
TECHNICAL UNIVERSITY OF LIBEREC

HOCHSCHULE ZITTAU/GÖRLITZ

LVD COMPANY

Application of servo drives on the prototype
of the punch press machine

Diploma thesis

Liberec 2014 Bc. Jǐŕı Kuba

TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Mechatronics, Informatics and Interdisciplinary Studies

HOCHSCHULE ZITTAU/GÖRLITZ
Faculty of Electrical Engineering and Computer Science

LVD COMPANY

Application of servo drives on the prototype
of the punch press machine

Diploma thesis

Study programme: N2612 – Electrical Engineering and Informatics

Study branch: 3906T001 – Mechatronics

Author: Bc. Jǐŕı Kuba

Assessor: Prof. Dr. Ing. Wolfgang Kästner

Supervisor: Dr. ir. Wim Serruys

In Liberec 1th October 2014

Declaration

I hereby certify that I have been informed the Act 121/2000, the Copyright Act of the Czech

Republic, namely § 60 - Schoolwork, applies to my master thesis in full scope.

I acknowledge that the Technical University of Liberec (TUL) does not infringe my copy-

rights by using my master thesis for TUL’s internal purposes.

I am aware of my obligation to inform TUL on having used or licensed to use my mas-

ter thesis; in such a case TUL may require compensation of costs spent on creating the work

at up to their actual amount.

I have written my master thesis myself using literature listed therein and consulting it with

my thesis supervisor and my tutor.

Concurrently I confirm that the printed version of my master thesis is coincident with an

electronic version, inserted into the IS STAG.

Date: 1th October 2014

Signature:

Abstract

The master thesis deals with the practical application of servo drives on the prototype of

the punch press machine called Dynapunch.

In the first part of the thesis the punching process, Dynapunch and its components are

described. Later on the state machine for driving Dynapunch is introduced, coded and

tested. It is followed by reprogramming the trajectory generator to the more useful form.

The next part of the thesis focuses on the implementation of the decision algorithm for

trajectory adjusting. It requires the programming of an effective solver of motion equations.

The next task is the creation of the method for axes motion anticipation. This results in

the implementation of the synchronization algorithm for horizontal and vertical axes of the

punch press. The algorithm is tested in various conditions. The following part of the thesis

describes issues with synchronization of two servo drives connected to the one shaft. The

proper solution is proposed and tested.

In the last part of the thesis methods for tuning controllers are described. The manual

tuning is used as well as off-line tuning with usage of the transfer function. The transfer

function describes the dynamic behaviour of Dynapunch. The transfer function is obtained

by system identification. Results of off-line tuning are compared with results provided by

manual tuning.

Dynapunch is turned into a machine capable of performing test patterns with a wide set

of configuration parameters. The thesis aims for results proved by tests on Dynapunch.

Key words

Punch press, servo drive, real time PC, state machine, cascade control, PID controller,

system identification.

Abstrakt

Diplomová práce se zabývá praktickou aplikaćı servopohon̊u na prototypu vysekávaćıho lisu.

V prvńı části diplomové práce je popsán proces lisováńı a lis samotný. Následně je navržen,

naprogramován a otestován stavový automat pro ř́ızeńı lisu. Poté je přepracován generátor

trajektorie do lépe použitelné formy.

Daľśı část diplomové práce se zaměřuje na implementaci rozhodovaćıho algoritmu pro

přizp̊usobeńı trajektorie vertikálńı osy lisu. To vyžaduje naprogramovat efektivńı algorit-

mus pro řešeńı pohybových rovnic. Daľśım úkolem je vytvořeńı metody pro předpov́ıdáńı

trajektorie os lisu. To vede k implementaci synchronizačńıho algoritmu pro horizontálńı a

vertikálńı osu lisu. Algoritmus je testován v r̊uzných podmı́nkách.

V posledńı části práce je popsána metoda pro laděńı regulátor̊u servopohon̊u. Je použita

metoda ručńıho laděńı a metoda laděńı pomoćı přenosové funkce. Přenosová funkce, která

popisuje chováńı lisu, je źıskána pomoćı metody identifikace systému. Výsledky ručńıho

laděńı jsou porovnány s výsledky laděńı pomoćı źıskané přenosové funkce.

Prototyp lisu je uveden do funkčńıho stavu, kdy je schopný provádět základńı testovaćı

rutiny s širokou volbou parametr̊u. Výsledky diplomové práce jsou testovány na prototypu

lisu.

Kĺıčová slova

Vysekávaćı lis, servopohon, operačńı systém reálného času, stavový automat, kaskádńı ř́ızeńı,

PID regulátor, identifikace systému.

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisor Dr. ir. Wim Serruys for

the continuous support during my internship in LVD Company. I wish to express my sincere

thanks to Prof. Dr. Ing. Wolfgang Kästner from Hochschule Zittau/Görlitz for providing me

all the necessary. Many thanks belongs to ir. Cedric Herreman for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time. I would

like to thank my parents for their unconditional support, both financially and emotionally

throughout my degree. Last but not least, I would like to give many thanks to my beloved

Verunka.

Contents Application of servo drives on the prototype of the
punch press machine

Contents
Master thesis assignment 3

Declaration 4

Abstract 5

Key words 5

Key words 6

Acknowledgment 7

Contents 9

List of figures 12

List of tables 13

List of acronyms 14

List of used symbols 15

1 Introduction 16

2 Punching 18

3 Dynapunch description 19
3.0.1 Z axis . 20
3.0.2 X axis . 20

3.1 IRT servo drives . 21
3.2 Mavilor servomotors . 23

3.2.1 Mavilor BLS-115 . 23
3.2.2 Mavilor BLS-73 . 24

3.3 Real time PC . 24
3.4 DC motor equations . 25

4 Punch cycle 28
4.1 Motion equations . 28
4.2 Trajectory generator . 29
4.3 Summary . 35

5 State machine 36
5.1 Example of the state machine . 36
5.2 Test pattern . 41

8

Contents Application of servo drives on the prototype of the
punch press machine

6 Motion anticipation 43
6.1 Axis synchronization . 47
6.2 Summary . 48

7 Two motors 50
7.1 Torque synchronization . 50
7.2 Velocity synchronization . 51
7.3 Summary . 54

8 Drives tuning 55
8.1 Manual tuning of the Z axis . 55
8.2 Manual tuning of the X axis . 59
8.3 Hit rate . 60
8.4 System modelling . 60

9 System identification 63
9.1 System frequency response . 63
9.2 Tuning of the velocity loop . 68
9.3 Tuning of the position loop . 72
9.4 Summary . 75

10 Remark 76

11 Conclusion 77

Literature 79

Appendix A Attached CD 80

Appendix B Axis synchronization tests 81

Appendix C Manual tuning plots 88

Appendix D Source code 94
D.1 pattern stm.c . 94
D.2 tgen get time to position const speed.c . 103

Appendix E Optimization 107
E.1 Optimization.m . 107
E.2 Criterion.m . 107

9

List of Figures Application of servo drives on the prototype of the
punch press machine

List of Figures

1 Schematic of the die and the punch . 18

2 Dynapunch . 19

3 The Z axis scheme . 20

4 The X axis scheme . 20

5 IRT drive 20 A, source in footnote 1 . 21

6 IRT drive 50 A, source in footnote 2 . 21

7 CSP control loop, Source [10] . 22

8 Current control block, source [10] . 22

9 Speed control block, source [10] . 23

10 Position control block, source [10] . 23

11 Dynapunch connection scheme . 24

12 Scheme of a BLDC motor . 25

13 Model of DC motor . 26

14 Motion profile of the Z axis - the first half . 30

15 Motion profile of the X axis . 30

16 Motion profile of Z axis with constant velocity zone - the first half 33

17 Example of state and transition symbols . 36

18 Example of the state machine . 37

19 State machine for Dynapunch . 40

20 The test pattern . 41

21 The punch pattern, the X and Z axis overview 42

22 The punch cycle . 43

23 Delay between desired and actual position 47

24 Axes synchronization test . 49

25 Gear backslash, source in the foot note 1. 50

26 Detail scheme of control loops . 51

27 Incorrect torque synchronization of drives . 52

28 Position loop outside the drive . 52

29 Synchronization of drives . 53

10

List of Figures Application of servo drives on the prototype of the
punch press machine

30 Current loop tuning kp, source [9] . 56

31 Current loop tuning ki, source [9] . 56

32 Speed loop tuning kp, source [9] . 56

33 Speed loop tuning ki, source [9] . 56

34 Speed loop tuning big step . 56

35 Speed loop tuning small step . 56

36 Z axis step response of current loop . 58

37 The X axis tuned . 59

38 The model overview of the Z axis . 60

39 The model of the DC motor . 61

40 Position controller . 61

41 Speed controller . 61

42 Current controller . 61

43 Simulation scheme - step response . 62

44 Step response of the real system . 62

45 Step response of the model . 62

46 Sine sweep signal . 63

47 Sine sweep . 64

48 Detail of sine sweep . 64

49 Output of the system excited by sine sweep 65

50 System Identification Tool . 66

51 Data used for identification . 66

52 Estimated transfer functions . 67

53 Bode plot of measured data and transfer function 27 with 1 ms delay 67

54 Bode plot of measured data and transfer function 28 with 6 ms delay 67

55 Unit step response of H(s) . 68

56 Closed loop with the velocity controller . 68

57 Step response with constant ζ . 70

58 Detail of the step response . 70

59 Step response with constant ω0 . 71

60 Detail of the step response . 71

11

List of Figures Application of servo drives on the prototype of the
punch press machine

61 Step response of the system with tuned velocity controller 71

62 The slope used for tuning . 72

63 Simulink model for position tuning . 73

64 Velocity PI controller . 73

65 Position controller inside the real time PC 73

66 Optimization process . 74

67 Optimization process with the weighting function 75

68 Detail view of the optimization process with the weighting function 75

69 Axes synchronization test . 81

70 Axes synchronization test . 82

71 Axes synchronization test . 83

72 Axes synchronization test . 84

73 Axes synchronization test . 85

74 Axes synchronization test . 86

75 Axes synchronization test . 87

76 The motion profile of the Z axis without gain scheduling 88

77 The motion profile of the Z axis with gain scheduling 89

78 Slow punch through 5 mm steel plate . 90

79 Fast punch through 5 mm steel plate . 91

80 Punch pattern without the steel plate . 92

81 Punch pattern with the 5 mm steel plate . 93

12

List of Tables Application of servo drives on the prototype of the
punch press machine

List of Tables

1 Jerk and tn values for zones t1 - t6 . 28

2 Effect of increased control loop gain . 55

3 Tuning position loop of Z1 axis . 57

4 Tuning speed loop gains of Z1 axis . 57

5 Tuning current loop gains of Z1 axis . 57

6 Conversion factors . 57

7 Tuned gains of the X axis . 59

8 Frequency ranges . 64

9 Velocity controller tuning with constant ζ 70

10 Velocity controller tuning with constant ω0 70

11 The punch parameters . 72

13

List of Tables Application of servo drives on the prototype of the
punch press machine

List of acronyms
AC Altenating Current

API Application Programming Interface

BEMF Back electromotive voltage

BLDC Brushless DC

CF compact flash

CSP Cyclic Synchronous Position mode

DC Direct Current

EtherCAT Ethernet for Control Automation Technology

HMI Human-Machine Interface

IGBT insulated-gate bipolar transistor

MB mega byte, 1 MB = 1024 kb

PDF Portable Document Format

PID proportional-integral-derivative

PWM pulse-width modulation

RMS root mean square

SPM strokes per minute

USB universal serial bus

14

List of Tables Application of servo drives on the prototype of the
punch press machine

List of used symbols

Symbol Description Unit
a acceleration [ms−2]
β motor viscous damping [Nm·s

rad]
C circumference [m]
C(s) transfer function of a PI controller [-]
D dimameter [mm]
d distance [mm]
e Euler’s number [-]
F force [N]
H(s) transfer function in laplace domain [-]
I current [A]
J moment of inertia [kg ·m2]
j jerk [ms−3]
kd derivative gain [-]
ki integral gain [-]
kp proportional gain [-]
ke BEMF constant [Vs/rad]
kt motor torque constant [Nm/A]
L inductance [H]
N sample number [-]
ω,Ω angular velocity [rad/s]
ω0 natural frequency of the system [rad · s−1]
Rm tensile strength [MPa]
R real numbers [-]
S thickness of the sheet [m]
s laplace complex argument [-]
t time [s]
T torque [Nm]
Θ angular position [rad]
U voltage [V]
v velocity [ms−1]
ζ relative damping [-]

15

1 Introduction Application of servo drives on the prototype of the
punch press machine

1 Introduction

The first punch presses were powered by fly wheels. Later on hydraulics were used. The

next step in development is the use of servo drives. Servo drives benefits are cost reduction,

easier maintenance and lower energy consumption compared to hydraulic systems. Servo

drives are becoming the domain of low tonnage punch presses while hydraulic is suitable for

medium and high tonnage presses.

The thesis discuses implementation of servo drive technology on the prototype of a punch

press machine. The prototype of the punch press serves as a test platform called Dynapunch.

Dynapunch is assembled by three servomotors which are driven by servo drives. Servo drives

are commanded by a real time embedded PC. The real time PC controls all actions of

Dynapunch.

The thesis consists of four main tasks. The first task is to create an algorithm for

performing axis movements. It requires the creation of a complex state machine which is

able to perform the testing pattern.

The second task focuses on synchronization of axes to achieve a better strokes per minute

ratio. Synchronization is done between two axes. The method for motion anticipation is

implemented. The third task aims for synchronization of two servomotors on the same

shaft. The Z axis is intended for punching and it is powered by two servomotors which are

connected mechanically. However motors do not have interconnected servo drives on the

hardware level. This leads to issues with proper motors coordination. The problem is solved

by placing part of the control loop outside drives into the real time PC. This allows the

control of both servo drives properly.

The last task aims for improvement of controller tuning. At first servo drives are tuned

manually. Than the work on the mathematical Simulink model of Dynapunch is started.

However, the Simulink model does not reflect the real properties of Dynapunch well, there-

fore the model is not used for controller tuning. Later on the transfer function describing

the dynamic behaviour of Dynapunch is obtained by the system identification technique.

Identification is based on the analysis of output signals from the system. The system is

excited by the sine sweep.

The transfer function is used for tuning the velocity controller as well as the position

16

1 Introduction Application of servo drives on the prototype of the
punch press machine

controller. The velocity controller is tuned with application of parametrization of the transfer

function. The tuning of the position controller is transferred to the optimization task. The

proportional gain of the controller is perpetually changed until the minimum value of the

criteria function is found.

It is important to mention that Dynapunch is a prototype in an early phase of develop-

ment. A lot of minor tasks have to be solved and many bugs have to be found and fixed or

reported.

17

2 Punching Application of servo drives on the prototype of the
punch press machine

2 Punching

Punching is a method of metal forming. It is the equivalent of shearing. The tool called

punch is forced into the material (workpiece). The workpiece is usually a sheet of metal.

Depending on the application, a slug or perforated sheet is the product.

PunchWorkpiece

Die Slug

Clearance

Figure 1: Schematic of the die and the punch

As seen in figure 1, the opposite part of the punch is the die. There is a small space

between the punch and the die called clearance. The clearance is necessary to prevent the

punch from jamming in the die and also for better quality of hole edge.

According to (Serruys [1]), the force required for perforation of the metal sheet is defined

by equation 1 where Rm is tensile strength of the material, S is thickness and C is circum-

ference of the hole.

F = Rm · S · C [N] (1)

For example the force required to cut the circular hole with diameter of 3 cm through thick

the steel sheet 5 mm thick with Rm = 450 N/mm2 is: F = 450 ·106 ·0,005 ·π ·0,03 .= 211 kN.

18

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

3 Dynapunch description

Dynapunch is the prototype of the punch press. Figure 2 shows the body of Dynapunch. It

consists of a bridge frame accompanied by two axes. The Z axis serves for punching. There

are two Mavilor BLS-115 servomotors connected to the Z axis. Torque produced by both

motors is transferred to the vertical movement by the gearbox and spindle. The theoretical

maximum press force is 226 kN. The X axis is for shifting the workpiece. Axis is powered by

servomotor Mavilor BLS-73. The momentum provided by the motor is transferred through

a belt and spindle to horizontal movement.

14
95

Gearbox

Bridge frame

Motors

Spindle

Leadscrew

Die

Table

Bed

Motor

Fastener

Pulley
Belt

Figure 2: Dynapunch

All motors are driven by servo drives made by IRT SA company. They are custom made

for LVD, but very similar to drives in figures 5 and 6. Drives made for LVD have a USB

connector for debugging and an EtherCAT interface instead of serial and parallel ports seen

in figures. The X axis is driven by servo drive IRT 4009, the Z axis is powered by the pair of

stronger IRT 4025. Simple IO logic, such as end switches is implemented by Beckhof digital

input terminals [11] with EtherCAT support.

19

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

3.0.1 Z axis

The axis is shown on the simplified scheme in figure 3. The axis is assembled by the ram. The

ram is connected to the spindle, which is linked with the constant ratio gearbox. The gearbox

interconnects two Mavilor servomotors. The gearbox has ratio 21/133 and the spindle ratio

is 1/20 mm. It means that ten revolutions of the motor causes 10 · 21
133 · 20 = 31,57 mm long

movement of the axis.

The motion profile of the Z axis is described in chapter 4.2. It can be characterised as

perpetual movement from top position called the hover height to the bottom position called

the die penetration. The motion has to be finished as fast as possible to keep good strokes

per minute (SPM) ratio.

Spindle

Gearbox

Servomotors

Ram

Figure 3: The Z axis scheme

Spindle

Table

Servomotor Belt
Pulley

Figure 4: The X axis scheme

3.0.2 X axis

The X axis has a table for shifting the workpiece. The simplified scheme is depicted in

figure 4. The axis is driven by servomotor Mavilor BLS-73. The servomotor is connected

through the belt to the spindle which moves the carriage with the table. The spindle has

ratio 1/20 mm. Pulleys have the same diameter.

The motion profile of the X axis is characterised as a point to point movement with

a standstill phase. The movement is done while the punch is above the workpiece. The

transition must be as fast as possible to achieve a good strokes per minute (SPM) ratio. The

motion profile is described in chapter 4.2.

20

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

3.1 IRT servo drives

IRT servo drives are designed for the control of 3 phase brushless servomotors. Servo drives

are fully digital, allowing changes to various tuning parameters. They are equipped by safety

guards for prevention of motor or drive damage. There is also diagnostic tool which allows

to performance of the basic setting on-line through the USB port. Servo drives have IGBT

output stage with digital PWM module. It provides low ripple motor current. Drives are

controlled through the EtherCAT [3] field bus. The resolver feedback from servomotors is

supported.

Figure 5: IRT drive 20 A, source in footnote 1 Figure 6: IRT drive 50 A, source in footnote 2

Servo drives series 4000 AT are used in Dynapunch. There are two driver versions. The

smaller version is called 4009 and is used for driving the X axis. It has rated RMS current

9 A. The bigger version is called 4025. It has rated RMS current 25 A. Two IRT 4025 servo

drives are used for driving the Z axis. Both versions have AC supply voltage 3×400 V and

DC output voltage 3×390 V. Drives are depicted in figure 5. They support several modes

of operation.

The Cyclic Synchronous Position mode (CSP) is used in Dynapunch. The CSP mode

does not have any trajectory generator, the target position is sent to the drive every 1 ms.

The drive is trying to reach target position with the effort defined by setting of control loops

and given limits for velocity, acceleration and torque. The control loop scheme is in figure 7.

Cascade regulation is used. The position control block consists of the P controller, velocity

and torque control blocks are equipped with PI controllers. CSP supports additional offsets

such as position offset, velocity and torque offset. It must be noted that Torque offset is
1http://www.irtsa.com/spip.php?article3&lang=en
2http://www.irtsa.com/spip.php?article2&lang=en

21

http://www.irtsa.com/spip.php?article3&lang=en
http://www.irtsa.com/spip.php?article2&lang=en

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

Figure 7: CSP control loop, Source [10]

actually current offset. Name Torque offset is used because torque is proportional to the

current applied to the motor by equation 7.

Other control parameters are present, but important ones are Max current and Motor

rated current. The parameter Max current limits current applied to the motor. It is im-

portant to set the proper value according to the motor documentation, otherwise the motor

coil insulation could be damaged. Both parameters are also used for calculation of motor

overheating factor - I2T . There is documentation [9] for more details.

Torque and velocity control blocks (figures 8 and 9) are carried out as digital PI control-

lers.

Figure 8: Current control block, source [10]

UCM(N) = kp · ie(N) + ki ·
N∑

i=0
(ie(i) ·∆T) (2)

PI controller of the torque control block is implemented in the form described by equation 2

and velocity controller is described by equation 3. The variable N is a sample number,

∆T [s] is sampling time, UCM [V] is voltage for PWM voltage source, ki and kp are gains,

ie [A] is current error and ωe [rad/s] is angular speed error.

22

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

Figure 9: Speed control block, source [10]

ie[N] = kp · ωe(N) + ki ·
N∑

i=0
(ωe(i) ·∆T) (3)

Position control block (figure 10) consists of proportional controller and feed-forward.

It is described by equation 4 where sc [increments] is the command position and se is the

position error. Increments are equivalent of the position, they represent output of the resolver

built in the motor. However there is no information about the sampling time ∆T .

ωc(N) = kp · se(N) + sc(N) − sc(N−1)

∆T (4)

Position

Position
command

s

s

s

Position

ω
Position

[inc]

Figure 10: Position control block, source [10]

3.2 Mavilor servomotors

3.2.1 Mavilor BLS-115

Mavilor BLS-115 is the synchronous servomotor with 3 winding phases in the stator. The

shaft consists permanent magnets. The motor has brushless construction. Position feedback

is produced by the resolver. The motor is characterised by low inertia/torque ratio. It

provides very good acceleration characteristic needed for punching with the Z axis. Peak

torque is 55,6 Nm, nominal torque is 13,9 Nm and moment of inertia is 0,93.10−3 kg·m2. Full

specification is in the datasheet [7].

23

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

3.2.2 Mavilor BLS-73

Mavilor BLS-73 is same type of motor as Mavilor BLS-115, but smaller. Its peak torque is

10,8 Nm, nominal torque is 2,7 Nm and the moment of inertia is 0,74 · 10−3 kg ·m2. Full

specification is in the datasheet [8].

3.3 Real time PC

Dynapunch is driven by the real time embedded PC. The real time PC runs on embedded

Linux. The Linux consists of kernel 2.4.24 and RTAI patch to make it a real time operating

system. There is more information on RTAI documentation [6]. The PC has AMD LX800

processor [5] and the size of memory is 256 MB. The operating system is stored on the CF

card.

One of the modules loaded by the system is the program which controls Dynapunch.

The embedded PC works with cycle time 1 ms. It means that all output-input actions are

performed each millisecond. The embedded PC supports EtherCAT [3]. EtherCAT is a field

bus based on Ethernet. The whole infrastructure is depicted in figure 11.

MavilorhBLSb115

Linux
realhtimeh

PC

Servohdrive
IRTh4025

Servohdrive
IRTh4025

Servohdrive
IRTh4009

EtherCAThnetwork

User PC
with HMI

BeckhofhIOhmodule

MavilorhBLSb115 MavilorhBLSb73

Endhswitcheshsignalsp
hardhstophbuttonhsignalR

es
ol

ve
rh

fe
ed

ba
ck

R
es

ol
ve

rh
fe

ed
ba

ck

R
es

ol
ve

rh
fe

ed
ba

ck

P
ow

er
hli

ne

P
ow

er
hli

ne

P
ow

er
hli

neE
th

er
n

et
hn

et
w

or
k

Zhaxis Xhaxis

Figure 11: Dynapunch connection scheme

It is possible to command embedded PC via an Ethernet cable. The big advantage of that

solution is that Dynapunch is reachable all around the factory if connected to the Intranet

24

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

network. A HMI for controlling Dynapunch is a Windows equipped PC with an application

called Touch-A developed by LVD. Touch-A is designed for control with a touch screen built

in the operator panel.

The module which drives Dynapunch is written in C language. It consist of several parts

which are executed sequentially in the specified order. Each part takes care of a specific task.

There are tasks such as communication via EtherCAT, control words generator for drives,

communication with the Touch-A, state machine implementation and trajectory generation.

The source code listed in the thesis is related only to the state machine and trajectory

generation. Other parts of the module are not subjects of the thesis.

3.4 DC motor equations

In the thesis are used BLDC motors. A simplified model of the BLDC motor is depicted in

figure 12. The model is described by a set of equations. Equations can be divided into an

electrical and mechanical part.

DC
motor

Ra La

Ua

Ja

Tm

Um

Ia

,β

,Ωm

Figure 12: Scheme of a BLDC motor

The electrical part consists of equation

U = Um +RaIa + La
dIa

dt
(5)

where U [V] is source voltage, Ia [A] is winding (armature) current, La [H] is winding

inductance and winding resistance is Ra [Ω]. Um [V] is back electromotive voltage. Um is

25

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

expressed as

Um = keΘ̇ (6)

where Θ̇ = Ωm [rad/s] is angular velocity of the rotor and ke [Vs/rad] is BEMF constant.

Relation between armature current Ia and torque Ta [Nm] is described by equation 7 where

kt [Nm/A] is motor torque constant.

Ta = ktIa (7)

T

r

r

Tah[N]

Umh[V]

Iah[A]
1

wh[rad/s]

1
La.s+Ra

Electricalhpart

1
Ja.s+b

Mechanicalhpart

ke

kt2
Uh[V]

1Tlh[N]
Loadhtorque

Figure 13: Model of DC motor

Equation 5 can be combined with equation 6 into the form

U = keΘ̇ +RaIa + La
dIa

dt
(8)

Mechanical part is described by equation 9:

0 = ktIa − JaΘ̈− βΘ̇− Tl (9)

where Tl [Nm] is output torque of the motor and Ja [kg ·m2] is moment of inertia. Coefficient

β [Nm·s
rad] is motor viscous damping. Damping is hard to measure and can be nonlinear, but

for simplification it is stated as constant. Taking the Laplace transform of equation 8 and 9

gives:

U(s) = kesΘ(s) +RaIa(s) + LasIa(s) (10)

0 = ktIa(s)− Jas
2Θ(s)− βsΘ(s)− Tl(s) (11)

26

3 Dynapunch description Application of servo drives on the prototype of the
punch press machine

Equations 10 and 11 are rewritten to get Ia(s) and Ωm(s):

Ia(s) = −kesΘ(s) + U(s)
sLa +Ra

(12)

Ωm(s) = sΘ(s) = ktIa(s)− Tl(s)
sJa + β

(13)

The Simulink model of the DC motor in figure 13 is derived from equations 12 and 13.

The model is considered as an approximation of servomotors used in Dynapunch. Transfer

functions of BLDC motor scheme are

Ωm(s)
U(s) =

1
Las+Ra

kt
1

Jas+b

1 + 1
Las+Ra

kt
1

Jas+b
ke

= · · · = kt

LaJas2 + (Lab+ JaRa)s+Rab+ ktke

(14)

Ωm(s)
Tl(s)

=
− 1

Jas+b

1 + 1
Las+Ra

kt
1

Jas+b
ke

= · · · = −Las+Ra

LaJas2 + (Lab+ JaRa)s+Rab+ ktke

(15)

Transfer functions 14 and 15 can be combined to have Ωm response on Um and Tl:

Ωmsum(s) = Ωm(s)
U(s) U(s) + Ωm(s)

Tl(s)
Tl(s) (16)

27

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

4 Punch cycle

Punch cycle consists of motions of both axes. Motions are described by set of equations

combined to motion profiles. Following chapter describes motion profile of the Z axis.

4.1 Motion equations

The motion profile of the Z axis is depicted in figure 14. It consist of 6 zones t1 - t6. The

motion profile is defined by jerk j [ms−3], maximum acceleration amax [ms−2] and maximum

speed vmax [ms−1].

Zone t1 Zone t2 Zone t3 Zone t4 Zone t5 Zone t6

j1 = −j j2 = 0 j3 = j j4 = j j5 = 0 j6 = −j

t1 = amax

j
t2 = vmax−2v1

amax
t3 = amax

j
t4 = t3 t5 = amax

j
t6 = v5

amax

Table 1: Jerk and tn values for zones t1 - t6

Time tn [s] spent in nth zone and respective jerk value jn is listed in the table 4.1. Actual

values of acceleration an, speed sn [ms−1] and position sn [m] for nth zone can be calculated

by equations 18, 19 and 20 with initial conditions 17.

n ∈ {1, 2, 3, 4, 5, 6} (17)

t ∈ (tn−1, tn) [s]

t0 = 0, a0 = 0, v0 = 0

an(t) = an−1(tn−1) +
∫ t

tn−1
jn dt (18)

vn(t) = vn−1(tn−1) +
∫ t

tn−1
an dt (19)

sn(t) = sn−1(tn−1) +
∫ t

tn−1
vn dt (20)

For example equations for the zone t1 are

a1(t) =
∫ t

t0
j dt = −jt (21)

28

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

v1(t) =
∫ t

t0
a1(t) dt = −jt

2

2 (22)

s1(t) =
∫ t

t0
v1(t) dt = −jt

3

6 (23)

Equations for the zone t2 are

a2(t) = a1(t1) +
∫ t

t1
j2 dt = −jt1 (24)

v2(t) = v1(t1) +
∫ t

t1
a2(t) dt = −jt1

2

2 − jt1t+ jt21 = jt1
2

2 − jt1t (25)

s2(t) = s1(t1)+
∫ t

t1
v2(t) dt = −jt1

3

6 + jt1
2

2 t− jt12 t2− jt1
3

2 + jt1
3

2 = −jt1
3

6 + jt1
2

2 t− jt12 t2 (26)

Motion equations can be characterised as polynomial functions up to the 3rd order.

The following lines describe properties of the motion in the figure 14. When the motion

starts, acceleration is limited by maximum acceleration value and built in respect to jerk

in the zone t1. The ram goes downwards. Zone t2 has constant acceleration while speed is

rising to maximum allowed speed. Zone t3 serves for decreasing acceleration to zero with

respect of jerk value. Deceleration is built in the zone t4 with respect of the jerk value. Zone

t5 has constant deceleration, speed is decreasing. Deceleration is decreasing to zero in the

last zone t6. The ram is in the lowest point of trajectory. The ram is returned to the top

position by performing movements through all zones in reverse order.

4.2 Trajectory generator

The trajectory generator generates a trajectory of the Z axis according to motion equations

described in the chapter 4.1.

Trajectory generation is divided into two phases. There is an initial phase before the

movement starts. Input variables are jerk, acceleration and maximum speed. Generated

output is time, velocity and position at the end of each zone.

The second phase starts with the movement. Parameters generated in the initial phase

are used to cyclically generate points of trajectory. Which motion equation will be used is

determined by pre-generated times for the end of each zone.

29

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

V
el

oc
ity

0

P
os

iti
on

0

A
cc

el
er

at
io

n

0

Time [s]

Je
rk0

Acceleration phase Deceleration phase

Linear
accel.

Linear
dec.

Start of
jerk acc.

End of
jerk acc.

Start of
jerk dec.

End of
jerk dec.

Zone t1 t2 t3 t4 t5 t6

Figure 14: Motion profile of the Z axis - the first
half

Acceleration5phase Deceleration5phase
Constant5
velocity

Linear
accel.

Linear
dec.

Start5of5
jerk5acc.

End5of5
jerk5acc.

Start5of5
jerk5dec.

End5of5
jerk5dec.

V
el

oc
ity

0

t1 t2 t3 t4 t5 t6 t7

0
P

os
iti

on
Time

A
cc

el
er

at
io

n

0

Je
rk0

Zone

Figure 15: Motion profile of the X axis

Equations for pre-generating during the initial phase are listed in the shortened code

listing 1. Code listing contains initial function init punch cycle movement where time

zone numbers correspond with zones t1 - t6 in figure 14.

Listing 1: Initialization of the trajectory generator

1 void init_punch_cycle_movement(ttv_tgen_channel_data* p)
2 {
3 //declare & initialise variables
4 debug_message(DEBUG_TAG,"init_punch_cycle_movement");
5
6 // initial values
7 float j = p->init_data.sfv_jerk/1000.0;
8 float a = p->init_data.sfv_acc/1000.0;
9 float v = p->init_data.sfv_speed/1000.0;

10
11 //time zone 1 - build up acc, limit jerk
12 float t1 = a/j;
13 //float a1 = a;
14 float v1 = j*t1*t1/2.0;
15 float s1 = j*t1*t1*t1/6.0;
16
17 //time zone 2 - max and constant acceleration
18 float t2 = t1 + (v - 2*v1)/a;
19 //float a2 = a;
20 float v2 = v1 + a*(t2 - t1);
21 float s2 = s1 + v1*(t2 - t1) + a*(t2 - t1)*(t2 - t1)/2.0;
22
23 //time zone 3 - acceleration decreases as speed gets higher
24 float t3 = t2 + a/j;
25 //float a3 = 0;
26 float v3 = v2 + a*(t3 - t2) - j*(t3 - t2)*(t3 - t2)/2.0;
27 float s3 = s2 + v2*(t3 - t2) + a*(t3 - t2)*(t3 - t2)/2.0 - j*(t3 - t2)*(t3 - t2)*(t3 - t2)/6.0;
28
29 //time zone 4 - constant speed

30

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

30 float t4 = t3 + 0.0;
31 //float a4 = 0;
32 float v4 = v;
33 float s4 = s3 + (t4 - t3)*v;
34
35 //time zone 5 - build up dec, limit jerk
36 float t5 = t4 + a/j;
37 //float a5 = -j*(t5 - t4);
38 float v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
39 float s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
40
41 //time zone 6 - max and constant deceleration
42 float t6 = t5 + v5/a;
43 //float a6 = -a;
44 float v6 = v5 - a*(t6 - t5);
45 float s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
46 \\shortened

Pre-generated values for each time zone are forwarded to function set punch cycle

point generation in the code listing 2. The function is called every 1 ms to get a new point

of the trajectory. Time t is compared with the end time of zones t1 - t6 to choose which

zone will be used. Actual position, speed and acceleration is generated.

Listing 2: Original version of the point generator

1 void set_punch_cycle_point_generation(ttv_tgen_channel_data* p,float pfv_time,float* pfp_pos,float* pfp_spd,
float* pfp_acc)

2 {
3 \\shortened
4 float t = pfv_time;
5 if (pfv_time > t6) \\ if time is behind zone t6, zones are executed backwards
6 t = (2*t6 - t);
7
8 float j = p->init_data.sfv_jerk/1000.0;
9 float a = p->init_data.sfv_acc/1000.0;

10 float v = p->init_data.sfv_speed/1000.0;
11
12 // initialization
13 float jn = 0.0;
14 float an = 0.0;
15 float vn = 0.0;
16 float sn = 0.0;
17
18 if (t <= 0.0) // no motion zone
19 {
20 jn = 0.0;
21 an = 0.0;
22 vn = 0.0;
23 sn = 0.0;
24 }
25 else if (t <= t1) // zones are chosen according to t1 - t6
26 {
27 //time zone 1
28 jn = j;
29 an = j*t;
30 vn = j*t*t/2.0;
31 sn = j*t*t*t/6.0;
32 }
33 else if (t <= t2)
34 {
35 //time zone 2
36 jn = 0.0;
37 an = a;
38 vn = v1 + a*(t - t1);

31

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

39 sn = s1 + v1*(t - t1) + a*(t - t1)*(t - t1)/2.0;
40 }
41 else if (t <= t3)
42 {
43 //time zone 3
44 jn = -j;
45 an = a - j*(t - t2);
46 vn = v2 + a*(t - t2) - j*(t - t2)*(t - t2)/2.0;
47 sn = s2 + v2*(t - t2) + a*(t - t2)*(t - t2)/2.0 - j*(t - t2)*(t - t2)*(t - t2)/6.0;
48 }
49 else if (t <= t4)
50 {
51 //time zone 4 - constant speed
52 jn = 0;
53 an = 0;
54 vn = v;
55 sn = s3 + (t - t3)*v;
56 }
57 else if (t <= t5)
58 {
59 //time zone 5
60 jn = -j;
61 an = -j*(t - t4);
62 vn = v4 - j*(t - t4)*(t - t4)/2.0;
63 sn = s4 + v4*(t - t4) - j*(t - t4)*(t - t4)*(t - t4)/6.0;
64 }
65 else if (t <= t6)
66 {
67 //time zone 6
68 jn = 0;
69 an = -a;
70 vn = v5 - a*(t - t5);
71 sn = s5 + v5*(t - t5) - a*(t - t5)*(t - t5)/2.0;
72 }
73 else
74 {
75 jn = 0.0;
76 an = 0.0;
77 vn = 0.0;
78 sn = 0.0;
79 }
80
81 if (pfv_time > t6)
82 {
83 jn *= -1;
84 vn *= -1;
85 }
86
87 *pfp_acc = -an*1000.0;
88 *pfp_spd = -vn*1000.0;
89 *pfp_pos = p->init_data.sfv_s_start - 1000.0*sn;
90 }

The big disadvantage of this approach is that it is not possible to set distance between the

top and the bottom point of the trajectory. It is necessary to balance jerk, acceleration and

speed to get the desired distance. Therefore the function set punch cycle point generation

in the code listing 2 is reprogrammed. The variable distance is added to specify desired

distance. However if the maximum speed is set too low, it is not possible to reach the desired

distance. Therefore the constant speed phase is added together with the decision algorithm

to keep trajectory as fast as possible. A shortened code of the new function is in the code

32

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

listing 3. The new function generates trajectory with the following properties. If the desired

distance is longer than distance reached with motion profile without constant speed phase,

the constant speed phase is added (lines 61 - 84). If the desired distance is shorter than

distance reached with predefined jerk, acceleration and max. speed values, the constant

acceleration phase is shortened so as not to overcome the desired distance (lines 86 - 138).

If pre-generated speed exceeds max. speed, it is limited and the constant speed phase is

enlarged (lines 18 - 25). The new motion profile is depicted in figure 16.

Acceleration7phase Deceleration7phase

Linear
accel.

Linear
dec.

Start7of7
jerk7acc.

End7of7
jerk7acc.

Start7of7
jerk7dec.

End7of7
jerk7dec.

V
el

oc
ity

0

t1 t2 t3 t4 t5 t6

P
os

iti
on

0

A
cc

el
er

at
io

n

0

Time [s]

Je
rk0

Constant7
speed
phase

t7Zone

Phase

Figure 16: Motion profile of Z axis with constant velocity zone - the first half

Listing 3: Point generator with specified distance and max. speed limitation

1 void init_punch_cycle_movement_with_const_speed(ttv_tgen_channel_data* p)
2 {
3 //declare & initialise variables
4 debug_message(DEBUG_TAG,"init_punch_cycle_movement_with_const_speed");
5
6 float j = p->init_data.sfv_jerk/1000.0;
7 float a = p->init_data.sfv_acc/1000.0;
8 float v = p->init_data.sfv_speed/1000.0;
9 float distance = p->init_data.sfv_a_a/1000.0;

10
11 //time zone 1 - build up acc, limit jerk
12 float t1 = a/j;
13 //float a1 = a;
14 float v1 = j*t1*t1/2.0;
15 float s1 = j*t1*t1*t1/6.0;
16
17 // max. speed will be reached during building up acc
18 if(v1>=v/2)
19 {
20 v1 = v/2;
21 t1 = sqrtf(2 * v1 / j);

33

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

22 a = j * t1;
23 s1 = j*t1*t1*t1/6.0;
24 // printf("time of building up acc limited\n");
25 }
26
27 // time zone 2 - max and constant acceleration
28 float t2 = t1 + (v - 2*v1)/a;
29 // float a2 = a;
30 float v2 = v1 + a*(t2 - t1);
31 float s2 = s1 + v1*(t2 - t1) + a*(t2 - t1)*(t2 - t1)/2.0;
32
33 // time zone 3 - acceleration decreases as speed gets higher
34 float t3 = t2 + a/j;
35 if(v1>=v/2) // max. speed will be reached during building up acc
36 {
37 t3 = t2 + t1;
38 }
39 // float a3 = 0;
40 float v3 = v2 + a*(t3 - t2) - j*(t3 - t2)*(t3 - t2)/2.0;
41 float s3 = s2 + v2*(t3 - t2) + a*(t3 - t2)*(t3 - t2)/2.0 - j*(t3 - t2)*(t3 - t2)*(t3 - t2)/6.0;
42
43 // time zone 4 - constant speed
44 float t4 = t3 + 0.0;
45 // float a4 = 0;
46 float v4 = v;
47 float s4 = s3 + (t4 - t3)*v;
48
49 // time zone 5 - build up dec, limit jerk
50 float t5 = t4 + a/j;
51 // float a5 = -j*(t5 - t4);
52 float v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
53 float s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
54
55 //time zone 6 - max and constant deceleration
56 float t6 = t5 + v5/a;
57 //float a6 = -a;
58 float v6 = v5 - a*(t6 - t5);
59 float s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
60
61 if(s6<distance) // constant speed zone is added
62 {
63 debug_message(DEBUG_TAG,"Build constant speed zone");
64
65 float distance_missing = distance - s6;
66
67 //time zone 4 - constant speed
68 t4 = t3 + distance_missing / v4;;
69 s4 = s3 + (t4 - t3)*v;
70
71 //time zone 5 - build up dec, limit jerk
72 t5 = t4 + a/j;
73 //float a5 = -j*(t5 - t4);
74 v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
75 s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
76
77 //time zone 6 - max and constant deceleration
78 t6 = t5 + v5/a;
79 //float a6 = -a;
80 v6 = v5 - a*(t6 - t5);
81 s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
82 }
83
84 if(s6 > distance) // we are beyond desired distance, acceleration zone is shortened
85 {
86 debug_message(DEBUG_TAG,"Shortening const acc phase");
87
88 //float real_s2 = s2 - s1;
89 float ss3 = s3 - s2;
90 // desired s2
91 float desired_s2 = (distance - s1 - ss3)/2;

34

4 Punch cycle Application of servo drives on the prototype of the
punch press machine

92
93
94 //time zone 2 - max and constant acceleration
95 //t2 = t1 + (v - 2*v1)/a;
96 float c[5]={0};
97 c[0] = - desired_s2;
98 c[1] = v1;
99 c[2] = 0.5 * a;

100 float tt2 = tgen_newton(c, 2, 1, 0, 9999); //usage of the Newton method to get t2
101
102 t2 = t1 + tt2;
103 v2 = v1 + a*(t2 - t1);
104 s2 = s1 + v1*(t2 - t1) + a*(t2 - t1)*(t2 - t1)/2.0;
105
106 //time zone 3 - acceleration decreases as speed gets higher
107 t3 = t2 + a/j;
108 if(v1>=v/2) // max. speed will be reached during building up acc
109 {
110 t3 = t2 + t1;
111 }
112 // a3 = 0;
113 v3 = v2 + a*(t3 - t2) - j*(t3 - t2)*(t3 - t2)/2.0;
114 v = v3;
115 s3 = s2 + v2*(t3 - t2) + a*(t3 - t2)*(t3 - t2)/2.0 - j*(t3 - t2)*(t3 - t2)*(t3 - t2)/6.0;
116
117 //time zone 4 - constant speed
118 t4 = t3 + 0.0;
119 //float a4 = 0;
120 v4 = v3;
121 s4 = s3 + (t4 - t3)*v;
122
123 //time zone 5 - build up dec, limit jerk
124 t5 = t4 + a/j;
125 //float a5 = -j*(t5 - t4);
126 v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
127 s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
128
129 //time zone 6 - max and constant deceleration
130 t6 = v5/a + t5;
131 //float a6 = -a;
132 v6 = v5 - a*(t6 - t5);
133 s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
134 }
135
136 \\ shortened

4.3 Summary

The code for trajectory generation is rewritten in a more useful form. It is no longer necessary

to recompute jerk, acceleration and speed values to get the desired stroke length. If the

maximum speed or acceleration is limited or the distance from hover height to the bottom

is too long, constant speed phase is automatically inserted to the motion profile to achieve

the desired stroke length.

35

5 State machine Application of servo drives on the prototype of the
punch press machine

5 State machine

The following chapter refers to the development of the state machine for driving Dynapunch.

The state machine started as a simple machine which was performing up and down move-

ments with one axis in an endless loop. The complex state machine is created. It is able to

perform the test pattern listed in figure 20 with various settings. A state machine is built

above API developed by the LVD Company. It is a single thread application running in an

endless loop as within a Linux system module.

The state machine is divided into three blocks. The initial block serves for axes referencing

with limit switches and puts axes to defined positions before the punching sequence starts.

The punching block performs the punch pattern and the termination block guides Dynapunch

to the initial state after the punch pattern is finished.

The source code of the state machine can be seen in the appendix D.1, because it is

too long to place it into the thesis. There is a simplified diagram of it in figure 19. It is

recommended to read chapter 5.1 first for good understanding.

5.1 Example of the state machine

A simple state machine is described for understanding the complex state machine in the

appendix D.1.

Implementation of the state machine has the following rules. Transitions between states

are allowed if the condition in the transition block is fulfilled. If the condition is not fulfilled,

transition is not made and the condition is tested periodically. Every action of Dynapunch

is triggered in the transition block after the condition is fulfilled. It is possible to connect

more than one transition block to the one state block. State and transition are depicted in

figure 17.

State
False

True

Condition

Action

Input node

Output node

Input node

Output node if condition

Action

Input node

Output node

State Transition
Transition

with condition

Output node if condition
is not fulfilled,

 no action is performed

is fulfilled, action is performed

Figure 17: Example of state and transition symbols

36

5 State machine Application of servo drives on the prototype of the
punch press machine

Lets assume a state machine in figure 18. It waits in the state 1 until condition 1 is

fulfilled. Than it waits in the state 2 until condition 2 is true, then cycles between states

2 and 3 if conditions 2 and 3 are fulfilled. If any condition is not true, the state machine

returns to the state 1. Transitions 1,2 and 3 are executed during transitions between states.

There can be transition block without a condition, its action is always performed. If there

is a node without transition block, transition is done, but no action performed. The source

code of the state machine is in the listing 4.

State 1

False

Condition 1

Transition1

False

Condition 3
fulfilled?

Transition 3

 Start

True

True

True

State 2

False
Condition 2

fulfilled?

Transition 2

False fulfilled

State 3

Figure 18: Example of the state machine

Listing 4: Example of the state machine from figure 18

1 #include "../../stm/stm_mod.h"
2
3 // state functions prototypes
4 void SMachine_s_1();
5 void SMachine_s_2();
6 void SMachine_s_3();
7
8 // condition function prototypes
9 void SMachine_c_1();

10 void SMachine_c_2();
11 void SMachine_c_3();
12
13 // transition function prototypes
14 void SMachine_t_1();
15 void SMachine_t_2();
16 void SMachine_t_3();
17 void SMachine_t_4();
18
19 //initialization of the state machine
20 int pattern_stm_initialise()
21 {
22 int liv_stm_idx = stm_register_state_machine(); // id of the state machine
23 if (liv_stm_idx == -1)

37

5 State machine Application of servo drives on the prototype of the
punch press machine

24 {
25 debug_message(DEBUG_TAG,"stm_register_state_machine failed");
26 return -1;
27 }
28
29 // register states
30 int liv_state_1 = stm_register_state(liv_stm_idx,SMachine_s_1);
31 int liv_state_2 = stm_register_state(liv_stm_idx,SMachine_s_2);
32 int liv_state_3 = stm_register_state(liv_stm_idx,SMachine_s_3);
33
34 // test states registration
35 if ((liv_state_1 == -1) ||
36 (liv_state_2 == -1) ||
37 (liv_state_3 == -1))
38 {
39 debug_message(DEBUG_TAG,"stm_register_state failed");
40 return -1;
41 }
42
43 // register conditions
44 int liv_cond_1 = stm_register_condition(liv_stm_idx,SMachine_c_1);
45 int liv_cond_2 = stm_register_condition(liv_stm_idx,SMachine_c_2);
46 int liv_cond_3 = stm_register_condition(liv_stm_idx,SMachine_c_3);
47 int liv_cond_4 = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,liv_cond_2,0);
48 int liv_cond_5 = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,liv_cond_3,0);
49
50 // test conditions registration
51 if ((liv_cond_1 == -1) ||
52 (liv_cond_2 == -1) ||
53 (liv_cond_3 == -1) ||
54 (liv_cond_4 == -1) ||
55 (liv_cond_5 == -1))
56 {
57 debug_message(DEBUG_TAG,"stm_register_condition failed");
58 return -1;
59 }
60
61 // register transitions
62 int liv_trans_1 = stm_register_transition(liv_stm_idx,liv_state_1,liv_state_2,liv_cond_1,SMachine_t_1);
63 int liv_trans_2 = stm_register_transition(liv_stm_idx,liv_state_2,liv_state_3,liv_cond_2,SMachine_t_2);
64 int liv_trans_3 = stm_register_transition(liv_stm_idx,liv_state_3,liv_state_2,liv_cond_3,SMachine_t_3);
65 int liv_trans_4 = stm_register_transition(liv_stm_idx,liv_state_2,liv_state_1,liv_cond_3,SMachine_t_4);
66 int liv_trans_5 = stm_register_transition(liv_stm_idx,liv_state_3,liv_state_1,liv_cond_3,SMachine_t_4);
67
68 // test transitions registration
69 if ((liv_trans_1 == -1) ||
70 (liv_trans_2 == -1) ||
71 (liv_trans_3 == -1) ||
72 (liv_trans_4 == -1) ||
73 (liv_trans_5 == -1))
74 {
75 debug_message(DEBUG_TAG,"stm_register_transition failed");
76 return -1;
77 }
78
79 return 1;
80 }
81
82 //state functions
83 void SMachine_s_1()
84 {
85 }
86
87 void SMachine_s_2()
88 {
89 }
90
91 void SMachine_s_3()
92 {
93 }

38

5 State machine Application of servo drives on the prototype of the
punch press machine

94
95
96 //conditions functions
97 int SMachine_c_1()
98 {
99 if(func())

100 return 0;
101
102 return 1;
103 }
104
105 int SMachine_c_2()
106 {
107 return fun2();
108 }
109
110 int SMachine_c_3()
111 {
112 return fun3();
113 }
114
115 // transition functions
116 void SMachine_t_1()
117 {
118 do_something();
119 }
120
121 void SMachine_t_2()
122 {
123 do_something_else();
124 }
125
126 void SMachine_t_3()
127 {
128 do_something_completely_else();
129 }

39

5 State machine Application of servo drives on the prototype of the
punch press machine

Idle

Init

Referencing

Punching

X axis in the
position

After referencing

Anticipating Z1
axis

Disabling Z2 axis

Moving Z1 axis
up

MoveZXZaxis
inZtheZposition

New
command?

SetZinitial
variables(

False Referenced?

ZDoZnothing

AxisZZ4
disabled?

DoZreferencingZofZ
ZZ3ZandZXZaxis

Z

Referenced?

ZDoZnothing

False
XZaxisZinZstarting

position?

DisableZaxisZZ4

XZandZZ3Zready?

EnableZaxisZZ4

Z1 axis in the
position

MoveZZ3ZaxisZin
theZposition

False
ZZaxisZinZstarting

position?

EnableZaxisZZ4

Moving

gfv_z3_time_to_pos
ZelapsedZANDZaxis

X3Zready?

CalculateZnext
positionZofZXZaxis(

MoveZXZaxisZtoZnext
position

AxisZZ4Zdisabled?

MoveZZ3ZaxisZto
startingZposition

AxisZZ3Zready?

SetZeverythingZto
defaultZstate

NOTZtheZfirstZpunchZAND
Pattern_c_Time_To_PunchuO

isZtrueZANDZaxisZZ3Zis
readyZANDZZ4Zenabled?

PunchZwithZaxisZZ3ZandZZ4Z

AllZaxesZreadyZAND
patternZfinished?

DisableZZ4Zaxis

CalculateZtimeZtoZgetZZZaxisZout
ofZmarginZzoneZwhenZaxisZisZgoingZup

ugfv_z3_time_to_posO.

CalculateZtimeZtoZget ZZaxisZ
intoZmarginZzoneZwhenZaxisZisZgoing

down ugfv_time_to_position_upO.

TheZfirstZpunch
fromZpunch

pattern?

PunchZwithZaxis
Z3ZandZZ4Z

ZStartInitialZblock PunchingZblock

TerminationZblock

False

True

False

True

True

TrueTrue

True

True

True

True
True

True

True

True

disableZaxisZZ4

3

45

6

78

90

9

3k

33
34

3536

37

38

Figure 19: State machine for Dynapunch

40

5 State machine Application of servo drives on the prototype of the
punch press machine

5.2 Test pattern

The test pattern for testing Dynapunch performance is described in the following chapter.

Pattern can have variable number of strokes, variable distance between strokes and also

variable motion parameters for both axes.

1 2 3 456

L
L
2

Start End

d

Figure 20: The test pattern

Holes are placed with distance L and respectively to numbers in figure 20. The diameter

of the hole is d [mm], than L = 2d+5 [mm]. It leaves 2,5 mm gap between holes. The fourth

hole is punched in the distance L/2 from the third hole. The direction of X axis movement

is reversed after fourth hole. Holes 5 and 6 are perforated in between existing ones.

The pattern multiplies potential errors in axes synchronization. If axes are not synchron-

ized well, distance between holes is not the same. The error is the most significant between

holes 1, 6 and 2.

The motion profile of the punch pattern can be seen in figure 21. At first the X axis

moves from its reference position to initial position. When the movement is finished, the

Z axis travels from its referencing position to hover height. The punch pattern is started

afterwards. The Z axis returns to the reference position after the pattern is complete.

41

5 State machine Application of servo drives on the prototype of the
punch press machine

−2
−1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

z_
po

si
tio

n
[m

m
]

−600

−400

−200

0

200

400

600

x_
ac

t_
sp

d
[m

m
/s

]

1 101 201 301 401 501 601 701 801 901 1001110112011301140115011601170118011901200121012201230124012501260127012801290130013101320133013401350136013701380139014001410142014301440145014601470148014901
40

60

80

100

120

140

160

180

200

220

240

x_
po

si
tio

n
[m

m
]

t [ms]

Figure 21: The punch pattern, the X and Z axis overview
42

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

6 Motion anticipation

The punch cycle requires well coordinated motion of the X and Z axis. As seen in figure 22,

the ram is allowed to hit the workpiece in section 3 when the X axis is not moving. The ram

travels through the workpiece. Travelled distance is called clear height. Then it continues

under the workpiece into the die to reach desired die penetration. There is a space above

clear height called margin.
4Z

4a
xi

s4
po

si
tio

n4
[m

m
]

X
4a

xi
s4

sp
ee

d
4[m

m
/s

]

C
le

ar
4h

ei
gh

t

H
ow

er
4h

ei
gh

t
D

ie
4p

en
e

tr
at

io
n

Workpiece

time4[ms]

1 2 3 4 5

M
ar

g
in

6

5

4

3

2

1

0

-1

-2
100

0

-100

-200

-300

-400

-500
22204 22304 22404 22504 22604 22704 22804 22904 23004 23104 23204 23304 23404 23504 23604 23704 23804 23904 24004 2410

Section:

Figure 22: The punch cycle

If the X axis is moving, the ram is not allowed to be lower than the margin. It prevents

collision of axes caused by tolerances in control process or uneven thickness of the sheet of

metal. The margin is formed in sections 2 and 4 where the X axis is at a standstill and the

Z axis enters or exits the margin zone. The X axis is changing position in zones 1 and 5

while the Z axis is reaching or leaving hover height. It is important to keep sufficient hover

height during movement of the workpiece, because the workpiece might flicker on the table

if a big sheet of metal was processed with high feed rate.

It is possible to wait until the X axis is completely in at a standstill and then starts the

43

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

movement of the Z axis. This approach is very simple, however it reduces the number of

strokes per minute (SPM) rapidly.

The solution is to start movement of the Z axis before the X axis reaches its position and

start the movement of the X axis right after the Z axis exits the safety margin zone. The

thickness of the workpiece is not the same all the time, also hover height, die penetration

and all other parameters such as speed, acceleration and jerk for both axes could differ from

application to application. It is necessary to anticipate the position of axes. This approach

is implemented into the state machine described in previous chapter.

There is a condition Pattern c Time To Punch() marked by number 11 in the state

machine diagram (figure 19). The source code is in the listing 5. The condition has to be

fulfilled before the Z axis starts the stroke. The condition compares two time variables.

Listing 5: Condition 11

1 int Pattern_c_Time_To_Punch()
2 {
3 float pfv_time_to_move_ready = axis_get_time_to_move_ready(X1_AXIS);
4 float pfv_time_to_pos = gfv_z1_time_to_pos+gfv_time_to_position_down_correction;
5 if((pfv_time_to_move_ready <= pfv_time_to_pos))
6 {
7 return 1;
8 }
9 return 0;

10 }

The first variable is the time to finish the movement of the X axis, the second one is

the time to move the Z axis from the hover height to the margin zone. It was simple

to get time for the X axis, because the function for it has already been implemented

- axis get time to move ready(X1 AXIS). Variable gfv z1 time to pos which stores the

time for the Z axis is obtained by calling function axis get time to position(Z1 AXIS,

pfv position) in the transition marked as number 14 in the state machine diagram. The

position to which the time is being calculated is called pfv position. Source code of the

transition is in the listing 6.

Listing 6: Transition 14

1 void Pattern_t_PunchToAnticipating_Z1()
2 {
3 debug_message(DEBUG_TAG,"Pattern_t_PunchToAnticipating_Z1");
4 int pfv_position = gfv_z1_axis_start_pos - gfv_z1_clear_height;
5 gfv_z1_time_to_pos = axis_get_time_to_position(Z1_AXIS,pfv_position);
6 gfv_time_to_position_up = axis_get_time_to_position_up(Z1_AXIS,pfv_position);
7 }

44

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

Function axis get time to position(Z1 AXIS, pfv position) triggers a set of calls.

The set of calls ends with the call of function

ecsrv get time to position(liv ecsrv idx,pfv position), which actually does the cal-

culation. The function can be viewed in the appendix D.2.

The function calculates end time of each motion zone (lines 9 - 133 in appendix D.2),

the same as during the initialization of the trajectory generator in the chapter 4.2. Then

pfv position is compared (lines 165 - 181) with the end positions of time zones to detect

which zone pfv position belongs to. If the end zone is found, the time between the start

of the end zone to the pfv position is calculated (lines 165 - 278). Calculation is done by

solving motion equations.

Motion equations are polynomial functions up to the 3rd older in the form p = at3 +

bt2 + ct + d where a, b, c, d are real numbers, t [s] is an unknown variable and s [mm] is

pfv position. Calculation of t is done between lines 179 - 266. It is simple to get t in zones

t1 and t4 where polynomial has form p = atn + d. It can be solved directly. Also zones t2

and t6 have a simple solution, because the polynomial degree is 2. The quadratic formula

t1,2 = −b±
√

b2−4ac
2a

is used.

The solution in zones t3 and t5 is more difficult. The polynomial degree is 3, usage of

quadratic formula or direct solution is not possible. The speed of CPU does not allow to

use brute force - the cyclical increase of t with small step and comparison of results with

pfv position, it would be too slow. It is a good idea to use the Newton–Raphson method.

An example of usage for the zone t3 is in the listing 7. Polynomial coefficients a, b, c, d

are saved in the field c[3] and forwarded to the function tgen newton(float c[3], int

power, float start, float max, float min). The function is described in the code

listing 8. The function tgen newton has its precision interval set to 0.0001 mm. The

maximum number of iteration is set to 20.

Listing 7: Usage of the Newton–Raphson method in the zone t3.

1 case 3: // zone t3
2 {
3 float c[3] = {0};
4 c[0] = s2 - pfv_position;
5 c[1] = v2;
6 c[2] = a/2.0;
7 c[3] = -j/6.0;
8 pfv_time_B = tgen_newton(c,3,0.0001,t3,t2);
9 pfv_pos_B = s2 + v2*pfv_time_B + a*pfv_time_B*pfv_time_B/2.0 - j*pfv_time_B*pfv_time_B*pfv_time_B/6.0;

10 break;

45

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

11 }

Listing 8: Newton–Raphson method

1 float tgen_newton(float c[3], int power, float start, float max, float min)
2 {
3 // Newton-Raphson method
4 // c[n] - coefficient of n-th order
5 // power - order of polynomial
6 // start - starting point
7 // max, min - interval borders
8
9 int i=0,count=0;

10 float c[5]={0};
11 float x1=start,x2=0,t=0;
12 float fcn1=0,fcn1_derived=0;
13
14 do {
15 count++;
16 fcn1=fcn1_derived=0;
17 for(i=power;i>=1;i--)
18 {
19 fcn1+=c[i] * (pow(x1,i)) ;
20 }
21 fcn1+=c[0];
22 for(i=power;i>=0;i--)
23 {
24 fcn1_drived+=c[i]* (i*pow(x1,(i-1)));
25 }
26 t=x2;
27 x2=(x1-(fcn1/fcn1_drived));
28
29 x1=x2;
30 } while(((fabs(t - x1))>=0.0001) & (count<=20));
31 return x2;
32 }

When the stroke is triggered, the state machine goes to the state Anticipating of Z1

axis and waits until condition Pattern c Time To Move() in transition 10 is fulfilled. The

condition is listed in the code listing 9. If the condition is fulfilled, the X axis moves to

the next position. The condition compares actual time spent during movement of the Z axis

with pre calculated time gfv time to position up. It is the time to reach end of the margin

zone when the Z axis is returning to the hover height. Time gfv time to position up is

calculated in the same way as time gfv z1 time to pos.

Listing 9: Condition 10

1 int Pattern_c_Time_To_Move()
2 {
3 float pfv_act_time = axis_get_act_time(Z1_AXIS);
4 if((pfv_act_time >= gfv_time_to_position_up+gfv_time_to_position_up_correction))
5 {
6 return 1;
7 }
8 return 0;
9 }

46

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

Correction factor gfv time to position up correction is added to the

gfv time to position up in the condition 10. Similar factor gfv time to position correction

is added to the gfv time to position in the condition 11. It is necessary to compensate

reaction times of drives and transport delays. It is discussed in following chapter.

6.1 Axis synchronization

As you can see in condition 10 (listing 9) and in condition 11 (listing 5), the correction factor

is added to calculated times. It is necessary to do it, because there are transport delays of

the signal and response times of drives.

It takes two cycle times (2 ms) to send the command to the drive. The drive position

control loop is running on another frequency than real time PC. Cubic interpolation is used

to resample command signal to frequency used in drives. Sampling adds approximately 2 ms

of transport delay. Another delay is caused by signal processing inside drives. After that

drives start the commanded action. All this gives a total delay of 6 ms.

After the drive starts the action, there is another delay until the motors are really rotating

and an information about position is back to the real time PC. It gives approximately two

more cycle times of delay. The situation is depicted in figure 23.

t [ms]
1990 1992 1994 1996 1998 2000 2002 2004 2008 2010

5.1

5

4.9

4.8

8 ms

Desired position

Actual position

P
os

iti
on

 [m
m

]

Figure 23: Delay between desired and actual position

It is important to know that delays are cancelled if times for desired positions of the X and

Z axis are compared. In the case of gfv time to position correction desired value for the

Z axis is compared with the desired position of the X axis. It means that 8 ms delay is can-

celled and only the delay dependant on the structure of state machine and deviation caused

by sampling remains. It is the same situation with gfv time to position up correction,

47

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

but axes are commanded in reversed older. It is the reason for the negative sign of

gfv time to position up correction.

Correction factors in the conditions 10 and 11 are adjusted to:

gfv time to position up correction = −0,003 [s]

gfv time to position correction = 0,002 [s]

Testing with various parameters of motion profile proved that correction factors do not

depend on the motion profile. There is a testing plot in figure 24. It consist of three graphs.

The first one contains the desired position of the Z axis (red line) and the real position of

the Z axis (blue line). The second graph shows the actual and desired speed of the X axis.

Colouring of lines is the same as in the first graph. The position of the X axis can be seen

in the last graph.

A closer look at figure 24 shows that the margin zone is set to 2,5 mm. The Z axis reaches

this point at the same time as the X axis reaches zero speed. There is a small overshoot, but

position change is less than 0,2 mm which can be neglected because the sheet is penetrated

after the biggest peek. When the Z axis goes up, the X axis is at a standstill until the Z axis

steps out of the margin zone. Other testing plots with different hover height, die penetration,

distance between strokes or punching speed are listed in the appendix B.

The plotting tool for investigation of motion graphs was created. It is written in Matlab

programming language. It is able to plot graphs from raw data provided by the real time

PC. It is possible to pick the particular time interval from the motion profile and it is also

possible to define which motion properties such as acceleration, speed or actual current will

be plotted. Plots are aligned vertically on top of each other with a common x axis which

represents time. The result plot is exported to PDF automatically. Source code can be

found in the folder Plotting tool in the attached CD (attachment A).

6.2 Summary

The method for motion anticipation is developed and tested. SPM ratio is improved, because

the axes do not have to wait for each other. The method is independent of settings of axes

parameters. It does not require a lot of CPU time, because motion equations are not solved

by brute force.

48

6 Motion anticipation Application of servo drives on the prototype of the
punch press machine

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

z_
po

si
tio

n
[m

m
]

−120

−100

−80

−60

−40

−20

0

20

x_
sp

d
[m

m
]

2317 2319 2321 2323 23252327 2329 2331 2333 23352337 2339 2341 2343 23452347 2349 2351 2353 23552357 2359 2361 2363 23652367 2369 2371 2373 23752377 2379 2381 2383 23852387 2389 2391 2393 23952397
129.96

129.98

130

130.02

130.04

130.06

130.08

130.1

130.12

130.14

130.16

x_
po

si
tio

n
[m

m
]

t [ms]

Figure 24: Axes synchronization test, Parameters of the Z axis: hover height h = 2.5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 70

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.7 ms−1

49

7 Two motors Application of servo drives on the prototype of the
punch press machine

7 Two motors

The Z axis is powered by two identical motors interconnected by constant ratio gearbox.

Each motor has its own drive. There is no possibility to command the first drive and copy

its motion directly to the second one, because drives do not have implemented any direct

drive to drive communication. The only option is to command motors simultaneously from

the real time PC.

It is also not possible to send identical position commands into both drives. There is a

backlash between teeth in the gearbox as it is depicted in figure 25. If motors were position

commanded, one would propel the main wheel in the gearbox and the other would follow

with a backslash without even touching the main gear.

Operating pitch circles

Backlash
(transverse operation)

Figure 25: Gear backslash, source in the foot note 1.

There is also a possibility that motors are unevenly synchronized. If one motor was

trying to reach the desired position, the other would already be in the position and push

back against the first motor. It would cause arguing between motors, which would lead to

oscillations and premature wearing of shafts and the main gear.

Figure 26 shows the detailed scheme of the control loops inside the drive. Blocks Ft, Fv

and Fp are constants to convert values to ranges used in the drive. There are blocks marked

as Filter. They are low pass filters to suppress higher frequencies in the control scheme. It

is possible to send position commands to the drive and apply torque and velocity offsets.

7.1 Torque synchronization

The first option is to send position commands to the first drive (noted as Z1), read the value

of actual current (G25P08 in the scheme) generated by the command and apply current
1http://commons.wikimedia.org/wiki/File:Backlash.svg#mediaviewer/File:Backlash.svg

50

 http://commons.wikimedia.org/wiki/File:Backlash.svg#mediaviewer/File:Backlash.svg

7 Two motors Application of servo drives on the prototype of the
punch press machine

Figure 26: Detail scheme of control loops

offset to the second drive (noted as Z2). However, due to transport delays between drives

and the real time PC it is not possible to synchronize motors properly. As seen in figure

27, current of the Z2 drive lags behind Z1. There would be no section with current values

around 0 A in the case of faster movement. Motors would attempt to turn in the opposite

direction.

7.2 Velocity synchronization

The second option is to control both motors by velocity commands instead of position

commands. It is possible to do it through the input called velocity offset. Proportional

gain of the position control loop inside drives is set to zero and feed forward is disconnected.

The position control loop is placed out of drives to the real time PC. Output of the loop

is sent to both drives. The value of actual position is taken from the Z1 drive and used

for both drives. Position of the Z2 motor is not important, there is only one requirement -

the velocity of Z2 motor must be the same as velocity of the Z1 motor. The whole control

scheme is in figure 28.

51

7 Two motors Application of servo drives on the prototype of the
punch press machine

2809 2819 2829 2839 2849 2859 2869 2879 2889 2899 2909 2919 2929 2939 2949 2959 2969 2979 2989 2999
−20

−15

−10

−5

0

5

10

15

20

25

30

z_
po

si
tio

n
T[m

m
]

-1

1

3

5

cu
rr

e
nt

T[A
]

Z1Taxis

Z2Taxis

TimeT[ms]

Figure 27: Incorrect torque synchronization of drives

Real time PC

Figure 28: Position loop outside the drive

The position control loop placed in the real time PC is implemented by the function

position loop. Source code of the function is in the code listing 10. It is executed every

1 ms, which is enough for good position regulation. Line 4 restricts usage of external position

52

7 Two motors Application of servo drives on the prototype of the
punch press machine

control loop only for the Z1 and Z2 axes. Lines 9 - 17 corrects proportional gain in low speeds

for better performance. This method is called gain scheduling. Regulation itself is located in

lines 24 and 25. The result is req speed which is recalculated to req speed inc - velocity

in increments per second. Values used for recalculation are: gearbox ratio 21/133, spindle

ratio 1/20 mm and the number of increments per revolution 65536.

−2

0

2

4

6

8

z1
_p

os
iti

on
 [m

m
]

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

5

10

15

20

t [ms]

fo
rc

e
[k

N
]

Z1 axis
Z2 axis

Figure 29: Synchronization of drives

Motors are well synchronised as seen in figure 29. The force in the bottom plot is

proportional to current by the factor kt mentioned in the chapter 3.4. Force curves differ

slightly, but this is natural. Motors and drives are not identical copies of each other.

Listing 10: Position control loop

1 float i_part[5] = {0};
2 void position_loop(ttv_ecsrv_control* cnt_poi)
3 {
4 if((cnt_poi->axis_kind == 2) || (cnt_poi->axis_kind == 3))
5 {
6 float pos_p_gain = cnt_poi->init_data.sfv_positions[5];
7
8 // increase proportional gain in low speeds - gain scheduling
9 if(cnt_poi->move_data.siv_punch_cycle == 8)

10 {
11 if(cnt_poi->act_spd_mm < 10)
12 {
13 pos_p_gain = 3 * pos_p_gain;
14 if(pos_p_gain < 2000)
15 pos_p_gain = 2000;
16 }
17 }
18

53

7 Two motors Application of servo drives on the prototype of the
punch press machine

19 if(pos_p_gain > 4000) // max. allowed value
20 pos_p_gain = 4000;
21
22 float pos_ff_velo_gain = cnt_poi->init_data.sfv_positions[6];;
23
24 float pos_diff = cnt_poi->req_pos_mm - cnt_poi->position_mm;
25 float p_part = pos_diff * pos_p_gain * pos_p_gain_factor;
26
27 float velo_feedforward = pos_ff_velo_gain * cnt_poi->req_spd_mm; // feed-forward is calculated from

required speed
28
29 float req_speed = (p_part + velo_feedforward); // [mm/s]
30 int req_speed_inc = (int) (((-1 * req_speed * 133 * 65535) / 20.0) / 21.0); // conversion to

increments
31
32 cnt_poi->siv_vel_offset = req_speed_inc;
33
34 // to store required speed of Z1 axis
35 if(cnt_poi->axis_kind == 2)
36 {
37 giv_req_z1_speed = req_speed_inc;
38 }
39 }
40 }

7.3 Summary

Two methods for motors synchronization of the Z axis are tested. Torque synchronization

turned out to be impracticable due to transport delays between the real time PC and drives.

The velocity synchronization method is successful although it is necessary to transfer the

position control loop outside drives into the real time PC.

54

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

8 Drives tuning

Tuning of drives can be achieved by many approaches. Methods can be divided into two

main groups. The first group represents on-line tuning methods and the second one off-line

tuning methods.

8.1 Manual tuning of the Z axis

Manual tuning belongs in the group of on-line methods. It requires some level of experience

and in some cases many attempts to reach good results. The advantage of manual tuning

is that it requires small or no knowledge of the internal structure of the controller. Manual

tuning is the easiest method of tuning controllers. Control loop gains are changed until a

satisfying result is obtained. Table 2 shows how the system responds if single value of control

loop gain is increased.

Parameter Rise
time

Overshoot Settling time Steady-
state error

Stability

kp Decrease Increase Small change Decrease Degrade
ki Decrease Increase Increase Decrease

signific-
antly

Degrade

kd Minor
decrease

Minor decrease Minor decrease No effect in
theory

Improve if
Td small

Table 2: Effect of increased control loop gain

According to instructions in the IRT Instruction manual [9], the following tuning ap-

proach can be used:

• Set all gains to 0

• Send step current with maximum motor current value

• Set proportional gain kp according to figure 30

• Set proportional gain ki according to figure 31

55

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

Figure 30: Current loop tuning kp, source [9] Figure 31: Current loop tuning ki, source [9]

Speed

Figure 32: Speed loop tuning kp, source [9]

Speed

Figure 33: Speed loop tuning ki, source [9]

The same approach can be used for tuning speed loop, it is depicted in figures 32 and

33. Cyclically repeating current steps are applied into the drive through Torque offset input.

Steps have amplitude from -20 A to 20 A with a period of 200 ms.

0 100 200 300 400 500 600 700 800 900 1000
−500

0

500

1000

1500

2000

2500

3000

3500

t [ms]

sp
ee

d
[R

P
M

]

Figure 34: Speed loop tuning big step

0 100 200 300 400 500 600 700 800 900 1000
−100

0

100

200

300

400

500

600

700

t [ms]

sp
ee

d
[R

P
M

]

Reference speed
Measured speed

Figure 35: Speed loop tuning small step

After a few iterations, optimal setting was found. Parameters are listed in the table 5.

Current follows reference variable without overshoot and with a short rise time. Response

to step change of current is depicted in figure 36. Control loop gains are so high, because

56

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

Position loop kp

1 100
2 200
3 400
4 1000
5 2000
6 800
7 700
8 750
9 850
10 800

Table 3: Tuning position loop of Z1 axis

Speed loop kp ki

1 10000 0
2 20000 0
3 40000 0
4 60000 0
5 50000 0
6 40000 0
7 39000 300
8 39000 200
9 39000 100
10 39000 10
11 39000 50
12 39000 25
13 40000 25
14 40000 20

Table 4: Tuning speed loop gains of Z1 axis

Current loop kp ki

1 2000 0
2 1000 0
3 500 0
4 600 100
5 600 150
6 700 150
7 750 150
8 750 140

Table 5: Tuning current loop gains of Z1 axis

kp ki

Position loop 10−5 RP M
increment

-
Speed loop 10−6 A

RP M
10−2 A

RP M ·s−1

Current loop 0.005 %
A

40 %
A·s−1

Table 6: Conversion factors

they are multiplied by conversion factors inside the drive. Conversion factors are listed in

the table 6.

The same method is applied to the speed control loop. Tuning is done on two velocity

steps. The first one goes from 0 RPM to 3000 RPM and the second one goes from 0 RPM

to 600 RPM. Two steps help to validate tuned parameters for low and high speeds. Tuning

parameters are listed in the table 4. Step responses are in figures 34 and 35.

The position control loop consists of proportional controller with feed-forward. It is

placed in the real time PC and executed every 1 ms. The tuning sequence is in the table 3.

Tuning is done on punching profile, tuning on step position change does not give good results,

the motion profile described in chapter 4 is used. Graphs describing results of tuning are in

57

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

0 20 40 60 80 100 120
−20

−15

−10

−5

0

5

10

15

20

25

t [ms]

I [
A

]

Reference current
Measured current

Figure 36: Z axis step response of current loop

the appendix C. The first plot is in figure 76. Red lines in the first and second plots mean

reference variable and blue lines mean measured variable. The red line in the third (force)

plot is the force produced by the Z1 motor and blue stands for force produced by the Z2

motor. The tuned setting has a small overshoot at the end of the movement. Settling time

more than 200 ms is longer than it should be. The gain scheduling is used to improve the

shape of the position curve. Properties of the gain scheduling can be seen in the code listing

10 in the line 9. Motion profile with gain scheduling is in figure 77. Overshoot is reduced

and settling time is less than 20 ms.

A slow punch through 5 mm thick steel plate is depicted in figure 78. The force plot

shows that the press force required for perforation of the plate is Fp = 2 × 85 = 170 kN.

It can be compared with a faster punch through the steel plate with the same thickness in

figure 79. Although the press force is nearly the same, the peak lasts 10 ms. Peak duration

of the slower punch is 15 ms. It is caused by inertial force, which is bigger with the higher

impact speed.

Finally, the punch patterns with and without steel plate were tested. The results are in

figures 80 and 81. Press force is lower compared with previous plots, because a different die

is used. Force plot shows that acceleration requires more force than perforation of the sheet.

Peaks in the second and third stroke were caused by the misalignment of the tool which was

hitting the rim of the die. The tool had to be replaced after that.

58

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

8.2 Manual tuning of the X axis

Tuning of the X axis has been done in the same way as tuning of the Z axis. There are

no points of interest to describe except the requirement for accuracy of positioning. The X

axis should be able to hold position with tolerance ± 0,05 mm. The result parameters are

listed in the table 7. Detail of tuned response can be seen in figure 37. The motion is done

with maximum speed set to 80 mm/s. Position error is less than 0.02 mm. Accuracy meets

requirement and it remains in the desired tolerance with usage of higher or slower maximum

speeds.

Param. Position loop Speed loop Current loop
kp 600 20010 8000
ki − 80 3000

Table 7: Tuned gains of the X axis

−120

−100

−80

−60

−40

−20

0

20

2317 2319 2321 2323 23252327 2329 2331 2333 23352337 2339 2341 2343 23452347 2349 2351 2353 23552357 2359 2361 2363 23652367 2369 2371 2373 23752377 2379 2381 2383 23852387 2389 2391 2393 23952397

129.96

129.98

130

130.02

130.04

130.06

130.08

130.1

130.12

130.14

130.16

time [ms]

x_
po

si
tio

n
 [m

m
]

x_
sp

d
[m

m
/s

]

Figure 37: The X axis tuned

59

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

8.3 Hit rate

Hit rates or SPM ratio is highly dependant on the length of the stroke and also on the

distance travelled by the X axis between holes.

The punch pattern in figure 81 is considered as a worst case. The stroke length is 9 mm

and distance between hole centres is 35 mm. The stroke lasts 160 ms and the movement of

the X axis adds 60 ms. The hit rate is 272 SPM. It is possible achieve 500 SPM if the stroke

length is reduced to 5 mm. This hit rate is comparable with mid-class hydraulic punch

presses. If the distance between holes is reduced to 1 mm, the hit rate is reaching 600 SPM.

8.4 System modelling

Control loop gains were tuned manually in the previous chapter. It would be convenient to

create a model of the axis to perform tuning on it. If the model is precise enough, the time

required for tuning will be shorter and also the result should be more precise. There is a

risk that the model will have to be very complex for good approximation of the real plant.

It would be better to use other approaches in that case. The Simulink environment is used

for creation of the model.

Figure 38 shows the entire model of the Z axis. There is one motor connected to the

axis. The block on the right side of the scheme represents a model of the DC motor. The

block called ”Axis” represents the rest of the mechanical part of the axis. Blocks on the left

belong to the servo drive. There are position, speed and current controllers. It is possible

to disconnect controllers and apply constant values instead of them.

Figure 38: The model overview of the Z axis

60

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

The DC motor is simulated according to equations presented in chapter 3.4. The simu-

lation scheme is depicted in figure 39.

Tmh[N]

Umh[V]

Iah[A]
1

wh[rad/s]

1
La.s+Ra

Electricalhpart

1
Ja.s+b

Mechanicalhpart

Ke

Ke

Kt

Kt

2
Uh[V]

1Tlh[N]
Loadhtorque

Figure 39: The model of the DC motor

Blocks representing controllers are in figures 40, 41 and 42.

Figure 40: Position controller Figure 41: Speed controller

Figure 42: Current controller

The block ”Axis converter” serves for converting the position of the axis [mm] to position

of the motor [increments]. The block ”Axis” serves for the conversion of angular units back

to the transversal. Torque output of the block is not yet implemented. Function of the

motor and the controller has to be verified first.

To prove that the model is a good approximation of the real system, the measurement of

a standalone motor is made. The motor is disconnected from the rest of the machine and the

response to step change of current is measured. Current is applied to the regulator through

Torque offset input. The current regulator is set to values obtained by manual tuning. Step

response is in figure 44.

61

8 Drives tuning Application of servo drives on the prototype of the
punch press machine

Figure 43: Simulation scheme - step response

0

2000

4000

6000

8000

w
 [
R

P
M

]

0 0.02 0.04 0.06 0.08 0.1
−10

0

10

20

30

40

time [s]

C
ur

re
nt

 [A
]

Figure 44: Step response of the real system

0

2000

4000

6000

w
 [R

P
M

]

0 0.005 0.01 0.015 0.02 0.025 0.03

−10

0

10

20

30

40

time [s]

C
ur

re
nt

 [A
]

Figure 45: Step response of the model

Same steps, as described above, are done in simulation. Simulation scheme is depicted

in figure 43. The result can be seen in figure 45. However the step response of the model

does not match the response of the real system. Some similarities can be found, but it is far

from a good match. The weak spot of the model is in the servo drive model. It is known

that PWM voltage source provides maximum voltage 570 V. That value is multiplied by

the percentage factor in the model. However no additional information about PWM voltage

source is provided. Even if steady state values would be the same, it would be complicated to

simulate small oscillation in the current curve. It is more convenient to simulate the system

in another way. All models and data are in the attached CD (attachment A).

62

9 System identification Application of servo drives on the prototype of the
punch press machine

9 System identification

This chapter chapter describes the method for identification of the system model. System

identification is based on mathematical analysis of input and output signals from the ex-

amined system. Knowledge of inner properties of the system is not necessary. The result

of system identification is a mathematical model, in this case transfer function. Data is

processed by MATLAB System Identification Toolbox.

9.1 System frequency response

Frequency response of the system is obtained by application of a wide band signal into the

drive. Various types of excitation signal can be used, such as swept sine, multi-sine or white

noise. Sine sweep is the best choice, because it has the simplest implementation. Measured

output variable is velocity of the axis.

There is need to improve accuracy of measurement. A special type of sine sweep was de-

veloped. Sine sweep is characterised by amplitude, maximum frequency, minimal frequency

and time period. Frequency of the sine sweep rises from minimal frequency to maximum and

then decreases back to the minimum in the given time period. Each frequency is measured

twice. Once if frequency is rising and again if frequency is falling. Amplitude of the signal

is constant. It is depicted in figure 46.

Time

A
m
pl
it
ud
e

Figure 46: Sine sweep signal

It is necessary to measure frequencies from 0,1 Hz to 400 Hz with sampling frequency

1 kHz. The frequency corresponds with the period cycle time of the embedded PC. There

are memory limitations which allow measurement only for a time period of 60 s. If the whole

frequency range was measured in one 60 s block, there would only be a few samples for each

frequency. The quality of measured data would be very low and it would be impossible

63

9 System identification Application of servo drives on the prototype of the
punch press machine

Part Frequency range
1 0,1 Hz to 0,5 Hz
2 0,4 Hz to 0,1 Hz
3 0,9 Hz to 5 Hz
4 4 to 10 Hz
5 9 to 20 Hz
6 19 to 50 Hz
7 49 to 100 Hz
8 99 to 200 Hz
9 199 to 400 Hz

Table 8: Frequency ranges

to do proper system identification. Therefore the frequency range is divided into blocks

according to the table 8. There is a frequency overlap on sides of neighbouring blocks for

better continuity of measured data.

0 1 2 3 4 5 6 7 8

x 10
5

−200

−100

0

100

200

O
ut

pu
t s

pe
ed

 [R
P

M
]

t [ms]

0 1 2 3 4 5 6 7 8

x 10
5

−20

−10

0

10

20

t [ms]

In
pu

t I
 [A

]

Figure 47: Sine sweep

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

x 10
4

−20

0

20

O
ut

pu
t s

pe
ed

 [R
P

M
]

t [ms]

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

x 10
4

−0.4

−0.2

0

0.2

0.4

t [ms]

In
pu

t I
 [A

]

Figure 48: Detail of sine sweep

The reference signal, current I [A], is applied to the current regulator and speed of the

axis is measured and recalculated to the speed of the motor ω [RPM]. Measured sweeps are

in figure 47. Detail of the sweep is in figure 48.

All models and data are in the attached CD (attachment A). Measured data blocks are

saved as a plain text in columns. It is necessary to convert them to the form processable

by Matlab. Matlab script load scopes.m is used for that. Script loads all measured blocks

and connects them together. Then script bodes tfestimate.m is launched. There is the

function tfestimate, which estimates gain and phase shift between input and output data

for frequencies in a certain range.

64

9 System identification Application of servo drives on the prototype of the
punch press machine

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

100

200

f [Hz]

∠
H

 [°
]

|H
| [

dB
]

|H
Iω

|

50

0

-50

Figure 49: Output of the system excited by sine sweep

Estimated gains and phase shifts are presented in the form of the bode plot (figure 49).

The magnitude plot —H— looks like a magnitude plot of the first order system. However

the phase plot is influenced by transport delay. It causes rapid phase drop.

Output of tfestimate is used for the creation of frd (frequency-response) object, which

is forwarded to the System Identification Tool. The tool is started by the command Ident

(figure 50). It is necessary to cut out frequencies higher than 300 Hz to get rid of noise in

the output signal (axis velocity). Data used for identification is in figure 51.

According to the magnitude response of the system, data is fitted to the transfer function

in the form H(s) = e−cs · b
s+a

; (a, b, c) ∈ R. Several estimations have been made as seen in

figure 52. Amplitude of the best transfer function fits measured data with 81,36% accuracy.

The estimated transfer function is in equation 27.

H(s) = e−0.001·s · 438
s+ 1.75 (27)

65

9 System identification Application of servo drives on the prototype of the
punch press machine

Figure 50: System Identification Tool

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−400

−200

0

200

Frequency (rad/s)

P
ha

se
 (

de
gr

ee
s)

−50

0

50

|H
| [

dB
]

|H
Iω

|

Figure 51: Data used for identification

The transfer function H(s) is compared with the output of tfestimate function. The

bode plot is in figure 53. It can be seen that phases do not match in higher frequencies. It

means that delay 1 ms is not estimated correctly. As described in chapter 6.1, the delay of

the position command is 8 ms. 2 ms takes cubic interpolation. Only brief information about

inner functions of the controller were provided, but let us assume that the delay caused by

interpolation in the current loop is much shorter than the interpolation delay in the position

loop. Therefore the delay should be 2 ms shorter, which means 6 ms. The resulting transfer

function is described by equation 28.

H(s) = e−0.006·s · 438
s+ 1.75 (28)

66

9 System identification Application of servo drives on the prototype of the
punch press machine

Figure 52: Estimated transfer functions

10
−2

10
−1

10
0

10
1

10
2

10
3

−50

0

50

|H
| [

dB
]

|H
Iω

|

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

100

200

f [Hz]

∠
H

Iω
[°

]

measured

estimated

Figure 53: Bode plot of measured data and
transfer function 27 with 1 ms delay

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

−600

−400

−200

0

200

f [Hz]

∠
H

Iω
[°

]

measured

estimated

−50

0

50

|H
| [

dB
]

|H
Iω

|

Figure 54: Bode plot of measured data and
transfer function 28 with 6 ms delay

Comparison of transfer function 28 with measured data is in figure 54. Amplitudes and

phases match well. Estimated transfer function 28 fits measured data adequately. The 6 ms

transport delay is caused by the real time PC and during transfer of the command through

EtherCAT to drives. The delay can be neglected, because regulation process takes place

inside the controller. The final transfer function used for tuning of velocity controller gains

is listed in the equation 29. Figure 55 shows the unit step response of the transfer function.

The transfer function H(s) contains physical representation of the Z axis and both motors

including current controller.

H(s) = 438
s+ 1.75 (29)

67

9 System identification Application of servo drives on the prototype of the
punch press machine

0 1 2 3 4 5 6
0

50

100

150

200

250

300

Time (seconds)

ω
 [R

P
M

]

Figure 55: Unit step response of H(s)

9.2 Tuning of the velocity loop

Even if the transfer function of the controlled system is known, it might be difficult to

balance gains of the PI controller to obtain the desired transient response. In the following

chapter it is described how to substitute tuning of controller gains by two parameters. If the

proportional gain kp is changed, than integral gain ki has to be changed too.

According to (Åström [2]), the better approach is to substitute both gains by parameters

describing the undamped natural frequency of the system ω0 and the relative damping ζ.

The parameter ω0 affects response speed and ζ changes the shape of the response. In the

following lines it is described how to express the relation between kp, ki and ω0, ζ.

The transfer function H(s) obtained in the previous chapter is connected to the closed

loop together with the PI controller C(s). H(s) is described by general equation 30.

r u

d

y
C(s) H(s)Σ Σ

− 1

e

Figure 56: Closed loop with the velocity controller

H(s) = b

s+ a
(30)

68

9 System identification Application of servo drives on the prototype of the
punch press machine

Parameters a and b are coefficients of the transfer function and s is the Laplace operator.

The PI controller has the form as seen in the equation 31. The controller is considered as a

continuous controller in the parallel form. It is obvious that controller is discrete, but the

sampling frequency and additional details have not been provided. The sampling frequency

is probably very high and therefore it is possible to take the controller as a continuous one.

C(s) = kp + ki

s
(31)

The closed loop is depicted in figure 56. The closed loop is described by the transfer function

L(s) from r to y in the equation 32.

L(s) = Y (s)
R(s) = H(s)C(s)

1 +H(s)C(s) = kpbs+ kib

s(s+ a) = b(kps+ ki

s2 + (a+ bkp)s+ bki)
(32)

The characteristic polynomial of L(s) is compared with the normalized second order

polynomial (equation 33), where ζ denotes relative damping and ω0 is the undamped natural

frequency. Values of ζ < 1 stands for underdamped system, ζ = 1 is critically damped system

and ζ > 1 is overdamped system.

s2 + (a+ bkp)s+ bki = s2 + 2ζω0s+ ω2
0 (33)

Parameters ω0 and ζ are recalculated to the PI controller gains by equations 34 and 35.

kp = 2ζω0 − a
b

(34)

ki = ω2
0
b

(35)

Tuning of controller gains with parameters ω0 and ζ provides good control over the

response speed and the overshoot. As a starting point are chosen gains kp = 0,04 and

ki = 0,2. Gains were obtained by manual tuning. Corresponding values are ω0 = 9,3595 and

ζ = 1,0268.

Tuning of controller gains is done in two steps. At first ω0 will be changed to get desired

rise time. Afterwards the overshoot will be compensated by changing ζ. The goal is to

achieve rise time as short as possible with overshoot less than 10%. It is known that control

69

9 System identification Application of servo drives on the prototype of the
punch press machine

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

A
m

pl
itu

de

ω
0

= 9.3595; ζ = 1.0268

ω
0

= 9.8595; ζ = 1.0268

ω
0

= 10.3595; ζ = 1.0268

ω
0

= 10.8595; ζ = 1.0268

ω
0

= 11.3595; ζ = 1.0268

ω
0

= 11.8595; ζ = 1.0268

ω
0

= 12.3595; ζ = 1.0268

ω
0

= 12.8595; ζ = 1.0268

ω
0

= 13.3595; ζ = 1.0268

ω
0

= 13.8595; ζ = 1.0268

Figure 57: Step response with constant ζ

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

Step;Response

Time;(seconds)

A
m

pl
itu

de

ω
0

=;9.3595;;ζ =;1.0268

ω
0

=;9.8595;;ζ =;1.0268

ω
0

=;10.3595;;ζ =;1.0268

ω
0

=;10.8595;;ζ =;1.0268

ω
0

=;11.3595;;ζ =;1.0268

ω
0

=;11.8595;;ζ =;1.0268

ω
0

=;12.3595;;ζ =;1.0268

ω
0

=;12.8595;;ζ =;1.0268

ω
0

=;13.3595;;ζ =;1.0268

ω
0

=;13.8595;;ζ =;1.0268

Figure 58: Detail of the step response

1 2 3 4 5 6 7 8 9 10
ω0 9.3595 9.859 10.36 10.86 11.36 11.86 12.36 12.86 13.36 13.86
ζ 1.0268 1.0268 1.0268 1.0268 1.0268 1.0268 1.0268 1.0268 1.0268 1.0268
kp 0.039 0.042 0.044 0.046 0.049 0.051 0.053 0.056 0.058 0.060
ki 0.2 0.221 0.245 0.269 0.294 0.321 0.348 0.377 0.4075 0.438

Table 9: Velocity controller tuning with constant ζ

is too aggressive and motors become noisy if kp > 0,05. The only restriction is to keep kp

under that value.

Figure 57 shows effects of increasing ω0 by 0.5 steps while ζ = 1,0268. A detailed view

is in figure 58. The rise time is decreasing, but overshoot is rising slightly. Corresponding

values of controller gains are listed in table 9. Undamped frequency ω0 = 10,35 is chosen,

because higher ω0 has kp values higher than 0,05.

Afterwards, ζ is changed by steps of 0,05 from 1 to 1,35 while ω0 = 10,35. Plots of the

step response are in figure 60. Values of ω, ζ, kp and ki are in table 10. Value ζ = 1,1 is

1 2 3 4 5 6 7 8
ω0 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35
ζ 1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35
kp 0.04326 0.04563 0.04799 0.05035 0.05272 0.05508 0.05744 0.05981
ki 0.2446 0.2446 0.2446 0.2446 0.2446 0.2446 0.2446 0.2446

Table 10: Velocity controller tuning with constant ω0

70

9 System identification Application of servo drives on the prototype of the
punch press machine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step;Response

Time;(seconds)

A
m

pl
itu

de

ω
0

=;10.35;;ζ =;1

ω
0

=;10.35;;ζ =;1.05

ω
0

=;10.35;;ζ =;1.1

ω
0

=;10.35;;ζ =;1.15

ω
0

=;10.35;;ζ =;1.2

ω
0

=;10.35;;ζ =;1.25

ω
0

=;10.35;;ζ =;1.3

ω
0

=;10.35;;ζ =;1.35

Figure 59: Step response with constant ω0

0.12 0.14 0.16 0.18 0.2 0.22 0.24

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

Step;Response

Time;(seconds)

A
m

pl
itu

de ω
0

=;10.35;;ζ =;1

ω
0

=;10.35;;ζ =;1.05

ω
0

=;10.35;;ζ =;1.1

ω
0

=;10.35;;ζ =;1.15

ω
0

=;10.35;;ζ =;1.2

ω
0

=;10.35;;ζ =;1.25

ω
0

=;10.35;;ζ =;1.3

ω
0

=;10.35;;ζ =;1.35

Figure 60: Detail of the step response

chosen with respect of kp < 0,05. Result of tuning after recalculation is kp = 48000 and

ki = 24,5. The final response is depicted in figure 61 and it has following properties:

Rise time: 0.0781 s

Settling time: 0.4848 s

Overshoot: 7.6602 %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

A
m

pl
itu

de

ω
0

= 10.35; ζ = 1.1

Figure 61: Step response of the system with tuned velocity controller

71

9 System identification Application of servo drives on the prototype of the
punch press machine

sd [mm] j [ms−3] amax [ms−2] vmax [ms−1] ttot [ms]
6,19 1,04166 ·103 6,25 0,179 133

Table 11: The punch parameters

9.3 Tuning of the position loop

The tuning of the position loop will be done with respect to the reference trajectory. The

main target is to track the reference trajectory as well as possible. The response to dis-

turbance represented by the impact to the sheet of metal is good even if control loops are

tuned poorly. Therefore it is not necessary to test it. The reference trajectory is in figure

62. Parameters characterising the slope are in table 11.

0 0.02 0.04 0.06 0.08 0.10 0.12

0

-1

-2

-3

-4

-5

-6

Figure 62: The slope used for tuning

Tuning of the position loop is implemented in the Simulink model. The model is depicted

in figure 63. The transfer function H(s) = 438
s+1.75 of the tuned system is used as a description.

It covers the current controller, both motors and Z axis. The velocity controller in the block

PI speed is the same as the one in the chapter 8.4. It has gains obtained by tuning in the

previous chapter. The controller can be seen in figure 64. The only difference is presence of

Interpolation block which converts discrete output of the position controller to the continuous

signal.

The position controller in the block Real time PC is implemented as described in chapter 7.

The source code of the controller is in the code listing 10. It is executed every 1 ms. Discrete

72

9 System identification Application of servo drives on the prototype of the
punch press machine

Referencewspeedw[rmp]

Realwspeedw[rpm]
Currentw[A]

PIwspeed

438
s21.75

TransferwFcn

ww[RPM]

[mm]
[mm/s]

[mm/s/s]
[inc]w

[inc/s]

Axiswconverter

Position

Realwpositionw[inc]

ww[RPM]

Desiredwpositionw[mm]

RealwtimewPC

Position

TowWorkspace

Add

J

TowWorkspace2

TransportwDelay1

TransportwDelay

Figure 63: Simulink model for position tuning

1
Currentc[A]

1e-6

A/rpm

0.01

A/rpm/s

24.46

48000

P2

2 Realcspeedc[rpm]

1
s

Integrator2

1
Referencecspeedc[rmp]

Samplesc[RPM] Continousc[RPM]

Interpolation

Figure 64: Velocity PI controller

sampling time in the Simulink is implemented by usage of Atomic subsystem with sample

time 1 ms. The controller is depicted in figure 65. The block called Axis converter serves

pos

Generated/position

1

Real/position/[inc] 1
w/[RPM]

2
Desired/position/[mm]

[mm] [inc]

Axis/converter

kp

P3

0.0001

rpm/Incr

1Z-1

Delay1
Subtract

[inc] [mm]

Axis/converter1

Figure 65: Position controller inside the real time PC

only for conversion between units. Tuning itself is conducted as an optimization task. At

first the simulation is executed with initial setting of the proportional gain kp. The initial

value is set to kp = 800. It is the value obtained by manual tuning.

Then the Matlab script in the code listing E.1 calls the optimization function fminsearch.

The optimization function executes perpetually the function Criterion.m listed in the code

listing E.2. The script Optimization.m starts the simulation. Output of the simulation is a

vector −→J = (J1, J2, · · · , Jn). The vector −→J contains samples of differences between the real

and reference trajectory.

73

9 System identification Application of servo drives on the prototype of the
punch press machine

The −→J is processed by the function f in the equation 36. The result of f is passed back

to the fminsearch. The fminsearch decides how to change the kp and executes Criterion.m

perpentualy, until the minimal value of f is found.

f =
N∑

i=1
J2

i (36)

The result of the optimization is in figure 66. The proportional gain kp is gradually

increased until instability occurs. Than kp is decreased to get rid of the unstable behaviour.

The final value is kp = 3480. It is quite an aggressive set-up, oscillations in the steady state

phase are still present.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−7

−6

−5

−4

−3

−2

−1

0

1

initial setup

target

final result

t [ms]

Figure 66: Optimization process

Therefore the equation 36 is changed to the weighting function listed in the equation 37,

where k is the first sample of the steady state phase. Oscillations at the end of the trajectory

have 100 times bigger influence on the value f than the rest of the samples. The result of

optimization is in figure 67. The weighting decreased oscillations and the final value of the

proportional gain is kp = 2800. The overshoot at the end of the movement is 0,06 mm, which

is a negligible value.

f =

∑N

i=1 J
2
i if i < k

100 ·∑N
i=1J

2
i if i ≥ k

(37)

74

9 System identification Application of servo drives on the prototype of the
punch press machine

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−7

−6

−5

−4

−3

−2

−1

0

1

initial setup

target

final result

t [ms]

Figure 67: Optimization process with the
weighting function

0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

initial setup

target

final result

Figure 68: Detail view of the optimization pro-
cess with the weighting function

However the kp does not correspond with the value obtained by the manual tuning. It

might be caused by insufficient knowledge of the inner properties of drives. The connection

between the real time PC and drives might be modelled incorrectly.

9.4 Summary

The transfer function of Dynapunch is obtained by analysing the frequency response. The

Dynapunch is identified as a first order system with the transport delay. The transfer function

is used for tuning velocity and position controllers.

Controllers inside drives are considered as continuous, although they are discrete. It is

assumed that the sampling frequency of controllers is high enough for considering controllers

as continuous. Proportional and integral gain values of the velocity controller correspond

with the values obtained by the manual tuning. It proves that usage of continuous controllers

in the tuning process does not affect the result of tuning.

However, the value of proportional gain kp = 2800 does not match with the value kp = 800

which is obtained by the manual tuning. It is not possible to analyse the issue in more detail,

because there is a lack of information from the side of the manufacturer of drives. Imple-

mentation of position controller outside the drive requires sending the velocity command to

drives through the Velocity offset input (figure 28). There is a low pass filter on the way

of the command. The filter is turned off according to the documentation, but it is possible

75

10 Remark Application of servo drives on the prototype of the
punch press machine

that some unknown factors can affect the value of the velocity command. This conclusion

is deduced from the fact, that commissioning of the Velocity offset input is a matter of a

lot of changes in the drives firmware during placement of the position controller outside

drives. Proper implementation of the position controller outside drives will probably require

additional communication with the drive manufacturer.

Results of tuning have not been tested on the real system, because there are time schedule

related issues described in the following chapter. Even if testing is not done, controllers are

successfully tuned and tested during manual tuning.

10 Remark

Control loop gains parameters obtained in the chapter 9 are not tested on the real system

and compared with values obtained by the manual tuning. There was not enough time to

do it. The working schedule was continuously delayed by fixing bugs in the drives firm-

ware. Although the functionalities of drives were listed in the datasheet, they had not been

implemented properly and drives fell into an error state very often.

The drives were originally developed for driving industrial robots. That kind of applica-

tion did not push drives to the borders of their operational limits. However, application in

a punch press machine has different demands. Drives are required to switch rapidly from

minimal to maximum power and have to cope with large position errors during the impact

of the punch. It frequently results in the activation of safety measures in drives. Measures

provide protection against damage of servo drives or prevents the robot from movement out

of the defined trajectory.

These safety measures are not applicable to punch press machines. It is very common

to have sudden changes of required torque followed by a large position error during the

impact into the sheet of metal. Therefore it was necessary to change safety measures to a

less restrictive form. The only way how to do it was to report problems to the manufacturer

of drives. The manufacturer had to send new versions of the drive’s firmware which usually

took more than one week. This is the reason why the testing on the real system was not

finished completely. It is definitely not a mistake of the manufacturer. It is normal that

problems might appear if new technology is implemented for the first time.

76

11 Conclusion Application of servo drives on the prototype of the
punch press machine

11 Conclusion

The work done during the thesis results in the functional implementation of servo drives on

the prototype of the punch press machine. Dynapunch is brought to the state where it is

able to make coordinated movements with both axes and perform testing patterns.

Several tasks are solved. The trajectory generator is rewritten in a more usable form. The

algorithm for the motion anticipation has been created. Completion of both tasks allowed

the synchronization of the Z and X axes together. Axis synchronization allows the start of

movements with one axis while the other is finishing movement. This leads to improvement

of the punching speed.

The second servomotor is connected to the Z axis and solution for motors synchronization

is implemented. The most significant issue is that servo drives are not supporting any

communication between drives. The communication problem is solved by moving position

control loop outside drives into the real time PC. This solution proves to be effective, but it

also exposes issues which appeared in the next stage of work.

Drives are tuned manually. Manual tuning gives sufficient results, but it requires a large

amount of time. Therefore the mathematical model of the machine is created in the Simulink

environment. However, the model does not approximate the real system well, because of the

lack of information about the inner properties of servo drives.

The method for system identification is applied instead of creation of the model. The

transfer function is obtained and used for the tuning of velocity and position controller.

The target of tuning is to have the fastest transient response with minimal overshoot. The

identification method is successful, because values of proportional and integral gains of the

velocity controller are very similar to the values obtained by manual tuning. It is not

necessary to tune drives for good reaction to the disturbance, because the punch press is

able to perforate steel sheets up to 6 mm without problems.

The tuning of the position control loop is done on the Simulink model. The position

controller in the real time PC is implemented as well as velocity controller inside drives. The

tuning is focused on the tracking of the reference trajectory. The appropriate value of the

position proportional gain is found as a solution of the optimization task. The trajectory

obtained from the simulation fits the trajectory obtained by the manual tuning. However

77

11 Conclusion Application of servo drives on the prototype of the
punch press machine

values of proportional gains do not match. The difference of gains is major and could not be

caused by implementation of the model or by an error during system identification. As the

main reason is considered an undocumented element in the path of the velocity command.

Therefore it is recommend to use values obtained by the manual tuning from chapters 8.1

and 8.2. Values obtained by the manual tuning are sufficient for the control of axes.

Further work on Dynapunch should be focused on the examination of the difference

between values obtained by the manual tuning and system identification method. Especially

signal path of the Velocity offset command should be examined carefully. If the difference

between methods is eliminated, the system identification method will became more reliable

and precise than the manual tuning method.

It is not recommended to improve the model described in the chapter 8.4, because creation

of the model which is approximating reality well proved to be very difficult. Better results

gives the method of system identification.

The next step in the development of Dynapunch is to create an adaptive punching al-

gorithm which will lead to improved productivity and energy savings. The maximum speed

of the Z axis is 500 strokes per minute or 600 strokes per minute if reduced stroke length

is used. This result provides good base for further development. Servo drives proved to be

capable of powering the prototype of the punch press machine.

78

Literature Application of servo drives on the prototype of the
punch press machine

Literature
[1] SERRUYS, Wim; Blecharbeitung, Stand der Technik; LVD Company n. v., Nederlands,

Belgium 2006. 111 pages, ISBN: 9789080722491

[2] ÅSTRÖM, Karl; Control System Design, [online], Santa Barbara, California 2002.
333 pages, [cit. 2014-10-15]. Available from: http://neutron.ing.ucv.ve/eiefile/
Control%20I/Astrom_notas.pdf

[3] ETHERCAT TECHNOLOGY GROUP; EtherCAT - the Ethernet Fieldbus, [online],
Nuremberg, Germany 2014. [cit. 2014-10-15]. Available from: http://www.ethercat.
org/en/technology.html

[4] CONTROLENG CORPORATION; SERVOsoft Help, Motion Profile, [online]. Maple,
Ontario 2011. ISBN: 978-1-4577-0755-1. [cit. 2014-10-15]. Available from: http://www.
controleng.ca/servosoft/SSHelp1033/source/MotionProfile.htm

[5] AMD; AMD GeodeTM LX Processors Data Book, [online]. Sunnyvale, California,
May 2008. 678 pages, [cit. 2014-10-15] Available from: http://www.versalogic.com/
support/Downloads/PDF/LXManualMay08.pdf

[6] RACCIU, MANTAGEZZA; RTAI User Manual 3.4, [online], October 2006. [cit. 2014-
10-15] Available from: https://www.rtai.org/?About_RTAI

[7] MAVILOR; AC Servo Motors BL 110/140/190 Series, [online]. Barcelona,Spain 2001.
[cit. 2014-10-15] Available from: http://www.mavilor.es/pdf_products/bl100_
series_sc.pdf

[8] MAVILOR; AC Servo Motors BL 40/50/70 Series, [online]. Barcelona,Spain 2001. [cit.
2014-10-15] Available from: http://www.mavilor.es/pdf_products/bl40_series_
sc.pdf

[9] IRT SA; IRT Operating manual, Drives 2000 S-AT, 4000 S-AT, [online], Neuchâtel 2013.
[cit. 2014-10-15] Available from: http://www.irtsa.com/IMG/pdf/op2_4_0913e.pdf

[10] REIS GMBH & CO MASCHINENFABRIK OBERNBURG; EtherCAT with Drive pro-
file CiA402, [datasheet], 39 pages, Obernburg 2012.

[11] BECKHOFF AUTOMATION GmbH; EL1002, 2-channel digital input ter-
minal 24 V DC, [online], Verl, Germany 2010. [cit. 2014-10-15] http:
//download.beckhoff.com/download/Document/Catalog/Main_Catalog/english/
separate-pages/EtherCAT/EL1002.pdf

79

http://neutron.ing.ucv.ve/eiefile/Control%20I/Astrom_notas.pdf
http://neutron.ing.ucv.ve/eiefile/Control%20I/Astrom_notas.pdf
http://www.ethercat.org/en/technology.html
http://www.ethercat.org/en/technology.html
http://www.controleng.ca/servosoft/SSHelp1033/source/MotionProfile.htm
http://www.controleng.ca/servosoft/SSHelp1033/source/MotionProfile.htm
http://www.versalogic.com/support/Downloads/PDF/LXManualMay08.pdf
http://www.versalogic.com/support/Downloads/PDF/LXManualMay08.pdf
https://www.rtai.org/?About_RTAI
http://www.mavilor.es/pdf_products/bl100_series_sc.pdf
http://www.mavilor.es/pdf_products/bl100_series_sc.pdf
http://www.mavilor.es/pdf_products/bl40_series_sc.pdf
http://www.mavilor.es/pdf_products/bl40_series_sc.pdf
http://www.irtsa.com/IMG/pdf/op2_4_0913e.pdf
http://download.beckhoff.com/download/Document/Catalog/Main_Catalog/english/separate-pages/EtherCAT/EL1002.pdf
http://download.beckhoff.com/download/Document/Catalog/Main_Catalog/english/separate-pages/EtherCAT/EL1002.pdf
http://download.beckhoff.com/download/Document/Catalog/Main_Catalog/english/separate-pages/EtherCAT/EL1002.pdf

Appendix Application of servo drives on the prototype of the
punch press machine

Appendix A Attached CD

80

Appendix Application of servo drives on the prototype of the
punch press machine

Appendix B Axis synchronization tests

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

z_
po
si
tio
nr
[m
m
]

−600

−400

−200

0

200

400

600

x_
ac
t_
sp
dr
[m
m
/s
]

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
40

60

80

100

120

140

160

x_
po
si
tio
nr
[m
m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 69: Axes synchronization test, Parameters of the Z axis: hover height h = 5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 70

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.5 ms−1

81

Appendix Application of servo drives on the prototype of the
punch press machine

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

z_
po

si
tio

nr
[m

m
]

−600

−500

−400

−300

−200

−100

0

100

x_
ac

t_
sp

dr
[m

m
/s

]

2661 2666 2671 2676 2681 2686 2691 2696 2701 2706 2711 2716 2721 2726 2731 2736 2741 2746 2751 2756 2761 2766 2771 2776 2781 2786 2791 2796 2801 2806 2811 2816 2821 2826 2831
115

120

125

130

135

140

145

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 70: Axes synchronization test, Parameters of the Z axis: hover height h = 5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 70

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.5 ms−1

82

Appendix Application of servo drives on the prototype of the
punch press machine

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z_
po

si
tio

nr
[m

m
]

−35

−30

−25

−20

−15

−10

−5

0

5

x_
ac

t_
sp

dr
[m

m
/s

]

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

129.99

129.995

130

130.005

130.01

130.015

130.02

130.025

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 71: Axes synchronization test, Parameters of the Z axis: hover height h = 5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 70

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.7 ms−1

83

Appendix Application of servo drives on the prototype of the
punch press machine

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z_
po

si
tio

nr
[m

m
]

−250

−200

−150

−100

−50

0

50

x_
ac

t_
sp

dr
[m

m
/s

]

29252926 2927 2928 2929 29302931 2932 2933 2934 29352936 2937 2938 2939 29402941 2942 2943 2944 29452946 2947 2948 2949 29502951 2952 2953 2954 29552956 2957 2958 2959 29602961 2962 2963 2964 2965
129.55

129.6

129.65

129.7

129.75

129.8

129.85

129.9

129.95

130

130.05

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 72: Axes synchronization test, Parameters of the Z axis: hover height h = 5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 70

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.7 ms−1

84

Appendix Application of servo drives on the prototype of the
punch press machine

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

z_
po

si
tio

nr
[m

m
]

−600

−500

−400

−300

−200

−100

0

100

x_
ac

t_
sp

dr
[m

m
/s

]

2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060
85

90

95

100

105

110

115

120

125

130

135

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 73: Axes synchronization test, Parameters of the Z axis: hover height h = 2.5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.179 ms−1. Parameters of the X axis: stroke distance sd = 100

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.5 ms−1

85

Appendix Application of servo drives on the prototype of the
punch press machine

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

z_
po

si
tio

nr
[m

m
]

−600

−500

−400

−300

−200

−100

0

100

x_
ac

t_
sp

dr
[m

m
/s

]

2179 2184 2189 2194 2199 2204 2209 2214 2219 2224 2229 2234 2239 2244 2249 2254 2259 2264 2269 2274 2279 2284 2289 2294 2299 2304 2309 2314 2319
120

122

124

126

128

130

132

134

136

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 74: Axes synchronization test, Parameters of the Z axis: hover height h = 5 mm, die penetration dp = 1.2 [mm],

jerk j = 1.041 ms−3, max. acceleration amax = 62.5 ms−2, max. speed vmax = 0.7 ms−1. Parameters of the X axis: stroke distance sd = 10

mm, jerk j = 3500 [ms−3], max. acceleration amax = 15 ms−2, max. speed vmax = 0.5 ms−1

86

Appendix Application of servo drives on the prototype of the
punch press machine

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z_
po

si
tio

nr
[m

m
]

−600

−500

−400

−300

−200

−100

0

100

x_
ac

t_
sp

dr
[m

m
/s

]

1318 1323 1328 1333 1338 1343 1348 1353 1358 1363 1368 1373 1378 1383 1388 1393 1398 1403 1408 1413 1418 1423 1428 1433 1438 1443 1448 1453 1458
128

130

132

134

136

138

140

142

x_
po

si
tio

nr
[m

m
]

tr[ms]

Referencervariable
Measuredrvariable

Figure 75: Axes synchronization test, Parameters of the Z axis: hover height h = 2.5 mm, die penetration dp = 0.3 [mm],

jerk j = 0, 5025 ms−3, max. acceleration amax = 32.5 ms−2, max. speed vmax = 0.122 ms−1. Parameters of the X axis: stroke distance sd = 10

mm, jerk j = 3500 [ms−3], max. acceleration amax = 35 ms−2, max. speed vmax = 0.7 ms−1

87

Appendix Application of servo drives on the prototype of the
punch press machine

Appendix C Manual tuning plots

−2

0

2

4

6

8

10

−250

−200

−150

−100

−50

0

50

100

150

200

250

2522 2542 2562 2582 2602 2622 2642 2662 2682 2702 2722 2742 2762 2782 2802 2822 2842 2862 2882 2902 2922 2942 2962 2982 3002 3022 3042 3062
−80

−60

−40

−20

0

20

40

60

80

100

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 76: The motion profile of the Z axis without gain scheduling

88

Appendix Application of servo drives on the prototype of the
punch press machine

−4

−2

0

2

4

6

8

10

z1
_p

os
iti

on
 [m

m
]

−250

−200

−150

−100

−50

0

50

100

150

200

250

z1
_a

ct
_s

pd
 [m

m
/s

]

2661 2681 2701 2721 2741 2761 2781 2801 2821 2841 2861 2881 2901 2921 2941 2961 2981 3001 3021 3041 3061 3081 3101 3121 3141 3161 3181
−150

−100

−50

0

50

100

z1
_f

or
ce

 [k
N

]

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 77: The motion profile of the Z axis with gain scheduling

89

Appendix Application of servo drives on the prototype of the
punch press machine

−4

−2

0

2

4

6

8

10

−150

−100

−50

0

50

100

150

3226 3246 3266 3286 3306 3326 3346 3366 3386 3406 3426 3446 3466 3486 3506 3526 3546 3566 3586 3606 3626 3646 3666 3686 3706 3726 3746 3766
−20

0

20

40

60

80

100

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 78: Slow punch through 5 mm steel plate
90

Appendix Application of servo drives on the prototype of the
punch press machine

−4

−2

0

2

4

6

8

10

−250

−200

−150

−100

−50

0

50

100

150

200

250

2876 2896 2916 2936 2956 2976 2996 3016 3036 3056 3076 3096 3116 3136 3156 3176 3196 3216 3236 3256 3276 3296 3316 3336 3356 3376 3396 3416
−60

−40

−20

0

20

40

60

80

100

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 79: Fast punch through 5 mm steel plate
91

Appendix Application of servo drives on the prototype of the
punch press machine

−2

−1

0

1

2

3

4

5

6

7

8

−200

−150

−100

−50

0

50

100

150

200

2663268327032723274327632783280328232843286328832903292329432963298330033023304330633083310331233143316331833203322332433263328333033323334333633383340334233443346334833503
−150

−100

−50

0

50

100

150

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 80: Punch pattern without the steel plate
92

Appendix Application of servo drives on the prototype of the
punch press machine

−2

−1

0

1

2

3

4

5

6

7

8

−200

−150

−100

−50

0

50

100

150

1624 16441664 1684 1704 1724 17441764 1784 1804 1824 18441864 1884 1904 1924 19441964 1984 2004 2024 20442064 2084 2104 2124 21442164 2184 2204 2224 22442264 2284 2304 2324 23442364 2384 2404 2424 24442464
−150

−100

−50

0

50

100

150

t [ms]

z1
_p

os
iti

on
 [m

m
]

z1
_s

pd
 [m

m
/s

]
z1

_s
pd

 [m
m

/s
]

z1
_f

or
ce

 [k
N

]

Figure 81: Punch pattern with the 5 mm steel plate

93

Appendix Application of servo drives on the prototype of the
punch press machine

Appendix D Source code

D.1 pattern stm.c

1 #include "../../include/touch_rt.h"
2
3 #include <rtai.h>
4 #include <rtai_sched.h>
5 #include <rtai_shm.h>
6 #include <math.h>
7
8 #include "pattern_stm.h"
9 #include "restart_stm.h"

10
11 #include "../../stm/stm_mod.h"
12 #include "../../servio/servio_mod.h"
13 #include "../../axes/axes_mod.h"
14 #include "../../tgen/tgen_mod.h"
15 #include "../../ldp/ldp_mod.h"
16 #include "../../ldp/ldp_cmd.h"
17 #include "../../lut/lut_mod.h"
18
19 #define DEBUG_TAG "pattern"
20 #include "../../debug/debug_mod.h"
21
22 #include "../../include/gendef.h"
23 #include "../../include/axdef.h"
24
25 //state functions prototypes
26 void Pattern_s_Idle();
27 void Pattern_s_Init();
28 void Pattern_s_Referencing();
29 void Pattern_s_After_Referencing();
30 void Pattern_s_Z1_In_Pos();
31 void Pattern_s_X1_In_Pos();
32 void Pattern_s_Punching();
33 void Pattern_s_Moving();
34 void Pattern_s_Anticipating_X1();
35 void Pattern_s_Anticipating_Z1();
36 void Pattern_s_Z1_Moving_Up();
37 void Pattern_s_Z2_disabling();
38 void Pattern_s_Punching_2();
39
40 //condition function prototypes
41 int Pattern_c_AlwaysTrue();
42 int Pattern_c_NewCommand();
43 int Pattern_c_Z1_Ready();
44 int Pattern_c_Z2_Ready();
45 int Pattern_c_X1_Ready();
46 int Pattern_c_Z1_In_Pos();
47 int Pattern_c_X1_In_Pos();
48 int Pattern_c_Referenced();
49 int Pattern_c_Counter();
50 int Pattern_c_Z1_Above_Clear_Height();
51 int Pattern_c_Time_To_Punch();
52 int Pattern_c_Time_To_Move();
53 int Pattern_c_Z1_Goes_Up();
54 int Pattern_c_Z2_disabled();
55 int Pattern_c_Z2_enabled();
56 int Pattern_c_timer_elapsed();
57 int Pattern_c_timer_2_elapsed();
58
59 //transition function prototypes
60 void Pattern_t_DoNothing();
61 void Pattern_t_Enable_Z2();
62 void Pattern_t_Disable_Z2();

94

Appendix Application of servo drives on the prototype of the
punch press machine

63 void Pattern_t_IdleToInit();
64 void Pattern_t_InitToRef();
65 void Pattern_t_RefToX1Pos();
66 void Pattern_t_X1PosToZ1Pos();
67 void Pattern_t_PunchToAnticipating_Z1();
68 void Pattern_t_Anticipating_Z1ToMoving();
69 void Pattern_t_MovingToAnticipating_X1();
70 void Pattern_t_Anticipating_X1ToPunch();
71 void Pattern_t_PunchToPunch();
72 void Pattern_t_PunchToZ1up();
73 void Pattern_t_PunchToIdle();
74
75 //global variables
76 ttv_recv_cmd_data gtv_cmd_data_recv;
77 ttv_send_cmd_data gtv_cmd_data_send;
78
79 int giv_command = CMD_EVACUATE_TABLE;
80
81 // loaded from config.ini
82 float gfv_x1_axis_speed = 10;
83 float gfv_x1_axis_acc = 10;
84 float gfv_x1_axis_start_pos= 200; // axis X1 start position [mm]
85 float gfv_x1_axis_pos = 200; // axis X1 position [mm]
86 float gfv_x1_axis_delta = 1; // [mm] distance between two punches
87 int giv_x1_nr_punch_dir = 5; // number of one way movements
88
89 // loaded from config.ini
90 float gfv_z1_axis_start_pos = 50;
91 float gfv_z1_clear_height = 5; // mm distance above table
92 int giv_punch_nr = 1;
93 float gfv_time_to_position_up_correction = 0.0; //z1 time to position up correction [s]
94 float gfv_time_to_position_down_correction = 0.0; //z1 time to position correction [s]
95 float gfv_z1_axis_die_penetration = -1; //default z1 position for die penetration [mm]
96 float gfv_end_position = 56; // [mm] position reached when the punch pattern is done
97 float gfv_z1_ref_position = 56.3; // [mm] position after referencing
98
99 float gfv_punch_distance = 0.0;

100
101 int giv_move_direction = -1;
102 int giv_internal_move_count = 0;
103
104 // punch count
105 int giv_punch_count = 0;
106 // old punch count
107 int giv_pattern_moved=0;
108
109 //z1 time to position [s], axis goes from hower height to clear height
110 float gfv_z1_time_to_pos = 99.0;
111 //z1 time to position up [s], axis goes from die penetration height to clear height
112 float gfv_time_to_position_up = 99.0;
113
114 int pattern_stm_initialise()
115 {
116 debug_message(DEBUG_TAG,"pattern_stm_initialise");
117
118 int liv_stm_idx = stm_register_state_machine();
119 if (liv_stm_idx == -1)
120 {
121 debug_message(DEBUG_TAG,"stm_register_state_machine failed");
122 return -1;
123 }
124
125 int liv_state_idle = stm_register_state(liv_stm_idx,Pattern_s_Idle);
126 int liv_state_init = stm_register_state(liv_stm_idx,Pattern_s_Init);
127 int liv_state_ref = stm_register_state(liv_stm_idx,Pattern_s_Referencing);
128 int liv_state_after_ref = stm_register_state(liv_stm_idx,Pattern_s_After_Referencing);
129 int liv_state_z1_in_pos = stm_register_state(liv_stm_idx,Pattern_s_Z1_In_Pos);
130 int liv_state_x1_in_pos = stm_register_state(liv_stm_idx,Pattern_s_X1_In_Pos);
131 int liv_state_moving = stm_register_state(liv_stm_idx,Pattern_s_Moving);
132 int liv_state_anticipating_X1 = stm_register_state(liv_stm_idx,Pattern_s_Anticipating_X1);

95

Appendix Application of servo drives on the prototype of the
punch press machine

133 int liv_state_punching = stm_register_state(liv_stm_idx,Pattern_s_Punching);
134 int liv_state_punching_2 = stm_register_state(liv_stm_idx,Pattern_s_Punching_2);
135 int liv_state_anticipating_Z1 = stm_register_state(liv_stm_idx,Pattern_s_Anticipating_Z1);
136 int liv_state_z1_moving_up = stm_register_state(liv_stm_idx,Pattern_s_Z1_Moving_Up);
137 int liv_state_disabling_z2 = stm_register_state(liv_stm_idx,Pattern_s_Z2_disabling);
138
139 if ((liv_state_idle == -1) ||
140 (liv_state_init == -1) ||
141 (liv_state_ref == -1) ||
142 (liv_state_z1_in_pos == -1) ||
143 (liv_state_x1_in_pos == -1) ||
144 (liv_state_punching == -1) ||
145 (liv_state_anticipating_Z1 == -1) ||
146 (liv_state_anticipating_X1 == -1) ||
147 (liv_state_moving == -1) ||
148 (liv_state_z1_moving_up == -1) ||
149 (liv_state_disabling_z2 == -1) ||
150 (liv_state_moving == -1))
151 {
152 debug_message(DEBUG_TAG,"stm_register_state failed");
153 return -1;
154 }
155
156 int liv_cond_true = stm_register_condition(liv_stm_idx,Pattern_c_AlwaysTrue);
157 int liv_cond_new_cmd = stm_register_condition(liv_stm_idx,Pattern_c_NewCommand);
158
159 int liv_cond_z2_disabled = stm_register_condition(liv_stm_idx,Pattern_c_Z2_disabled);
160 int liv_cond_z2_enabled = stm_register_condition(liv_stm_idx,Pattern_c_Z2_enabled);
161
162 int liv_cond_z1_rdy = stm_register_condition(liv_stm_idx,Pattern_c_Z1_Ready);
163 int liv_cond_z2_rdy = stm_register_condition(liv_stm_idx,Pattern_c_Z2_Ready);
164 int liv_cond_x1_rdy = stm_register_condition(liv_stm_idx,Pattern_c_X1_Ready);
165 int liv_cond_x1_rdy_z1_ready = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,liv_cond_z1_rdy

,liv_cond_x1_rdy);
166 int liv_cond_z1_in_pos = stm_register_condition(liv_stm_idx,Pattern_c_Z1_In_Pos);
167 int liv_cond_z1_not_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,

liv_cond_z1_in_pos,0);
168 int liv_cond_x1_in_pos = stm_register_condition(liv_stm_idx,Pattern_c_X1_In_Pos);
169 int liv_cond_x1_not_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,

liv_cond_x1_in_pos,0);
170 int liv_cond_x1_rdy_not_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_x1_not_in_pos,liv_cond_x1_rdy);
171 int liv_cond_x1_rdy_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_x1_in_pos,liv_cond_x1_rdy);
172 int liv_cond_time_to_move = stm_register_condition(liv_stm_idx,Pattern_c_Time_To_Move);
173 int liv_cond_x1_time_to_punch = stm_register_condition(liv_stm_idx,Pattern_c_Time_To_Punch);
174 int liv_cond_x1_rdy_z1_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_z1_in_pos,liv_cond_x1_rdy);
175 int liv_cond_x1_rdy_z1_not_in_pos = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_z1_not_in_pos,liv_cond_x1_rdy);
176 int liv_cond_ref = stm_register_condition(liv_stm_idx,Pattern_c_Referenced);
177 int liv_cond_not_ref = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,liv_cond_ref,0);
178 int liv_cond_counter = stm_register_condition(liv_stm_idx,Pattern_c_Counter);
179 int liv_cond_not_counter = stm_register_condition_combination(liv_stm_idx,STM_OPER_NOT,liv_cond_counter,0)

;
180 int liv_cond_x1_time_to_punch_counter = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_x1_time_to_punch,liv_cond_counter);
181 int liv_cond_not_counter_z1_x1_ready = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_x1_rdy_z1_ready,liv_cond_not_counter);
182 int liv_cond_not_counter_z1_x1_z2_ready = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_not_counter_z1_x1_ready,liv_cond_z2_rdy);
183 int liv_cond_x1_time_to_punch_z1_ready = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_z1_rdy,liv_cond_x1_time_to_punch);
184 int liv_cond_liv_cond_time_to_move_and_x1_ready = stm_register_condition_combination(liv_stm_idx,

STM_OPER_AND,liv_cond_time_to_move,liv_cond_x1_rdy);
185
186 int liv_cond_not_counter_z1_x1_ready_z2_dis = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,

liv_cond_not_counter_z1_x1_ready,liv_cond_z2_disabled);
187 int liv_cond_x1_rdy_z1_not_in_pos_z2_disabled = stm_register_condition_combination(liv_stm_idx,

STM_OPER_AND,liv_cond_x1_rdy_z1_not_in_pos,liv_cond_z2_disabled);

96

Appendix Application of servo drives on the prototype of the
punch press machine

188 int liv_cond_x1_time_to_punch_z1_ready_z2_enabled = stm_register_condition_combination(liv_stm_idx,
STM_OPER_AND,liv_cond_x1_time_to_punch_z1_ready,liv_cond_z2_enabled);

189 int liv_cond_not_ref_z2_disabled = stm_register_condition_combination(liv_stm_idx,STM_OPER_AND,
liv_cond_not_ref,liv_cond_z2_disabled);

190 int liv_cond_timer_elapsed = stm_register_condition(liv_stm_idx, Pattern_c_timer_elapsed);
191 int liv_cond_timer_2_elapsed = stm_register_condition(liv_stm_idx, Pattern_c_timer_2_elapsed);
192 int liv_cond_x1_time_to_punch_z1_ready_z2_enabled_timer = stm_register_condition_combination(liv_stm_idx,

STM_OPER_AND,liv_cond_x1_time_to_punch_z1_ready_z2_enabled,liv_cond_timer_elapsed);
193
194 if ((liv_cond_true == -1) ||
195 (liv_cond_new_cmd == -1) ||
196 (liv_cond_z1_rdy == -1) ||
197 (liv_cond_x1_rdy == -1) ||
198 (liv_cond_z1_in_pos == -1) ||
199 (liv_cond_z1_not_in_pos == -1) ||
200 (liv_cond_x1_rdy_in_pos == -1) ||
201 (liv_cond_x1_rdy_not_in_pos == -1) ||
202 (liv_cond_x1_in_pos == -1) ||
203 (liv_cond_z2_rdy == -1) ||
204 (liv_cond_z2_enabled == -1) ||
205 (liv_cond_z2_disabled == -1) ||
206 (liv_cond_not_counter_z1_x1_ready_z2_dis == -1) ||
207 (liv_cond_x1_not_in_pos == -1) ||
208 (liv_cond_x1_rdy_z1_in_pos == -1) ||
209 (liv_cond_x1_rdy_z1_not_in_pos == -1) ||
210 (liv_cond_ref == -1) ||
211 (liv_cond_not_ref == -1) ||
212 (liv_cond_counter == -1) ||
213 (liv_cond_time_to_move == -1) ||
214 (liv_cond_x1_time_to_punch == -1) ||
215 (liv_cond_not_counter_z1_x1_z2_ready == -1)||
216 (liv_cond_x1_time_to_punch_counter == -1) ||
217 (liv_cond_x1_time_to_punch_z1_ready == -1) ||
218 (liv_cond_liv_cond_time_to_move_and_x1_ready == -1) ||
219 (liv_cond_x1_rdy_z1_not_in_pos_z2_disabled == -1) ||
220 (liv_cond_x1_time_to_punch_z1_ready_z2_enabled == -1) ||
221 (liv_cond_not_ref_z2_disabled == -1) ||
222 (liv_cond_x1_rdy_z1_ready == -1) ||
223 (liv_cond_timer_2_elapsed == -1))
224 {
225 debug_message(DEBUG_TAG,"stm_register_condition failed");
226 return -1;
227 }
228
229 int liv_trans_1 = stm_register_transition(liv_stm_idx,liv_state_idle,liv_state_init,liv_cond_new_cmd,

Pattern_t_IdleToInit);
230 int liv_trans_2 = stm_register_transition(liv_stm_idx,liv_state_init,liv_state_after_ref,liv_cond_ref,

Pattern_t_DoNothing);
231 int liv_trans_3 = stm_register_transition(liv_stm_idx,liv_state_init,liv_state_ref,

liv_cond_not_ref_z2_disabled,Pattern_t_InitToRef);
232 int liv_trans_3_1 = stm_register_transition(liv_stm_idx,liv_state_ref,liv_state_after_ref,liv_cond_ref,

Pattern_t_DoNothing);
233
234 int liv_trans_4 = stm_register_transition(liv_stm_idx,liv_state_after_ref,liv_state_x1_in_pos,

liv_cond_x1_rdy_in_pos,Pattern_t_Disable_Z2);
235 int liv_trans_5 = stm_register_transition(liv_stm_idx,liv_state_after_ref,liv_state_x1_in_pos,

liv_cond_x1_rdy_not_in_pos,Pattern_t_RefToX1Pos);
236 int liv_trans_6 = stm_register_transition(liv_stm_idx,liv_state_x1_in_pos,liv_state_z1_in_pos,

liv_cond_x1_rdy_z1_in_pos,Pattern_t_DoNothing);
237 int liv_trans_7 = stm_register_transition(liv_stm_idx,liv_state_x1_in_pos,liv_state_z1_in_pos,

liv_cond_x1_rdy_z1_not_in_pos,Pattern_t_X1PosToZ1Pos);
238 int liv_trans_8 = stm_register_transition(liv_stm_idx,liv_state_z1_in_pos,liv_state_moving,

liv_cond_x1_rdy_z1_ready,Pattern_t_Enable_Z2);
239
240 int liv_trans_9 = stm_register_transition(liv_stm_idx,liv_state_anticipating_Z1,liv_state_moving,

liv_cond_liv_cond_time_to_move_and_x1_ready,Pattern_t_Anticipating_Z1ToMoving);
241 int liv_trans_10 = stm_register_transition(liv_stm_idx,liv_state_moving,liv_state_punching,

liv_cond_x1_time_to_punch_z1_ready_z2_enabled_timer,Pattern_t_Anticipating_X1ToPunch);
242 int liv_trans_15 = stm_register_transition(liv_stm_idx,liv_state_punching,liv_state_punching_2,

liv_cond_timer_2_elapsed,Pattern_t_PunchToPunch);

97

Appendix Application of servo drives on the prototype of the
punch press machine

243 int liv_trans_12 = stm_register_transition(liv_stm_idx,liv_state_punching_2,liv_state_anticipating_Z1,
liv_cond_counter,Pattern_t_PunchToAnticipating_Z1);

244
245 int liv_trans_13_0 = stm_register_transition(liv_stm_idx,liv_state_punching_2,liv_state_disabling_z2,

liv_cond_not_counter_z1_x1_z2_ready,Pattern_t_Disable_Z2);
246 int liv_trans_13 = stm_register_transition(liv_stm_idx,liv_state_disabling_z2,liv_state_z1_moving_up,

liv_cond_z2_disabled,Pattern_t_PunchToZ1up);
247 int liv_trans_14 = stm_register_transition(liv_stm_idx,liv_state_z1_moving_up,liv_state_idle,

liv_cond_z1_rdy,Pattern_t_PunchToIdle);
248
249 if ((liv_trans_1 == -1) ||
250 (liv_trans_2 == -1) ||
251 (liv_trans_3 == -1) ||
252 (liv_trans_3_1 == -1) ||
253 (liv_trans_4 == -1) ||
254 (liv_trans_5 == -1) ||
255 (liv_trans_6 == -1) ||
256 (liv_trans_7 == -1) ||
257 (liv_trans_8 == -1) ||
258 (liv_trans_9 == -1) ||
259 (liv_trans_10 == -1) ||
260 (liv_trans_12 == -1) ||
261 (liv_trans_14 == -1) ||
262 (liv_trans_13_0 == -1) ||
263 (liv_trans_15 == -1) ||
264 (liv_trans_13 == -1))
265 {
266 debug_message(DEBUG_TAG,"stm_register_transition failed");
267 return -1;
268 }
269
270 return 1;
271 }
272
273
274 //state functions
275 void Pattern_s_Idle()
276 {
277 }
278
279 void Pattern_s_Init()
280 {
281 }
282
283 void Pattern_s_Referencing()
284 {
285 }
286
287 void Pattern_s_After_Referencing()
288 {
289 }
290
291 void Pattern_s_Z1_In_Pos()
292 {
293 }
294
295 void Pattern_s_X1_In_Pos()
296 {
297 }
298
299 void Pattern_s_Punching()
300 {
301 }
302
303 void Pattern_s_Punching_2()
304 {}
305
306 void Pattern_s_Moving()
307 {
308 }

98

Appendix Application of servo drives on the prototype of the
punch press machine

309
310 void Pattern_s_Anticipating_X1()
311 {
312 }
313 void Pattern_s_Anticipating_Z1()
314 {
315 }
316
317 void Pattern_s_Z1_Moving_Up()
318 {
319 }
320
321 void Pattern_s_Z2_disabling()
322 {
323 }
324
325 //conditions functions
326 int Pattern_c_AlwaysTrue()
327 {
328 return 1;
329 }
330
331 int Pattern_c_NewCommand()
332 {
333 return ldp_cmd_ready(giv_command);
334 }
335
336 int Pattern_c_Z1_Ready()
337 {
338 return (axis_get_state(Z1_AXIS) == ST_READY);
339 }
340
341 int Pattern_c_Z2_Ready()
342 {
343 return (axis_get_state(Z2_AXIS) == ST_READY);
344 }
345
346 int Pattern_c_X1_Ready()
347 {
348 return (axis_get_state(X1_AXIS) == ST_READY);
349 }
350
351 int Pattern_c_Z1_In_Pos()
352 {
353 return (fabs(axis_get_position(Z1_AXIS)-gfv_z1_axis_start_pos)<0.001);
354 }
355
356 int Pattern_c_X1_In_Pos()
357 {
358 return (fabs(axis_get_position(X1_AXIS)-gfv_x1_axis_start_pos)<0.001);
359 }
360
361 int Pattern_c_Z1_Above_Clear_Height()
362 {
363 return (axis_get_req_position(Z1_AXIS)>=gfv_z1_clear_height);
364 }
365
366 int Pattern_c_Referenced()
367 {
368 return restart_is_done();
369 }
370
371 int Pattern_c_Counter()
372 {
373 return (giv_punch_nr > giv_punch_count);
374 }
375
376 int Pattern_c_Time_To_Punch()
377 {
378 float pfv_time_to_move_ready = axis_get_time_to_move_ready(X1_AXIS);

99

Appendix Application of servo drives on the prototype of the
punch press machine

379 float pfv_time_to_pos = gfv_z1_time_to_pos+gfv_time_to_position_down_correction;
380 if((pfv_time_to_move_ready <= pfv_time_to_pos))//&& lut_timer_elapsed(1))
381 {
382 return 1;
383 }
384 return 0;
385
386 }
387
388 int Pattern_c_Time_To_Move()
389 {
390 float pfv_act_time = axis_get_act_time(Z1_AXIS);
391 if((pfv_act_time >= gfv_time_to_position_up+gfv_time_to_position_up_correction))//&& lut_timer_elapsed(1))
392 {
393 return 1;
394 }
395 return 0;
396 }
397
398 int Pattern_c_Z1_Goes_Up()
399 {
400 return ((0.1 <= axis_get_req_speed(Z1_AXIS)) || (axis_get_state(Z1_AXIS) == ST_READY)) ;
401 }
402
403 int Pattern_c_Z2_disabled()
404 {
405 return ((˜axis_is_enabled(Z2_AXIS)) | (axis_get_state(Z2_AXIS) == ST_IDLE));
406 }
407
408 int Pattern_c_Z2_enabled()
409 {
410 return axis_is_enabled(Z2_AXIS);
411 }
412
413 int Pattern_c_timer_elapsed()
414 {
415 return lut_timer_elapsed(1);
416 }
417
418 int Pattern_c_timer_2_elapsed()
419 {
420 return lut_timer_elapsed(2);
421 }
422
423 //transition functions
424 void Pattern_t_DoNothing()
425 {
426 debug_message(DEBUG_TAG,"Pattern_t_DoNothing");
427 }
428
429 void Pattern_t_Enable_Z2()
430 {
431 debug_message(DEBUG_TAG,"Pattern_t_Enable_Z2");
432 lut_timer_set(1,0.2);
433 enable_axis(Z2_AXIS);
434 axis_set_control_flag(1); // axis enabled, set act and req position same as Z1 axis
435 }
436
437 void Pattern_t_Disable_Z2()
438 {
439 debug_message(DEBUG_TAG,"Pattern_t_Disable_Z2");
440 disable_axis(Z2_AXIS);
441 }
442
443 void Pattern_t_IdleToInit()
444 {
445 debug_message(DEBUG_TAG,"Pattern_IdleToInit");
446 gfv_x1_axis_speed = axis_get_param(X1_AXIS, 28);
447 gfv_x1_axis_acc = axis_get_param(X1_AXIS, 29);
448 gfv_x1_axis_delta = axis_get_param(X1_AXIS, 30); // distance between strokes [mm]

100

Appendix Application of servo drives on the prototype of the
punch press machine

449 gfv_x1_axis_start_pos = axis_get_param(X1_AXIS, 40); // [mm]
450 giv_x1_nr_punch_dir = axis_get_param(X1_AXIS, 31); // number of one way movements
451 gfv_x1_axis_pos = gfv_x1_axis_start_pos;
452
453 gfv_z1_axis_start_pos = axis_get_param(Z1_AXIS, 40);
454 gfv_z1_axis_die_penetration = -1 * axis_get_param(Z1_AXIS, 26);
455 gfv_z1_clear_height = axis_get_param(Z1_AXIS, 29);
456
457 gfv_time_to_position_down_correction = axis_get_param(Z1_AXIS,28);
458 gfv_time_to_position_up_correction = axis_get_param(Z1_AXIS,27);
459 giv_punch_nr = axis_get_param(Z1_AXIS, 30);
460 giv_punch_count = 0;
461 giv_move_direction = -1;
462
463 axis_set_control_flag(0); // axis disabled, set point is beeing set
464
465 gfv_punch_distance = gfv_z1_axis_start_pos - gfv_z1_axis_die_penetration;
466
467 disable_axis(Z2_AXIS);
468 ldp_cmd_read(giv_command,>v_cmd_data_recv);
469 }
470
471 void Pattern_t_InitToRef()
472 {
473 debug_message(DEBUG_TAG,"Pattern_t_InitToRef");
474 restart_set_restart_request();
475 }
476
477 void Pattern_t_RefToX1Pos()
478 {
479 debug_message(DEBUG_TAG,"Pattern_t_RefToX1Pos");
480 axis_move_to_pos_w_spd_acc(X1_AXIS,gfv_x1_axis_start_pos,200,160);
481 disable_axis(Z2_AXIS);
482 }
483
484 void Pattern_t_X1PosToZ1Pos()
485 {
486 debug_message(DEBUG_TAG,"Pattern_t_X1PosToZ1Pos");
487 axis_move_to_pos_w_spd_acc(Z1_AXIS,gfv_z1_axis_start_pos,80,150);
488 }
489
490 void Pattern_t_PunchToAnticipating_Z1()
491 {
492 debug_message(DEBUG_TAG,"Pattern_t_PunchToAnticipating_Z1");
493 // calculate times to travel through hover height
494 gfv_z1_time_to_pos = axis_get_time_to_position(Z1_AXIS,gfv_z1_axis_start_pos - gfv_z1_clear_height);
495 // calculate time to travel back to maximal hover height
496 gfv_time_to_position_up = axis_get_time_to_position_up(Z1_AXIS,gfv_z1_axis_start_pos - gfv_z1_clear_height

);
497 }
498
499
500 void Pattern_t_Anticipating_Z1ToMoving()
501 {
502 debug_message(DEBUG_TAG,"Pattern_t_Anticipating_Z1ToMoving");
503
504 if(giv_punch_nr > giv_x1_nr_punch_dir)
505 {
506 if(giv_internal_move_count < (giv_x1_nr_punch_dir))
507 {
508 gfv_x1_axis_pos+=giv_move_direction * gfv_x1_axis_delta;
509 giv_internal_move_count++;
510 }
511 else
512 {
513 gfv_x1_axis_pos += giv_move_direction * gfv_x1_axis_delta / 2;
514 giv_move_direction = -1 * giv_move_direction;
515 giv_internal_move_count = 0;
516 }
517 }

101

Appendix Application of servo drives on the prototype of the
punch press machine

518 else
519 {
520 int piv_punch_half_nr = giv_punch_nr/2;
521 if (2*piv_punch_half_nr == giv_punch_nr)
522 {
523 if(giv_punch_count<piv_punch_half_nr)
524 gfv_x1_axis_pos-=gfv_x1_axis_delta;
525 if(giv_punch_count==piv_punch_half_nr)
526 gfv_x1_axis_pos+=gfv_x1_axis_delta/2;
527 if(giv_punch_count>piv_punch_half_nr)
528 gfv_x1_axis_pos+=gfv_x1_axis_delta;
529 }
530 else
531 {
532 if(giv_punch_count<piv_punch_half_nr+1)
533 gfv_x1_axis_pos-=gfv_x1_axis_delta;
534 if(giv_punch_count==piv_punch_half_nr+1)
535 gfv_x1_axis_pos+=gfv_x1_axis_delta/2;
536 if(giv_punch_count>piv_punch_half_nr+1)
537 gfv_x1_axis_pos+=gfv_x1_axis_delta;
538 }
539 }
540 axis_move_to_pos_w_spd_acc(X1_AXIS,gfv_x1_axis_pos,gfv_x1_axis_speed,gfv_x1_axis_acc);
541 }
542
543
544 void Pattern_t_MovingToAnticipating_X1()
545 {
546 debug_message(DEBUG_TAG,"Pattern_t_MovingToAnticipating_X1");
547 }
548
549 void Pattern_t_Anticipating_X1ToPunch()
550 {
551 debug_message(DEBUG_TAG,"Pattern_t_Anticipating_X1ToPunch");
552
553 giv_punch_count++;
554
555 axis_pos_loop_punch_cycle_with_const_speed_zone(Z1_AXIS, gfv_punch_distance);
556 axis_pos_loop_punch_cycle_with_const_speed_zone(Z2_AXIS, gfv_punch_distance);
557 axis_set_control_flag(2); // axis is not disabled between punches and position loop is executed
558 }
559
560 void Pattern_t_PunchToZ1up()
561 {
562 debug_message(DEBUG_TAG,"Pattern_t_PunchToZ1up");
563 axis_move_to_pos_w_spd_acc(Z1_AXIS,gfv_end_position,80,150);
564 axis_set_control_flag(0); // axis is disabled
565 }
566
567 void Pattern_t_PunchToIdle()
568 {
569 debug_message(DEBUG_TAG,"Pattern_t_PunchToIdle");
570 axis_set_req_pos(Z2_AXIS,gfv_end_position);
571 giv_punch_count = 0;
572 giv_move_direction = -1;
573 giv_internal_move_count = 0;
574 gtv_cmd_data_send.siv_ok = 1;
575 gtv_cmd_data_send.siv_cmd = gtv_cmd_data_recv.siv_cmd;
576 gtv_cmd_data_send.siv_sn = gtv_cmd_data_recv.siv_sn;
577 ldp_cmd_done(>v_cmd_data_send);
578 }

102

Appendix Application of servo drives on the prototype of the
punch press machine

D.2 tgen get time to position const speed.c

1 float tgen_get_time_to_position_const_speed(int piv_idx,float pfv_position)
2 {
3 float j = gtp_tgen_data->channels[piv_idx].init_data.sfv_jerk/1000.0;
4 float a = gtp_tgen_data->channels[piv_idx].init_data.sfv_acc/1000.0;
5 float v = gtp_tgen_data->channels[piv_idx].init_data.sfv_speed/1000.0;
6
7 float distance = gtp_tgen_data->channels[piv_idx].init_data.sfv_a_a/1000; //p->init_data.sfv_a_a/1000.0;
8
9 //time zone 1 - build up acc, limit jerk

10 float t1 = a/j;
11 //float a1 = a;
12 float v1 = j*t1*t1/2.0;
13 float s1 = j*t1*t1*t1/6.0;
14
15 if(v1>=v/2) // max. speed will be reached during building up acc
16 {
17 v1 = v/2;
18 t1 = sqrtf(2 * v1 / j);
19 a = j * t1;
20 s1 = j*t1*t1*t1/6.0;
21 }
22
23 //time zone 2 - max and constant acceleration
24 float t2 = t1 + (v - 2*v1)/a;
25 //float a2 = a;
26 float v2 = v1 + a*(t2 - t1);
27 float s2 = s1 + v1*(t2 - t1) + a*(t2 - t1)*(t2 - t1)/2.0;
28
29 //time zone 3 - acceleration decreases as speed gets higher
30 float t3 = t2 + a/j;
31 if(v1>=v/2) // max. speed will be reached during building up acc
32 {
33 t3 = t2 + t1;
34 }
35 //float a3 = 0;
36 float v3 = v2 + a*(t3 - t2) - j*(t3 - t2)*(t3 - t2)/2.0;
37 float s3 = s2 + v2*(t3 - t2) + a*(t3 - t2)*(t3 - t2)/2.0 - j*(t3 - t2)*(t3 - t2)*(t3 - t2)/6.0;
38
39 //time zone 4 - constant speed
40 float t4 = t3 + 0.0;
41 //float a4 = 0;
42 float v4 = v;
43 float s4 = s3 + (t4 - t3)*v;
44
45 //time zone 5 - build up dec, limit jerk
46 float t5 = t4 + a/j;
47 //float a5 = -j*(t5 - t4);
48 float v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
49 float s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
50
51 //time zone 6 - max and constant deceleration
52 float t6 = t5 + v5/a;
53 //float a6 = -a;
54 float v6 = v5 - a*(t6 - t5);
55 float s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
56
57 if(s6<distance)
58 {
59 debug_message(DEBUG_TAG,"Build constant speed zone");
60 float distance_missing = distance - s6;
61
62 //time zone 4 - constant speed
63 t4 = t3 + distance_missing / v4;;
64 s4 = s3 + (t4 - t3)*v;
65
66 //time zone 5 - build up dec, limit jerk
67 t5 = t4 + a/j;

103

Appendix Application of servo drives on the prototype of the
punch press machine

68 //float a5 = -j*(t5 - t4);
69 v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
70 s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
71
72 //time zone 6 - max and constant deceleration
73 t6 = t5 + v5/a;
74 //float a6 = -a;
75 v6 = v5 - a*(t6 - t5);
76 s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
77 }
78
79 if(s6 > distance)
80 {
81 debug_message(DEBUG_TAG,"Shortening const acc phase");
82
83 //float real_s2 = s2 - s1;
84 float ss3 = s3 - s2;
85 // desired s2
86 float desired_s2 = (distance - s1 - ss3)/2;
87
88
89 //time zone 2 - max and constant acceleration
90 //t2 = t1 + (v - 2*v1)/a;
91 float c[5]={0};
92 c[0] = - desired_s2;
93 c[1] = v1;
94 c[2] = 0.5 * a;
95 float tt2 = tgen_newton(c, 2, 1, 0, 9999); //tgen_newton(float c[5], int power, float start, float max,

float min)
96
97 t2 = t1 + tt2;
98 v2 = v1 + a*(t2 - t1);
99 s2 = s1 + v1*(t2 - t1) + a*(t2 - t1)*(t2 - t1)/2.0;

100
101 //time zone 3 - acceleration decreases as speed gets higher
102 t3 = t2 + a/j;
103 if(v1>=v/2) // max. speed will be reached during building up acc
104 {
105 t3 = t2 + t1;
106 }
107 // a3 = 0;
108 v3 = v2 + a*(t3 - t2) - j*(t3 - t2)*(t3 - t2)/2.0;
109 v = v3;
110 s3 = s2 + v2*(t3 - t2) + a*(t3 - t2)*(t3 - t2)/2.0 - j*(t3 - t2)*(t3 - t2)*(t3 - t2)/6.0;
111
112 //time zone 4 - constant speed
113 t4 = t3 + 0.0;
114 //float a4 = 0;
115 v4 = v3;
116 s4 = s3 + (t4 - t3)*v;
117
118 //time zone 5 - build up dec, limit jerk
119 t5 = t4 + a/j;
120 //float a5 = -j*(t5 - t4);
121 v5 = v4 - j*(t5 - t4)*(t5 - t4)/2.0;
122 s5 = s4 + v4*(t5 - t4) - j*(t5 - t4)*(t5 - t4)*(t5 - t4)/6.0;
123
124 //time zone 6 - max and constant deceleration
125 t6 = v5/a + t5;
126 //float a6 = -a;
127 v6 = v5 - a*(t6 - t5);
128 s6 = s5 + v5*(t6 - t5) - a*(t6 - t5)*(t6 - t5)/2.0;
129 }
130
131 float ss[7] = {0};
132 ss[1]=s1;
133 ss[2]=s2;
134 ss[3]=s3;
135 ss[4]=s4;
136 ss[5]=s5;

104

Appendix Application of servo drives on the prototype of the
punch press machine

137 ss[6]=s6;
138
139 float tt[7] = {0};
140 tt[1]=t1;
141 tt[2]=t2;
142 tt[3]=t3;
143 tt[4]=t4;
144 tt[5]=t5;
145 tt[6]=t6;
146
147 pfv_position /= 1000;
148 if(pfv_position>ss[6])
149 {
150 debug_float(DEBUG_TAG, "Desired position is further than maximal reachable position, time_to_pos

calculation terminated. Returns -1. Position requested: ",ss[6]);
151 return 0;
152 }
153
154 // Detects first incomplete time zone - index i
155 int i=1;
156
157 float pfv_time_A = 0.0;
158 float pfv_pos_B = 0.0;
159 float pfv_time_B = 0.0;
160
161 do
162 {
163 if(pfv_position < ss[i])
164 {
165 //debug_message(DEBUG_TAG,"Podminka");
166 break;
167 }
168 // Time is equal of duration till last complete zone
169 if((pfv_position == ss[i]))
170 {
171 pfv_time_A = tt[i];
172 //debug_message(DEBUG_TAG,"Positions are equal.");
173 return pfv_time_A;
174 }
175 //debug_message(DEBUG_TAG,"Pricteni");
176 i++;
177 } while(i<=6);//(sizeof(p->s)/sizeof(p->s[s[0])))
178
179 // Calculates time
180 switch (i)
181 {
182 case 1:
183 {
184 pfv_time_B = pow(pfv_position/j*6.0,1.0/3.0);
185 pfv_pos_B = j*pfv_time_B*pfv_time_B*pfv_time_B/6.0;
186 break;
187 }
188 case 2:
189 {
190 float c[3] = {0};
191 c[0] = s1 - pfv_position; //c
192 c[1] = v1; //b
193 c[2] = a/2.0; //a
194
195 float x1 = (-c[1] + sqrtf((c[1]*c[1]) - (4.0*c[2]) * (c[0]))) / (2*c[2]);
196 float x2 = (-c[1] - sqrtf((c[1]*c[1]) - (4.0*c[2]) * (c[0]))) / (2*c[2]);
197
198 if(x1>=0)
199 {
200 pfv_time_B = x1;
201 } else
202 {
203 pfv_time_B = x2;
204 }
205 pfv_pos_B = s1 + v1*pfv_time_B + a*pfv_time_B*pfv_time_B/2.0;

105

Appendix Application of servo drives on the prototype of the
punch press machine

206 break;
207 }
208 case 3:
209 {
210 float c[4] = {0};
211 c[0] = s2 - pfv_position;
212 c[1] = v2;
213 c[2] = a/2.0;
214 c[3] = -j/6.0;
215 pfv_time_B = tgen_newton(c,3,0.0001,t3,t2);
216 pfv_pos_B = s2 + v2*pfv_time_B + a*pfv_time_B*pfv_time_B/2.0 - j*pfv_time_B*pfv_time_B*pfv_time_B/6.0;
217 break;
218 }
219 case 4:
220 {
221 pfv_time_B = (pfv_position-s3)/v;
222 pfv_pos_B = s3 + pfv_time_B*v;
223 break;
224 }
225 case 5:
226 {
227 float c[4] = {0};
228 c[0] = s4 - pfv_position;
229 c[1] = v4;
230 c[3] = j/6.0;
231 pfv_time_B = tgen_newton(c,3,0.0001,t5,t4);
232
233 pfv_pos_B = s4 + v4*pfv_time_B - j*pfv_time_B*pfv_time_B*pfv_time_B/6.0;
234 break;
235 }
236 case 6:
237 {
238 float c[3] = {0};
239 c[0] = s5 - pfv_position; //c
240 c[1] = v5; //b
241 c[2] = -a/2.0; //a
242
243 float x1 = (-c[1] + sqrtf((c[1]*c[1]) - (4.0*c[2]) * (c[0]))) / (2*c[2]);
244 float x2 = (-c[1] - sqrtf((c[1]*c[1]) - (4.0*c[2]) * (c[0]))) / (2*c[2]);
245
246 if(x1>=0)
247 {
248 pfv_time_B = x1;
249 } else
250 {
251 pfv_time_B = x2;
252 }
253 pfv_pos_B = s5 + v5*pfv_time_B - a*pfv_time_B*pfv_time_B/2.0;
254 break;
255 }
256 case 0:
257 {
258 debug_float(DEBUG_TAG,"Error. Calculated time is replaced by t5",t5);
259 pfv_time_B = t5;
260 }
261 }
262
263 if(i>1)
264 pfv_time_B+=tt[i-1];
265
266 return pfv_time_B;
267 }
268 }

106

Appendix Application of servo drives on the prototype of the
punch press machine

Appendix E Optimization

E.1 Optimization.m

1 clc; close all; hold off; format long;
2
3 % load target positions
4 position
5
6 % initialization
7 global kp Tmax
8 Tmax= 0.2 % simulation time
9 dT=0.001; % simulation step time

10 kp=800; % initial condition
11
12 t = 0:dT:Tmax-0.001;
13
14 x0=[kp]; % passing parameter for fminsearch
15 sim(’position_controller_tune’,Tmax); % run simulation
16 position_controller_tune % open simulation window
17
18 % plots initial and ideal curve
19 figure(1);
20 h1 = plot(Position.Time,Position.Data(:,1),’m’,’LineWidth’,3);
21 hold on;
22 h2 = plot(Position.Time,Position.Data(:,2),’G’,’LineWidth’,3);
23 hold on;
24
25 % starts minimalization
26 OPTIONS=optimset(’LargeScale’,’off’,’MaxIter’,10,’Display’,’iter’);
27 x=fminsearch(’Criterion’,x0,OPTIONS);
28
29 % plots final result
30 kpopt=x(1)
31 sim(’position_controller_tune’,Tmax);
32 figure(1);
33 h3 = plot(Position.Time,Position.Data(:,1),’R’,’LineWidth’,2);
34 grid on;
35 legend(’initial setup’,’target’,’final result’)
36
37 break;

E.2 Criterion.m

1 function f=Criterion(x)
2
3 global kp Tmax
4 kp=x(1)
5
6 % run simulation
7 sim(’position_controller_tune’,Tmax);
8
9 % plot progress

10 h0 = plot(Position.Time,Position.Data(:,1),’B’,’LineWidth’,1);
11 hold on;
12 drawnow
13
14 % supress legend
15 hsAnno = get(h0, ’Annotation’);
16 hsLegend = get(hsAnno, ’LegendInformation’);
17 set(hsLegend, ’IconDisplayStyle’, ’off’);
18
19 % minimalization criterion
20 J.Data = J.Data.ˆ2;

107

Appendix Application of servo drives on the prototype of the
punch press machine

21
22 % increase the effect of resonance in the steady state
23 start = length(J.Data)-640;
24 endd = length(J.Data);
25 J.Data(start:endd) = J.Data(start:endd)*100; % error is multiplied
26 crit = sum(J.Data);
27
28 f=crit;

108

	Master thesis assignment
	Declaration
	Abstract
	Key words
	Key words
	Acknowledgment
	Contents
	List of figures
	List of tables
	List of acronyms
	List of used symbols
	Introduction
	Punching
	Dynapunch description
	Z axis
	X axis

	IRT servo drives
	Mavilor servomotors
	Mavilor BLS-115
	Mavilor BLS-73

	Real time PC
	DC motor equations

	Punch cycle
	Motion equations
	Trajectory generator
	Summary

	State machine
	Example of the state machine
	Test pattern

	Motion anticipation
	Axis synchronization
	Summary

	Two motors
	Torque synchronization
	Velocity synchronization
	Summary

	Drives tuning
	Manual tuning of the Z axis
	Manual tuning of the X axis
	Hit rate
	System modelling

	System identification
	System frequency response
	Tuning of the velocity loop
	Tuning of the position loop
	Summary

	Remark
	Conclusion
	Literature
	Appendix Attached CD
	Appendix Axis synchronization tests
	Appendix Manual tuning plots
	Appendix Source code
	pattern_stm.c
	tgen_get_time_to_position_const_speed.c

	Appendix Optimization
	Optimization.m
	Criterion.m

