in Harmonic Anal, vol. 2, 11 2013.

[85] P. Petersen and F. Voigtlaender, “Optimal approximation of piecewise smooth functions
using deep relu neural networks,” Neural Networks, vol. 108, pp. 296–330, 2018.

[86] C. Marcati, J. A. A. Opschoor, P. C. Petersen, and C. Schwab, “Exponential ReLU neural
network approximation rates for point and edge singularities,” Foundations of Computational
Mathematics, jun 2022.

[87] S. Thomas, PyTorch Deep Learning Hands-On. Packt Publishing Ltd, April 2019.
[88] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: A

comprehensive survey and benchmark,” Neurocomputing, vol. 503, pp. 92–108, 2022.
[89] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1026–1034, 2015.

[90] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” 2015.

[91] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[92] P. Rigollet and J. Hütter, “Lecture notes on high-dimensional statistics,” 2015.
[93] A. Stallone, A. Cicone, and M. Materassi, “New insights and best practices for the successful

use of empirical mode decomposition, iterative filtering and derived algorithms,” Scientific
reports, vol. 10, p. 15161, 09 2020.

[94] M. K. P. Ng, R. H. Chan, and W.-C. Tang, “A fast algorithm for deblurring models with
neumann boundary conditions,” SIAM J. Sci. Comput., vol. 21, pp. 851–866, 1999.

[95] S. Makridakis, “Accuracy measures: theoretical and practical concerns,” International Journal
of Forecasting, vol. 9, no. 4, pp. 527–529, 1993.

