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Abstract 

Forecasting financial time series has been classified as one of the most challenging problems in 
the last decade due to its non-stationarity and non-linear properties. On one hand, statistical 
techniques have been found incapable of accurately predicting financial time series. On the other 
hand, machine learning techniques have achieved remarkable results, but they do not provide 
an explicit way of handling the non-stationarity property of financial time series. The proposed 
approach leverages the capabilities of signal processing decomposition techniques to address the 
non-stationarity property of financial time series. The signal decomposition technique employed 
in this work is iterative filtering (IF), which generates intrinsic mode functions (IMFs). These 
generated IMFs, along with the original signal, are used to produce a time-frequency representation 
of the financial time series, called IMFogram. Two types of data, namely the IMFs and IMFogram, 
are uti l ized to train a fusion neural network for predicting the financial time series. One entry 
component of the fusion neural network is an artificial neural network (ANN) taking the IMFs as 
input. The other entry component of the fusion neural network is a convolutional neural network 
(CNN), which takes the IMFogram as input. The outputs of the A N N and the CNN are concatenated 
for a regression task. We show the application of this newly developed approach to financial data, 
NASDAQ series to be precise. A n d we report its performance in different scenarios of boundary 
conditions. 
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ative Filtering (IF), Intrinsic Mode Functions (IMFS), IMFogram, symmetric extension, asymmetric 
extension, Time series,... 
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1 Introduction 11 

1 Introduction 
Financial Time Series (FTS) describes the evolution of the stock market over time. FTS is affected 
by microeconomic and macroeconomic factors, which makes it difficult to predict. These factors 
make FTS non-linear, noisy, non-stationary and time-dependent. It is really difficult to understand 
the mechanism underlying FTS. The processing of FTS requires new techniques for handling 
non-stationarity and noise since the existing techniques, such as Fast Fourier Transform (FFT), 
autoregressive integrated moving average (ARIMA), generalized autoregressive conditional het-
eroskedasticity (GARCH) volatil ity [1], smooth transition autoregressive model (STAR) [2], and 
hidden Markov model (HMM) [3], are not well-suited for FTS. The limitations of traditional time 
series forecasting models arise from their reliance on the assumptions of stationarity and linearity, 
which often do not hold true in reality. Advances in financial transactions and information systems 
have led to a substantial increase in available data, enabling practitioners to make more accurate 
Financial Time Series (FTS) predictions [4, 5, 6]. The primary motivation behind forecasting FTS 
lies in the significant impact that even a slight improvement in accuracy can have on the profits of 
financial institutions and individuals engaged in financial transactions. Hence, the pursuit of the 
ability to predict FTS wi th substantial accuracy is considered highly valuable. 

1.1 Literature review 
In this section, we explore the literature with a specific focus on feature extraction and prediction 
accuracy of FTS. The difficulty of extracting features and the low prediction accuracy in FTS 
forecasting are major problems. Several techniques and critical work have been proposed to 
improve the forecasting of FTS. The practical techniques for forecasting FTS can be grouped into 
three categories: models based on statistical techniques, those based on Machine Learning (ML), 
and those focusing on hybrid techniques. The state-of-the-art M L bases approached achieved 
significant prediction accuracy in recent years and performs better than statistical techniques, 
especially in market predictions, risk management, and derivative pricing [7]. 

1.1.1 Literature review with respect to statistical techniques 

The process of forecasting a time-series is intimately related to the specification of a model. This 
model is in fact a statistical formulation of the dynamic relationship between the observed in­
formation and the variable related to these observations. Linearity among normally distributed 
variables is the cornerstone of traditional statistical models [8]. One of the popular and widely 
used time series models is the Auto-Regressive Integrated Moving Average (ARIMA) [9, 10]. As a 
statistical model ARIMA can implement various exponential smoothing models, has the advantages 
of accurate forecasting over short period of time and easy to implement, but suffer to correctly 
predict a time series generated by a non-linear source. It is wel l documented that real wor ld 
systems are often generated by nonlinear sources [11, 10]. 

The fact that non-linearity is an intrinsic property of real wor ld times series lead to the 
formulation of several class of nonlinear models in the literature to overcome the linear limitation 
of the time series models. Among these models there are the bilinear model [12], the threshold 
autoregressive (TAR) model [13], the autoregressive conditional heteroscedastic (ARCH) model 
[14], general autoregressive conditional heteroscedastic (GARCH) [15], and chaotic dynamics 
[16]. 
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1.1.2 Literature review concerning Machine learning 

The popularity of FTS forecasting among M L researchers has been growing in the last 40 years. Re­
searchers have built several M L models, and a tremendous number of studies have been published. 
The comparison of M L techniques wi th respect to different financial applications, including stock 
market prediction, has been studied in [17]. The use of evolutionary computation (EC) and artifi­
cial neural networks (ANN) has gained a lot of consideration in a number of papers. Chen proposed 
a wonderful book on genetic algorithms (GAs) and genetic programming (GP) in computational 
finance based on EC [18]. In [19, 20] the authors surveyed the use of Multi-objective Evolutionary 
Algorithms (MOEAs) to tackle financial applications comprising FTS forecasting. In [21], the 
potential use of A N N was appraised and implemented for the forecast of stock price and other finan­
cial applications. In [22], it has been highlighted that A N N is established as a well-known method 
in financial applications, including FTS forecasting, and the improvement of their functioning 
and the amelioration of our understanding of this marvelous area require more additional research. 

The use of text mining for financial applications and FTS prediction was the concern of some 
authors. Using text min ing for the stock or forex market, Nassirtoussi et al. surveyed how sen­
timent in social media and online news could determine the predictability of financial markets 
and cause huge gains or losses [23]. In [24], the author used textual sentiment for time series 
forecasting and trading strategies. A state-of-the-art survey of FTS forecasting and FOREX rate 
prediction was provided in [25]. 

FTS has gained a lot of attention compared to other financial applications, and the use of 
M L provides flexible frameworks to tackle FTS forecasting. A huge amount of surveys has been 
published for the forecast of FTS studies based on several soft computing techniques at different 
times. The same techniques were used to summarize and visualize stock market data for indi­
viduals and financial institutions to gain useful information about market behavior and to make 
investment decisions [26, 27, 28, 29, 30, 31]. In the past ten years, M L has developed different 
novel techniques to analyze useful features from a large amount of data [32]. The main a im of 
those techniques is to model complex real-world data by extracting robust features that capture 
the pertinent information [33]. 

In order to extract robust features from data more effectively, the use of deep learning (DL) 
algorithms is necessary. DL is a subset of machine learning (ML) that processes complex data 
using multi-layered neural networks, mimicking the biological structure of the human brain. It is 
divided into three stages. In the first stage, called the input layer, neurons receive the input data, 
process it, and transfer the result to the next stage, known as the hidden layer. The hidden layer 
then processes the received result and sends it to the third stage, called the output layer [34]. In 
the literature, DL is predominantly used in applications such as image processing [35, 36, 37], 
natural language processing [38, 39], healthcare [40], and more. 

DL has made considerable advancements over the past decade, and important details are 
surveyed in [41]. The introduction of DL in the financial community has proven to be significant, 
especially for FTS prediction, and has resulted in numerous high-quality publications [42]. Various 
types of DL models have been proposed in the literature, including Deep Mult i layer Perceptron 
(DMLP) , Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Convolutional 
Neural Network (CNN), Restricted Boltzmann Machines (RBMs), Deep Belief Network (DBN), 
Autoencoder (AE), and Deep Reinforcement Learning (DRL) [41, 43]. 
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The first work out A N N is DMLP; its architecture consists of principally three layers: the input, 
hidden, and output. The hyperparameters of D M L P are the number of neurons appearing in 
each layer and the number of layers in the network [44, 41, 42]. DMLP can solve regression and 
classification problems easily just by modeling the input data [45]. 

DL has several types of architectures, and another commonly used one is RNN. R N N is often 
used for time series or language and speech recognition. The analysis of time series data is often 
done using RNN in various fields such as handwriting recognition, speech recognition, etc. [41,44]. 

RNN is best fitted for learning long-term dependencies. One issue highlighted in the literature 
is that when knowledge is stored for long time periods, it is really complicated to learn with RNN 
[46]. LSTM is another A N N architecture that solves this issue. LSTM is a version of R N N with the 
property of remembering both short and long-term values. L S T M appears to be the most used 
DL architecture, especially for tackling time-series data and FTS analysis [47]. L S T M introduces 
cells to store data indefinitely, and in this way, the architecture can decide to remember or forget. 
LSTM is efficient in machine translation [48, 49]. 

Apart L S T M , Convolutional Neural Network (CNN) is another type of Deep Neural Network 
(DNN) architecture that uses convolutional layers based on convolution operations between the 
filter, or weight matrix, and the input, with the ability to act directly on the raw inputs. CNN, as a 
cutting-edge DNN architecture, is frequently used for computer vision or image processing-based 
feature extraction such as image classification. 

Due to its complex architecture, C N N can learn filters that are capable of recognizing specific 
features in the input data. This abil ity has currently attracted considerable attention. In [50], 
a one-dimensional C N N is used to extract robust features from one-dimensional time series. In 
the work by Mittel and Roni [1], a novel time-series model using a convolutional neural network 
architecture was introduced. Specifically, this innovative model adopts a fully convolutional 
network (FCN) structure employing causal filtering operations, enabling the output signal rate to 
match that of the input signal. Additionally, drawing inspiration from the undecimated wavelet 
transform, the authors put forth an undecimated variant of the FCN, referred to as the undecimated 
fully convolutional neural network (UFCNN). 

1.1.3 Literature review regarding hybrid model 

We can remark from the literature that the chronological order of data is the essential consideration 
of models based on 1-dimensional Convolution operation, ignoring other factors. Another major 
problem arising in 2-dimensional C N N models is the lack of handling the non-stationarity side of 
FTS accordingly. To solve this issue, some authors prefer to use hybrid systems or focus on not 
completely abandoning statistical methods. A hybrid combination of statistical models and M L 
techniques is used to predict FTS in [51, 52]. A work by Zang, which was the combination of 
AR IMA and Support Vector Machine (SVM), appeared to be a superior technique for improving 
forecasting accuracy when applied to real datasets [53]. The combination of A N N and genetic 
algorithm (GA) using evolutionary search to determine the spatial features of the time series 
was used in [54]. In [55], the authors developed a tool to address in-depth analysis of the stock 
market. The developed tool combines the Hidden Markov Model (HMM) , ANN, and GA. In [56], 
the authors proposed a fusion of Empirical Mode Decomposition (EMD) and A N N for the purpose 
of forecasting and applied these techniques to the Baltic Dry Index. In [57], the authors developed 
a hybrid end-to-end approach combining E M D and Factorization Machine-based Neural Network 
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(EMD2FNN) to predict stock market trends. 

Afterwards, they proposed another hybrid version, a two-stage approach, namely IF2FNN, 
combining Iterative Fi ltering (IF) and Factorization Machine-based Neural Network, to predict 
( including short-term and long-term predictions) and recover the general types of time series 
[58]. Then, they came up with the idea of combining IF methods with CNN for automatic feature 
learning for FTS forecasting, called IF2CNN [59]. 

Plunging into the literature studies of FTS forecasting, we can understand that hybrid prediction 
approaches can improve prediction performance by overcoming the shortcomings of single models, 
handling model uncertainty, and increasing generalization ability simultaneously [60]. In [61], 
the study on the effectiveness of several M L techniques and their one-step prediction methods 
of a series of financial data discovered that the hybrid model obtained combining some linear 
statistical models and nonlinear M L algorithms is powerful in predicting the future value of 
sequence data, especially in the future direction of the sequence. Notwithstanding, hybrid models, 
despite performing well, have some limitations with respect to time complexity and computational 
efficiency [62]. 

1.1.4 Literature review about non-stationary signal processing 

Real-world systems often exhibit nonlinear characteristics [11]. This phenomenon is evident in 
various real-world signals, including FTS, machine vibrations, speech, radar and sonar acoustic 
waves, seismic acoustic waves, and biomedical signals such as the electrocardiogram (ECG) or 
neonatal seizures. Additionally, non-stationärity is observed in the impulse response of wireless 
communications channels, biological signals, vocals in speech, notes in music, and engine noises 
[63, 64]. 

In the realm of biological signals, a diverse range of sensors has been developed to measure 
biosignals reflecting various underlying physiological phenomena. For instance, gyroscopes and 
accelerometers are uti l ized to measure pathological and physiological tremor signals [65], ac-
celerometers are employed for monitoring cardiac mechanical vibrations [66], infrared sensors 
are uti l ized for monitoring respiratory motion [67], and standard electrodes are employed for 
measuring electrical activity in the brain and heart [68, 69]. A l l the mentioned physiological 
signals are non-stationary due to the complex nature of biological systems [70]. 

To address non-stationary signals, the scientific community has introduced various signal 
decomposition techniques. Huang proposed the empirical mode decomposition (EMD) for an­
alyzing nonlinear and non-stationary data. E M D breaks down complex datasets into a finite 
number of intrinsic mode functions (IMFs) that undergo well-behaved Hilbert transforms [71]. 
However, E M D has shown instability under perturbations. To overcome this challenge, Huang et 
al. introduced the ensemble empirical mode decomposition, which involves adding noise to the 
original signal. EMD is then applied to the noisily obtained signal to generate IMFs. This process 
is repeated for different realizations of noise, and the final IMFs are obtained by averaging those 
from different noisy signal realizations [72]. Another signal decomposition method inspired by 
EMD is iterative filtering (IF). Instead of computing the average of the upper and lower envelopes 
of the signal, IF applies a filter to the signal and subtracts the filtered signal from the original 
[73]. 

In the quest for methods to analyze non-stationary signals, the synchrosqueezed transform was 
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proposed in [74], known for its robustness to bounded perturbations and Gaussian white noise. 
Another approach, presented in [75], is the variational mode decomposition (VMD), which is 
entirely non-recursive, enabling concurrent extraction of modes. However, VMD's reliance on the 
narrow-band property of signal modes limits its effectiveness in analyzing wide-band nonlinear 
chirp signals (NCSs). Addressing this l imitat ion, [76] proposed an alternative method called 
variational nonlinear chirp mode decomposition (VNCMD) [77]. 

Singular spectrum analysis (SSA) is yet another signal decomposition technique designed to 
break down signals into interpretable and physically meaningful components. In [78], the sliding 
SSA method was introduced, providing both theoretical and practical insights into the separability 
of SSA [77]. 

1.2 Proposed work 
This work is a contribution to the community of FTS prediction, since it provides the use of two 
different type of datasets as input of a fusion neural network to predict the FTS. The proposed 
framework can serve as baseline for the combination of other sophisticated neural network archi­
tectures for time series prediction. 

This work is based on innovative machine learning signal processing approach. It takes ad­
vantage on the hybrid framework combining the Iterative Filtering (IF) [79, 80, 81], IMFogram 
[82, 83], A N N and the CNN. IF has a tremendous advantages of reducing the influence of noise 
and non-stationarity of the times series in some extent. Furthermore, signal processing approach 
provides two type of datasets, (1) the intrinsic mode functions (IMFs) through the IF algorithm 
and an (2) IMFogram time-frequency representation of the time series. 

Given these two types of datasets, the goal of this work is to predict the financial time series. 
To achieve this goal we start producing an IMFs decomposition of a FTS via IF the sum of all the 
IMFs is the underlying FTS itself. Then, using the IMFogram algorithm [82, 83], we produce a 
time-frequency representation of the FTS. 

Given the two datasets, we bui ld a deep neural network that concatenates a A N N (taking 
as input al l the IMFs) and a C N N (taking as input the IMFogram). The output of the A N N is 
concatenated w i th the output of the C N N which is flatten to have the same dimension as the 
output of the ANN. The squared loss for regression purpose and the back-propagation are applied 
to learn from the data. 

The rest of the work is organized as follows: In Section 2, we present a general review of IF 
and IMFogram, whereas in Section 3 we provide a mathematical definition of neural networks and 
CNN. Section 4 details the main approach used to predict the underlying FTS. In Section 5, we 
present the two type of datasets and the simulation results. Section 6 presents a brief conclusion 
and key points of open issues for further studies. 
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2 Iterative Filtering and IMFogram 
2.1 Iterative Filtering 
Data and signal analysis are ubiquitous nowadays; therefore, creating tools to tackle them is of 
great importance. Data is rarely perfect and can be subject to various sources of noise. It can also 
be non-linear due to the complex, non-linear behavior of real-world phenomena, and natural pro­
cesses. Additionally, data can be non-stationary which means that the mean, variance, and other 
statistical properties do not remain constant over time. Non-stationarity and non-linearity are 
common and important features of many real-world datasets, and it is important for researchers 
and analysts to be aware of this when developing models and interpreting results. Furthermore, 
when the data is non-stationary and non-linear, the decomposition of the signal and the extraction 
of features are very challenging. 

The Fourier spectral analysis and wavelet have been found not wel l suited tackling non-linear 
and non-stationary data due to the fact that these two approaches require data to be stationary 
and generated by linear systems. To surmount this issue, several decomposition techniques have 
been proposed for analyzing non-linear and non-stationary time series. The leading rule of all 
these approaches is common: first, the signal is decomposed into simpler components, and second, 
time-frequency analysis is applied to each component separately. Two ways characterize the 
decomposition of a signal: either by iteration or optimization. 

The earliest iterative algorithms for signal decomposition is the Empirical Mode Decomposition 
(EMD) [71], developed by Norden Huang in the late 1990s. E M D is a data-driven, non-parametric 
method that decomposes a signal into a finite number of intrinsic mode functions (IMFs) using an 
iterative sifting process. 

The IMFs are defined as a set of oscillator functions fulfilling three properties: the number of 
extrema and zero crossings must be equal or differ by at most one; at any point in the signal, the 
mean value of the envelope defined by the local maxima and the envelope defined by the local 
minima must be zero; the waveform defined by the IMF should be symmetrical around the mean 
value of the envelope [71]. 

The E M D algorithm works by first identifying the extrema (maxima and minima) of the signal 
and connecting them wi th cubic splines to form upper and lower envelopes. The mean of these 
envelopes is then subtracted from the original signal to obtain the approximation of the first IMF, 
which represents the high-frequency component of the signal. The computation of the envelopes 
is reapplied to this first approximation of the first IMF and a new moving average is computed and 
subtracted from it. This procedure is iterated unti l a stopping criterion is fulfilled. This process is 
repeated on the residual signal (the original signal minus the first IMF) to obtain the second IMF, 
and so on unti l a stopping criterion is met. 

The iterative structure of the E M D is described as follows: consider an operator O performing 
the moving average of a signal S{x), and an operator Q getting the fluctuation part, Q{S){x) = 
S(x) - 0(S)(x). We obtain the first IMF from the sifting process 

h(x) = l im §i,n{Sn){x) (2.1) 

we denote Sn(x) = Qi,n-i(Sn-i)(x) and Si = S(x). The l imit ensure that the signal remain 



2 Iterative Filtering and IMFogram 17 

the same when applied Q one more time. 

By iterative sifting process, we obtain the remaining IMFs as follows: 

Ik(x) = l im @k,n(rn)(x), (2.2) 

w i th r„ = @k,n(rn-i)(x) and r i ( x ) = r (x) which is the remainder S(x) - h(x) - • • • - 4 - i ( * ) -
The sifting process stop when r(x) = S(x) - h(x) - • • • - Im(x) has at most one local maximum 
or minimum. It is easy to reconstruct the signal S(x) from its IMFs and the remainder by 

The operator O is obtained as the mean function of the upper and lower envelope, where one 
identifies first the extrema (maxima and minima) of the signal S(x) and then connects them with 
cubic splines to form an upper and lower envelope. 

The stopping criterion is typically based on the amplitude of the last IMF relative to the noise 
level of the residual signal. Meaning that the algorithm stops when the last IMF become a trend 
that is further iteration has at most one local max imum or m in imum [79]. Once the IMFs are 
obtained, they can be reconstructed by simply summing them up in order. 

The E M D algorithm has been successfully applied to a wide range of signal processing tasks, 
including signal denoising, trend analysis, and feature extraction. However, it does have some 
limitations, such as sensitivity to noise and the potential for mode mixing (i.e., the presence of 
multiple frequencies in a single IMF). Several variants and extensions of the E M D algorithm have 
been proposed to address these issues. 

A n obvious perturbation problem is generated from the fact of repeatedly applying the cubic 
spline in each iteration, leading to an unstable method under perturbation. As a solution to 
the E M D issue, Huang et al. proposed the ensemble Empir ical Mode Decomposition (EEMD) 
[72]. The main idea behind EEMD is to add noise to the original signal and then decompose the 
resulting noisy signal into IMFs using E M D . This process is repeated many times w i th different 
realizations of noise, and the resulting IMFs are averaged to obtain a more robust decomposition. 

E E M D has several advantages over EMD, including the ability to handle signals wi th nonsta-
tionary and non-periodic components and the ability to reduce mode mixing, which occurs when 
different modes of a signal are mixed together in a single IMF. E E M D is also less susceptible 
to edge effects than EMD, which can lead to spurious modes at the beginning and end of the signal. 

Another type of iterative decomposition is Iterative Filtering (IF), inspired by E M D [73]. The 
iterative filtering technique works by applying a filter to an image or signal, then subtracting the 
filtered version from the original. This difference is then added back to the original signal, and 
the process is repeated multiple times. 

Each iteration helps to remove more noise or artifacts from the signal, resulting in a cleaner 
and clearer output. Iterative filtering is commonly used in applications such as image denoising, 
image restoration, and signal processing. 

m 
(2.3) 
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IF is based on the same framework as EMD, but the operator performing the moving average 
of a signal S(x) is obtained by convolving S(x) w i th low-pass filters, instead of computing the 
average of the upper and lower envelop as in EMD, thus creating the IMFs. 

Let's consider a signal S(x), x e R, and 0(S(x)) as a moving average of the signal S(x) , 
where O is an operator. Let L(t) be a low pass filter (the double average filter) defined for instance 
by 

L(t) = l + 1~jt
2[ t €[-/,/] (2.4) 

we therefore define the moving average of the signal S(x) as the convolution 

0(S(x)) = J S(x + t)L(t)dt. (2.5) 

More in general, 0(S(x)), can be defined as a convolution of the signal S(x) and some filter 
co in the IF method. A function co : [-1,1] —> R is called a filter if it is nonnegative i.e. co(t) > 0, 
enven i.e. co(-t) = co(t), bounded i.e BO < M e R such that \co(t)\ < M,Vt e [-1,1], continuous, 
and fRco(t)dt = 1 [83]. 

Let define Si(x) = S(x) and 

&i,n(Sn) =Sn- Ol(Sn) = Sn+1, (2.6) 

the operator capturing the fluctuation part of Sn for n = 1,2 • • •, one obtain the first IMF as 
i i = l i m b e c @i,n(Sn), here the operator 0\ is l inked to the mask length /„ which is the length of 
the filter during step n, the superscript 1 refer to the first IMF. 

The mask length of iterative filtering is typically determined by the size of the kernel or filter 
used in the filtering process. The mask length refers to the number of elements in the filter that 
are used to perform the filtering operation. The mask length can be computed based on the 
specific requirements of the iterative filtering operation, such as the level of smoothing or detail 
preservation needed in the output image. 

Following [73], the mask length is computed as 

ln = 
N 

I— (2.7) 

Where N represents the total number of sample points of the signal Sn(x), kn represents the 
number of its extremum points, v is a parameter fixed around 1.6, and [-J rounds a positive 
number to the nearest integer part close to zero [79]. 

In a similar way we obtain the second IMF I2 by applying the operator Q to the remaining 
signal S - I\. We therefore iterate the process to obtain the A:-th IMF as 4 = l im n ^co @k,n(rk)> 
where = S - h - • • • - 4 - i • We stop the IF when rm+\ = S - h - • • • - Im, m e N, becomes 
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a trend signal which means that further iteration has at most one local maximum or minimum [79]. 

In practice, several conditions can be considered. Firstly, a max imum number of iterations 
should be predetermined in advance, and the iterative process is stopped once this number of 
iterations is reached. Another way to determine the stopping point is to consider a signal-to-noise 
ratio (SNR) improvement. In this case, the iterative process is stopped when the SNR of the filtered 
signal reaches a predefined level. Alternatively, visual inspection can be employed, meaning that 
the iterative process is stopped when the filtered signal visually meets the desired filtering goals. 

Given a signal S(x), x £ R the IF algorithm is performed by applying two nested loops: the 
inner one performs the necessary operations to obtain an IMF, and the outer one computes all the 
IMFs [79]. 

IF a lgor i thm IMF=IF(S)  
IMF = {} 
while the number of extrema of 5 > 2 do 

S i =S 
while the stopping criterion is not satisfied do 

compute the first length /„ for Sn 

S„+i(x) = Sn(x) - J_"ln Sn(x + t)o)n(t)dt 
n = n + 1 

end while 
IMF = IMFU{5„} 
S = S-Sn 

end while 
IMF = IMFU{S} 

In [79], to implement the IF algorithm, the mask length is only computed in the first step, and 
then the same value is used for all the remaining steps. There is a reason for doing so: to ensure 
that each IMF produced by the framework contains a well-defined set of instantaneous frequencies 
[79]. By following this idea, one can observe that the operators Q and O do not depend on the 
step number n. Therefore, for a given signal S(x), where X G R , the first IMF is obtained simply 

byh = l i m ^ c o Qn(S), with Q(S) = 5 - (9(5) and 0(S) = S(x + t)co(t)dt, where / is the mask 
length computed only in the first step of the inner loop, and co(t) is a convenient filter function. 
In the inner loop of the IF algorithm, the convergence is guaranteed for a periodic signal, and this 
convergence has been studied in the space of functions l°° in [84]. 

Let's explore this idea in depth. Consider a continuous signal S(x) e R, and a uniform filter 
co(t), compactly supported on t £ [-/, I]. The operator O is computed as follow 

-i 

we can define the operator Q as 

0(S)(x) = J S(x + t)oj(t)dt, (2.8) 

0(S)=S-O(S) = (1-O)(S). (2.9) 
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The first step of the IF algorithm is the application of the operator Q to the current signal. 
Furthermore, by fixing the mask length / throughout all the steps of an inner loop, we obtain a 
function sequence Qn{S). We summarize this idea in the following proposition to obtain a nice 
form of the sequence {Qn{S)} in order to think about its convergence. 

Proposition 2.1. Let / he the fixed mask length throughout all the steps of an inner loop, then the 
following equality hold 

&n(S) = (i-0)n(S). (2.10) 

Proof. Recall our first characterization of the n + 1 terms obtained by sifting the operator Q n 
times, i.e 

Sn+i = Qn(Sn) = Qn{S) = (5 - 0 ( S ) ) n and S1 = S. (2.11) 

Let us prove the proposition by recurrence. For n = 1, 52 = (5 - O(S))1 = (1 - 0 ) (S). For n = 2 
and using the equation (2.6) we have 

5 3 = 02(S2) =S2- 0(S2) = (1 - 0)S2 

= (1 - 0 ) ( 1 - 0 ) 5 i 

= O - 0 ) 2 S i , (2.12) 

from (2.11) and (2.12) 5 3 = Q2(S2) = (1 - 0 ) 2 ( S ) . Let us suppose that the (2.10) it is true for 
n = k - 1 i.e. Sk-i = (1 - 0 ) f c _ 2 S 1 and now let us show that it remain true for n = k 

Sk = 0fc-i (S f c _i ) = gk-HSk-i) = (Sfc-i - 0 (S f c _ i ) ) = (1 - 0 ) 5 f c _ ! = (1 - Of^S!, (2.13) 

So from (2.11) and (2.13) we have Sk+1 = @k = @k = (1 - 0 ) f c 5 i . • 

If we assume the sequence {^"(5)} is convergent then we compute the first IMF as 

h = l im Qn{S). (2.14) 

In [84] the authors provides a proof on the convergence of the sequence Qn{S). In [79] a 
proof of the sequence Qn{S) is provided when the signal S is in L2. The idea developed in [79] 
is to take a continuous filter co(t) that is symmetric and compactly supported. By symmetry, we 
mean co(-t) = co(t) for t e [-/, I]. Such co satisfying al l the mentioned properties implies that 
co(t) G L 2 ( R ) . It now appears clearly that (2.8) is the convolution of the signal 5 and the filter co: 

0(S)(x)=J S(x + t)co(t)dt = J S(x - t)co(t)dt 

/

oo 
S(x + t)co(t)dt = (S*co)(x). (2.15) 

oo 

Since co(t) e L 2 ( IR), we compute its Fourier transform as T{co){^) = co(t)e~2Mit^dt, £ e 
RL We can apply the convolution theorem of the Fourier transform, to obtain f{0{S)){^) = 
T (S * co) (£) = 9r(S)(^)9r(co)(^), £ G R. The ensuing proposition provide a nice form of the 
the Fourier transform of the equation (2.10). 
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Proposition 2.2. Let Q be the sifting operator of the signal S satisfying the equation (2.10), then 
the Fourier transform of the (2.10) is given by 

r {Qn{s)) (£ ) = r « i - or s) to = [ i - n ^ w r n s m , % E R. (2.16) 

Proof. We can apply the equation (2.10), (2.15) and use the linearity and convolutional property 
of the Fourier transform to obtain 

r iQn{s)) (£ = r « s - o(sm & = r«s-co* sy) ($ = r « s - a * s ) - - - ( s - a * s ) ) (%) 

= r((S-co)*---*(S-co)*S)(g) 

= T(S - co)(0 • • • T(S - co)(0T(S)(0 (2.17) 

= [1 - T(co)(0] • • • [1 - T(co)(0] T(S)(0 

= [l-T(co)(mnT(S)({) 

• 
We have the necessary ingredient to present the convergence theorem of the sequence {Qn{S)}. 

Theorem 2.3. Consider a symmetric non negative filter co(t) e I 2 ( R ) , t £ [-/, /] with co(t)dt = 
1, and let the signal S(x) be square integrable i.e S(x) e L 2(RL). If | 1 - lF(w) (£) |< 1 or 
!F(<x>)(£) = 0. Then the sequence {Qn{S)} converges and 

/

oo 
nSXOXiT^m^e^dt (2.18) 

Proof. For S(x) x e R w e can apply a result from Plancherel theorem stating that the integral 
of the square of the Fourier transform of a function is equal to the integral of the square of the 
function itself, i.e 

/

OO /» CO 

\T(S)(t) | 2 d£ = / \S(x) \2dx<oo. 
oo J —oo 

(2.19) 

We have two cases to take into account, either | 1 - Jr{a)){^) |< 1 or ;F ( < y ) ( £ ) = 0. 
Let us consider the case | 1 - lF(w) (£) |< 1 

I r{Qn{sm) =i [ i -r(co)(t)]nr(sm 1=1 i-r(a>m n T(sm i 
<l T(S)(0 I, (2.20) 

we now possess two nice information to infer on the convergence of the sequence ! F (X n ( S ) ) ( £ ) , 
which is: | 1 - !F(<x>)(£) \n is a geometric sequence and 5 is in L2, so we have 

l im | T(Qn(S))($) |=0, (2.21) 
n—>oo 

by the property of convergent sequence l im n ^co (F{Qn{S)){£>) = 0. 
Now for the case !F(<x>)(£) = 0, we have 

I r{Qn{s)m =i i - r ( * > ) ( 0 n r ( s ) ( o i= r ( s ) ( o . (2.22) 

Combining the two cases we have 
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i ^ / , f b r f ( w ) © =0 . 

From the fact that Fourier transform is an invertible operator, the sequence {Qn{S)} is also 
convergent as an inverse Fourier transform of the convergent sequence {'Jr{Qn{S)){^)} and admit 
as l imit 

/

o o 

r(S)(OX{^n(om=o}e2^x^ (2.24) 

• 
This theorem is of great importance, since it provides sufficient conditions on the filter that 

guaranty the convergence of the inner loop of the IF algorithm. We emphasize that (2.24) is 
actually an explicit formula for the IMF of a signal 5 based on IF algorithm with a filter co. Recall 
that our previous assumption on the sufficient conditions on the filter i.e. assuming it to be a low 
pass filter, for example the double average filter L(t) is not unrealistic. In fact L(t) satisfies the 

k 
condition of the above theorem if £ = -—- , 1 < k < I + 1 under this requirement f{L){^) = 0. 
By exploring the wor ld of kernel we realize that filters satisfying properties | 1 - !F(<x>)(£) |< 1 
and f{oo){^) = 0 are not unique and can be easily found. To explore a litle bit this world, let us 

A 

consider a symmetric and non negative filter oo, w i th co(t)dt = 1 we can compute its Fourier 
transform 

/

o o 

oo(t) cos (-2mt& dt. (2.25) 
o o 

The modulus of (2.25) equals 

/

OO /» OO 

co(t) cos(-2jritlf)dt | < / | Gj(t)cos(-2jrit£) | dt 
o o J —oo 

/

OO /• / 

I co{t) \dt= co(t)dt = 1. (2.26) 
o o J —I 

From (2.26) we infer that for a non-negative and symmetric filter co(t), t e [-/, I], —1 < 
T{co){£) < 1, for every £ e R. For co(t) such that | 1 - !F(<x>)(£) |< 1 we need a particular co(t) 
such that 0 < f{co){^) < 1, to have such a condition we can chose a filter u{t), t e [-21,21], 
obtained as a convolution of a symmetric non-negative filter co(t), t e [-/, /] w i th itself, so we 
have 

u(t) = co(t) * co(t). (2.27) 

We obtain the expected result by computing the Fourier transform of u(t), which is Tiu) (£) = 
T{co)(%).T{co)(£), and it is now clear that 0 < T(u)(^) < 1, V£ e U. Therefore, any filter given 
as convolution of a symmetric, non-negative and compactly supported filter in L2 space with itself 
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satisfies the conditions of Theorem 2.3. 

Let's consider the artificial signal S(t) = sin(4;rf) + 0.5 cos(5 t t|£| - 40;r f 2 ) , depicted in the 
Figure 2.1. This signal is a sum of two components: one w i th amplitude 1 and zero phase, and 
the other with an amplitude of 0.5. After applying the IF algorithm, the signal reveals three IMFs, 
as shown in the Figure 2.2. 

The first IMF, c\ corresponds to the signal component 0.5 cos(5^r|f | - 40;rf 2 ) , the second IMF, 
C2 capture the portion of the signal sin(4;rf), a n d the third IMF, C3,represent the mean of the 
original signal. 

The Iterative filtering has also its generalizations. Among them there is the so called adaptive 
local iterative filter (ALIF) [79]. The ALIF algorithm is based on the IF method. The working 
difference are just the way the filter mask is computed. 

It is of great importance to study the convergence of the inner loop of the IF for obtaining each 
IMF. IF is stable under perturbation and the convergence is guaranteed for periodic and l°° signals 
using uniform filters. However, the convergence for general signals with uniform and non-uniform 
filters cannot be proven under IF. The ALIF technique relies on computing the mask length ln(x). 
This mask length is required to be a positive function, giving rise to two perspectives: 

1. The mask length is a positive constant function, essentially transforming the ALIF technique 
into the IF method. 

2. The mask length varies from point to point, resulting in a non-uniform mask length. 

The convergence of the ALIF method is assured in the case of a constant mask length, as stated in 
Theorem 2.3. However, for the convergence of the ALIF method w i th a non-uniform mask, it is 
necessary to remove the high-frequency oscillations present in the mask length ln(x). Therefore, 
convergence is guaranteed when dealing wi th a slowly varying mask length [79]. 

The ALIF algorithm is the same as IF, the only change is in the way the operator capturing the 
fluctuation part is computed. This operator is given for a signal S(x) x e R by 

Ql,n{Sn) — Sn — O^iSn) - Sn+i, (2.28) 
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Figure 2.2: The IMFs of the artificial signal S(t) 

and the moving average operator is given by 

°ll(Sn)= Sn(x + t)coiX\t)dt 
J-ln(x) 

(2.29) 

The first IMF is computed in a similar way as in IF i.e h = l im n ^co Q\,n{Sn), the operator Q\fl 

depends on the mask length ln{x) computed at step n. The mask length ln{x) is a crucial aspect of 
the ALIF process. It must be a strictly positive function. When it remains constant for every x, it 
results in a uniform mask length, rendering the ALIF method equivalent to IF. On the other hand, 
when the mask length ln(x) varies from point to point, it generates a non-uniform mask length. 

We can remind that the process applied to obtain the first IMF is a kind of sift for separating 
the finest local mode from the data. It is also natural that in practice we need a stopping criterion 
since we cannot let n tends to infinity in a computer for example. We first iteratively compute 
the quantity I^n = Q\,n{Sn), where at step n of the first inner loop Q\>n stands for an operator 
capturing the fluctuation part. To set a stopping criterion we use the standard deviation 

5 D . = II In In-1 h ( 2 3 Q ) 

II h-1 112 

In [71] the authors suggest to set this value between [0.2,0.3]. Whereas in [81] SD is set in 
the interval [0.001,0.2]. Different stopping criteria can also be considered for each inner loops. 
To obtain al l the IMFs w i th ALIF, we proceed in the same way as we do for IF, by applying the 
previous sifting process to the remainder signal r = S - I\ - • • • 4 - i k e N. The algorithm stop 
when the remainder signal r remain wi th at most one local extremum. 
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We can notice at this point the difference between the ALIF and the IF reside on the mask 
length ln(x) depending on x to perform the moving average using the operator O. The mask 
length ln(x) has to be a strictly positive function. However, it can also be a strictly positive constant 
and in that case the ALIF reduces to IF framework. We can notice that the choice of the mask 
length ln(x) is not unique. 

One of the crucial problem we cannot ignore since we adopt the same idea for computing the 
IMFs is that of the convergence of the ALIF. It is worth to notice that in the ALIF we are concerned 
with a non-uniform mask length, we need a slowly varying mask length. We have pointed out that 
when the mask length ln(x) is constant the ALIF reduces to IF and if in a limit case ln(x) does not 
change at all , so the ALIF reduces to IF and without disquiet we apply Theorem 2.3. 

Let consider the ALIF algorithm with a non-uniform mask length and let consider the operator 

rl(x) 

OaJ(S)= / S(x + t)co(x\t)dt, (2.31) 
J-l(x) 

and consider the sifting operator @n(Sn) given by 

Sn+i = Qn(Sn)(x) = Sn(x) - J' Sn(x + gn(x, y))W(y)dy, (2.32) 

we precise that W(y), e [ -L,L] is a filter and gn(x, y) is a scaling function defined o n R x 
[-L,L] having value on R x [-ln(x),ln(x)], and can be seen as a linear function gn(x,y) = 
ln(x)y/L or it also can be regarded as cubic function gn(x, y) = ln(x)y3/L3 

Theorem 2.4. Let consider a continuous signal S(x) x e U. in L°°([R). Let consider the sequence 

II 0<y„ + i , / „ + i (S n +l ) III00 _ II Ocon+1,ln+1{\ SN+1 |) III-
" ~ °n = [ T - ^ /i 7. in ii • (2.33) II Oanjn(Sn) 11 !<» || 0Mnjn(\ Sn I) ||r 

If 

n n 

Y[ e,- - » 0, Y[ °i c > ° ' a s n 0 0 • (2.34) 
i=l i=l 

Then {S „ ( x ) } converge almost every where to an IMF. 

It is worthwhile to notice once more that even the mask length /„(x) inside the inner loop 
can be computed at each step n, we only compute it in the first step in the implemented code 
and use that mask length for fol lowing steps. This way of doing lead the operators Q and O 
to be independent on the steps n, wh ich is to say, given a signal S(x) x e M. the operators are 

given by Q(h) = h- 0(h), and 0(h) (x) = f ,f \ h(x + t)co^x\t)dt, where l(x) is the mask length 

computed in the first step of the sifting process, h = S -1\ • • • Ik-i, and co^x\t) a convenient filter 
w i th compact support in the interval [-l(x), l(x)]. 

In this framework we generate the moving average of a given signal by making use of the FP 
filters obtained as a solution of Fokker-Plank equations. Another way of computing filters is to use 
in fact partial differential equations (PDEs). This is because PDEs are used to model diffusion 
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processes. Therefore given a diffusion PDEs we can make use of it fundamental solution to build 
a filter for the ALIF or IF framework. A better candidate for generating a smooth compactly 
supported filters is the state-of-the-art Fokker-Plank equation and we call these filter FP filters. 
Let be given a Fokker-Plank equation 

pt = -a (f(x)p)x + 0 {g2(x)p)xx, a,{3>0, (2.35) 

where the function h(x) and g(x) are smooth enough and for a < 0 < b the following 
conditions are satisfied: 

• g(a) = g(b), g(x) > 0 for x £ (a, b) (2.36) 

• h(a) < 0 < h(b) (2.37) 

There exist a non-trivial smooth solution of the homogeneous problem 

-a (f(x)p)x + 0 {g2(x)p)xx = 0, (2.38) 

where p(x) satisfy the two conditions p(x) > 0 for x £ (a, b) and p{x) = 0 for x i {a, b). 

2.2 IMFogram 
The time-frequency representation of the intrinsic mode functions (IMFs) appears to be a chal­
lenging task, as each IMF lacks fixed frequencies and is not orthogonal to one another. This differs 
from the periodogram and its localized counterpart, the spectrogram, which are indeed graphical 
representations tailored for Fourier analysis. Since each Fourier component possesses a distinct 
frequency, and these components are independent of each other, the total energy of the signal 
results from the sum of the energy of each component. The IMFogram is a straightforward analog 
of the spectrogram, designed for rapid computation based on IMF decompositions. Its definition 
is as follows: 

Let consider rj as a parameter between 5 to 20 in practice, and let denote by f an IMF produced 
wi th a filter length /. The approximation of its local energy at t is given as follow: 

Ef(t) = — / f(r)2dr. (2.39) 

The fact that an IMF focuses on a narrow frequency section, this fact provide an intuition on an 
approximation of / by 

Clf(t) = -^-j x number of zero-crossings of / over the interval [t - rjl,t + rjl]. (2.40) 

It is worth noting that the approximation described in (2.40) is not unique. There are many 
other very well highlighted in [84, 82]. The above local energy and frequency approximation of / 
provide the frequency, time, and energy triples, (ti,Qf(ti), Ef(ti))ieZ for / [82]. 

Let consider a signal a defined on [0, L] sampled at rate B per time unit. We represent it as 
vector of size N = BL. We wrap it on a discrete circle: consider a quotient group ZJV = Z / A T Z 
and set tt = i/B, i £ ZJV. The discretized and wrapped signal is s = (cc(ti))ieZ with time domain 
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{i/B : i e ZJV} and frequency domain (Z J V / L ) n [0,5/2]. Let partition the time-frequency 
domain in rectangles in order to obtain a time-frequency representation of the signal. For a given 
rectangle R, we denote by UTR the projection of the rectangle onto the time coordinate and n w i ? 
the projection onto the frequency coordinate. Let si, S2, • • • , Sjt be the IMF decomposition of s. We 
define an energy associated to a rectangle R as a sum of the average local energies of each IMF 
when the local frequency lies in n w , i.e 

ES(R) = J] ^TR TJ Esj(^n^sj(T) e UAR} (2.41) 
l<j<k f rentR 

It is important to choose the length of HTR to be comparable to the smallest filter length l(coi), in 
this case changes in high frequencies are well represented. The choice of the rectangle R to cover 
the time and frequency domain is subject to the type of application [82]. 

The IMFogram of the signal s is nothing else than the plot of the step function that equals to 
ES(R) on each rectangle R. The IMFogram of the artificial signal depicted in Figure 2.1 and its 
IMFs illustrated in the Figure 2.2 is depicted in the Figure 2.3 [82]. 

Figure 2.3: The IMFogram of the figure 2.1 and 2.2 

3 Artificial neural network and Convolutional Neural Net­
works 

3.1 Neural Network 
A neural network (NN) is a collection of weights, together wi th the associated realization of the 
NN. A precise definition of a N N is given in the Definition 3.1 above. 
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Definition 3.1. [85, 86] A neural networks <E> with input dimension d and L layers is a collection 
of matrix-vector tuples 

$ = ( (A i , &!),-•• ,(AL,bL)), (3-D 

where N0 = d, L e N and N i , • • • , NL e N and each Ay are matrices of type (JV), and bj is 
vector of dimension Nj for _/ = 1, • • • , L. If $ is neural network as described above, we define the 
realization of the N N $ as a function defined from RN° to R N L , such that: 

Rg(&) : R D —> R N L : x i—> XL =: RQ(Q)(X), 

it is worth noting that xi is generated from the following design: 

XQ : = x 

xj : = Q {AjXj-! + bj) j = 1 • • • L - 1 (3.2) 

x L : = ALxL-i + bL, 

it is of great importance to emphasize that Q is a special function usually called an activation 
function, which can be of different types, e.g., ReLU, sigmoid, and tangent hyperbolic. This 
special function act component-wise on vector-valued input, i.e., Q(Z) = (Q(Z\), • • • ,Q{ZI)) for 
z = (zi, • • • ,ZL) e The number N (O ) = d + Y^=i Nt is the total number of neurons in the N N 
<J>, L((£>) := L is the number of layers, also referred to as the depth of NN, Mj = \\Aj\\0 + \\bj\\o is 
the total number of nonzero weights in the j-th layer, and finally M(<E>) = 2y=i Mj is the total 
number of nonzero weights in the N N <E>, also called the size of the NN. The number NL represent 
the output dimension of the N N $ [85, 86]. 

It is worthwhile to remark that i f the product AjXj-i in equation (3.2) is replaced by a 
convolutional or cross-correlation operation w i th some addition ingredient as described bellow, 
then the N N $ is called a convolutional N N (CNN). The cross-correlation or the convolutional 
operation is described by 

(A/ * xj)t,P
 = 2 Aj,i,ixj,t+i,p+i 

i=l 1=1 

Neural networks can also be constructed from existing ones by applying operations such as 
concatenation and parallelization. This is a way of building complex neural networks rather than 
just using simpler blocks. 

Definition 3.2. Consider two natural numbers L\, L2, and <&\ <E>2 be two NNs of respective depth 
L\ and L2 wi th 

cD1 = {{A\, b\), ( A j i 5 bl)), $ 2 = ( (A 2 , b\), (A 2
2 , b2

L2)), 

Such that NQ = = d, meaning that the input layer of the N N has the same dimension as 

the output layer of the N N O 2 . Then there exists an N N • $ 2 called the concatenation of 
and <J>2, which is defined as follows: 

& . $ 2 = ( (A 2 , b\), {A\2_v b\^\ (A\A2
L2,A\b2

L2 + bl), (Ai bl), ( A j i 5 b^)). (3.3) 

The concatenation O 1 • O 2 has L\ + L2 - 1 layers, ^ ( O 1 • O 2 ) = .^ (O 1 ) o i ? e ( $ 2 ) [85, 86] 
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Proposition 3.3. For any natural numbers d and L, there exists an NN $^d
L with L layers, where the 

total number of nonzero weights is less than or equal to 2dL. Furthermore, the associated realization 
is simply the identity on RD, i.e., RQ($1?L) = IdRd. It is worth noting that this definition is only true 

if the activation function Q is of the ReLU type. Specifically, $l£L is defined as follows: 

, 0), (IdR2d, 0 ) , . . . , (IdR2d, 0), ( [ ld R d I - IdRd], 0) (3.4) 

V L-2 times I 

We can now define a sparse concatenation [85, 86]. 

Definition 3.4. Let Llt L2 be in N , Q : R —> R be a ReLU, and let O 1 = {{A\, b\),(A1^, b1^)) 
and <I>2 = ((A2, b2),..., (A^ , b^)) be neural networks w i th the property that the input of the 
N N has the same dimension d as the output layer of the N N <E>2. Then there exist a N N 
í 1 0<í> 2 := •<&Id»<&2 called the space concatenation of the N N and <i>2, and $ i d is defined as in 
Proposition 3.3, the sparse concatenation í 1 ©*!? 2 has Li+L2 layers, Rgi&O®2) = Rgi^oRg^2) 
and the total number on nonzero weights M($ 10<i> 2 ) < 2M(<J>1)+2M(<i>2). Another fundamental 
operation over N N is parallelization and one can construct it as follows [85, 86]; 

Proposition 3.5. Consider the natural numbers L and d, and let and <J>2 be two NNs, each having 
L layers and a d-dimensional input. Then there exists an NN Pi®1,02) with L layers and input 
dimension d, called the parallelization of®1 and <&2, defined as follows: 

P($\<r 2 ) := [(Ä1,b1),...,(ÄL,bL)), 

where 

, h := 

A ) 

and A J 

0 
A2 

Ibf 
for 1 < j < L. 

Where 

Re(P(<t>\<t>2))(x) = (Re(^)(x),Re(^2)(x)) Vx G RD 

and M(P(<J>\0 2)) = M^1) + M ( $ 2 ) [85, 86]. 

It is sometimes of great importance to use a parallelization that has two different inputs, and 
this scheme is defined as follows: 

Proposition 3.6. Let L e N and consider 

O 1 = {(A\, b\){A\, b\)), and $2 = {(A2, b2)..., (A 2 , b2
L)) 

Let and <J>2 be two NNs, both having L layers and inputs ATj = d\ and N2 = d^ respectively. Then 
there exists an NN FP(3>1, <E>2) called the full parallelization o / í 1 and <&2, possessing L layers and an 
input dimension of d = d\ + d2. For all x = {x\, x2) G RD, where x, G RDI for i = 1,2, it is defined 
as follows: 

FP(<1>\<1>2) :={{A\,bl),...,{Albl)) 

where, for j = 1,... ,L we set 
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We can now provide more details on the design of the convolutional neural network, which is 
a special case of the N N described above. 

Deep neural network 
HIDDEN LAYER i HIDDEN LAYER 3 HIDDEN LAYER 3 

INPUT LAYER 

O U T P U T 

L A Y E R 

Figure 3.1: the artificial neural network A N N 

3.2 Convolutional Neural Network 
Convolutional neural networks (CNN), also called convolutional networks (ConvNet), are a type 
of neural network for processing data that have a grid topology. Typical examples include time 
series data defined as a one-dimensional grid at regular time intervals and image data defined 
as a two-dimensional pixel grid. The name convolutional neural networks is not accidental, it is 
used to refer to the use of the mathematical convolution operation in the network. 

The idea of the C N N comes from a groundbreaking discovery of the visual cortex system by 
David Hube l and Torsten Wiesel. The C N N analyzes images by following the map of the visual 
cortex by adding convolution operations in some layers. 

A Convolutional Neural Network (CNN) is composed of neurons that incorporate nonlinearity 
weight parameters, biases, and a loss function to evaluate the overall errors of the system. The net­
work employs backpropagation to rearrange its layers. C N N also uses multiple three-dimensional 
kernels that can slide through the input tensor like a window. The goal of sharing kernels is to 
reduce the number of parameters that the system needs to learn. Each layer's kernels extract 
features from the input tensor. The C N N architecture typically includes a Convolutional layer, 
a layer for nonlinear activation functions, a Batch Normal izat ion layer (BN), a Pool ing layer, a 
Dropout layer, and a Ful ly Connected layer (FC). We w i l l briefly describe these layers below. 
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3.2.1 Convolutional Layer 
A convolutional layer is a key bui ld ing block of convolutional neural networks (CNNs) and is 
designed w i th the ultimate goal of extracting features from images or other spatial data. The 
layer contains of a set of learnable filters (kernels) that convolve over the input data to generate a 
set of output feature maps. The size of the kernels are always smaller than the size of the input 
tensor otherwise the C N N is just a normal neural network [87]. 

Throughout the convolution operation, the filter passes over the input data, mult iply ing it 
element-by-element w i th the filter weights. The result of these multiplications is a single value 
that is then shown in the appropriate location on the output feature map. 

The structures of the input data are conserved in the output feature maps which also comprises 
the needed information related to the spatial patterns, which are both feed to the subsequent 
layers of the CNN for multiple tasks comprising classification, object detection, and segmentation. 
A n alternative way of creating deeper network for the ultimate purposes of learning complex 
representations of the input tensor is to stack convolutional layers on top of each other. Let us 
describe now the architecture of the convolutional layer. 

As an essential compartment of the CNN, the convolutional layer takes as input a 3D , 2D or 
even I D tensor data, and can have c channels of 2D or even I D feature maps of size hxm. The 
input is denoted by X e Rcxhxm, Each of the c feature maps convolves wi th a set of n kernels of 
size 3 i.e. each kernel is Kt e [R c X s X s 1 < j < n to produce the output. The output obtained from 
the convolution operation is a 3D tensor Y of size hxm where h = (h - s + 2p)/t + l = h- s + l 
and m = (m-s + 2p)/t + 1 = m — s + 1. Here, p represents padding taken as zero, and t represents 
the stride taken as 1. The output Y is obtained by computing the convolution of the input data 
Xj, 1 < j < c, wi th the kernel Kt, 1 < i < c, so 

here * stand for a 2D discrete convolutional operator, explicitly this operation is defined as 

3.2.2 Non Linear Activation Layer 
An essential component of the activation layer is the activation function which is a kind of master 
chief giving order to a neuron to activate or not. The activation function decide on the importance 
of the input to the network by applying simple mathematical functions. A n activation function 
also called transfer function in artificial intelligence is a k ind of mathematical gate separating 
the input data through the current neuron and its output moving to the next layer. Non-linear 
activation function allow the network to learn and extract complex feature from the input data. It 
models and approximate non-linear relationships in the input data. It also empower the network 
wi th the ability to solve a wide range of problems. 

c 
(3.5) 

(3.6) 
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The non-linear activation function enables complex decision boundaries, meaning the network 
is now capable of capturing complex decision-making processes and classifying inputs that are 
not l inearly separable. It is worth noticing that the choice of an activation function affects the 
quality of the given network to be expressive. This expressiveness empowers the network wi th 
the abil ity to learn and represent more involved features, ameliorating its abil ity to generalize 
and make accurate predictions on invisible data patterns. 

The quality of the activation function eases the overall training ability of the network through 
backpropagation. The derivative of the activation function directly affects the magnitude of the 
gradient propagated through the learning process. We can use a specific activation function to 
alleviate the problem of vanishing or exploding gradients to ensure an efficiently stable learning 
process. Recent implementations prefer the use of non-linear activation functions such as Rectified 
Linear Unit (ReLU) [41] and PReLu [35]. 

3.2.3 Batch Normalization Layer 

The distribution of the networks changes with respect to the learning process through each epoch. 
This change makes the training of the network cumbersome. To alleviate this issue one need to 
incorporate to the network batch normalization layer which w i l l perform normalization for each 
training min i batch, which in turn w i l l accelerate the convergence of the learning. 

3.2.4 Pooling Layer 

Pooling layers offer a method for downsampling feature maps by summariz ing the presence of 
features within patches of the feature map. Two commonly used pooling techniques are average 
pooling, which provides an overview of the average presence of a feature, and max pooling, which 
highlights the most activated presence of a feature. 

It is a common practice to incorporate a pooling layer after the convolutional layer, forming a 
recurring pattern in the layer arrangement of a convolutional neural network. This pooling layer 
independently processes each feature map, generating a new set of pooled feature maps with the 
same quantity. 

The pooling operation entails selecting a specific operation, akin to a filter, to be applied to 
feature maps. Typically, the size of the pooling operation or filter is smaller than that of the feature 
map, specifically almost always a 2 x 2 pixel configuration applied wi th a 2-pixel stride. 

3.2.5 Dropout Layer 

In some circumstance the network can behave in weird way by identifying unwanted features 
and this lead the network to confuse some objects to others. This is what we call overfitting and it 
is a crucial problem when training a CNN. To alleviate this issue we need to close some neuron in 
order the network stop to identify unwanted features. This technique is what we call dropout 
layer. The network through the dropout layer w i l l automatically w i th respect some probabil ity 
switch off some neurons. 

3.2.6 FC Layer 

This part discusses the fully connected layer in CNN, and it should not be confused w i th the 
fully connected neural network architecture, where all neurons in the input layer are connected 
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to the neurons in the next layer. This compartment in C N N plays a crucial role in the overall 
network by predicting the best label to describe the input data. The fully connected layer of a 
C N N recognizes and classifies the input data and, more importandy drives the final classification 
decision. This special compartment of the C N N receives a flattened version of the data coming 
from either the convolutional or pooling layer. Flattening the data leads to the loss of spatial infor­
mation, and thus, the fully connected layer operates only on a vectorized representation of the data. 

The fully connected layer in CNN contains neurons, and each neuron has its own set of weights. 
The output of each neuron is computed by applying a linear transformation, which is simply a 
dot product, followed by a non-linear activation function that allows the network to learn more 
complex relationships in the data. 

It often happens to tune the hyperparameters of the fully connected layer during the network 
design process. Having more neurons in the layer leads, of course, to more complex representations 
that the network has to learn in the process. However, the number of parameters drastically 
increases and may lead to higher computational requirements and possible overfitting if the 
underlying model is not properly regularized. 

FEATURE LEARNING CLASSIFICATION 

Example of a network with many convolutional layers. Filters are applied to each training image at different resolutions, and the output of each 
convolved image is used as the input to the next layer. 

Figure 3.2: The convolutional neural network C N N 

4 Proposed Approach 
Signal decomposition techniques which in this case are IF and IMFogram have provided two 
types of datasets. We take advantage of them and bui ld a fusion neural network consisting of a 
concatenation of A N N and a CNN. 

4.1 Artificial neural network (ANN) 
Artificial neural network has gained a lot of popularity during recent decades, due to its ability to 
solve complex problems from financial prediction to machine vision and so on [11]. A n A N N is a 
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combination of different layers (input, hidden and output), activation and loss function. 

The structure of an A N N depend on the number of network layers, type of loss and activation 
function. Choosing different number of layers or different activation functions can generate 
different models. This work uses a neural network w i th 4 layers as illustrated in Figure 4.1. 
Among four layers, we have one input layer, two hidden layers and one output layer [57]. 

In Figure 4.1 each neuron of the input layer characterize the input feature, neurons in the 
hidden layers and output layer compute the information obtained from neurons of the previous 
layer mult ipl ied by the connection weights and apply the activation function to the combined 
product. The activation function is of great importance, it introduces non-linearity into the 
network. There exist several activation functions and each has its specificity. We refer the reader 
to the paper [88] for more details on these functions. 

Output Lsjer 

Hidden Layer 

Hidden Layer 

Input Layer [ 

Figure 4 .1 : Architecture of A N N 

To describe how information is processed into the network, we consider that there are n 
neurons in the input layer, h\ neurons in the first hidden layer, ft2 in the second hidden layer, and 
0 neurons in the output layer. The forward process of the network is described in the following 
three steps: 

1. As depicted in the input layer of the Figure 4.1, we consider n input features X = (x\, • • • , xn) e 
W1. The output of each neurons in the first hidden layer are processed by the following 
expression: 

zf = / ( „ » . . x ) = / 2 Hi j = !,••• ,h (4.1) 

I T 

where Hi denote the first hidden layer, and 00.1 

parameters or weights related to the 7th output neuron, z1*1 is the output value computed 

G RN are adjustable 

j 
at the 7th neuron in the first hidden layer and / represent the activation function. 
The process is similar in the second hidden layer, where in this case the output of the first 
hidden layer i.e. z tj TT TT 

1 - (z1
1, • • • , zh

:) are the input of the second hidden layer. So we 
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process neurons in the second hidden layer as follows: 

hi 

zf = f(cof • z^) = /(£ ojf z f 1 ) , j = l,---,h2 (4.2) 
i=l 

where # 2 denote the second hidden layer. We denote by cof = (< f̂,2, • • • , G ^ is 
the undetermined weights related to the 7th output neuron. 

3. Regarding the output layer, the process is similar as of the first and second hidden layer. For 
this case the output of the second hidden layer, i.e. zHi = (zf 2, • • • , z f 2 ) , are the input of 
the output layer. The neurons of te output layer are computed as follow: 

h2 

zOnn = f(coOnn . ^ = / ( £ ^ j = ^ . . . ^ ^ ( 4 . 3 ) 
i=l 

where Onn denote the output of the neural networks. 

4.2 Convolutional neural network (CNN) 
The idea behind C N N is to learn kernels associated to each layer in order to extract feature from 
the input data. The architecture of the C N N used in this work are depicted in the Figure 4.2 as 
series of stages. It involves 3 convolutional layers, one flatten layer and one dense layer. The 
output of each convolutional layer is followed by a pooling, batch normalization, and a dropout 
layer [59]. Each compartment of the C N N is briefly described as follow: 

1. As depicted in the Figure 4.2, the input of the convolutional layer is an image i.e. the 
IMFogram in the case of this work, which is 3D array. Generally this input is considered to be 
a 3D array of c channels composed of 2D arrays of size hxw, where each input is characterized 
by X G Rcxh><w. The cross-correlation sometimes referred as a convolutional operation 
is applied to the c channels and the set of CQ filter bank also called kernel K.1 e [R c X f x t 

for 1 < i < Co to generate the local weighted sums. A n d superscript C\ refer to the first 
convolutional layer of CNN. The local weighted sums are encoded in 3D array of c feature 
maps denoted by Y e U}Xw, where h = H+2P~F + l and w = W+2P~F + l in the case p stand 
for a padding parameter and s for a stride parameter. The mathematical expression of the 
cross-correlation is given as follow: 

CO 
Zj = ^ X j 1 * Xj where Kf1 (1 < i < c 0) is a kernel and Xj (1 < < ci ) the input, 

i=l 
(4.4) 

more generally for a 2D convolutional operation * it follows 

/ c 0 \ c 0 

zj,k,q Z * y * x ] = Z Z Z * S ™ • x J ^ q + 0 , (4-5) 
V i=l I k,q i = 1 ° l = 1 °2=1 

It is worth noting that the major role of the convolutional layer is to find the local combination 
of feature from the previous layer [41, 59]. 

2. The weighted sums are then passed through an activation function / to capture the non-
linearity of the model. It worth to acknowledge recent state-of-the-art activation function 
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such as ReLU [41] and PReLU [89] which solve the vanishing gradient problem [59]. The 
output of the first convolutional layer after applying an activation function is given as follow: 

* •1 = f(zj) = f 

I c 0 

\i=l 

K**Xj (4.6) 

where i = 1,2, • • • , c0, j = 1,2, • • • , c\ 
3. The output of the first convolutional layer are feed to pooling layer as shown in the Figure 

4.2. One of the specific role of the pooling layer is to put semantically similar feature into 
one. This process reduce the dimension of the representation feature and thus creates 
invariance to small shifts and distortions [41, 59]. The output of the first pool ing layer is 
given by: 

= 2 £ ) , (4.7) 

where p\ is the dimension of the output of the first pooling layer. 
4. The output of the pool ing layer is feed into the batch normalizat ion layer. The batch 

normalization layer solves the problem related to the change of the distribution of the output 
layer during training, by performing normalization of each training mini-batch, furthermore 
accelerates the convergence of learning as wel l [90, 59]. The output of the first batch 
normalization layer is given by: 

where h\ is the dimension of the output of the first batch normalization layer. 
5. The output of the batch normalization layer is used as an input of the dropout layer as 

shown in Figure 4.2. It is well known from the literature that the dropout layer is one of the 
regularization technique to overcome overfiting problem in the CNN . The idea behind a 
dropout layer process is to randomly drop some neurons and their connections from the 
network during training [91, 59]. The output of the first dropout layer is given by: 

^ = ( * ? . - . £ ) . ( 4 - 9 ) 

where d\ is the dimension of the output of the first dropout layer. 
6. The output of the dropout layer serve as an input of the second convolutional layer as 

depicted in the Figure 4.2. The step 1 to 5 are repeated for the rest of compartments unti l 
the flatten layer. It worth noting that the output of the second convolutional layer is given 
as follow: 

/ di 

rC2 -
= f (4.10) 

\i=i 

where i = 1,2, • • • , d\, j = 1,2, • • • , c-i, and zDl the output of the first dropout layer. The 
output of the third convolutional layer is given as follow: 
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/ d2 

rC3 -= f 
\i=l 

(4.11) 

where i = 1,2, • • • , d.2, j = 1,2, • • • , C3, and zD2 the output of the second dropout layer. 
The third batch normalization layer receive input from the third pooling layer and normalize 
this input. The output of the third batch normalization layer is given by: 

(4.12) 

where b^ is the output dimension of the batch normalization layer. This output serve as 
input of the third dropout layer 

8. The output of third dropout layer as depicted in the Figure 4.2 is used as an input of 
the flatten layer. Flatten layer transform data into a I D array, which is of a tremendous 
importance in this study since we are predicting a time series which is also a ID array. After 
applying the dropout process the output is given by : 

where d% is the number of neurons remained after the dropout process. 
9. The output of the flatten layer is a ID array and serves as input to the dense layer depicted 

in the Figure 4.2. After flattened the output of the third dropout layer, the output of the 
flatten layer is given by: 

= {zF
1

l,---,zF
j}), (4.14) 

where fi is the dimension of the obtained array after the flatten process. 
10. To compute the output of the dense layer, we first precise that the input of the dense layer 

is the output of te flatten layer i.e. zFl = (zFl, • • • , zF^ j , therefore the output of the dense 

layer is given by: 

= f{a>? • zF') = f 
t fi \ 

, ) D ' 7Fl 

\i=l 

(4.15) 

where j = 1,2, • • • , di, f is the activation function and oP.1 the weights associated to the 
dense layer depicted in the Figure 4.2. 

11. The output of the fourth dropout layer is given by 

2 ^ = ( * * . . . , * £ ) , (4.16) 

where the input is the output of the dense layer as depicted in the Figure 4.2 i.e. z^.1 for 
j = 1,2, • • • , di, and d^ is the output dimension after the dropout process. 

12. Regarding the output layer, the process is similar as of the output of the ANN. For this case 
the output of the fourth dropout layer, i.e. zD4 = (z^ 4, • • • , z^ 4 ) , are the input of the output 
layer and d^ is the number of neuron in the fourth dropout layer. The neurons of the output 
layer are computed as follow: 

ZOcn = f(a)Ocn . Z D 4 ) = / ( £ MOm Z D 4 ) ; j = 1 . . . 0 c n ( 4 > 1 7 ) 

1=1 
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4.3 Fusion neural network (FNN) 
The theory of statistical learning stipulates that, for two given datasets X and Y in topological 
spaces X and J / , respectively, predicting Y based on X is meaningful when Y depends non-
trivially on X. This task becomes easier when we have knowledge of the conditional distribution 
of Y given X, or when we employ statistical techniques to estimate Y given X (Rigollet, [92]). 
This work leverages two types of datasets generated using signal processing techniques which 
depend non-trivially on the FTS and utilizes innovative machine learning techniques to predict FTS. 

The novelty of this study lies in the fusion of two distinct neural networks to predict FTS. 
The fusion neural network bui ld in this work, takes two different sets of input data, each fed 
into separate neural networks. One component of the Fusion Neural Network (FNN) is the 
Artificial Neural Network (ANN), responsible for processing the ID data generated by the Intrinsic 
Mode Function (IMF) decomposition of the signal produced using the IF algorithm. The other 
component of the F N N is the Convolutional Neural Network (CNN), which deals with the images 
of the time-frequency representation of FTS. In this work we choose to use the IMFogram. The 
component of the Figure 4.3 is described in the following steps: 

1. The output of the A N N as depicted in Figure 4.1 and in point 3 of Section 4.1 is concatenated 
wi th the output of the C N N depicted in Figure 4.2 and in point 8 of Section 4.2 to serve as 
input to the architecture illustrated in Figure 4.3 which constitute the last block of the FNN. 
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The concatenation makes sense since the output of the A N N is a ID array and the output of 
the C N N is also a I D array as explained in point 8 of Section 4.2. 
The I D concatenated array serves as input of the dense layer. Generally the output of the 
dense layer is computed as a dot product between the concatenated ID array and the weight 
matrix W- D f ' , to which a bias vector bt is added. We denote the concatenated I D array by 

Xt = (z°nn> • • • > z ? r > z°cn> • • • > z°c
cn)-lt w o r t h t o p r e c i s e a § a i n t h a t (z°nn> • • • > z°oZ)is t h e 

output of the A N N and [z°cn, ••• , ẑ ™ j is the output of the CNN, therefore, the output of 

dense layer is given by: 

Y D F = F ( W D F _ X F ) = F J^W^-Xjl l<i<dF, (4.18) 
0 = i / 

where / represent the activation function and dc = onn + ocn the dimension of the concate­
nated I D array, where onn is the dimension of the output of the ANN , ocn is the dimension 
of the output of the C N N and dp is the dimension of the final dense layer. 
The output of the dense layer is used as the input of the output layer. The process is similar 
as of the dense layer, but in this case the input of the output layer of the F N N is the vector 
(yf F , • • • , y^f )• The neurons of the output layer of F N N are computed as follow: 

oF 

= f(W?p • yf 1 = f £ < F • jH , 1 < i < OF, (4.19) 

where W.° F = (W°F, • • • , W^) is the undetermined weights related to the i th output 
neuron, / the activation function and dp is the output dimension of the previous layer. 
The neurons of the output layer are fed into the loss layer. In general different loss functions 
can be used in the loss layer depending on the required task to compute the error between 
the estimated and the target value. Among the list of loss functions there is the squared 
loss, softmax, binary cross-entropy [57]. The main loss function used for regression task is 
the squared loss 

®(y°F,yi) = l(y°F-yi)2- W . 2 0 ) 

Binary cross-entropy loss is the main loss function for the classification task. It is defined by: 

®(y°F, yt) = -yt \og(y°F) - (1 - yt) l o g ( l - yfF). (4.21) 

The loss function in the loss layer is therefore computed as follows: 
Op P 

L(X, y) = j ] ®(y?F> y^ + lJ] 11 dJl|2 ( 4 - 2 2 ) 

1=1 j=l 
where: 

• ®(yfF, y{) is the primary loss, which measures the difference between the predicted 
and the target value. 

• | is the regularization parameter, which control the effect of regularization. This value 
is choosed in this work according to the hyper-parameter optimization. 

• ZPj=\ II Qj II2 is the sum of the square of all the parameters in the fusion neural network 
(i.e. parameter of ANN , C N N and including the one in Figure 4.3 ). P represents the 
total number of parameters in the FNN. 
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Figure 4 .3 : The output of the F N N 

4.4 Back propagation of FNN 
The essence of learning in neural network is the back propagation. It is a fundamental algorithm 
that train the network. It is also referred as a supervised algorithm used to update parameters 
during training and thus provide the network with the ability to make more accurate predictions. 
A l l parameters in the FNN are updated with respect to stochastic gradient descent (SGD) method 
within back propagation process [57]. The learning process through back propagation is described 
in the following steps: 

1. The computation of gradient of the input and weights of output layer of F N N is given by: 

dL d£ dL dL df D c G c 

dy°F dy°* dW°F dy°* dfi 

where B = W., F • y f F . The weights of the output layer of F N N are updates as follows: 
IJ I 

W°F = W°F - r]-^— (4.24) 
11 J dW°F 

u 

where rj represent the learning rate, and 1 < i < dp, 1 < j < OF. 
2. To update the weights of the dense layer depicted in figure 4.3, it is necessary to first 

compute the gradient of the input and weights of the dense layer in the figure 4.3 as follows: 

dL ^ dL dy°F
 Qp 

ayf" tfdy°F dfi " 

= W°F-y?F a n d X f 
depicted in the figure 4.1 and C N N depicted in the figure 4.2. The gradient with respect to 
where B = Wu;

 F • yi
 F and Xf is the ID concatenated array formed by the output of the A N N 

IJ I I 
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weights of the dense layer in the figure 4.3 is given by: 

= JL.aJjlXF + A . W ° R , (4.26) 
dW°r dy°r Sfi " 

where /3 = W®F • the product between the weights elements of the dense layer in the 
figure 4.3 and the concatenated ID array elements. The weights of the dense layer in figure 
4.3 are thus updated as follow: 

WRF = < F - rj • - ^ 5 - (4.27) 
ij lJ dWDF 

u 
where i = 1,2, • • • , dc, j = 1,2, • • • , dp, and r] is the learning rate. 

3. This step update simultaneously the weights of the output layer of the A N N and the C N N 
depicted in the figure 4.1 and 4.2 respectively. For the A N N we have: 

dL ^ dL dyfF
 D p 

= > — R -hr • W, (4.28) 
dz°»» j^dy?F BP lJ 

where 0 = W ^ F X f = W^Fz°nn, this is the case due to the equation (4.18), where 

Xf = (z°nn, ••• , z°™, z°cn, ••• , z£c
n") and the contribution of the A N N to the dense layer 

depicted in figure 4.3 is W^Fz°nn. For the C N N we have: 

i L = y i L . ^ . w » - ( 4.29) 

where /5 = W ^ z . c " which represent the contribution of the C N N to the dense layer 
shown in the figure 4.3. The gradient of the loss function with respect to the weights of the 
output layer of the A N N is computed as follows: 

dL dL dzfn 

^—.z^ + acD,"" (4.30) 
dC0°nn dz°nn d{] ' J lJ 

U J 

where /5 = <y.."" • z . 2 . The weights of the output layer of the A N N are updated as follows: 

Onn = Onn _ JJ_ ( 4 3 ^ 
J J dco°nn 

u 

where i = 1,2, • • • , h.2, j = 1,2, • • • , onn, and r] is the learning rate. For the output of the 
CNN, the gradient of the loss function with respect to the weights of the output layer of the 
C N N is computed as follows: 

dL dL dz°r D a o , 
—7T- = —n IT -zi + aMn (4.32) 
dcofr dz°r w 3 J 

lJ J 

where /5 = cof™ • z^ 4 . The weights of the output layer of the C N N are updated as follows: 

ao*. = J**, _ JL_ ( 4 > 3 3 )  

1 J dcoUcn 

where i = 1,2, • • • , d^, j = 1,2, • • • , ocn, and rj is the learning rate. 
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4. This step update simultaneously the second hidden layer of the A N N as depicted in figure 
4.1 and the dense layer of the C N N according to the figure 4.2. For the second layer of the 
A N N the gradient wi th respect to the output of the second layer is given as follows: 

—H=/,—O—iT'^r* ( 4 - 3 4 ) 

dz"2 t o dz°m P J 

dL dL dz"nn 

firm H2 

-J '=1 

where /3 = coijnn • z.2 the product between the weights of the output layer and the input of 
the output layer or the ANN . For the dense layer of the CNN, we have: 

dL A dL dzf4
 r ^ 

dzf1 U dzf4 dzf 

The gradient of the loss function wi th respect to the weights of the second hidden layer of 
the A N N is given by: 

dL dL dz f 2 JJ JJ 
]- • z f 1 + acof2 (4.36) 

dcof2 dzf fi J lJ 

where B = oy2 • z1?1 the product between the weights of the second hidden and the input 
layer of the ANN . The weights of the second hidden layer are therefore updated as follows: 

cof2 = cof2 - rj^- (4.37) 

u 

where i = 1,2, • • • , hi, j = 1,2, • • • , h2, and r] is the learning rate. For the dense layer of 
the CNN, the gradient of the loss function wi th respect to the weights of the dense layer is 
computed as follows: 

FT = FT ' —7T-Zi + ao>i (4.38) 
dco ! dzDl d(3 J " 

C N N as shown in the figure 4.2. We thus update the weights of the dense layer as follow: 
where [5 = co^ • z.' the product between the input and the weights of the dense layer of the 

dcotj 

where i = 1,2, • • • , fi, j = 1,2, • • • , di, and tj is the learning rate. 
5. This step update simultaneously the first hidden layer of the A N N as depicted in figure 4.1 

and the third convolutional layer of the C N N according to the figure 4.2. For the first layer 
of the A N N the gradient wi th respect to the output of the second layer is given as follows: 
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TT TT 

where 0 = co^2 • z.1 the product between the weights of the output layer and the input of 
the output layer of the ANN . For the third convolutional layer of the CNN, we have: 

dL OL dL dz 
P3 

(4.41) 

The gradient of the loss function wi th respect ot respect to the weights co^1 is given by 

dL 

dco H i dz 

dL dzf h i 

. 1 dP lJ 

(4.42) 

TT 

where (3 = co^1 • Xj the product between the weights of the first hidden and the input data 
of the ANN . The weights of the first hidden layer are therefore updated as follow: 

H i H i dL 

do) H i 
(4.43) 

where i = 1,2, • • • , n, j = 1,2, • • • , hi, and n is the learning rate. For the third convolutional 
layer of the CNN, the gradient of the loss function w i th respect to the kernel of the third 
convolutional layer is computed as follow: 

dL dL 

dK c3 dz C3 d/3 

d^K^*zf2) 

dK c3 

+ c d C (4.44) 

where B = £ c l , K^.3 * z f 2 the convolution between the kernel of the third convolutional 
I 1 IJ I 

layer and the output of the second dropout layer as depicted in the figure 4.2. The kernels 
of the first hidden layer are therefore updated as follow: 

_ vc3 dL 
(4.45) 

where i = 1,2, • • • , d2, j = 1,2, • • • , C3, and r] is the learning rate. 
6. The update of the first and second convolutional layer of the CNN are done in a similar way 

as in step 5. The update for the second convolutional layer is given by: 

where i = 1,2, • • • , d\, j = 1,2, 
convolutional layer is given by: 

dL 

d~kf 
(4.46) 

, C2, and t] is the learning rate. The update for the first 

dL 
(4.47) 

where i = 1,2, • • • , CQ, j = 1,2, • • • , c\, and r) is the learning rate. 
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5 Datasets and the simulation results 
5.1 Datasets 
This work leverages two types of datasets generated by IF and IMFogram. As illustrated in figures 
5.4 and 5.5, one can quickly observe some unusual effects in both figures. These effects stem 
from the boundary effects. Naturally, these effects arise because FTS is a non-stationary signal 
generated by a nonlinear source, and IF is used for its decomposition, which involves the subse­
quent subtraction of the original signal to obtain the IMFs [93]. The actual problem arises from 
IF which requires periodicity at the boundary of the signal. 

To address this issue, careful consideration of the boundary conditions is required, as both 
datasets are based on a IF decomposition. To address boundary conditions, assumptions must be 
made regarding the extension of the signal to the right and left. In other words, it is necessary to 
extrapolate the FTS beyond its boundaries. Given that the signal has undergone decomposition 
using IF-based methods, there exists the opportunity to select an optimal extension to minimize 
errors associated wi th end effects in the decomposition process [93]. 

The signal can be extended periodically using symmetric (reflexive), anti-symmetric (anti-
reflexive) boundary extension, or a combination of both. We proceed to analyze each extension 
in conjunction wi th the corresponding IMFs and IMFogram in the subsequent steps. 

1. Ant i -Symmetr i c (Anti-Reflective) extens ion: Consider a signal 5 of length n, and let L 
represent the extension length beyond the signal 5. To extend the signal S in an anti­
symmetric manner beyond its boundary. The end point of the signal is used as point of 
symmetry like the origin for an odd function. 

As ymme t r i c Extens ion 
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Figure 5.1: Anti-symmetric extension of Nas- F igure 5.2: IMFs of the Anti-symmetric ex-
daq tension 
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Figure 5.3: NASDAQ time series from Jan­
uary 4th 2012 to December 30th 2016 
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Figure 5.5: The IMFogram of the figure 5.3 Figure 5.6: IMFogram generated from the 
and 5.4 IMFs of the Anti-symmetric extension 

It is worth noting, as emphasized in [93], that despite performing the extension, some end 
effects may persist. To tackle this issue, one approach is to enforce the extended signal 
to become periodic at the newly generated boundaries. Let's refer to this as the "smart 
extension", denoting the forced periodic signal obtained from the extended signal. The 
following steps outline the key procedures to obtain the smart extended signal: 

(a) Calculate the mean value m of the original signal 5 and subsequently subtract it from 
the signal. 

(b) The subtracted signal, 5 - m, is extended beyond the boundaries, resulting in an 
extended signal denoted as 5 ext-

(c) After obtaining the signal Sext> w e then mult iply it by a characteristic function that 
takes on a value of one in the interval corresponding to the original signal S and 
smoothly diminishes to zero as we approach the new boundaries of 5 ext-

(d) The smart extended signal is obtained by reintroducing the mean value m of the original 
signal [93]. 

Snew = X • S e x t + m. (5.1) 

Figure 5.1 illustrates the anti-symmetric extension of the Nasdaq data. As observed, the 
original signal is represented in green, the anti-symmetric signal in red, and the smart 
extension, built upon the anti-symmetric extension, is depicted in blue. The smart extension 
is two times longer than the original signal, L = 2 x length(S). 



46 5 Datasets and the simulation results 

Figure 5.2 illustrates the Intrinsic Mode Functions (IMFs) of the smart extension signal. 
Notably, there are discernible differences between the IMFs of the original signal depicted 
in Figure 5.4 and those of the smart extension shown in Figure 5.2. The primary distinction 
lies in the number of IMFs generated, w i th 9 IMFs in Figure 5.2 compared to 8 IMFs in 
Figure 5.4. Additionally, the end effects visible in Figure 5.4, especially in the first three 
IMFs, are absent in Figure 5.2. 

Furthermore, the IMFogram figures corresponding to the two sets of IMFs also exhibit 
differences, as shown in Figure 5.5 and Figure 5.6. The end effects seen in Figure 5.4 have 
repercussions on the IMFogram in Figure 5.5, noticeable in the higher energies on the two 
horizontal lines. This contrast is not observed in Figure 5.6. 

2. Symmetric (Reflective) extension or the Neumann boundary condition: Consider the 
signal S w i th indices ranging from 1 to n, representing a signal of length n. Let L denote 
the length by which we intend to extend 5 beyond its boundaries. To symmetrically extend 
it, we assume that the data outside 5 mirror a reflection of the data inside 5 [94]. For 
instance, on the left-hand side of the signal 5, the first element in the extension, denoted as 
So, is equal to the left boundary point of S (Si). Similarly, the second element of the left 
extension, denoted as S_i, is equal to the second element of S (S2), and so forth. The same 
principle applies to the right symmetric extension of S. A precise mathematical description 
is provided below: 

S1-j = Sj for; = 1,2, (5.2) 

the left extension of S, and the right extension is given as 

Sn+j = S„+i_ ,• for ; = 1,2, • • • , L, (5.3) 

Symmet r i c Ex tens ion 
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Figure 5.7: symmetric extension of Nasdaq Figure 5.8: IMFs of the symmetric extension 

The formulas outlined in (5.2) and (5.3) illustrate the process of symmetrically extending a 
given signal. Following the application of these formulas, the smart extension, as described 
in points (a) to (d) above, can be applied. This step enforces the symmetric extension to 
become periodic at the boundaries, mitigating any remaining end effects. 

Figure 5.7 illustrates the Nasdaq symmetric extension alongside the smart symmetric ex­
tension. The Nasdaq signal is presented in green, its symmetric extension in red, and the 
smart symmetric extension in blue. Figure 5.8 depicts the IMFs generated from the smart 
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Figure 5.9: IMFogram generated from the IMFs of the symmetric extension 

symmetric extension of the Nasdaq time series. Once again, a noticeable difference can 
be observed between the IMFs generated from the original Nasdaq time series (Figure 
5.4) and those generated from the smart symmetric extension (Figure 5.8). Notably, there 
are no end effects in Figure 5.8, which contrasts with the presence of end effects in Figure 5.4. 

Furthermore, Figure 5.9 illustrates the IMFogram derived from the IMFs generated by the 
smart symmetric extension, where higher energies manifest in the low frequencies. 

3. Anti-symmetric and Symmetric extension: The anti-symmetric and symmetric extension 
is a hybrid approach that involves a combination of both types of extension. The algorithm 
initiates by extending the signal anti-symmetrically on the left, w i th the length of the 
extension equal to the length of the Nasdaq signal (i.e., length(S) = 1255). Subsequently, 
after the 1255th left anti-symmetric extension, the algorithm proceeds to extend the signal 
symmetrically on the left once again, also wi th a length of 1255. 
This can be clearly observed in Figure 5.10, where the red signal represents the anti­
symmetric and symmetric extension of the Nasdaq time series. Specifically, from point 1255 
to 2510 on the horizontal axis, the signal undergoes anti-symmetric extension (mirroring 
the appearance in Figure 5.1 from point 1255 to 2510). Subsequently, the signal experiences 
symmetric extension from point 0 to point 1255 on the horizontal axis, highlighting the 
symmetry of the signal segment from point 1255 to 2510 on the horizontal axis. 

The right extension in Figure 5.10 follows a similar procedure. In this instance, the signal 
is init ial ly extended symmetrically from points 3765 to 5020 on the horizontal axis and 
subsequently extended anti-symmetrically from points 5020 to 6275. The Nasdaq signal 
is represented by the green curve in Figure 5.10, while the blue curve corresponds to the 
smart extension derived from the anti-symmetric and symmetric extension process. 
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Figure 5.10: Asymmetric and Symmetric ex- Figure 5.11: IMFs of the anti-symmetric sym-
tension of Nasdaq metric extension 

Figure 5.12: IMFogram generated from the IMFs of the anti-symmetric and symmetric extension 

Figure 5.11 illustrates the IMFs generated from the smart anti-symmetric and symmetric 
extension. Once again, a noticeable difference can be observed between the IMFs generated 
from the original Nasdaq time series, as depicted in Figure 5.4, and those generated by the 
smart anti-symmetric and symmetric extension, shown in Figure 5.11. Figure 5.11 displays 
9 IMFs without any detectable boundary effects. 

Figure 5.12 depicts the IMFogram of the IMFs generated by the smart anti-symmetric and 
symmetric extension of the Nasdaq time series. This figure illustrates the distribution of 
higher energies from low to high frequencies, w i th no discernible end effects. 

4. Symmetric and Anti-symmetric extension: The symmetric and anti-symmetric extension 
operates similarly to the anti-symmetric and symmetric extension explained in point 3 above. 
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In this scenario, the signal on the left side of the Nasdaq time series, depicted in green in 
Figure 5.13, is initially extended symmetrically from point 1255 to 2510 on the horizontal 
axis. This symmetric extension is represented by the red signal in Figure 5.13, effectively mir­
roring the green portion of the signal. Subsequently, the remaining red portion of the signal 
from point 0 to 1255 undergoes an anti-symmetric extension, completing the transformation. 

s ymme t r i c and a s ymme t r i c ex tens ion 
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Figure 5.13: Asymmetric and Symmetric ex- Figure 5.14: IMFs of the symmetric and anti-
tension of Nasdaq symmetric extension 

Figure 5.15: IMFogram generated from the IMFs of the symmetric and anti-symmetric extension 

The right symmetric and anti-symmetric extension of the Nasdaq time series, depicted in 
green in Figure 5.13, follows a similar procedure as the left symmetric and anti-symmetric 
extension. In this case, the signal is initially extended anti-symmetrically from points 3765 
to 5020 and then symmetrically from points 5020 to 6275. 

Figure 5.14 illustrates the IMFs generated from the symmetric and anti-symmetric extension 
of the Nasdaq time series. This figure displays 9 IMFs without any apparent end effects, 
whereas Figure 5.4 has 8 IMFs wi th visible end effects. 
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Figure 5.15 illustrates the IMFogram associated with the smart symmetric and anti-symmetric 
extension. This IMFogram depicts high energies in the low frequencies. A notable distinction 
between the smart symmetric and anti-symmetric extension and the smart anti-symmetric 
and symmetric extension can be readily observed by comparing the IMFograms presented 
in Figure 5.15 and Figure 5.12. 

5.2 Simulation Results 
The data uti l ized for the experiments comprises the National Association of Securities Dealers 
Automated Quotations (NASDAQ) index. The total number of NASDAQ values is 1214, collected 
from January 4th, 2012, to December 30th, 2016. Figure 5.3 displays the original time series. The 
data is divided into training sets (70% of the total trading days), evaluation sets (20% of the total 
trading days), and testing sets (10% of the total trading days). The data's statistics are detailed in 
Table 5.1, where Na// and N o u f represent the size of the entire dataset and the combination of the 
testing and evaluation samples, respectively. 

Table 5.1: The data and the descriptive statistical analysis 

Name Na// N 0 M f Mean Std. Data range 
NASDAQ 1214 364 4161.88 825.13 2012.01.04-2016.12.30 

5.2.1 Experimental setting 
The proposed model is a hybrid system that initially employs the IF algorithm and a fusion neural 
network for predicting FTS. The IF algorithm is implemented using Mat l ab 1 , while the fusion 
neural network is developed using the Keras 2 platform. The execution of the fusion neural network 
takes place on Google Colab uti l iz ing GPUs. 

For training the suggested fusion neural network model, we employed Nesterov-based stochas­
tic gradient descent (SGD) [46] to adjust the weights. Each weight is updated with the inclusion 
of a momentum parameter, which regulates the influence of the historical gradient direction on 
the current gradient descent direction. To mitigate overfitting and enhance the model's stability, 
we implemented L2 regularization. Additionally, we incorporated a weights decay parameter to 
account for the role of the regularization term in the neural networks. 

The IF algorithm decomposes the time series into M Intrinsic Mode Functions (IMFs). As 
suggested in [57], it is practically advantageous to consider a set of L consecutive values from 
each IMF as the input samples. For the input of the Artificial Neural Network (ANN) segment in 
the proposed fusion neural networks, we set L to 4. Consequently, the input sample size of the 
A N N is (1213,4). 

To cater to the input requirements of the Convolutional Neural Network (CNN) segment, we 
reshape the IMFogram into a tensor of size (1213,25,25,1 ) . This reshaping is done to align 
wi th the size of the label, which is a one-dimensional vector of size (1213,1) extracted from the 

: I F code:https: //github. com/Acicone/FIF, Jan. 2020. 
2Website of the Keras platform:https: //keras. io , Jan. 2020. 
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original NASDAQ signal. It is essential to clarify that i f the first dimension of the input sample 
for the A N N differs from that of the input sample for the CNN, and the label, the fusion neural 
network w i l l not function correctly. 

Regarding the hyperparameters described in Section 4 and those employed in the Nesterov-
based Stochastic Gradient Descent (SGD) method, we allowed Hyperopt 3 to autonomously deter­
mine their values on the validation datasets. Hyperopt, a Python library, serves as a tool for both 
serial and parallel optimization w i th in complex search spaces for hyperparameters. Presently, 
Hyperopt incorporates three implemented algorithms: random search, a tree of Parzen estimators, 
and an adaptive tree of Parzen estimators. 

5.2.2 Evaluation criteria 

A metric is necessary to assess the values of the predicted time series y e Rn, with the true values 
denoted as y e IR™. Three metrics are employed to evaluate the predicted values: mean absolute 
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 
expressions for each metric are provided in Table 5.2. 

Accurate predictions are presumed when the metric values are small. In this experiment, the 
predictive performance is evaluated using the previously mentioned metrics. As highlighted in 
[95], MAPE is relatively more stable. Therefore, when the results vary across criteria, we designate 
MAPE as the benchmark, as suggested in [57]. 

Table 5.2: Evaluation indices 

Metric expression 
M A E JV 2n=l \ýn yn\ 

RMSE ^ Z £ i (yn - yn)2 

M A P E 1 yN yn-yn 

Vn 

5.2.3 Prediction of FTS based on asymetrie extension 
We emphasize that the data utilized for predicting the FTS consists of IMFs derived through IF on 
the asymmetric extension of the NASDAQ time series, along with the IMFogram obtained from the 
time-frequency representation of the asymmetric extension of NASDAQ and the IMFs obtained 
through IF on the asymmetric extension. Table 5.3 presents the performance of the proposed 
fusion neural networks based on three metrics. 

Table 5.3: The performance of different metric on asymmetric extension of NASDAQ 

Training data Validating data Testing data 
M A E R M S E M A P E M A E R M S E M A P E M A E R M S E M A P E 
87.89 106.46 0.025 116.39 155.46 0.024 77.39 138.60 0.014 

3Hyperopt github website: h t t p s : //gi thub. com/hyperopt/hyperopt, Nov. 2020. 
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The model comprises a total of 105,657 parameters, w i th 105,611 being trainable and 46 
non-trainable. Figure 5.16 illustrates both the NASDAQ signal and its corresponding prediction. 
The prediction signal is represented in red, while the NASDAQ signal is depicted in blue. 
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Figure 5.16: NASDAQ and its asymmetric extension signal prediction 

5.2.4 Prediction of FTS based on symmetric extension 

Table 5.4: The performance of different metric on symmetric extension of NASDAQ 

Training data Validating data Testing data 
M A E R M S E M A P E M A E R M S E M A P E M A E RMSE M A P E 

114.51 139.18 0.029 164.79 191.53 0.033 311.67 325.30 0.059 

The input data for the proposed fusion neural networks is generated using the symmetric 
extension of the NASDAQ time series. The IMFs are obtained from the symmetric extension 
of NASDAQ using IF algorithm. These generated IMFs, along w i th the symmetric extension of 
NASDAQ, are utilized to create the IMFogram. Both datasets then serve as inputs for the proposed 
fusion neural networks. Table 5.4 presents the performance of the proposed fusion neural networks 
based on three metrics. 

The model consists of a total of 52,942 parameters, w i th 52,912 being trainable and 30 non-
trainable. Figure 5.17 illustrates both the NASDAQ signal and its corresponding prediction. The 
prediction signal is shown in red, while the NASDAQ signal is depicted in blue. 

5.2.5 Prediction of FTS based on asymmetric and symmetric extension 

The Intrinsic Mode Functions (IMFs) are generated using IF algorithm applied to the asymmetric 
and symmetric extensions. These obtained IMFs, along w i th the asymmetric and symmetric 
extensions, are uti l ized to create the IMFogram. The resulting two datasets serve as inputs for 
the proposed fusion neural network, aiming to predict the NASDAQ time series. The predicted 
NASDAQ time series is represented in red in Figure 5.18, while the original NASDAQ time series 
is depicted in blue. 
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The model comprises a total of 88,855 parameters, w i th 88,799 being trainable and 56 
non-trainable. 

Table 5.5: The performance of different metric on asymmetric and symmetric extension of 
NASDAQ 

Training data Validating data Testing data 
M A E R M S E M A P E M A E R M S E M A P E M A E R M S E M A P E 
69.96 87.32 0.019 90.24 119.44 0.019 105.40 197.99 0.020 

5.2.6 Prediction of FTS based on symmetric and asymmetric extension 
The symmetric and asymmetric extensions are employed to mitigate boundary effects on NASDAQ. 
The resulting extended signal is subsequently decomposed using the IF algorithm to produce the 
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IMFs. These extended signals, along with the obtained IMFs, are util ized to create an IMFogram 
a time-frequency representation of the symmetric and asymmetric extended signal. The two 
datasets, namely the IMFs and IMFogram, serve as input data for the proposed fusion neural 
network. 

The model consists of a total of 107,776 parameters, w i th 107,730 being trainable and 46 
non-trainable. Figure 5.19 illustrates both the NASDAQ signal and its corresponding prediction, 
wi th the prediction signal shown in red and the NASDAQ signal depicted in blue. 

Table 5.6: The performance of different metric on symmetric and asymmetric extension of 
NASDAQ 

Training data Validating data Testing data 
M A E R M S E M A P E M A E R M S E M A P E M A E RMSE M A P E 

101.90 123.85 0.026 150.81 176.53 0.030 294.23 318.19 0.056 
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Figure 5.19: NASDAQ and its symmetric and asymmetric extension signal prediction 

The best predictions are obtained for metrics with small values, indicating low errors between 
the predicted values and the true values. It appears that the asymmetric extension predicts better 
than the other signal extensions across almost al l metrics wi th in all subdivisions of the training, 
validation, and testing datasets. Refer to Table 5.3 and Figure 5.16 for details. 

The model behaves quite strangely with both asymmetric and symmetric extensions. While it 
predicts better than all other extensions on the training and validation sets, it does not generalize 
well on the testing data, especially concerning the asymmetric extension, and performs poorly on 
the testing set. The instability in the asymmetric and symmetric extensions is illustrated in Figure 
5.18, where we observe that the model predicts a constant value of 2946.001 wi th in the range 
from 1 to 266. 

The symmetric and asymmetric extensions perform better than the symmetric extension. Tables 
5.4 and 5.6 illustrate how the symmetric and asymmetric extensions outperform the symmetric 
extension. 
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6 Conclusion and future work 
Time series analysis has become increasingly prevalent over the last five decades across various 
domains such as finance, weather, biology, earthquakes, and neuroscience. Time series data 
originating from these fields tends to exhibit non-stationarity and is often generated by non-linear 
sources. These characteristics contribute to the classification of time series processing as one of 
the top 10 challenging problems [59]. Traditional statistical methods face limitations in process­
ing non-linear and non-stationary time series as they predominantly rely on the assumption of 
stationarity and linearity in the data. 

Numerous techniques have been proposed for processing non-stationary and non-linear time 
series. Machine learning methods, in particular, have demonstrated remarkable results; however, 
they often lack an explicit mechanism for handling the inherent non-stationarity of time series 
data. Recent approaches leverage robust features that possess the capability to capture latent 
information embedded in time series data. However, the uti l ization of domain-specific features 
tailored to each field is both time-consuming and costly [59]. 

This work introduces a novel method for processing time series by integrating the IF and fusion 
neural network techniques. The fusion neural networks, combining Arti f icial Neural Networks 
(ANN) and Convolutional Neural Networks (CNN), are employed for time series prediction. The 
IF technique is applied to decompose the signal into "quasi-stationary" IMFs. These resulting IMFs, 
along with the original signal, are utilized to generate an IMFogram. Subsequently, the IMFs serve 
as input for the A N N , while the IMFogram is used as input for the CNN . The outputs from the 
A N N and C N N are combined, passed through a dense layer, and subjected to a loss function to 
measure the error between the predicted and true values. 

The proposed framework incorporates the advantages of the IF algorithm, Artif icial Neural 
Network (ANN), and Convolutional Neural Network (CNN) methods, emphasizing the following 
three points: 

1. The framework excels in handling non-stationary signals, thanks to the inherent capability 
of IF in addressing non-stationarity. 

2. The combination of resulting IMFs with the original signal yields an IMFogram. This, along 
with the IMFs, serves as input for the fusion neural network, providing the framework with 
the capacity to learn from two distinct data types. 

3. The utilization of CNN and A N N enables the proposed framework to adaptively extract deep 
and global features from time series data. 

The proposed framework can be generalized into a universal approach, applicable for extracting 
features from time series across diverse fields. Its versatility w i l l be demonstrated by evaluating 
the framework on various datasets exhibiting different instabilities. Additionally, the framework 
can be adaptable for studying profitability, involving the computation of a single long-short trading 
strategy to assess its trading performance, accounting for transaction costs or otherwise. 

Furthermore, potential enhancements to the proposed framework include the integration of 
specialized Convolutional Neural Network (CNN) systems to monitor and compare its performance 
wi th various existing frameworks. 
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