
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FINGERPRINT IDENTITY PRESERVING GENERATIVE
ADVERSARIAL NETWORKS
GENERATIVNÍ OPONENTNÍ NEURONOVÉ SÍTĚ ZACHOVÁVAJÍCÍ IDENTITU OTISKU PRSTU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc.JAN KACUR

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. JAKUB SPANHEL

BRNO 2023

T BRNO FACULTY I

UNIVERSITY OF INFORMATION |

OF TECHNOLOGY TECHNOLOGY

Master's Thesis Assignment |||||||||||||||||||
144751

Institut: Department of Computer Graphics and Multimedia (UPGM)
Student: Kaču rJán , Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Fingerprint Identity Preserv ing Generat ive Adversar ia l Networks
Category: Image Processing
Academic year: 2022/23

Assignment:

1. Study the basics of image processing. In particular, focus on neural networks.
2. Study the available materials on generative opponent neural networks and conditional generative

opponent neural networks.
3. Explore current methods for generating identity-preserving training images using generative

opponent neural networks.
4. Select an appropriate method and design a system for generating fingerprint images that preserve

the identity of the original fingerprint.
5. Experiment with your implementation and propose your own modifications to the methods if

necessary.
6. Compare your results and discuss possibilities for future developments.
7. Create a brief poster and video presenting your work, its goals, and results.

Literature:
• MIRZA, Mehdi; OSINDERO, Simon. Conditional generative adversarial nets. arXivpreprint

arXiv:1411.1784, 2014.
• Dále dle pokynů vedoucího

Requirements for the semestral defence:
• Completion of the first three points of the assignment
• Considerable work on the fourth point of the assignment

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor:
Consultant:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Spaňhel Jakub , Ing.
Sochor Jakub, Ph.D. Ing.
Černocký Jan, prof. Dr. Ing.
1.11.2022
17.5.2023
31.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis focuses on generating latent fingerprints using Generative adversarial networks.
The main objective is to generate multiple latent fingerprints from the clean fingerprint,
with the same identity. The identity and the style should also be controllable separately.
The chosen approach is based on AugNet model. Designed algorithm generates latent
fingerprints from clean binarized fingerprint, and a random vector encoding distortions, i.e
style. In the generator, AdaIN blocks are used to incorporate distortions into the input
fingerprint. Various training algorithms are tested, with W G A N - G P performing the best.
Individual models are compared using a combination of FID, and Rank-1 accuracy on
matching generated images to original input binarized fingerprints. Best performing models
are selected as a Pareto optimal combinations of these 2 metrics.

Abstrakt
Táto práca sa sústredí na generovanie latentných odtlačkov prstov za pomoci Generatívnych
oponentných neurónových sietí. Hlavnou úlohou je generovanie viacerých verzií latentných
odtlačkov z čistého odtlačku, s rovnakou identitou. Identitu a štýl odtlačku by malo byť
možné osobitne meniť. Zvolený postup sa zakladá na modeli AugNet. Navrhnutý algorit­
mus generuje latentné odtlačky z čistých binarizovaných odtlačkov a náhodného vektora,
reprezentujúceho skreslenie, resp. štýl. V generátore sú použité AdaIN bloky na spojenie
štýlu so vstupným odtlačkom. Je testovaných viacero trénovacích algoritmov, z ktorých
W G A N - G P dosahuje najlepšie výsledky. Jednotlivé modely sú porovnávané kombináciou
metrík FID a Rank-1 accuracy pri porovnávaní generovaných obrázkov s originálnymi vs­
tupnými binarizovanými odtlačkami. Najlepšie modely sú vybrané ako Pareto optimálne
kombinácie týchto 2 metrík.

Keywords
fingerprint generation, latent fingerprint, G A N , conditional G A N , AugNet, M O L F , NIST
SD302, W G A N - G P

K lícová slova
generovanie odtlačkov prsta, latentný odtlačok prsta, G A N , conditional G A N , AugNet,
M O L F , NIST SD302, W G A N - G P

Reference
KACUR, Ján. Fingerprint Identity Preserving Generative Adversarial Networks. Brno,
2023. Master's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Jakub Spaňhel

Rozšířený abstrakt
Identifikácia odtlačkov prstov je jednou z najdôležitejších oblastí biometrie. So stúpa­
júcim využívaním metód strojového učenia v rôznych vedeckých a priemyselných oblastiach
nachádzajú tieto metódy veľké uplatnenie aj pri identifikácii odtlačkov prstov. Jednou
z dominantných metód strojového učenia sú v súčasnosti neurónové siete. Neurónové siete
často potrebujú kvalitné datasety veľkých rozmerov na trénovanie, aby dosiahli optimálne
výsledky. To samozrejme platí aj v pri učení rôznych algoritmov z oblasti odtlačkov prstov.
Problémom je však nízka dostupnosť verejných datasetov odtlačkov prstov, najmä kvôli
ochrane súkromia.

Latentné odtlačky prstov sú typom odtlačkov, ktoré sú získané z nejakého povrchu po­
tom, čo tam boli zanechané nejakou osobou. Narozdiel od čistých odtlačkov prstov, ktoré
často pochádzajú z optických senzorov a disponujú vysokou kvalitou, sú tieto odtlačky
v často v horšej kvalite, a obsahujú rôzne deformácie a poškodenia. Rozpoznávanie latent­
ných odtlačkov patrí k najviac náročným, avšak najviac prínosným oblastiam biometrie.
Na tieto účely, ako bolo už spomenuté, sa často využívajú práve neurónové siete. Verejne
dostupné datasety latentných odtlačkov sú však ešte vzácnejšie, čo spôsobuje, že využitie
neurónových sietí v tejto oblasti je problematické.

Táto práca je preto venovaná generovaniu syntetických latentných odtlačkov za využi­
tia Generatívnych oponentných neurónových sietí (GAN) . Cieľom je navrhnúť algoritmus,
ktorý je schopný generovať viacero latentných odtlačkov z čistého binarizovaného odtlačku
s tým, že identita odtlačku ostane zachovaná.

Algoritmy navrhnuté v tejto práci sú založené na modeli AugNet. Tieto algoritmy
dostanú na vstup binarizovaný čistý odtlačkok a vektor náhodných čísel, z ktorého vy­
generujú realistický latentný odtlačok prsta. Daný vektor reprezentuje rôzne deformácie
a textúry, ktoré sa vyskytujú v latentných odtlačkoch. Jedná sa teda o kombináciu iden­
tity odtlačku so štýlom, ktorý má byť na neho aplikovaný. Veľmi dôležitou požiadavkou
na takýto algoritmus je zachovanie identity binarizovaného odtlačku, aby mohli byť dáta
vytvorené týmto algoritmom využité napr. pri trénovaní neurónových sietí.

Pôvodným cieľom tejto práce bolo implementovat algoritmus modelu AugNet, a pokúsiť
sa zistiť, či naozaj funguje tak, ako autori uvádzajú. To sa však ukázalo ako náročná úloha,
pretože opis architektúry a algoritmov v pôvodnom článku obsahoval zopár nezrovnalostí,
a vynechával rôzne kľúčové detaily. Napriek tomu, slúžil ako dobrý základ pre množstvo
experimentov, ktoré boli vykonané.

Keďže prvotné experimenty s modelom AugNet nedopadli podľa očakávaní, zvyšok práce
bol venovaný vývoju a testovaniu modelu s architektúrou conditional G A N . Jednalo sa
o zjednodušenú verziu modelu AugNet. Generátor a diskriminátor boli implementované
podľa veľmi stručného popisu architektúry v danom článku. V článku nebol uvedený spô­
sob, akým sa má vektor náhodných čísel transformovať na štýl latentného odtlačku. Pre
tú to úlohu som zvolil AdaIN blok, použitý napr. v modeli StyleGAN. Eventuálne sa po­
darilo nájsť konfiguráciu, ktorá dokázala generovať hodnoverné odtlačky. Problémom bol
tzv. mode collapse, kedy generátor generuje len zopár vizuálne odlišných štýlov latentných
odtlačkov. Väčšina práce sa zaoberá riešením tohoto problému.

Počas tejto práce boli vykonané desiatky experimentov, ktorých cieľom bolo nájsť
správnu architektúru a trénovací algoritmus. Väčšina z nich bola neúspešná. Eventuálne
sa však podarilo nájsť vhodné riešenie. Hlavnými zlepšeniami boli trénovací algoritmus
W G A N - G P a drobná, ale podsta tná zmena v architektúre generátora. Tieto 2 zmeny
výrazne zlepšili výsledky modelu, a pomohli odstrániť spomínaný mode collapse problém.

Porovnať výsledky modelu v tejto práci s ostatnými súčasnými metódami bolo náročné,
keďže metódy ich vyhodnotenia boli ťažko replikovateľné. Preto bola navrhnutá kombinácia
2 metrík. Prvou z nich je Fréchet inception distance (FID), ktorá aproximuje vzdialenosť
pravdepodobnostných rozložení skutočných a generovaných dát. Druhou je Rank-1 accu­
racy, ktorá určuje, aké percento datasetu sa podarilo spojiť s pôvodnými binarizovanými
odtlačkami, z ktorých boli generované. Ohodnotenie spájania identít bolo vykonané tímom
zo spoločnosti Innovatrics na programe IEngine.

Keďže boli na vyhodnotenie použité 2 rôzne metriky, nedá sa jednoznačne určiť, ktorá
konfigurácia je najlepšia. Preto som pre 2 rôzne trénovacie datasety (NIST SD302 a M O L F
DB4) vybral Pareto optimálne konfigurácie na základe kombinácie týchto 2 metrík. Pre
každú z týchto konfigurácií bola potom vykreslená C M C krivka, od Rank-1 až po Rank-25
accuracy.

F i n g e r p r i n t I d e n t i t y P r e s e r v i n g G e n e r a t i v e A d ­

v e r s a r i a l N e t w o r k s

Declaration
I hereby declare that this term project was prepared as an original work by the author
under the supervision of Ing. Jakub Spahhel. Supplementary information was provided
by an external consultant, Ing. Jakub Sochor, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Jan Kacur
May 23, 2023

Acknowledgements
I would like to express my gratitude to my supervisor Ing. Jakub Spahhel, for providing
me with information necessary to accomplish this project, and helping me solving problems
during consultations. I would also like to thank Ing. Jakub Sochor, Ph.D., for providing
valuable data and algorithms, which were used in this thesis. Last but not least, thank
you goes to all other members of Innovatrics company, who were involved in any of the
processes related to this thesis.

Contents

1 Introduction 3

2 Generative adversarial networks 4
2.1 The original G A N 4
2.2 G A N training 5
2.3 Conditional G A N 5
2.4 Deep convolutional G A N 6
2.5 StyleGAN 7
2.6 PatchGAN 9
2.7 Least Squares G A N 9
2.8 W G A N - G P 10
2.9 Frechet inception distance 11

3 Fingerprint generation 13
3.1 Fingerprint basics 13
3.2 Image processing 15
3.3 Related work 16

4 Implementation 22
4.1 Proposed approach 22
4.2 Data processing 24
4.3 Experiment setup 26

5 Experiments 29
5.1 Available data 29
5.2 First experiment 32
5.3 Conditional G A N training 33
5.4 Discriminator improvements 33
5.5 Mode collapse problem 36
5.6 W G A N - G P 40
5.7 Generator architecture changes 41
5.8 Evaluation methods 41
5.9 Evaluation results 45

5.10 Summary 53

6 Conclusion 57

Bibliography 58

1

List of Figures

2.1 High-level architecture of the G A N model 4
2.2 High-level architecture of generic c G A N model 6
2.3 Example architecture of generator in a typical D C G A N model [30] 7
2.4 Differences between traditional generator and StyleGAN generator [23]. . . 8
2.5 Comparison of Pa tchGAN variants 9
2.6 Comparison of different loss functions [26] 10

3.1 Different levels of fingerprint details [22] 14
3.2 Different types of fingerprint images for the same fingerprint [22] 15
3.3 Level 3 fingerprint generation approach [36] 17
3.4 Pr in t sGAN architecture [12] 18
3.5 Generating latent fingerprints [5] 19
3.6 AugNet training process [39] 21

4.1 Architecture of the discriminator 22
4.2 Architecture of the encoder 23
4.3 Architecture of the generator 25
4.4 Example of latent fingerprint alignment 26
4.5 Data processing pipeline 27
4.6 Typical experiment workflow 28

5.1 Distribution of matching scores in data provided by Innovatrics company. . 31
5.2 Generator output after different stages of training 34
5.3 Comparison of generator outputs 35
5.4 Encoder training and validation loss 37
5.5 Mode collapse problem 38
5.6 Modified generator architecture 42
5.7 Comparison of calculated FID scores on NIST SD302 latent dataset 46
5.8 Relationship between Rank-1 accuracy and FID score 47
5.9 Generator output after solving mode collapse problem 49
5.10 Comparison of W G A N - G P losses 51
5.11 Examples of generated fingerprints after training on M O L F DB4 dataset. . 53
5.12 C M C curves of setups trained on NIST SD302 latent dataset 54
5.13 C M C curves of setups trained on M O L F DB4 dataset 55
5.14 Visual comparison of generated images to other methods 56

2

Chapter 1

Introduction

Fingerprint identification has been one of the key components of biometrics for a long time.
Wi th increasing popularity of machine learning across various domains, it was inevitable,
that machine learning methods would find its application in fingerprint identification. As
neural networks currently dominate the machine learning industry, many fingerprint iden­
tification algorithms became centered around them. Neural networks often require large
scale, high quality, curated datasets in order to learn required tasks. The same holds true
for learning fingerprint related algorithms. However, as a large portion of previously pub­
licly available fingerprint datasets has been redacted over the past years due to privacy
concerns [12], it has shown to be increasingly difficult to train such models.

One of the most challenging areas of fingerprint identification is identifying latent [13]
fingerprints. These are often low quality, damaged impressions of fingerprints, left at a sur­
face by a subject. Public datasets of latent fingerprints are even more scarce, than datasets
of clean fingerprints. Thus, training large scale neural networks for recognition of latent
fingerprints is a very difficult task.

This thesis is focused on solving the issue of lacking public fingerprint datasets by
exploring methods of latent fingerprint generation using Generative adversarial networks
[17]. There are many commercial, and even some open source programs, that are capable
of synthesizing fingerprint images [7, 1]. However, these are often clean fingerprint images,
which are not as valuable, as latent fingerprint images. The amount of publications, that
aim to generate realistic images of latent fingerprints, given the images of clean fingerprints,
is very slim. One of the important criteria of such framework is preserving identity of the
original clean image, so that the model trained on a dataset created by this framework
learns to identify fingerprints correctly. Furthermore, it is also beneficial, if one can control
identity and style of the generated image separately, and also generate multiple impressions
of the same fingerprint. In this thesis, model called AugNet [39] is used as a baseline for
experiments with latent fingerprint generation.

Chapter 2 talks about theoretical and practical aspects of Generative adversarial net­
works. Chapter 3 provides brief overview of fingerprint recognition and image processing
techniques, as well as an extensive insight into different methods of fingerprint generation,
including state of the art approaches. In Chapter 1, baseline model and training algorithm
are described, together with a brief description of experiment framework and setup. Ex­
periments with the different model and training algorithm variants, as well as evaluation
methods, and their results, are summarized in Chapter 5. Finally, Chapter 6 concludes the
achieved progress, and briefly discusses possibilities for future improvements.

3

Chapter 2

Generative adversarial networks

Generative adversarial networks (GANs) [17] are a type of neural network used for generat­
ing data. Nowadays there are many subtypes of these networks, and they are used in a lot
of areas of machine learning. However, they share the same traits, such as generating data
from a set of inputs, and training in adversarial manner.

2.1 The original G A N

In this section, I will be describing G A N model, as it was first introduced in 2014. It consists
of two parts, generator G and discriminator D. G and D are differentiable functions,
for example multi-layer perceptrons. The goal of the training is for generator to learn
distribution over input data x, which is a vector of unpaired samples. The generator is
then used for generating data samples as G(Z,9G), where z is a random noise variable
sampled from prior distribution pz(z), and QQ are parameters of the generator. Essentially,
G learns a mapping from noise space to data space.

Discriminator D is defined as D(y, 9D), where y is its input, and 9D are the parameters.
It outputs a single number between 0 and 1, that expresses the probability, that given input
is real. Input is considered real, if it came from the data x. If it was produced by the
generator, it is considered fake. Discriminator learns to distinguish between real and fake
inputs.

^ ^ ^ N o i s e
distribution]

Pz(z)
Generator

Discriminator Rea l /Fake

Figure 2.1: High-level architecture of the G A N model.

4

2.2 G A N training

For training a neural network, some criterion is needed. We can define value function
V(G,D) as:

V(G,D) = E^pdata^[logD^)] + E^Mz)[log(l - D(G(z)))}, (2.1)

where ^x^Pdata(x) is expected value over all data x, and E z ^ P z (z) is expected value over
all sampled noise vectors. During training, generator tries to minimize this function, and
discriminator tries to maximize this function. However, we cannot call this a loss function,
since in general, we want to minimize loss functions. From this, we can derive loss functions
for discriminator and generator as:

L D (x , z) = log(D(x)) + log(l - D{G{z))) (2.2)

LG(z) = log{l - D(G(z))) (2.3)

As we can see from the equations, loss functions are different for discriminator and
generator. This is because they are trained separately. As only the output of discriminator
is considered in both loss functions, the generator needs to be trained via backpropagation
of gradients from the discriminator. Training procedure is shown in Algorithm 1.

Algorithm 1 G A N training algorithm
Inputs: Generator G, discriminator D, data X , prior noise distribution p z (z) -
Hyperparameters: Number of epochs E, number of batches n, batch size b.
Objective: Train G A N model.

1: for epoch = 1,...,E do
2: for batch = x\,...,xn do
3: Sample batch of vectors z = {z\,Zb} from pz(z).
4: Sample batch of data x = {x\,Xb} from data X .
5: Calculate loss of discriminator ID = \ Yli=i Lo{xi, Zj).
6: Calculate gradients go of discriminator w.r.t. ID-
7: Update discriminator weights 9D using go-
8: Sample batch of vectors z = {z\,Zb} from pz(z).
9: Calculate loss of generator IG = \ Yli=i ^ G (^ I) -

10: Calculate gradients of generator go w.r.t. lo­
ll: Update generator weights 9Q using go-
12: end for
13: end for

2.3 Conditional G A N

In traditional G A N architecture, the generator takes only noise vector as an input. Con­
ditional G A N (cGAN) [28] is a subtype of G A N , where the generator (and optionally also
a discriminator) are fed some additional data y. In general, y can be any type of data,
such as class label, or some vector of real numbers, etc. When a model is fed this additional
data y, we say it is conditioned on y.

In the original paper, the discriminator is fed the conditional input y as well as the
generator. However, that is not the case for all the architectures. Some architectures

5

just provide the discriminator with the original data (either from the dataset or from the
generator). Because of that, the value function can be described in multiple ways. In the
case of feeding conditional input into the discriminator, the value function is defined by
equation 2.4. In other case, it is defined by equation 2.5. Subsequently, we can derive loss
functions. Loss function for the generator is defined in equation 2.6. Loss function for the
discriminator depends on the value function, in the case of Vi(G,D) it takes form of the
equation 2.7, in other case it takes form of equation 2.8.

Vi(G, D) = E x ^ d a t a (x) [Z o 5 £ > (x | y)] + E , ^ (l) [l o 5 (l - D(G(z\y)))} (2.4)

V2(G,D) = E^pdata{x)[logD^)] + E^Mz)[log^ - D(G(z\y)))] (2.5)

LG(y,z) = log(l-D(G(z\y))) (2.6)

L D 1 (x , y, z) = log(D(x\y)) + log{\ - D{G{z\y))) (2.7)

L D 2 (x , y, z) = log(D(x) + log(l - D(G(z\y))) (2.8)

^

Figure 2.2: High-level architecture of generic c G A N model. The question mark means that
discriminator may or may not be given the conditional input.

2.4 Deep convolutional G A N

So far, only the high-level architectures of G A N networks were discussed, providing little
to no description of generator and discriminator internals. In the papers mentioned up to
this point, generator and discriminator were defined as multi-layer perceptrons. However,
the only theoretical constraint for their architectures is that they have to be differentiable
functions with some hidden learnable parameters.

Deep convolutional G A N (D C G A N) [30] is a subtype of G A N , that uses multiple con­
volutional layers in the generator and the discriminator. Usually, generator utilizes an
upsampling architecture, producing image from noise vector. Analogically, discriminator
uses downsampling architecture, producing a probability scalar from an input image. Ex­
ample architecture of generator can be seen in Figure 2.3.

6

Figure 2.3: Example architecture of generator in a typical D C G A N model [30]. The input
is a noise vector, which is passed through fractional convolutions. Finally, output image
is generated. Discriminator works the opposite way, using convolutional layers to decrease
image size and produce final output.

2.5 S t y l e G A N

StyleGAN [23] is a G A N image architecture that utilizes style transfer. It separates style
from main characteristics, and disentangles latent space vector. Difference between tra­
ditional generator and StyleGAN generator is outlined in Figure 2.4. Unlike traditional
generator, StyleGAN generator starts upsampling from learned constant matrix. Upsam-
pling is done by synthesis network g, which is a stack of convolutional layers, gradually
increasing the image resolution. StyleGAN maps input latent vector z into intermediate
latent vector w via mapping network / , which is a multi-layer perceptron. Vector w is
transformed via learned affine transformations A into vector of scale and shift weights.
These weights are applied to each layer via AdaIN [20] block, which adds style to the im­
age. There is also random noise input, that is added to each layer, after being scaled by
learned weights in B.

The interesting property of this architecture is that due to different learned transfor­
mations in each layer, different parts of the style are applied in each layer, despite coming
from the same latent vector w. In lower resolution layers, basic features, such as image
identity are created. On the other hand, in higher resolution layers, finer details, such as
small distortions are synthesized.

Adaptive instance normalization

In StyleGAN, adaptive instance normalization (AdaIN) [20] is used to apply style to feature
maps. It is based on traditional instance normalization. Instance normalization computes
statistics \x and a for each sample and channel separately. Considering that x is a single fea­
ture map (one channel output) from a convolutional layer, we can calculate these statistics
as:

7

Latent z G Z

Normalize

Fully-connected
i

PixelNorm
i

Conv 3x3
1

PixelNorm
4x4

Upsample

Conv 3X3
I

PixelNorm
I

Latent z G Z

Conv 3x3
I

PixelNorm

8x8
V

• * •

(a) Traditional

Synthesis network g
Noise

Normalize
Mapping
network /

FC
FC
FC
FC
FC
FC

Const 4x4x512

>| A d a l N
1

B <*

B

A d a l N
4x4

Upsample
I

Conv 3x3
B <

B <•

8x8

(b) Style-based generator

Figure 2.4: Differences between traditional generator and StyleGAN generator [23]. In tra­
ditional upsampling architecture, latent noise vector is upsampled by multiple convolutional
layers to produce output image. In StyleGAN, latent vector z is first transformed into inter­
mediate latent space as vector w by multi-layer perceptron network / . Synthesis network
g also uses upsampling, but it starts from learned constant matrix instead of latent vector.
After each convolution, style vector is joined with the convolution output using A d a l N [20]
block. The style vector is created from intermediate latent vector w using learned affine
transformation A. Random noise vectors are also added in between convolutional layers
after being scaled by learned weights in B.

a(x)

j H W

W 51 12 ^ HW
h=lw=l

\
H W

HW

(2.9)

(2.10)
h=lw=l

where H and W are height and width of the feature map, is value in x at column h and
row w, and e is a small positive real number to prevent division by zero in equation 2.11.

8

These statistics are then utilized in AdaIN operation, which is evaluated for each feature
map as:

AdalNfr, y) = y s / * - ^ + y M (2.11)

where Xj is the i-th feature map, y is transformed style vector, and y S j j , y ^ are its scale
and bias for i-th feature map. Since the style vector comes from affine transformation A,
its output size has to be twice the number of the feature maps.

2.6 P a t c h G A N

In traditional G A N , discriminator classifies whole input image as real or fake. Pa tchGAN
[21] architecture utilizes a different approach. There are multiple ways to implement this
network. First of the implementations reshapes and transposes the input, converting it into
a matrix of non-overlapping N x N sized image patches. Then, for each of these patches,
stack of convolutional layers is applied. The output is one scalar for each image patch.
However, in official P a t c h G A N 1 implementation, different method is used. This method
simply applies all convolutional layers, which in turn yields output of the same shape, as
in the first approach. The difference is that in the second approach, individual scalars in
the output correspond to overlapping receptive fields in the input, unlike in the first one,
where the image is explicitly split into patches first (Figure 2.5).

(a)

512 x 512 image 8x8x64x64 image
patches

Discriminator layers 8x8x4x4 output 32x32 output

(b)

512 x 512 image Discriminator layers 32x32 output 512 x 512 image Discriminator layers 32x32 output

Figure 2.5: Comparison of Pa tchGAN variants, (a) First ad-hoc implementation, where
image is split into smaller patches, then convolutional layers are applied as if the patches
are separate images, (b) Widely used Pa tchGAN implementation, layers are simply applied
on input image, the output of last layer has the same shape as (a) after reshaping. The
main difference is that in (b) receptive fields are overlapping.

2.7 Least Squares G A N

As is shown in section 2.2, G A N networks utilize binary cross-entropy loss function. This
function is preceded by sigmoid, which is part of the discriminator in the formulas. Least
squares G A N (LSGAN) [26] on the other hand utilizes least squares error, also omitting the
sigmoid function. Authors claim, that it can alleviate some of the problems occurring during
G A N training, such as instability, or vanishing gradients. This is because the combination
of sigmoid and binary cross-entropy does not penalize samples, that are on correct side of

1https://github.com/phillipi/pix2pix

9

https://github.com/phillipi/pix2pix

decision boundary, but far away. This happens during generator training, and the generator
is not forced to generate samples closer to decision boundary, in order to fool discriminator.
The L S G A N loss penalizes this, making gradients larger and thus moderating vanishing
gradients problem. In other words, it makes the interval, where the loss function has
relatively low value, smaller (as can be seen in Figure 2.6), thus increasing the pressure on
the generator via gradients to learn more. The loss functions for discriminator and generator
can have a few small variations, but they show similar results. One of configurations of
these loss functions is defined as:

L D (x , z) = l (D (x) - l) 2 + ^ (^ (z))) 2 (2.12)

L G (z) = \(D(G(z)) - l) 2 (2.13)

where G and D are considered without the last sigmoid layer.

Figure 2.6: Comparison of sigmoid followed by cross-entropy (a) and least squares error
(b) [26]. The interval of relatively low loss function value is smaller in L S G A N , which puts
more pressure on the generator to learn via gradients.

2.8 W G A N - G P

W G A N

Wasserstein G A N or W G A N [2] is one of the G A N training algorithms. Unlike traditional
G A N algorithm, it is based on minimizing so-called Earth Mover distance between 2 prob­
ability distributions. Let 's say that the probability distribution of real data is P r , and of
generated data is Fq, then Earth Mover distance is defined as:

W(Fr,Fg) = inf E (x > y M [| | s - y | |] (2.14)
7en(p r,p g) v , y '

Minimizing this metric directly is intractable, so it has to be approximated in some way.
One of the ways is to put so-called Lipschitz constraint on discriminator (also called critic

10

in this case). The objectives for the discriminator and the generator then become:

CD = Ex~p 9 [D(x)] - E x ^ P r [£>(x)] (2.15)
£G =-Ez^[D{G{z)} (2.16)

where p z is prior noise distribution. The question then becomes how to put a Lipschitz
constraint on the discriminator. In the original paper, they use weight clipping, where after
each discriminator update its weights are clipped into an interval of [—0.01, 0.01]. However,
as the authors themselves claim, weight clipping is not a good way to enforce Lipschitz
constraint. The training is very sensitive to clipping threshold, leading either to slow or no
convergence, or vanishing gradients.

W G A N - G P

W G A N - G P [18] is a modification of W G A N algorithm that proposes a novel way of enforcing
Lipschitz constraint on the discriminator. It does so by introducing gradient penalty, so
that the discriminator has gradients with norm 1 almost everywhere. The discriminator
loss objective is then changed to:

CD = Ex~ P f l [0(x)] - E x ^ P r [Z ? (x)] + AE*„ P *[(| |V*D(*) | | 2 - l) 2] (2.17)

where the second term is newly added gradient penalty term, and A represents the gradient
penalty weight. Full training procedure is defined in Algorithm 2. Note that in this case, the
discriminator is trained multiple times per generator update, denoted by constant ncritic-

Algorithm 2 W G A N - G P training algorithm [18]
Hyperparameters: Gradient penalty weight A, number of critic iterations per generator

iteration ncritic, batch size m, Adam [24] hyperparameters a, /32.
Inputs: Initial critic parameters WQ, initial generator parameters 9Q.
Objective: Train model using W G A N - G P algorithm.

1: while 9 has not converged do
2: for t=l, ncritic do
3: for i = 1 , m do
4: Sample real data x ~ P r

5: Sample latent variable z ~ p{z)
6: Sample random number e ~ U[0,1]
7: x <- Ge{z)
8: x <(— ex + (1 - e)x
9: LW <- Dw(5t) - L>w(x) + A(||Vft£>w(x)| | 2 - l) 2

10: end for
11: w<r- A d a m (V ^ £ ^ i £ « ™,a,/?i, /?2)
12: end for
13: Sample a batch of latent variables {zW}^ = 1 ~ p(z)
14: 9^ A d a m (V ^ E ^ i - ^ (G e (z)) , 0 , a , / 3 i , / 3 2)
15: end while

2.9 Frechet inception distance

Frechet inception distance (FID) [4] is a metric for evaluating image quality produced by
generative models. It is widely used with Generative Adversarial Networks. It is defined

11

as a Wasserstein-2 distance between two multivariate Gaussian distributions. Given that
fir, Tir are mean and covariance of real data distribution, and fig, T,g are mean and covariance
of generated data distribution, the FID is then calculated as:

where Tr is a trace operation. The parameters of distributions are calculated on latent
space embeddings of data created by a neural network, usually pretrained InceptionV3 2.
Last classification layer is omitted, and output of the network is a 2048-dimensional feature
vector for each input image.

2 https: / / www. tensorflow. org/api_docs / python / tf/keras / applications / inception_v3/InceptionV3

(2.18)

12

Chapter 3

Fingerprint generation

Fingerprint recognition is a large field in biometrics research. Many machine learning
methods are used to tackle this issue, mainly neural networks. Neural networks usually
require large amounts of high-quality data for training in order to provide desired results.
However, as many fingerprint datasets, such as NIST SD4 [38], NIST SD14 [37], and NIST
SD27 [16] have been retracted from public use due to privacy regulations [12], it is becoming
increasingly difficult to develop and train large neural networks for fingerprint recognition.
One of the possible solutions for this problem is to generate new fingerprint images, and
create new large-scale datasets for training models. In this chapter, various methods of
generating fingerprints will be described, focusing on utilizing GANs . Special emphasis
will be given on generating latent fingerprints, as well as identity preservation, as these
represent the real challenge in the field of fingerprint recognition.

3.1 Fingerprint basics

Fingerprint identification

Fingerprint details can be divided into 3 classes [36], as is shown in Figure 3.1:

• Level 1 (LI) - Global patterns, such as ridge orientation maps

• Level 2 (L2) - Local patterns, such as minutiae

• Level 3 (L3) - Fine details, such as sweat pores or scratches

Fingerprint identification is carried out based on these characteristics. There are different
identification methods, however, the most used techniques rely on minutiae (L2) detection.
This is for a multitude of reasons, first being that minutiae contain majority of identity
information. Second reason is that minutiae information is memory-efficient. Besides that,
extraction of minutiae is also robust to many sources of degradation [22].

13

s s

////// lit///. 11 II II I 1111111 1111111 1111 111 11(1111
Jl

I W W W I w w w w \ w •

— s w w w
w w \ w w f ' H W W W I W W l l l W W I I I W \ W
\ J H M l \ \ WW**/I ' / I I I

WWW*—-// / I I I I
« w w w / / / /11
W W W * — - ' / / / I t I WWVS '///III \\\\v*—-///III •*//////
V—^————.—.—' s

(a) (b) (c) (d)

Figure 3.1: Different levels of fingerprint details [22]. (a) Original fingerprint image (b)
Level 1 - ridge orientation maps (c) Level 2 - minutiae markers (d) Level 3 - ridge contour,
pores and dots

Fingerprint types

Fingerprint images can be divided into 5 different types based on capture method and count
of fingerprints: [13] [34] [35]

1. Plain - fingerprint is pressed down on a flat surface

2. Rolled - fingerprint is rolled from one side to the other (nail-to-nail) in order to
capture all the details

3. Latent - fingerprint is lifted from a surface that was touched by a person

4. Slap - multiple fingerprints on one or both hands are captured simultaneously, also
called simultaneous plain

5. Simultaneous latent - multiple latent fingerprints are lifted from a surface

Each fingerprint type, that is not latent (plain, rolled, slap), will be called clean. Fingerprint
image, that contains only 2 levels of activation (0 and 1), is called binarized. Fingerprint,
that is 3 of these types are shown in Figure 3.2.

Fingerprint alignment

During fingerprint acquisition, different placements of finger on the scanner may result in
different impressions of the finger. Alignment process is a transformation of one of the
images, such that it is geometrically aligned with the other one. For that, transformation
model has to be specified. In general, rigid transformation is sufficient for this task. In the
case of more intense non-linear deformations introduced during fingerprint scanning, more
complex methods, such as Generalized Hough transformation can be used [22]. Another
issue is selecting appropriate method for estimating transformation parameters, given ex­
isting information about the fingerprint. One of such challenges will be discussed in section
4.2.

14

3.2 Image processing

Projective transformation

Projective transformation [25] is a type of geometric transformation. It is the most gen­
eral type of homography transformation. Regarding fingerprints, 2D transformations are
relevant. The projective transformation can be defined for a point [x, y] in 2D space as:

x'\ / o n Ol2 a i3 \ /x\
y' 1 = 1 «2i a22 a23 [y\ (3.1)
1 / \asi a 3 2 v J \lj

where would be a transformed point in that space, aij are transformation param­
eters, and v is a constant, either 0 or 1. This transformation has 8 degrees of freedom,
corresponding to the parameters. These parameters can also be estimated, given a set of
pairs of points before and after transformation.

Otsu's binarization

There are multiple algorithms for fingerprint binarization. Some of them require com­
mercial software. Given that the fingerprint image is not substantially degraded, simple
thresholding methods can be used. One of them is called Otsu's thresholding1 [29] (also
Otsu's binarization), which works by finding the image threshold, that minimizes intra-
class variance in the image. Any threshold will divide the image into 2 parts, black and
white pixels. These 2 parts are understood as classes in this context, meaning the algorithm
tries to minimize variance within them. The variance a2 at threshold t is computed as:

a\t) = ujbg(t)a2

g(t) + ufg(t)a2

fg(t) (3.2)

1https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemented/

15

https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemented/

where (&fg(t)) is the variance in values of pixels, that would be under (over) threshold
t, and u)bg(t), (jJfgif) are probabilities of these classes (calculated as number of pixels of given
class divided by a total number of pixels). The algorithm finds such threshold t for which
a2 has the minimal value.

In this section, existing methods of generating fingerprints using GANs will be described.
Only 2 of these methods are focused on latent fingerprint generation. A l l of these methods
aim to generate gray-scale fingerprint images.

F i n g e r - G A N

Finger-GAN [27] is a GAN-based approach designed to generate realistic fingerprint images.
The model used is a simple convolutional G A N , where both generator and discriminator
have 5 layers. The model was trained separately on 2 datasets, F V C 2006 [8] and PolyU
[41], and the results were also evaluated separately. The key difference of this approach is
the use of custom loss function. Sometimes, images generated by G A N models can contain
tiling patterns or a lot of unwanted noise. Since fingerprints are typically composed of many
fine lines, these lines need to be connected correctly between individual image rows. To
achieve this line connectivity, anisotropic version of 2D total variation [9] was used. Total
variation measures the amount of variation between neighbouring pixels. It is computed
as:

where Y is the input image, and i, j are row, resp. column indices. It is a sum of variations
between all neighbouring pixels, both horizontally and vertically. Minimizing this quantity
should produce smoother and more connected images. The loss function is then defined as:

CGAN-TV = Ex~P A r t o(x)[logD{y)\ + E z „ P m (z) [log{\ - D{G(x)))\ + XTV(G(z)) (3.4)

where A is a hyperparameter determining the weight of total variation in the loss function.
The images produced by this network look considerably realistic for both datasets.

However, the network was not trained to generate latent fingerprints. Furthermore, it
is not possible to add conditional identity information into the network, which makes it
practically impossible to generate multiple instances of one fingerprint.

Level 3 fingerprint generation

As mentioned in section 3.1, fingerprint details can be classified into 3 levels. The approach
described in the paper [36] is focused on generating L3 fingerprint images. First, they
generate new clean fingerprint using open-source software called Anguli [1]. After slightly
dynamically changing ridge thicknesses, this image is called master fingerprint. After that,
pores and scratches are added to this image using distribution learned from real data. Then,
fingerprint acquisition is simulated, using cropping and random affine transformations. Re­
sulting images are then passed through a series of augmentation steps, producing a set of
so-called seed images. The final step consists of adding realistic texture to the seed image
using Cyc leGAN [42]. Cyc leGAN can learn a mapping between 2 image domains without
prior knowledge of inter-domain image pairs. Real fingerprint data are taken from PolyU

3.3 Related work

(3.3)

16

[41] database. Similar to seed images, they are also augmented. Then, the CycleGAN is
used to learn the mapping between seed images and real images. Using the trained Cycle­
G A N , they generated synthetic fingerprint dataset called L3-SF, totalling 7400 fingerprint
samples. The process is illustrated in Figure 3.3.

First stage (seed image generation) Second stage (realistic texturizing)

Figure 3.3: Level 3 fingerprint generation approach [36]. First, master fingerprint is gener­
ating using Anguli [1]. Then, pores and scratches are added, according to real distribution.
Fingerprint acquisition is simulated using cropping (again learned from real data) and ran­
dom affine transformations. Resulting images are augmented to create seed image set.
Cyc leGAN [42] is utilized to learn a mapping between the seed images, and augmented
subset of PolyU [41] dataset.

It was concluded, that the generated fingerprints look realistic, based on human per­
ception test using 60 volunteers. The learned mapping also seems to preserve fingerprint
identity. Although realistic L3 details are generated, there is no mention of generating
latent fingerprints using this method. As CycleGAN learns 1:1 mapping between 2 im­
age domains, it is also not viable to generate multiple impressions of the same fingerprint.
Authors claim, that this step is done when simulating multiple different fingerprint acquisi­
tions. However, the diversity of these images does not match the diversity present in latent
fingerprints. In addition, it is not able to simulate different environments (backgrounds)
present in latent fingerprints.

P r i n t s G A N

Pr in tsGAN [12] is an approach at generating fingerprints using multiple G A N models.
It consists of three stages. In the first stage, binary fingerprint, which is called Master-
Print is synthesized. In this process, B i g G A N [6] architecture is utilized to generate 256
x 256 binary fingerprints from 512-dimensional noise vector. For training this G A N Gi,
large binary fingerprint dataset is needed. For that, M S P longitudinal database [40] was
used. This dataset contains 282K gray-scale images, so the binarized versions of them were
created. First, commercial software (Verifmger v l 2 SDK) was used to extract binarized
versions for the subset of 10K images from the dataset. Subsequently, auto-encoder R was
trained on this extracted dataset to translate from gray-scale to binary images using L2
loss. Through this auto-encoder, binary dataset for training the the first stage G A N was
created.

In the second stage, warping and cropping are added to master Master-Print. For this,
another G A N Gw is used. This network consists of encoder Ew, decoder Dw, and warping

17

encoder L W . First, the encoder transforms input image I ID into feature maps. Simulta­
neously, warping encoder transforms its input 16-dimensional noise vector into parameters
0 . From the extracted feature maps, decoder computes a segmentation mask S, which
simulates cropping the image. Warping is carried out by Thin Plate Spline transforma­
tion J-(I, O), which aims to simulate different finger placements on the scanner. The final
output is computed as IW = F(IID-> @) using the parameters from the warping encoder.

In the last stage, texture is added to warped and cropped fingerprint. Here, B i g G A N
[6] architecture is utilized again. It is however modified to integrate texture noise into
the image via instance normalization. The texture is represented as 128-dimensional noise
vector, which is encoded into parameters of instance normalization, similar to StyleGAN in
section 2.5. During training, discriminator compares real fingerprint images to the generated
ones. Finally, to ensure that identity of the generated fingerprint is preserved, trained auto-
encoder R is used to transform textured image IR to its binary form, and it is compared to
image before texturing IW via L2 loss. Whole process of generating fingerprints is outlined
in Figure 3.4.

Stage 1: Master-Print Synthesis

Stage 2: Impression Generator Ir €E [R 5 1 2 x 5 1 2

Figure 3.4: Pr in t sGAN architecture [12]. Whole model consists of 3 GANs . Master print is
synthesized from noise vector zjD using G A N Gj, utilizing M S P longitudinal database [40]
and trained auto-encoder R in the training stage. Warping and cropping are added to the
master print to simulate pressing fing er on a scanner. This is carried out by G A N Gw, using
Thin Plate Spline transformation. Vector Zdistort controls the transformation parameters.
Transformed image is then passed to the third G A N Gr, where realistic texture is added,
dictated by ztexture vector. The final image is then converted to binary form via auto-
encoder R, and compared to output of the warping network IW using L2 loss, to ensure
identity preservation.

18

Prin tsGAN showed great results, with capability to generate realistic fingerprints, tested
by expert human subjects. It can generate multiple impressions per fingerprint (with vari­
ations in both warping and texture), and it preserves the identity of master print during
texturing stage. Furthermore, all of the components of the fingerprint image (identity,
warping, texture) can be controlled by individual vectors, making it a great tool for gen­
erating large amounts of high-quality fingerprints. The only disadvantage of this approach
is, that it can not generate latent fingerprints, because it was not trained to do so.

Synthetic latent fingerprint generator

The approach proposed in the paper [5] aims to generate latent fingerprints from rolled
fingerprints. The training is split into 2 stages. In the first stage, Cyc leGAN [42] model is
trained to learn a mapping between rolled and latent fingerprints. Rolled fingerprints for
training are taken from NIST SD4 [38] database, whereas latent ones are from M S P latent
database [40]. Cyc leGAN architecture is modified to use both global and patch discrimina­
tors, to improve stability. After the Cyc leGAN is trained, the latent fingerprint database is
run through pre-trained ResNetl52V2 2 [19] network, to extract image embeddings. These
embeddings are taken as the output of the last fully connected layer, with 2048 features.
Then, k-means clustering is applied on the embeddings to split these images into k = 3
categories, namely Good, Bad, and Ugly. This division comes from NIST SD27 [16] dataset,
where the fingerprints are split this way, based on their quality. For each of these clusters,
separate Cyc leGAN model is created, as a fine-tuned version of the model trained in the
first stage. The images from the given cluster are used as a training data for finetuning.
Finally, using these models, synthetic latent fingerprints belonging to any of the 3 categories
can be created, by passing rolled fingerprints via respective fine-tuned model. The process
is outlined in Figure 3.5.

First Stage: ro Second Stage: clustering and model refinement

Global and Patch

Coarse
model

Extract image features
withResNetl52V2

Clustering similar
latent styles with

K-Means

Visual similarity
clustering

ft latent |
style: Global and Patch

Rolled
fingerprint

Identity

Figure 3.5: Generating latent fingerprints [5]. In the first stage, coarse CycleGAN model is
trained to translate between rolled and latent fingerprints, utilizing NIST SD27 [16] dataset
for rolled fingerprints, and M S P latent database [40] for latents. In the second stage, pre-
trained ResNetl52V2 [19] network extracts embeddings from the latent fingerprints. The
latent fingerprints are then clustered into k categories using k-means clustering, according to
their embeddings. For each of these categories, coarse model is fine-tuned on the fingerprints
from the given category, creating k separate models. In the end, these models can be used
to synthesize k different styles of latent fingerprints from rolled fingerprints.

2https://www. tensorflow.org/api docs/python/tf/keras/applications/resnet v2/ResNetl52V2

19

https://www
http://tensorflow.org/api

The generated fingerprints are evaluated using NFIQ 2 [3] score, showing that generated
fingerprints are realistic. Besides that, DeepPrint [11] model finetuned using these images
showed a performance boost. There was no analysis of identity preservation, however the
fact that DeepPrint model performance improved after fine-tuning, as well as sample images,
seem to confirm that identity is preserved. The disadvantage of this approach is that despite
claiming that it can generate multiple impressions of the same finger, the authors only chose
to generate 3 of them, and it seems like it would be difficult to generate much more. This
is because for each impression, there needs to be separate model fine-tuned, which is not
practical in terms of computational power and memory capacity. Furthermore, increasing
the number of impressions would decrease the number of training images per impression,
which could degrade the quality of images, and variance between impressions.

AugNet

The aim of the work in the paper [39] is to improve latent fingerprint reconstruction.
To tackle this issue, they first propose GAN-based data augmentation framework AugNet,
which is our object of concern. This framework is trained to generate latent fingerprints from
their binarized clean counterparts. Given large scale dataset of clean binarized fingerprints,
and small scale dataset of pairs of latent fingerprints and their binarized versions, it can
generate latent fingerprints from the clean binarized ones. It also learns to disentangle
between fingerprint identity and degradation patterns, and to map a Gaussian distribution
into the distribution of these patterns.

The AugNet consists of generator G, encoder E, and discriminators D\ and Z?2- It is
trained in 2 stages. In the first stage, the unpaired dataset of clean binarized fingerprints is
utilized. The clean binarized fingerprint is passed into the generator, together with a vector
z sampled from Gaussian distribution. The generator produces an image, which is then fed
into discriminator D \ , together with real latent images. G and D\ are trained in adversarial
manner, with their loss marked as CQANI- Simultaneously, encoder E is trained to learn
the original noise vector z from produced latent image. Output of E is then compared with
z using L I loss, marked as CZ

In the second stage of training, paired dataset of latent fingerprints is used. The latent
fingerprint is passed into encoder to extract degradation vector z. This vector is fed to­
gether with corresponding binarized latent into the generator, which produces fake latent
fingerprint. The generator is again trained together with discriminator Z?2 in adversarial
manner, marking the loss as CQAN2- Furthermore, there is a L I loss constraint marked as
C L 1 between the produced latent and the original latent. This is because the degradation
vector was extracted from the original latent, so the generator should produce the same
result. The last loss component is C K L , which is defined as K L divergence between the
reconstructed vector z and the Gaussian distribution. It ensures that vector representing
the degradation in real data follows Gaussian distribution. The final loss function is then
defined as:

£ AugNet = ^GANl^GANl + ^GAN2^-GAN2 + ^KL^KL + A^-Cf^ + \ Z C Z (3.5)

where XGANI, XQAN2, ^KL, <VLi; and XZ are arbitrarily chosen hyperparameters. The
training process is illustrated in Figure 3.6.

This method is able to generate latent fingerprints from the binarized clean ones. It
was shown, that using dataset augmented by this method, together with proposed recon­
struction framework ReconNet outperformed multiple state-of-the-art approaches. There

20

D-2

Fake Latent

A u g N e t - - T r a i n i n g s t a g e

Figure 3.6: AugNet training process [39]. In the first stage, generator G produces fake
latent fingerprint from sampled vector z and clean binarized fingerprint. It is trained
together with discriminator D\ in adversarial manner. Encoder E learns to reconstruct
degradation vector from the latent image, using L I loss to compare it to the original z
vector. In the second stage, E extracts degradation vector z from real latent image, which
is passed to the generator with corresponding binarized latent. Analogically, G generates
fake latent, and Z?2 are trained in adversarial manner. The generated image should be the
same as the input latent (because of the reconstructed vector z), hence the L I loss. There is
also K L divergence loss, so that vector z follows Gaussian distribution for real latent data.

was not any quantitative evaluation of quality of the generated fingerprints, nor any spe­
cific claims about identity preservation were made (other than the disentanglement between
identity and degradation). Any other existing model was also not trained using the aug­
mented dataset. However, regarding the identity preservation, given that the combination of
AugNet and ReconNet showed promising results, as well as visual example from the paper,
it is possible to conclude, that identity is preserved. It is also possible to generate a lot of
multiple instances of the same fingerprint, just by sampling random vectors. Furthermore,
it is possible to control the identity (binarized clean fingerprint) and degradation (random
vector) separately. Despite lacking formal evaluation of the model, it is the only one of the
mentioned papers, that seems to at least partially fulfill all the criteria (latent fingerprints,
identity preservation, multiple impressions per fingerprint, controllable identity and style).

21

Chapter 4

Implementation

4.1 Proposed approach

For my approach on generating fingerprints, I chose to implement framework inspired by
AugNet [39]. This is because, as it was mentioned in section 3.3 in AugNet subsection, it
is the only one of studied approaches, that at least partially fulfills all the criteria. The
following description is based on the paper and the supplementary file 1 for the paper.
However, there are a few key points missing, so those will be experimented with in chapter
5.

Discriminator

Discriminator in this approach follows classic downsampling convolutional architecture.
More precisely, Pa tchGAN [21] architecture is utilized (described in section 2.6). Archi­
tecture is outlined in Figure 4.1. Instead of pooling layers, strided convolution is used.
Padding is applied to keep height and width of outputs always at powers of 2. This also
applies to encoder and generator.

1
_l a> a: s al la
a> LL _i 1

Figure 4.1: Architecture of the discriminator. KxCySz describes a convolutional layer with
kernel size x, y channels, and with a stride of z. Final layers (or layers) are subject to
experimentation in chapter 5.

Encoder

Encoder, similar to discriminator, is using convolutional downsampling architecture. Its
task is to extract fixed length vector from latent fingerprint image. Unlike the discriminator,

1https://drive.google.com/open?id=lK3e7NuHTPoAWW2HGSYJDGfbA1086nmhJ

22

https://drive.google.com/open?id=lK3e7NuHTPoAWW2HGSYJDGfbA1086nmhJ

it does not use any special architecture type. Convolutional layers are followed by Global
Average Pooling to collapse each feature map into a single scalar. At the end, fully connected
layer transforms this vector into a new vector, that represents final output. According to
the supplementary file, it is a 16-dimensional vector. Full architecture is shown in Figure
4.2.

Figure 4.2: Architecture of the encoder. KxCySz describes a convolutional layer with kernel
size x, y channels, and with a stride of z. The output size of fully connected layer is 16.

Generator

The generator is the most complex, and also most vaguely defined component of the AugNet.
It employs U-Net architecture, which means it is a sequence of downsampling layers, fol­
lowed by upsampling layers, with a few layers in between, and symmetric connections
between downsampling and upsampling layers. The most crucial missing information in
the paper is, how is the latent degradation vector incorporated into the image. Based on
StyleGAN [23] architecture described in section 2.5, which adapts the style vector into the
image using AdaIN [20] block, as well as Pr in t sGAN [12] authors encoding noise vector
into parameters for instance normalization, I decided to use this approach as well. Map­
ping network from StyleGAN was also adopted, to create intermediate latent vector space.
As StyleGAN generator works in upsampling manner, the style vector is only added in
the upsampling part of our generator, at each layer. Figure 4.3 shows the full generator
architecture.

Training

As mentioned before, 2 datasets are utilized for training. First of them is larger, unpaired
dataset of clean fingerprints. Second of them is smaller, paired dataset of latent fingerprints,
and their binarized counterparts. As can be seen from Figure 3.6, the architectures for these
datasets are different. That effectively divides the training into 2 separate stages. In the
paper, there is no mention of how these 2 stages are alternated. From practical point of
view, it makes the most sense to alternate between them after each epoch, as the datasets
have different sizes. For the exact training procedure, see Algorithm 3.

Implementation details

For implementation of AugNet model, TensorFlow 2 Keras A P I was utilized. Individual
modules were implemented by subclassing tf.keras.Model and tf.keras.Layer. The only

2https://www.tensorflow.org/

23

https://www.tensorflow.org/

methods that required to be implemented for forward pass were init , call, optionally
build. Due to complexity of training algorithm, no high level Keras training A P I was used,
instead, custom training loop was implemented, using custom train_step method. The code
was also written to work on multiple GPUs, using tf. distribute.MirroredStrategy.

Algorithm 3 AugNet training algorithm. C AugNet refers to loss function defined by equa­
tion 3.5. Only the parameters passed in parentheses are relevant, others are considered to
be zero. Sometimes, the same computation is carried out twice, because we do not want to
accumulate gradients between both of these computations.
Inputs: Generator G, discriminators Di,D2, encoder E, prior noise distribution pz(z),

clean dataset X c / e a n , latent dataset (X ; a t e n f , Xunary)-
Hyperparameters: Number of epochs E.
Objective: Train AugNet model.

1: for epoch = 1,...,E do
2: for x in X c ; e a n do
3: Sample batch of vectors z from pz(z).
4: Generate batch of fake data y = G(x, z)
5: Sample batch of real data r from 'X.iatent
6: Get discriminator predictions p = Di(concat(r,y))
7: Calculate total loss £-AugNet{p) and update weights in D\.
8: Sample batch of vectors z from pz(z).
9: Generate batch of fake data y = G(x, z)

10: Get discriminator predictions p = D\(y)
11: Calculate reconstructed vectors z' = E(y)
12: Calculate total loss £Aug./Vet(p> z, z') and update weights in G and E.
13: end for
14: for ^-latenti^-binary i^l (.^-latent> ^-binary) do
15: Calculate reconstructed vectors z = E(xiatent)
16: Generate batch of fake data y = G (x&j n a r j , , z)
17: Get discriminator predictions p = D2(concat(xiatent, y))
18: Calculate total loss CAUgNet(p) and update weights in D<i-
19: Calculate reconstructed vectors z = E(xiatent)
20: Generate batch of fake data y = G(xbinary, z)
21: Get discriminator predictions p = I?2(y)
22: Calculate reconstructed vectors z' = E(y)
23: Sample batch of vectors z from pz(z).
24: Calculate total loss CAugNet(p, z, z', y, xiatent) and update weights in G and E.
25: end for
26: end for

4.2 Data processing

Clean fingerprints need to be binarized for training the model. In this work, Otsu's thresh­
olding [29] (section 3.2) was used to binarize clean fingerprint images.

For optimal results, all fingerprint images should have the same size. Also, the width
and height of the image should be the same. In the AugNet [39] paper, there was no mention

21

Generator

Input

Mapping
network , r

FC32

>

I28

> f
FC256

>

FC512

> 1
FC512

> 1
FC512

> 1
FC512

K4C64S2

K4C128S2

K4C256S2

K4C512S2

3x
K4C512S1

Sigmoid K4C1S1

AdaIN ! FC128

K4C64S1/2

K4C512S1/2

Concat

Concat

AdaIN ! FC256

K4C128S1/2

Concat

AdaIN ! FC512

K4C256S1/2

Concat

AdaIN H F C 1 0 2 4

Mapping
network

Figure 4.3: Architecture of the generator, depicted on the right side of the image. On
the left side, there is an architecture of mapping network component. KxCySz describes
a convolutional layer with kernel size x, y channels, and with a stride of z. Upsampling
part contains fractional strides (1/2). A l l of the convolutional layers except the last one are
followed by instance normalization and Leaky R e L U . F C x represents fully connected layer
with output size of x.

25

of image dimensions. In the supplementary file3 they mention ^cropping the central 512
x 512 regions for reconstruction", which could imply 512 x 512 image dimensions. Also,
in the Pr in t sGAN [12] paper, they explicitly state generating 512 x 512 grayscale images.
Given these circumstances, the same dimensions will be used in this approach. A l l images
were first padded with white pixels, so that the dimensions are the same. If image had
shape H x W, after padding it became max(H, W) x max(H, W). Then, images were
resized to 512 x 512 size.

Another common issue when using fingerprints with convolutional networks is image
alignment. In the available dataset of latent fingerprints, the images were not aligned. As
mentioned in section 5.1, there are some additional information about NIST SD302 [15]
dataset provided. This data contains mapping of minutiae points from clean fingerprint to
latent, so that latent can be aligned according to clean. These points were used by module
transform4 from scikit-image library to estimate parameters of projective transformation
[25] (section 3.2). Estimation was carried out by skimage.transform.estimate_transform
method, and for subsequent transformation, skimage.transform.ProjectiveTransform class
was used. Binarized version of latent was also downsampled, so the minutiae points for the
latent image had to be scaled. Figure 4.4 shows example transformation. Complete data
processing pipeline is depicted in Figure 4.5. A l l images were normalized to range [0; 1].

Figure 4.4: Example of latent fingerprint alignment, (a) Clean fingerprint (b) Same latent
fingerprint (c) Same latent fingerprint after transformation. Red dots are representing
minutiae.

4.3 Experiment setup

As a part of this thesis, large number of model training experiments was conducted. Each
training run could use different model architecture, data source, processing pipeline, train­
ing algorithm, hyper parameters, etc. There was a need for a robust experiment tracking
system. For that, git tags in combination with DVC5 were used. Each git tag corresponded
to one experiment, and it contained:

3https://drive.google.com/open?id=lK3e7NuHTPoAWW2HGSYJDGfbA1086nmhJ
4https: / / scikit-image.org/docs/stable/api/skimage.transform.html
5https://dvc.org/

26

https://drive.google.com/open?id=lK3e7NuHTPoAWW2HGSYJDGfbA1086nmhJ
http://scikit-image.org/
https://dvc.org/

Figure 4.5: Data processing pipeline. A l l images are padded to square, and then resized
to 512 x 512. Clean fingerprints are binarized using Otsu's thresholding [29] (section
3.2). Binarized latent is transformed using projective transformation [25] (section 3.2), its
parameters are estimated from mapping to clean fingerprint minutiae. Latent is transformed
the same way, minutiae are just scaled.

1. Python source files (model, training algorithm, data pipeline, evaluation scripts,...)

2. Python configuration file - mainly model/training hyper parameters, data directo­
ries,...

3. D V C files

D V C files referred to directories, which stored model weights at different checkpoints, Ten-
sorBoard6 logs, and samples of generated images.

For scheduling multiple experiments, as well as running them in parallel, I implemented
a custom Python script. The script took YAML1 configuration file as an input. In this file, it
was possible to specify different parameters, which were parsed into Python configuration
file. It was also possible to set different git commits for each experiment, referring to
specific model versions. The file also supported option for specifying, which of the groups
of parameters should be taken as a cartesian product, generating separate run configuration
for each one of their combinations. Scheduling parameters were also included, such as how
many experiments should be run in parallel, how many GPUs should be used, and after
what interval should the training be restored after failure.

After parsing the configuration file, the experiment running script generated separate
folder for each experiment in subfolder ignored by git and D V C . That way, it was not
interfering with debugging and development, as it only checked out specific files to given
commits, copied them, and restored them back. Each of the generated folders contained
copy of all Python source files, including configuration file. After generating the folders, the
running script launched training and evaluation scripts (in correct order). After all of them

6https: / / www.tensorflow.org/ tensorboard
7https://yaml.org/

27

http://www.tensorflow.org/
https://yaml.org/

finished, I reviewed the results, and decided, which experiments are worth keeping. There
was another script for copying selected experiment folder back to main folder, including
all Python files, logs, weights, and output image samples. After copy, I decided which
checkpoints (weights) are worth keeping, and discarded the others. Finally, there was
a script for saving the experiment. This script committed all larger files (weights, logs,
output samples) to D V C , and subsequently created a git commit and a tag, with given
name and description. It also created cleanup commit after the first one, removing D V C
files, so that they are only present in the experiment commits.

Typical experiment workflow is depicted in Figure 4.6. For all of the experiments, 2 to
4 N V I D I A R T X A5000 24GB 8 GPUs were used, depending on availability.

Prepare the
Python source

files

Discard the
rest

Prepare
configuration

file

Generate
experiment

folders

{ >
Run the

experiments
^ •>

Generate
experiment

folders

{ >
Run the

experiments
^ •> \

Commit the
experiment

\
Select

weights to
save

c
* 1

)

Select
weights to

save
^ i

Select

save

Review the
results

Figure 4.6: Typical experiment workflow.

8https: / / www.nvidia.com/en-us / design-visualization/rtx-a5000/

28

http://www.nvidia.com/

Chapter 5

Experiments

5.1 Available data

In this section we will be discussing available datasets for training fingerprint generation
models.

N I S T SD302

NIST SD302 [15] is a large dataset of multiple types of fingerprints. It is split into 9 sets
of fingerprints marked a to i, each of them having common type, device, or scenario. For
this work, only sets from a to e are available, so from this point on, all the information is
relevant to this subset. Counts of fingerprints for each different fingerprint type are shown
in Table 5.1. They were taken from 200 unique subjects.

Table 5.1: Summary of NIST SD 302 dataset. Table shows count of fingerprints for each
type.

Type Count
Rolled 13629
Plain 3188
Slap 3472
Palm 9732

Latent 9990
Total 40011

Besides the fingerprints themselves, there was also 158153 image pairs, that matched
fingerprints together to provide identity information. However, there was no matching
between latent and non-latent fingerprints. Latent fingerprints in this dataset are taken in
different environments. Their types are listed in Table 5.2.

Additional information for N I S T SD302

In order to train AugNet model as is stated in section 3.3, 2 datasets are needed. One
is unpaired dataset of binarized clean fingerprints, which is not that difficult to obtain.
However, acquiring a paired dataset of latent images and their binarized versions is a more
challenging task. Thanks to Innovatrics company, I was able to get binarized versions of
a subset of latent fingerprints from NIST SD302 dataset. In total, there are 3720 binarized

29

Table 5.2: Listing of different environments of latent fingerprints and their codes [14].
1A Peering Into Window 4E Low-quality White Envelope
IB Fist Banging on Glass 4F Greeting Card and Envelope
1C Fingertip Window Slide 4G Manila Envelope
ID Get-away Palm on Glass 5A Photo Paper
I E " O K " Sign on Glass 5B Glossy Magazine
IF Counter Vault on Glass 5C U.S. Currency
1G Cylinder Grab 6A Stamp
1H Impatient Tapping on Glass 6B Address Label
2A Samsung Galaxy S5 6C Clear Packing Tape
2B Apple iPhone 5s 6D Black Electrical Tape
3 Check 6E Duct Tape

4A Lined Paper 7A Circuit Board
4B Low-quality Copy Paper 7B C D / D V D
4C High-quality Copy Paper 7C Clear Plastic Bag
4D Yellow Lined Paper 7D Black Plastic Bag

fingerprints. For some of them, there is also an information about matched clean fingerprint
from NIST SD302 dataset. This matching was done using commercial software, and it
includes name of the matched clean image, matching score, as well as mapping of minutiae
points between clean and binarized fingerprint. This mapping is very useful, as it is possible
to estimate parameters of projective transformation of latent fingerprints, in order to align
them according to clean fingerprints. In total, this information was provided for 1967 of
the binarized latent fingerprints. Distribution of the matching scores is shown in Figure
5.1. I decided to only use the matches with score 100 or above, leaving 1455 fingerprints in
total.

M O L F D B

M O L F D B (Multisensor Optical And Latent Fingerprint Database) [32] is a database con­
taining multiple fingerprint types. It provides clean fingerprints from 100 subjects scanned
by different devices, and also their latent fingerprints. Clean fingerprints are mapped to
latent ones, which provides good training data for models of our interest. Table 5.3 shows
contents of the dataset. Additional binarized versions of majority of these images were also
provided by Innovatrics company.

Table 5.3: Contents of M O L F D B dataset [32].
Subset Fingerprint type Number of images

DB1 Plain 4000
DB2 Plain 4000
DB3 Slap 1200

DB3 A Plain 4000
DB4 Latent 4400
DB5 Simultaneous latent 1600

30

Dis t r ibu t ion of sco res in m a t c h e d d a t a s e t

Figure 5.1: Distribution of matching scores in data provided by Innovatrics company.

M S L F D

IIITD M S L F D (IIITD Multi-Surface Latent Fingerprint Database) [31] is a database of
latent fingerprints from different surfaces. It contains 551 fingerprints from 51 subjects
acquired from 8 individual surfaces. The list of surfaces is as follows:

1. Ceramic plate
2. Ceramic mug
3. Transparent glass
4. Steel glass
5. Compact disc
6. Compact disc mailer
7. Paperback book cover
8. Hardbound book cover

This dataset could provide valuable diversity for latent fingerprint generation. Frankly,
there are no corresponding clean fingerprints, and the latents are also not aligned, which
complicates its use in generative model training.

Datasets used in the experiments

For the dataset of binarized clean fingerprints, only M O L F DB1 [32] binarized using meth­
ods in section 4.1 was used in all experiments. For the latent dataset, 3 separate datasets
were used across experiments. They are summarized in Table 5.4. From this point on, I will
be referring to these datasets as they are described in this table.

31

Table 5.4: Latent datasets used in experiments.
Dataset Image count
NIST SD302 latent 9990
NIST SD302 latent subset 1455
M O L F DB4 4400

5.2 First experiment

Description

The model described in section 4.1 was trained using the subset of available data. For
the unpaired dataset of clean fingerprints, M O L F DB1 [32] (section 5.1) was transformed
to binary fingerprint set using methods described in section 4.2. For the paired dataset,
aligned subset of NIST SD302 [15] (section 5.1) was utilized, together with additional
information. This information contains binarized versions of latent fingerprints, as well as
minutiae mappings to align latent fingerprints, as was described on previously mentioned
sections. For a loss function, L S G A N [26] (section 2.7) was utilized, however, final sigmoid
layer was kept in the model. Loss function weights were kept the same, as in the paper [39].
No additional regularization techniques were applied. Adam [24] was used as an optimizer
with recommended values from the paper. Summary of dataset sizes, and various model
and training hyper parameters is provided in Table 5.5.

Table 5.5: Summary of data, model, and training hyperparameters. Patch size refers to
Pa tchGAN [21] (section 2.6) architecture. Latent vector size is the size of the sampled noise
vector. Loss constants represent weights in the original AugNet loss function (equation 3.5).

Clean fingerprint dataset size 4000
Latent fingerprint dataset size 1455
Image dimensions 512 x 512
Discriminator patch size 64 x 64
Latent vector size 16
Leaky R e L U a 0.3
XGANI 1
XGAN2 1
XKL 0.01
ALI 10
A2

0.1
Adam learning rate le-4
Adam ß\ 0.5
Adam ß2 0.999
Batch size 16
Epochs 100

Results

Figure 5.2 summarizes the output of the generator after different stages of training. It is
evident that trained model did not produce desired outputs. Trained generator produces

32

repetitive tiling pattern in the image. The pattern seems to get more noisy further down the
training. Furthermore, it seems that the model gradually learns to generate noise-invariant
output, which is undesired, since we want to generate different fingerprint impressions
based on the noise (latent) vector. However, the untrained generator seems to combine
fingerprint identity with style from latent vector surprisingly well. This might indicate,
that the generator architecture suits this problem nicely. Also, the fingerprint identity
preservation, although not evaluated rigorously, looks to be working substantially well,
even in the noisy outputs in the last row. Main fingerprint ridge structure, or at least parts
of it, can be seen in all of the outputs. In some cases, the ridge structure is visible more
clearly after epoch 10, than with the untrained model.

5.3 Conditional G A N training

As is described in section 4.1, training of AugNet [39] model consisted of 2 alternating parts.
In the first one, conditional G A N model was trained to generate realistic latent fingerprints,
given clean binarized template. It was trained together with the encoder, which would
learn to extract latent vector that was used to generate the image. In the second part, the
trained encoder was used to extract the latent vector from the real latent fingerprint, and
the generator was trained to reconstruct this latent fingerprint from the binarized version
and extracted latent vector. The other mentioned fact was that it is unclear, how were
these 2 training stages alternated. Few of the first experiments were dedicated to training
the model in this way, alternating these 2 stages after each epoch (Algorithm 3). They
were unsuccessful, and failed to generate any plausible fingerprint images, as can be seen in
section 5.2. Training was also highly unstable, and the model failed to converge. Because
of these reasons, I decided to spend most of the time experimenting with the first training
stage (conditional G A N training without the encoder). The first reason for that is because
it would be necessary for it to generate plausible fingerprint images for the second stage
to work, and secondly, there was a lot more room for improvement. The following sections
will thus be dedicated to training conditional G A N model, unless stated otherwise. The
generic procedure for this training is depicted in Algorithm 4.

5.4 Discriminator improvements

P a t c h G A N architecture implementation

As was mentioned in section 4.1, discriminator network follows Pa tchGAN [21] architecture.
In section 2.6, 2 different implementations of this architecture are compared. For the first
few experiments, I used the first implementation, the one that splits input image into
non-overlapping image patches. After that, I decided to switch to the second more simple
variant, mainly because it was used effectively in many scenarios.

Activation and loss function

The second important aspect of discriminator architecture is what to do with the output
after convolutional layers. As is shown in Figure 2.5, for 512 x 512 image input, the output
is a matrix of shape 32 x 32. The first option appearing in some of the implementations
is to treat each element of that matrix as a response to respective image patch. Thus for
each of the elements, sigmoid function is applied to convert it into probability, and then

33

C l e a n L a t e n t 1 L a t e n t 2 L a t e n t 3

Figure 5.2: Generator output after different stages of training. First column shows the clean
fingerprint passed into the generator. Next 3 columns show generator outputs for 3 random
latent vectors sampled from normal distribution. First row corresponds to untrained model
with randomly initialized weights. Each of the next rows represent generator output after
being trained for 10, 30, and 100 epochs, respectively.

binary cross-entropy is applied element-wise, giving one loss value for each matrix element.
In other words, the ground truth is not a single scalar label, rather 32 x 32 matrix of same
labels (meaning that each of the image patches should be real/fake). This method, however,
did not succeed in generating realistic fingerprints. The second method is to reduce the
matrix to a single scalar by calculating mean, and use that as a final discriminator output,
dropping the sigmoid and using L S G A N loss function. This method yielded first larger
improvement in resulting image quality, together with significantly increasing the number
of epochs.

34

Algorithm 4 Conditional G A N training algorithm
Inputs: Generator G, discriminator D, prior noise distribution pz(z), clean dataset X c ; e a n ,

latent dataset X ; a t e n i .
Hyperparameters: Number of epochs E.
Objective: Train conditional G A N model.

1: for epoch = 1,...,E do
2: for x in X c Z e a n do
3: Sample batch of vectors z from pz(z).
4: Generate batch of fake data y = G(x, z)
5: Sample batch of real data r from X ; a i e n i

6: Get discriminator predictions p = D(concat(r, y))
7: Calculate loss £ D (P) and update weights in D.
8: Sample batch of vectors z from p z (z) -
9: Generate batch of fake data y = G(x, z)

10: Get discriminator predictions p = D(y)
11: Calculate loss £ G (P) and update weights in G.
12: end for
13: end for

The difference can be seen in Figure 5.3. First row is output of the generator after
being trained for 10 epochs with learning rate of 2e — 6, where there was element-wise
sigmoid applied to discriminator outputs, and then L S G A N loss function was calculated,
also element-wise. The second row is generator output after 40 epochs of training with
learning rate of le — 4, with no activation function at the end of discriminator. The
responses were simply averaged together, and then L S G A N loss function was calculated.
The first model was trained with very low learning rate for a low amount of iterations,
because after more epochs, it quickly collapsed to generating purely black or white images.

Despite these improvements, the training was still quite unstable, and very sensitive to
learning rate changes. For example, training was successful for learning rate of le — 4, but
diverged very quickly for learning rate 2e — 4.

1 t • • •
IIP

Figure 5.3: Comparison of generator outputs. First row - L S G A N loss function with
element-wise sigmoid, 10 epochs, learning rate 2e — 6. Second row - L S G A N loss with­
out sigmoid, averaged at the end, 40 epochs, learning rate le — 4.

35

5.5 Mode collapse problem

Attempt at training encoder

After reaching reasonable image quality in conditional G A N training, I decided move on to
second stage of AugNet training, described in section 4.1. Although the original plan was
to train first and second stage at the same time, I decided to try this approach:

1. Train the conditional G A N .

2. Generate dataset from the trained generator, containing generated images and random
vectors, from which they were generated.

3. Train the encoder on this dataset.

4. Train the generator together with the encoder.

5. Run the second training stage.

The generated dataset contained 10000 fingerprint images, synthesized from 500 bina-
rized fingerprints (different identities), and 20 different style vectors for each of these iden­
tities. The dataset was split to 8000 training and 2000 validation samples. The encoder
was trained to predict the original style vector from the image, using C\ loss. However,
the encoder failed to converge, as it is shown in Figure 5.4. The C\ training loss was too
high even after 40 epochs, considering that the vectors were sampled from standard normal
distribution. The loss was calculated as an average over all vector elements, so it can be
understood as an average absolute difference between each predicted vector element and
corresponding ground truth. What is even more important is that the loss almost did not
change on validation dataset, which indicates overfitting. This failure can be attributed
to mode collapse in the images from the generator, which is depicted in Figure 5.5. The
generator can only generate few visually distinct latent styles from the entire input latent
space, forcing the encoder to randomly guess the original style vector. This is because
many different style vectors lead to one almost identical image, so the encoder would just
overfit to generated dataset, and would be of no use for the next training stage. This is
why I decided to focus on mode collapse problem in the conditional G A N training.

Mode collapse reduction attempts

There were multiple attempts to reduce mode collapse problem. They are summarized in
this subsection.

1. Entire NIST SD302 latent dataset: Up to this point, the latent training dataset
used was the aligned subset containing 1455 images (see Table 5.4). I tried to run the same
network configuration, but with the entire NIST SD302 latent dataset, containing 9990
images. This is because the images in the latent subset were less challenging, given that
they were able to be extracted using already working methods. M y hopes were that if
discriminator sees more diverse images, the generator would be forced to generate more
diverse image styles. Unfortunately, that was not the case. In addition, it produced images
with even lower quality than before.

2. Activations in mapping network: At this point I realized, that generator archi­
tecture shown in Figure 4.3 has one major flaw: there were no activation layers in mapping
network. This meant that the mapping network collapses to a single linear layer and is not

36

0 5 10 15 20 25 30 35 40
E p o c h s

Figure 5.4: Encoder training and validation loss. The C\ loss was calculated as an average
over all vector elements, so it can be understood as an average absolute difference between
each predicted vector element and corresponding ground truth.

able to learn any useful transformations. Therefore I decided to add LeakyReLU (a = 0.3)
activation after each layer. There was, however, no significant change in the mode collapse,
nor in the image quality.

3. StyleGAN inspirations: Besides the first change, I tried to use the mapping
network more similar to the StyleGAN [23] paper. I changed LeakyReLU a to 0.2, as well
as applied so-called truncation trick mentioned in the paper. The truncation trick is used
to provide higher quality images in tradeoff for lower image variation by restricting latent
space in some way. Although decreasing image variation is the opposite of reducing mode
collapse, I hoped it could stabilize the training in some way, and help this problem. After
transforming input vector to intermediate latent space, the truncation is applied as follows:

W n e w = Wavg + i>(vf ~ ™avg) (5.1)

where w is the original vector, ~wnew is the resulting truncated vector, and w a „ 9 is the
moving average, and tp is a constant hyperparameter. The moving average is updated after
each network iteration in this way:

Wavg_new = ™batch + @{™avg_old ~ wbatch) (5-2)

where Wbatch is the average of latent vectors over the batch, wavg_oid is the old average,
wavg_new is the new average, and j3 is again a constant hyperparameter. Note that all of
these calculations are done element-wise, i.e. for each of the 512 latent vector elements. The
moving average is also a 512 dimensional vector. Details of this calculations are taken from

37

-

•
: ;••. |

t

• -

I LJ
Figure 5.5: Visualization of mode collapse problem. Although no two images are exactly
identical, only a few distinct styles can be seen in the image, and variations within a certain
style are very small.

official TensorFlow implementation 1, as well as values for the hyperparameters (tp = 0.7,
(3 = 0.995). The last improvement taken from StyleGAN was reducing learning rate for the
mapping network. According to the paper, it increased training stability. The parameter
A for the learning rate was set to 0.01.

I experimented with all 6 combinations of A = 0.1, 0.01 and learning rate = 5e — 5, le —
4, 2e — 4, training each combination for 40 epochs. Despite that, I was not able to get any
significant reduction of mode collapse, nor any increase in image quality.

4. Multiple discriminators: The next attempt was use multiple discriminators for
the training. This was partially inspired by paper [10]. The point of this approach is to
let each discriminator be an expert on some subset of the dataset, meaning that it will
classify only some subset of the input dataset. In the paper, they specify the number of
discriminators, and let the network itself learn the best possible division of the dataset to
individual discriminators. I chose a different method. First, I extracted the feature vectors
for the entire dataset using pre-trained ResNetl52V2 2 [19] network, as it was also done
in paper [5]. Then, I used K-Means clustering to divide the features into k = 3 clusters.

xhttps: //github.com/NVlabs/stylegan
2https://www. tensorflow.org/api docs/python/tf/keras/applications/resnet v2/ResNetl52V2

38

https://www
http://tensorflow.org/api

Training images were split into these clusters based on features. For each cluster, there was
a separate discriminator. However, as was also mentioned in the paper [10], all layers of
the discriminator were the same, except for the last one. For each of the k clusters, there
was a separate convolutional layer, each with its own weights. Then, for the classification
of generator outputs, the discriminator with the lowest prediction value is selected. Given
that fake images are assigned label 0 and real images label 1, the discriminator with the
lowest response can be considered and expert on that specific prediction, as it is most sure,
that generated image is fake. The exact training procedure is depicted in Algorithm 5.

Algorithm 5 Multiple discriminator conditional G A N training algorithm
Inputs: Generator G, discriminators D, prior noise distribution p z(z), clean dataset X c ; e a n ,

latent dataset X ; a t e n i .
Hyperparameters: Number of epochs E.
Objective: Train conditional G A N model with multiple discriminators.

1: for epoch = 1,...,E do
2: for x in X c Z e a n do
3: Sample batch of vectors z from pz(z).
4: Generate batch of fake data y = G(x, z)
5: Sample batch of real data r and their respective clusters c from X ; a t e n i

6: Get discriminator predictions for real data p^eai =

D(T)

7: Select correct predictions p r e a i based on clusters c from p^ai-
8: Get discriminator predictions for fake data P f a k e = D(y)
9: Select minimum predictions pfake from P f a k e -

10: Calculate loss £D(Preai, Pfake) and update weights in D.
11: Sample batch of vectors z from p z(z).
12: Generate batch of fake data y = G(x, z)
13: Get discriminator predictions P f a k e = D(y)
14: Select minimum predictions pfake from P f a k e -
15: Calculate loss £c(Pfake) and update weights in G.
16: end for
17: end for

There were 4 separate training runs with different learning rates, Ir £ {5e —5, le —4, 2e —
4, 5e — 4}, each trained for 40 epochs. However, none of these runs provided useful results,
and the multiple discriminators setup had the opposite effect, making image diversity even
worse.

5. M O L F DB4 dataset: After unsuccessful attempts on reducing mode collapse,
I decided to change the latent dataset to M O L F DB4 [32], as it was used in the original
AugNet [39] paper. Besides changing dataset itself, I also tried changing latent vector size
from 16 to 32, as well as normalizing images into range [—1;1] instead of [0;1]. There
were 3 separate training runs for each of these configurations, each with different learning
rate Ir £ {5e — 5, le — 4, 2e — 4}. Each training run consisted of 40 epochs. As with
the previous attempts, this one was also unsuccessful, providing no improvement in mode
collapse reduction, nor image quality.

Unfortunately, none of these methods were successful in reducing mode collapse. This
problem was eventually solved, using changes described in following sections.

39

5.6 W G A N - G P

After multiple failed attempts to reduce mode collapse, I decided to change loss objective
altogether. I used W G A N - G P [18] training procedure, described in section 2.8. The train­
ing procedure itself did not help to generate better images at first. There were multiple
experiments with this training algorithm, each with some incremental changes. Up to this
point, training loop of all models consisted of iterating over dataset of clean binarized finger­
prints, and sampling random images from latent fingerprint dataset for the discriminator.
After reading W G A N - G P [18] paper, I decided it would be better to iterate over latent
dataset instead, and sample random images from the clean dataset. Since the objective is
to generate latent fingerprints that are as close to the real distribution as possible, it makes
more sense that the discriminator (or so-called critic in this case) sees all images from latent
dataset at each epoch. This way it is able to approximate the Wasserstein distance better.
Besides of choosing random binarized fingerprints, I also experimented with keeping the
binarized fingerprint constant for the whole training. These experiments will be described
in the following sections.

Despite the fact that the change of objective to W G A N - G P itself did not lead to any
significant image quality improvement, the training loss was more stable than in case of
L S G A N . Because of this reason, I decided to use this training objective in the majority of
following experiments. The specific training procedure for fingerprint generation model is
described in Algorithm 6.

Algorithm 6 Conditional W G A N - G P training algorithm
Inputs: Generator G, discriminator D, prior noise distribution p z (z) , clean dataset X c ; e a n ,

latent dataset X ; a t e n i .
Hyperparameters: Number of epochs E, gradient penalty weight A.
Objective: Train conditional W G A N - G P model.

1: for epoch = 1,...,E do
2: while data in X ; a (e n (do
3: Sample batch of clean data c from X c ; e a n

4: for t=l, ...,ncritic do
5: Get next batch of latent data r from ^.latent
6: Sample batch of vectors z ~ p z (z)
7: Sample batch of random numbers e ~ U[0,1]
8: Generate batch of fake data x = G(c, z)
9: Calculate interpolation x = e x + (l — e)x

10: Calculate gradient g = Vx-D w (x)
11: Calculate gradient penalty gp = (\\g\\ — l) 2

12: Calculate loss £ D = D(5i) — -D(x) + Xgp

13: Calculate gradients of CD w.r.t. weights in D and perform update step.
14: end for
15: Sample batch of vectors z ~ p z (z) .
16: Calculate loss CQ = —D(G(c, z))
17: Calculate gradients of CQ w.r.t. weights in G and perform update step.
18: end while
19: end for

40

5.7 Generator architecture changes

Despite experimenting with multiple alternatives of training algorithm, data, loss objectives,
and network architectures, the mode collapse problem was still not solved. So I decided
to take a closer look at the generator architecture (Figure 4.3). In this architecture, the
fingerprint style is synthesized from input latent vector by AdaIN [20] blocks, which is
simply an instance normalization followed by scale and shift, applied individually for each
feature map. Unlike classic instance normalization, the scale and shift parameters are not
learned, they are taken from the intermediate latent vector. The changes I experimented
with were:

1. Different activations in mapping network (ReLU, LeakyReLU).

2. Making instance normalization in convolutional layers non-trainable.

3. Adding AdaIN blocks after each layer, not just the upsampling part.

4. Removing mapping network.

5. Changing latent vector size from 16 to 128.

Most of these changes had little to no effect on generator output. After that, I decided
to modify the convolutional layers instead. As it is mentioned in description of Figure
4.3, each convolutional layer contains the convolution operation itself, followed by instance
normalization, and LeakyReLU activation function. Only after that, the AdaIN operation
is applied. The fact that AdaIN operation is only applied after instance normalization and
activation probably hindered generator's performance. So I decided to change this archi­
tecture altogether, removing the AdaIN from outside of convolutional layer, and replacing
the former learnable instance normalization with it. The updated architecture is shown in
Figure 5.6. Note that there is also no mapping network. This change was one of the most
influential, as it improved image quality, and drastically reduced mode collapse problem.
These improvements will be discussed in section 5.9.

5.8 Evaluation methods

Methods description

Given the task of conditional latent fingerprint generation, the objective is to generate
realistic latent fingerprints, while preserving the identity of the original binarized template.
The evaluation of this task can be quite complicated, since if we want to generate more
challenging latent fingerprints, it will be hard to verify identity preservation. On the other
hand, if the generated fingerprints can be easily matched to their source, it means that there
is not much added value, since the generated distortions are not that challenging. That is
why there needs to be some form of trade-off between challenging latent fingerprints, and
ability to preserve their identity.

There are 3 studies [33, 5, 39] worth mentioning when it comes to evaluation of quality
of generated latent fingerprints using G A N models. The metric called NFIQ2 score [3]
is used in the first [33] and the second [5] to asses the quality of generated fingerprints.
The metric is used mainly for determining the quality of optical sensor fingerprint images,
and assigns the score from 0 (worst quality) to 100 (best quality) to each image. It is
not meant to be used for latent fingerprints. Despite that, these studies use the metric to

41

^Inputimage^

KxCySz
Convolution
Kernel size x
Channels y

Stride z

AdaIN

LeakyReLU

j .

Figure 5.6: Modified generator architecture. Generator is shown on the right side of the
image. Left side contains internals of convolutional layers with given parameters. The
last layer is the exception, it does not contain AdaIN block. If stride is fractional, the
convolution operation is transposed convolution. F C x represents fully connected layer with
x output neurons.

42

compare the quality of generated fingerprints to the original data. In this work, for the
most experiments, NIST SD302 [15] latent dataset is used, unlike in mentioned studies.
I used an open source implementation of NFIQ 2 3 , version 2.2.0 to calculate the score on
NIST SD302 latent dataset. The average calculated score was around 2.6, which was in
my opinion too low for the baseline comparison. Both of these studies used NIST SD27
[16] latent dataset, where the average score is around 20, and the second study [5] also
uses M S P longitudinal latent database [40], with the average score around 5, well above
the figure for NIST SD302.

The another approach to indirectly evaluate synthetic fingerprint quality is to train
some fingerprint recognition model with synthetic data, and see, if there is any perfor­
mance improvement. This was done in the second study [5], where they trained DeepPrint
[11] model with the augmented data, and showed, that it improved its Rank-1 retrieval per­
formance. In the third study [39], they used custom neural network reconstruction model
called ReconNet, trained on their augmented dataset generated by AugNet to prove that
the Rank-1 accuracy is improved. The problem with these methods is that they are difficult
to replicate, as there is not publicly available implementation of DeepPrint, nor ReconNet.

Despite these limitations and inability to accurately compare results to other state-of-
the-art methods, some baseline needs to be established to at least compare the experiments
between themselves. One of them is subjective image quality and identity preservation
assessment, which is impractical for large number of experiments and data, and also highly
inaccurate. I decided to use combination of 2 metrics. The first one of them is Frechet
inception distance (FID) [4], described in section 2.9. It is used to measure the distance
between the distributions of real and generated images. It is not a 100% decisive metric,
but at least it can provide rough measurements of how different are generated data from
real data.

The second evaluation method was chosen to get at least some form of comparison
of identity preservation between different experiments. For each of the selected setups,
I generated a dataset of latent fingerprints. For each of these fingerprints, the match
score was evaluated between it and the original binarized template, as well as randomly
selected negative examples from the training set. The match score was calculated by IEngine
software designed by Innovatrics company. Then, all the matching pairs were ordered in
descending manner by the score. From that, Rank-1 matching accuracy was calculated, as
a percentage of fingerprints in a dataset, that matched to their original template with the
highest score, compared to negative samples. The pseudocode is provided in Algorithm 7.
This method is based on an assumption, that if the identity is somehow compromised, the
fake identity comes most likely from the other samples of the training data. The original
plan was to compare each generated sample to each sample from the training data, but
that was computationally infeasible, hence the limited number of negative samples.

In total, over 60 experiments (different network training runs) were conducted as a part
of this thesis. Majority of them were unsuccessful, which were mostly described in the
previous sections. I decided to choose only a part of the experiments, mostly the success­
ful ones, for evaluation using formal metrics. I also included a few of the less successful
experiments, to show a difference between individual training setups.

3https: //github.com/usnistgov/NFIQ2

43

Algorithm 7 Rank-N accuracy evaluation
Inputs: Generated datasets D \ , D n , number of data in each dataset Nd, match scoring

algorithm M, latent training dataset L, binarized training dataset B.
Hyperparameters: Rank N, number of negative matches from latent dataset I, number

of negative matches from binarized dataset b.
Objective: Evaluate Rank-n accuracy

1: for dataset = D\, ...,Dn do
2: m = UstQ
3: for sample d in dataset do
4: Sample I negative samples from L as d\
5: Sample b negative samples from B as db
6: Evaluate match scores s = M(concat(d, di, db))
7: Sort the list of scores s in descending order.
8: if d is in the first iV elements of the list s and score{d) > s[N] then m.append{l)
9: else m.append(0)

10: end if
11: end for
12: Rank-N accuracy for current dataset acc = sum(m) / Nd
13: end for

Parameters of generated datasets

Here is the list of various hyperparameters that control the properties of generated dataset:

1. Model version - this is the most important property of the dataset. It covers all
properties of the model (e.g. architecture), as well as training algorithm (e.g. loss
function, data, optimizer, batch size, image normalization, etc.)

2. Epoch number - the checkpoints of the weights of the trained model were kept in
previously specified intervals of epochs. After each run, the ones that looked most
promising were saved. This was done to combat overfitting issues.

3. Number of input fingerprint identities - this parameter specified, how many
different binarized fingerprint images were used to generate the dataset.

4. Number of latent vectors per identity - the vectors were sampled from Gaussian
distribution, as the second input to the generator. Note that different vectors were
sampled for each dataset instance.

5. Latent vector parameters - despite the fact that all models were trained using
standard normal distribution (// = 0, a = 1), I discovered that modifying these pa­
rameters in inference stage had sometimes positive effects on the dataset quality.

Calculating F I D

For the first FID calculation, I decided to try as many hyperparameters as possible. The
selected family of setups consisted of 25 model versions containing 37 epoch checkpoints.
Each generated dataset consisted of 4000 images. A l l of the combinations of number of
identities and number of vectors per identity were as follows:

44

1. 1 identity, 4000 vectors per identity

2. 16 identities, 250 vectors per identity

3. 200 identities, 20 vectors per identity

4. 4000 identities, 1 vector per identity

Each of these were also combined with latent vector gaussian distribution parameters,
namely fx G {0,1, —1}, o G {1.0, 0.5}, giving 6 combinations. Total number of datasets was
37 checkpoints x 4 identity parameters x 6 gaussian parameters = 888.

After these calculations were done, I analyzed the results. First, I looked at the best
FID score for each latent dataset. The results are summarized in Table 5.6. It can be clearly
seen from the table that the M O L F DB4 dataset has the best results, because the latents
are much less challenging and diverse, than in the case of NIST SD302. The fingerprints
in the subset of NIST SD302 are less challenging than the ones in the original dataset, and
they are also aligned, which could raise a question of why they are worse in the FID metric.
However, this dataset was used only in the early versions of the model, before all of the
significant improvements.

Table 5.6: Summary of best FID scores for each dataset on the first run.
Dataset Best FID
NIST SD302 latent 98.398
NIST SD302 latent subset 165.147
M O L F DB4 31.549

After this experiment, I also tried to verify, that FID metric in some way reflects image
quality, and similarity to the training dataset. The comparison can be seen in Figure 5.7. It
turns out that there are some minor discrepancies between subjective image realism rating,
and FID score. For example, the first row achieved better score than the second, but the
realism of images is subjectively better in the second row. There could be a few reasons
for this, which are discussed in section 5.9. Nevertheless, it also shows that there is indeed
a general trend, that the images get better with lower FID scores.

When it comes to input binarized image distribution, I decided to only use 200 identities
with 20 latent vectors per identity in the subsequent experiments, as they seemed to produce
lowest FID scores. I also explored different gaussian parameters of latent noise vector.
I noticed that more out-of-center vectors (fx = —1,1, a = 1.0) had usually better FID
scores, but worse image quality. This might be due to a fact that they produced more
diverse images, making them look closer to real latent data distribution. On the other side,
the out-of-center vectors with lower standard deviation sometimes generated even better
images, than standard normal distribution. I decided to use this fact in the next evaluation
process.

5.9 Evaluation results

For the final evaluation, Rank-1 accuracy was evaluated together with FID scores, as is
described in section 5.8. It was not computationally feasible to evaluate the same number of
databases, as in previous calculation. But given the observations at the first FID calculation,
I reduced the total number of datasets. I also included one more model versions, which was

45

Figure 5.7: Comparison of calculated FID scores on NIST SD302 latent dataset. Despite
the fact that there are some minor discrepancies (first row has subjectively worse image
realism, but achieved better FID score than the second), the FID metric in general seems
to be a good way to evaluate individual models.

not previously included in FID calculation. Complete hyperparameters of this evaluation
are summarized in Table 5.7. Note that FID and Rank-n accuracy were calculated at
datasets with different sizes, again due to computational capacity, but with the exact same
setup. In all of the following experiments, the batch size of 16 was used.

Table 5.7: Hyperparameters of final evaluation.
Model versions 26
Checkpoints 38
Gaussian noise parameters (u, a) e {(0.0,1.0), (0.0, 0.5), (0.5, 0.5), (-0.5, 0.5)}
Datasets 152
Images per dataset (Rank-n) 100
Identities per dataset (Rank-n) 20
Vectors per identity (Rank-n) 5
Images per dataset (FID) 4000
Identities per dataset (FID) 200
Vectors per identity (FID) 20
Negative latent images per sample 160
Negative binarized images per sample 39
Evaluated image pairs (Rank-n) 3040000

46

To get an overview of all results, I made a plot depicting relationship between Rank-1
accuracy and FID for each generated dataset (Figure 5.8). As it can be seen from the
graph, there is some form of negative correlation between Rank-1 accuracy and FID. The
FID seems to generally decrease with increasing Rank-1 accuracy, which means that image
realism and identity preservation are tied together. There are a few exceptions, which will
be discussed in following subsections.

400

350

300

250

NIST SD302 latent
NIST SD302 latent subset
MOLF DB4

200

150

100

50

• a

~20~ ~30 40 "50~ 60 70
Rank-1 accuracy [%]

~60~ ~80~ ~90~ 10 100

Figure 5.8: Relationship between Rank-1 accuracy and FID score. Individual points repre­
sent different generated datasets. Color of the point marks latent dataset used for training,
as well as evaluation.

W G A N - G P vs. L S G A N

After finding effective generator architecture and subsequently fine-tuning W G A N - G P al­
gorithm parameters, 2 separate model training runs with L S G A N loss function were con­
ducted. I compared best results from L S G A N algorithm to best results from W G A N - G P
algorithm (given that data and model architecture stayed the same), and compared them
together in Table 5.8. A l l statistics are calculated with respect to NIST SD302 latent
dataset. As it can be seen, W G A N - G P algorithm achieves better FID score, while L S G A N
achieves better Rank-1 accuracy. The W G A N - G P algorithm also needed more iterations
to converge than the L S G A N . On the contrary, the W G A N - G P algorithm was much less
prone to instability during training, and showed better robustness to many hyperparameter
changes, hence much more experiments were conducted with it, as opposed to L S G A N .

47

Table 5.8: Comparison of W G A N - G P and L S G A N algorithms. 2 experiments from each
algorithm are selected, the one with the best FID and the one with the best Rank-1 accuracy.
A l l statistics are calculated with respect to NIST SD302 latent dataset.

Algorithm Epochs Best metric FID Rank-1 accuracy
W G A N - G P 600 FID 99.399 59%
W G A N - G P 360 Rank- 1-accuracy 155.270 86%
L S G A N 76 FID 184.269 85%
L S G A N 72 Rank- 1-accuracy 192.831 91%

Generator architectures

As was briefly mentioned in section 5.7, the change of generator architecture massively
reduced mode collapse problem, and resulted in increased image quality. The former ar­
chitecture is shown in Figure 4.3, the improved architecture is in Figure 5.6. The increase
in diversity of generated images can be seen in Figure 5.5 (before) and Figure 5.9 (after).
The difference in measured metrics is summarized in Table 5.9. Both of the models used
NIST SD302 latent training dataset, the training algorithm used was W G A N - G P , the only
difference was in the generator architecture. A l l statistics are calculated with respect to
NIST SD302 latent dataset. The mode collapse reduction problem is reflected in the rapid
change in FID metric.

As can be seen in Figure 5.6, the AdaIN block is a part of each convolutional layer. I also
experimented with replacing AdaIN with classic learnable instance normalization in first 4
downsampling layers. The motivation behind this was that the first 4 layers should serve
as an identity extractor, so no distortions from the latent vector should be incorporated in
this part. Table 5.10 summarizes the difference. A l l statistics are calculated with respect
to NIST SD302 latent dataset. Despite the expectations, the version with AdaIN blocks in
all layers showed better results, outperforming the other version in both FID and Rank-1
accuracy metrics.

Table 5.9: Comparison of generator architectures. 2 experiments from each architecture
are selected, the one with the best FID and the one with the best Rank-1 accuracy. A l l
statistics are calculated with respect to NIST SD302 latent dataset.

Generator architecture Best metric FID Rank-1 accuracy
Former architecture FID 245.211 10%
Former architecture Rank- 1-accuracy 246.052 12%
Improved architecture FID 146.320 79%
Improved architecture Rank- 1-accuracy 155.270 86%

Training process

The specific adaptation of W G A N - G P for training our model is described in Algorithm
6. As it can be seen, the binarized fingerprints are sampled randomly from training set.
Before this alternative, there were also experiments with keeping the binarized fingerprint
constant, to focus more of the training to latent fingerprint style adaptation. As Table 5.11
shows, the algorithm with sampling random binarized fingerprints achieved better FID

18

Table 5.10: Comparison of generator architectures. 2 experiments from each architecture
are selected, the one with the best FID and the one with the best Rank-1 accuracy. A l l
statistics are calculated with respect to NIST SD302 latent dataset.

Generator architecture Best metric FID Rank-1 accuracy
AdaIN in all layers FID 99.399 59%
AdaIN in all layers Rank- 1-accuracy 117.827 82%
No AdaIN in downsampling layers FID 122.506 56%
No AdaIN in downsampling layers Rank- 1-accuracy 123.518 66%

4
•

•

1 f ;
ft

I 1
1 • f

J) I
t5)

Figure 5.9: Generator output after solving mode collapse problem.

score, and the other one was slightly better at Rank-1 accuracy. The difference in best
Rank-1 accuracy is however not that significant, as in FID score.

49

Table 5.11: Comparison of generator input in training algorithm. 2 experiments from each
architecture are selected, the one with the best FID and the one with the best Rank-1
accuracy. A l l statistics are calculated with respect to NIST SD302 latent dataset.

Generator input Best metric FID Rank-1 accuracy
Random binarized fingerprints FID 99.399 59%
Random binarized fingerprints Rank- 1-accuracy 117.827 82%
Constant binarized fingerprint FID 146.320 79%
Constant binarized fingerprint Rank- 1-accuracy 155.270 86%

Discriminator architecture

For the most experiments, discriminator with the same architecture was used, shown in
Figure 2.5 (b). The output of the last layer was 32x32 matrix, which was then averaged
to a single scalar providing final network output. Because most of the experiments in
the later stages used W G A N - G P training algorithm, I decided to take a look at reference
implementations of this algorithm. In most cases, such as this'1 GitHub repo, fully connected
dense layer was used after the convolutions, instead of simple average operation. Since the
core idea of W G A N - G P is that the discriminator should be able to approximate Wasserstein
distance, it makes sense to put this final layer after the convolutions, as it can learn more
complex operations.

I compared 2 experiments, first with the average operation, and the second with the
fully connected layer. Despite my expectations, as can be seen in Table 5.12, the original
architecture performed better in both metrics at first. However this is not taking into
account hyperparameters that needed to be adjusted after the architecture change, it is
comparing the exact same setup, just the different discriminator.

There is another reason I think that the version without fully connected layer achieved
better results. Figure 5.10 compares total loss of the version without the final layer (a) to
the version with the final layer (b) and to an example taken from W G A N - G P [18] paper
(c). Although the version without the final layer achieves better results, it is obvious that
its loss is completely different, than in (b) or (c). The version with the final layer is much
more similar to the original paper. In addition, according to graphs (d) and (e), the model
without the final layer has optimized gradient penalty term much quicker than the other
model, which is suspicious. In my opinion, the discriminator without the final layer, due
to its simplicity, found some local optimum, in which it did not estimate Wasserstein-1
distance correctly, thus leading also to better FID scores (since FID is an approximation of
Wasserstein-2 distance). Besides that, it is also obvious, that the model with the final layer
should have been trained for much longer, or with higher learning rate. For that reasons,
I used the version with the final layer in the following experiments, and tried to find optimal
hyperparameters for the training.

W G A N - G P hyperparameters

As was mentioned in the previous subsection, the new discriminator architecture needed
some hyper parameter tuning to be more optimal. Learning rate was set to le — 4 in all
previous W G A N - G P experiments, as recommended in the paper. Because the updated
discriminator seemed to be training slower, I decided to increase learning rate. I also

4https: / / github.com/caogang/ wgan-gp

50

http://github.com/

Table 5.12: Comparison of discriminator architectures. 2 experiments from each architec­
ture are selected, the one with the best FID and the one with the best Rank-1 accuracy.
A l l statistics are calculated with respect to NIST SD302 latent dataset.

Discriminator architecture Best metric FID Rank-1 accuracy
Average at the end FID 99.399 59%
Average at the end Rank- 1-accuracy 117.827 82%
Fully connected layer at the end FID 108.004 54%
Fully connected layer at the end Rank- 1-accuracy 108.664 68%

25

l e 4 2e4 3e4 4e4
Generator iterations

5e4

(a)

3.0

WTC
in o

£•2.0

11.5

.1 1.0
•o
fö

5 0.5

0.0

l e 4 2e4 3e4 4e4
Generator iterations

(b)

20

! 15

10

5e4
Generator iterations

(C)

l e 4 2e4 3e4 4e4
Generator iterations

5e4 l e 4 2e4 3e4 4e4
Generator iterations

5e4

(d) (e)

Figure 5.10: Comparison of W G A N - G P losses, (a) Total loss using discriminator without
final layer, (b) Total loss using discriminator with final layer, (c) Example loss from
W G A N - G P paper. [18] (d) Gradient penalty loss term using discriminator without final
layer, (e) Gradient penalty loss term using discriminator with final layer.

tuned A parameter, the gradient penalty weight. In all of the W G A N - G P experiments,
^critic (number of training steps of discriminator per one generator step) was set to 5, as
recommended in the original paper. The recommended optimizer and its hyperparameters
were also used (Adam [24], (3\ = 0.0,/?2 = 0.9). Results are summarized in Table 5.13.
While the original architecture achieved better FID score, I did not evaluate these results
in the time of conducting experiments, so I was only deciding based on subjective image
quality rating. For the last few experiments, I actually used learning rate of 5e — 4 and
gradient penalty of 20, which, maybe coincidentally, achieved best Rank-1 accuracy not
only from this subset of experiments, but also out of all experiments.

51

Table 5.13: Comparison of different W G A N - G P training hyperparameters. 2 experiments
from each architecture are selected, the one with the best FID and the one with the best
Rank-1 accuracy, except for the last one. A l l statistics are calculated with respect to NIST
SD302 latent dataset. AQP represents gradient penalty weight.

Learning rate AGP Epochs Best metric FID Rank-1 accuracy
le - 4 10.0 400 FID 108.004 54%
l e - 4 10.0 400 Rank- 1-accuracy 108.664 68%
5e - 4 10.0 400 FID 126.686 65%
5 e - 4 10.0 16 Rank- 1-accuracy 192.706 77%
5 e - 4 20.0 200 FID 120.358 70%
5 e - 4 20.0 200 Rank- 1-accuracy 120.460 82%
5e - 4 20.0 264 FID 119.517 90%
5e - 4 20.0 264 Rank- 1-accuracy 119.979 96%
5e - 4 5.0 200 FID 135.709 61%
5 e - 4 5.0 200 Rank- 1-accuracy 136.527 68%
5e - 4 40.0 200 Both 116.117 57%

Image normalization

For all of the experiments up to this point, training images were normalized in range
[0; 1]. In the paper about D C G A N [30], they introduce a few general recommendations for
convolutional G A N models. One of them is normalizing images in range [—1,1] instead.
These 2 image normalization methods are compared in Table 5.14. In both of these cases,
best Rank-1 accuracy achieved was 96%. The original [0; 1] normalization achieved slightly
better FID score. Besides that, it does not seem like there is any significant difference in
these methods. When using [—1; 1] normalization, the sigmoid layer in generator is replaced
with hyperbolic tangent function (TanH).

Table 5.14: Comparison of training image normalization. 2 experiments from each archi­
tecture are selected, the one with the best FID and the one with the best Rank-1 accuracy,
except for the case where both are the best. A l l statistics are calculated with respect to
NIST SD302 latent dataset.

Nor malizat ion Epochs Best metric FID Rank-1 accuracy
[0; i] 200 FID 120.358 70%
[0; i] 200 Rank- 1-accuracy 120.460 82%
[0; i] 264 FID 119.517 90%
[0; i] 264 Rank- 1-accuracy 119.979 96%
[-i;i] 200 Both 120.153 71%

400 FID 124.724 83%
[- i ; i] 400 Rank- 1-accuracy 125.893 96%

M O L F D B 4 dataset

After finding optimal W G A N - G P parameters, I tried to run the same training with another
latent dataset, namely M O L F DB4 [32]. This dataset contains less diverse and less chal­
lenging latent prints than M O L F DB4, so I expected a lot more different results. Indeed,

52

the FID scores for the M O L F dataset are significantly lower, but that is expected, due
to mentioned reasons about data. Upon visual inspection of generated images after each
saved checkpoint, I decided to save epochs 80 and 400, because the model looked like it
was overfitting after 80 epochs. It converged much faster, than in the case of NIST SD302.
Although Rank-1 accuracy increased after training for 400 epochs, the image quality got
worse. Nevertheless, this dataset showed consistently lower Rank-1 accuracy scores than
NIST SD302. The reason for that might be that some of the latent fingerprints had the
same identity as the binarized ones, since the binarized fingerprints were taken from M O L F
DB1 dataset. That might have caused some identity mixing. In Figure 5.11 it can be seen
in the second, third, and the last image from the left. It seems like the original identity is
overshadowed by some different fingerprint from the latent dataset.

Table 5.15: Comparison of different latent training datasets. 2 experiments from each
architecture are selected, the one with the best FID and the one with the best Rank-1
accuracy. Statistics are calculated with respect to given dataset.

Dataset Epochs Best metric FID Rank-1 accuracy
NIST SD302 latent 200 FID 120.358 70%
NIST SD302 latent 200 Rank- 1-accuracy 120.460 82%
NIST SD302 latent 264 FID 119.517 90%
NIST SD302 latent 264 Rank- 1-accuracy 119.979 96%
M O L F DB4 80 FID 32.153 68%
M O L F DB4 400 Rank- 1-accuracy 53.713 80%

Figure 5.11: Examples of generated fingerprints after training on M O L F DB4 dataset. The
fingerprint on the left is binarized template, the other ones are generated by the model.

5.10 Summary

Despite the fact that Rank-1 accuracy and FID are generally negatively related (Figure
5.8), it is not possible to select single best performing setup. Because of these reasons,
I summarize the best results as a Pareto front for each of the 2 datasets: NIST SD302
latent (Table 5.16) and M O L F DB4 (Table 5.17). Aligned subset of NIST SD302 latent is
not included, since it was only used in early experiments, which did not provide satisfying
results. For each of these setups, C M C curve is also included, with ranked accuracy up to
25 (Figure 5.12, Figure 5.13). A l l of these setups are included in the storage media.

53

Table 5.16: Pareto front for datasets generated by models trained on NIST SD302 latent
dataset.

Setup FID Rank-1 accuracy
Setup 1 99.399 59%
Setup 2 100.263 60%
Setup 3 100.354 66%
Setup 4 108.664 68%
Setup 5 117.827 82%
Setup 6 119.517 90%
Setup 7 119.979 96%

Table 5.17: Pareto front for datasets generated by models trained on M O L F DB4 dataset.
Setup FID Rank-1 accuracy
Setup 1 32.153 68%
Setup 2 32.843 70%
Setup 3 33.034 73%
Setup 4 53.713 80%

100

90

3 80

> u
i _

U
u
<

70

60

50

40 - T -
0

Setup 1
— Setup 2
—— Setup 3
— Setup 4
—— Setup 5
— Setup 6
— Setup 7

—r-
5 TO"

— i —
15 20 25

Rank

Figure 5.12: C M C curves of datasets generated by Pareto optimal setups trained on NIST
SD302 latent dataset.

54

Figure 5.13: C M C curves of datasets generated by Pareto optimal setups trained on M O L F
DB4 dataset.

Comparison to other methods

As was talked about in section 5.8, quantitative comparison to other state-of-the-art meth­
ods was not done due to difficulties in replicating evaluation methods. Because of this
reasons, only visual comparison of a few samples is provided in Figure 5.14. Samples (a)
and (b) are from study [5], trained on M S P latent dataset [40]. Image (c) was generated by
Aug-cGAN, baseline version of AugNet [39], by which image (d) was generated. They used
M O L F DB4 as a latent training dataset. A l l other images (e-h) are samples from datasets
generated by some of the setups, all of them trained on NIST SD302 latent dataset.

Possibilities for future improvements

This work was dedicated mainly to training conditional G A N model, inspired by first stage
of training AugNet [39] model. Despite the original plan of replicating and possibly improv­
ing the second stage of AugNet training, it was not possible due to the problems with mode
collapse, which were eventually solved. The fact that the generator architecture change had
such a big impact on results (Table 5.9) shows that there was, and still is a lot more room
for improvement in conditional G A N training for latent fingerprint generation. Besides
that, more experiments with training algorithm hyperparameters, discriminator architec­
ture, and various training data could improve these results in my opinion. It would be also
interesting to see, if the second AugNet training stage would actually improve image quality

55

Figure 5.14: Visual comparison of generated images to other methods, (a), (b) Images
from study [5]. (c), (d) Images generated by Aug-cGAN and AugNet [39]. (e-h) Images
generated by methods in this work.

and identity preservation, as the authors claim. More progress could also be done in eval­
uation methods, either setting some baseline for identity preservation testing, or training
some fingerprint recognition model on original vs. generated data, and seeing the difference
in its performance. As this work shows, there is a lot of variables that have effect on the
results, and there is still a lot to discover, when it comes to generating latent fingerprints
via GANs .

56

Chapter 6

Conclusion

A i m of this thesis was to design, implement, and evaluate algorithm for fingerprint gener­
ation using Generative adversarial networks. The emphasis was put on generating latent
fingerprints from their clean counterparts, preserving their identity, generating multiple
impressions per fingerprint, and being able to control the identity and style separately.

Multiple state of the art methods for this task were explored. Based on given crite­
ria, augmentation framework inspired by AugNet [39] was selected, as it at least partially
fulfilled all of them. Initial task was to replicate the AugNet model, and to find out, if
it produces the results declared in the paper. That has proven to be difficult, as multiple
details about the model were not present in the paper, such as combining latent vector
with the clean fingerprint. For that, StyleGAN [23] based style adaptation was chosen,
using AdaIN [20] block, as it has shown to be able combine multiple levels of feature details
together.

First experiments with the original AugNet algorithm did not yield any usable results.
For the rest of the thesis, I decided to experiment only with conditional G A N training,
mainly because of mode collapse problem. Many different strategies were tested to combat
this problem, such as changing the dataset, training algorithm, or using multiple discrimina­
tors instead of one. None of these changes helped in reducing the mode collapse. Eventually,
training objective was changed from L S G A N [26] to W G A N - G P [18], as it made training
more stable. However, the single most effective improvement turned out to be change of
the generator architecture, specifically in placement of AdaIN [20] blocks. This change also
dramatically reduced mode collapse.

As it was difficult to replicate evaluation methods used in other papers to compare the
results to them, custom methods were designed to select best performing setups. Individual
model setups were evaluated using combination of FID and Rank-1 accuracy on matching
generated latent fingerprints to their original binarized templates. Out of all setups, the
one with Pareto optimal combinations of these 2 metrics were selected as the best, which
are also included in the storage media.

There is a lot of opportunities for future improvements of this work. Given the fact that
minor change in network architecture could significantly improve results, it seems like there
is still a lot of hyper parameters to tune, which could push the image quality even further.
It would also be interesting to see, how would the original AugNet [39] training algorithm
perform with the improved baseline conditional G A N . Finally, it comes to the subject of
evaluation itself. More robust metrics could be designed to evaluate such algorithms, such
as training some publicly available model with real and generated data, and comparing the
differences in its performance on these 2 datasets.

57

Bibliography

[1] A N S A R I , A . H . Generation and Storage of Large Synthetic Fingerprint Database. In:.
2011.

[2] A R J O V S K Y , M . , C H I N T A L A , S. and B O T T O U , L . Wasserstein GAN. 2017.

[3] B A U S I N G E R , O. and T A B A S S I , E . Fingerprint Sample Quality Metric NFIQ 2.0. In:.
January 2011, p. 167-171.

[4] B O R J I , A . Pros and Cons of GAN Evaluation Measures. 2018.

[5] B R A S I L V I E I R A W Y Z Y K O W S K I , A . and J A I N , A . K . Synthetic Latent Fingerprint
Generator. In: 2023 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). 2023, p. 971-980. DOI: 10.1109/WACV56688.2023.00103.

[6] B R O C K , A . , D O N A H U E , J . and S I M O N Y A N , K . Large Scale G A N Training for High
Fidelity Natural Image Synthesis. CoRR. 2018, abs/1809.11096. Available at:
http://arxiv.org/abs/1809.11096.

[7] C A P P E L L I , R. SFinGe: an Approach to Synthetic Fingerprint Generation.
International Workshop on Biometrie Technologies. January 2004.

[8] C A P P E L L I , R., F E R R A R A , M . , F R A N C O , A . and M A L T O N I , D . Fingerprint verification

competition 2006. Biometrie Technology Today. 2007, vol. 15, no. 7, p. 7-9. DOI:
https://doi.org/10.1016/S0969-4765(07)70140-6. ISSN 0969-4765. Available at:
https: //www. sciencedirect.com/science/article/pii/S0969476507701406.

[9] C H A M B O L L E , A . A n Algorithm for Total Variation Minimization and Applications:
Special Issue on Mathematics and Image Analysis. Journal of Mathematical Imaging
and Vision. January 2004, vol. 20.

[10] C H O I , J . and H A N , B . MCL-GAN: Generative Adversarial Networks with Multiple
Specialized Discriminators. 2021.

[11] E N G E L S M A , J . J . , C A O , K . and J A I N , A . K . Learning a Fixed-Length Fingerprint
Representation. CoRR. 2019, abs/1909.09901. Available at:
http://arxiv.org/abs/1909.09901.

[12] E N G E L S M A , J . J . , G R O S Z , S. A . and J A I N , A . K . Pr in tsGAN: Synthetic Fingerprint
Generator. CoRR. 2022, abs/2201.03674. Available at:
https: //arxiv.org/abs/2201.03674.

58

http://arxiv.org/abs/1809.11096
https://doi.org/10.1016/S0969-4765(07)70140-6
http://sciencedirect.com/science/article/pii/S0969476507701406
http://arxiv.org/abs/1909.09901

[13] F E N G , J. , Y O O N , S. and J A I N , A . K . Latent Fingerprint Matching: Fusion of Rolled
and Plain Fingerprints. In: T I S T A R E L L I , M . and N I X O N , M . S., ed. Advances in
Biometrics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, p. 695-704.

[14] F I U M A R A , G. , T A B A S S I , E . , F L A N A G A N , P., G R A N T H A M , J. , K o , K . et al. Nail to
Nail Fingerprint Challenge: Prize Analysis. NIST Interagency/Internal Report
(NISTIR), National Institute of Standards and Technology, Gaithersburg, M D ,
2018-05-03 2018. DOI: https://doi.org/10.6028/NIST.IR.8210.

[15] F I U M A R A , G. P., F L A N A G A N , P. A . , G R A N T H A M , J . D. , K o , K . , M A R S H A L L , K . et al.
NIST special database 302: Nail to nail fingerprint challenge. 2019.

[16] G A R R I S , M . D. and G A R R I S , M . D. NIST special database 27: Fingerprint minutiae
from latent and matching tenprint images. US Department of Commerce, National
Institute of Standards and Technology . . . , 2000.

[17] GOODFELLOW, I. J. , P O U G E T A B A D I E , J. , M l R Z A , M . , X u , B. , W A R D E F A R L E Y , D.
et al. Generative Adversarial Networks. arXiv, 2014. DOI:
10.48550/ARXIV. 1406.2661. Available at: h t tps : / /a rx iv .org /abs /1406.2661.

[18] G U L R A J A N I , L , A H M E D , F. , A R J O V S K Y , M . , D U M O U L I N , V . and C O U R V I L L E , A .
Improved Training of Wasserstein GANs. 2017.

[19] H E , K . , Z H A N G , X . , R E N , S. and S U N , J . Identity Mappings in Deep Residual
Networks. CoRR. 2016, abs/1603.05027. Available at:
ht tp : / /arxiv .org/abs/1603.05027.

[20] H U A N G , X . and B E L O N G I E , S. J . Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization. CoRR. 2017, abs/1703.06868. Available at:
ht tp : / /arxiv .org/abs/1703.06868.

[21] I S O L A , P., Z H U , J. , Z H O U , T. and E F R O S , A . A . Image-to-image Translation with
Conditional Adversarial Networks. CoRR. 2016, abs/1611.07004. Available at:
ht tp: / /arxiv .org/abs/1611.07004.

[22] J A I N , A . K . , Ross, A . A . and N A N D A K U M A R , K . Introduction to Biometrics.
Springer Publishing Company, Incorporated, 2011. ISBN 0387773258.

[23] K A R R A S , T., L A I N E , S. and A I L A , T. A Style-Based Generator Architecture for
Generative Adversarial Networks. CoRR. 2018, abs/1812.04948. Available at:
ht tp : / /arxiv .org/abs/1812.04948.

[24] K I N G M A , D. and B A , J . Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations, december 2014.

[25] L E N T O N , D. Part II: Projective Transformations in 2D. Jun 2019. Available at:
ht tps :
//medium. com/Ouni fya i /pa r t - i i -p ro jec t ive - t r ans fo rma t ions - in -2d-2e99ac9c7e9f .

[26] M A O , X . , L i , Q . , X I E , H . , L A U , R. Y . K . and W A N G , Z . Multi-class Generative
Adversarial Networks with the L2 Loss Function. CoRR. 2016, abs/1611.04076.
Available at: h t tp : / /arxiv .org/abs /1611.04076.

59

https://doi.org/10.6028/NIST.IR.8210
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1611.04076

[27] M i N A E E , S. and A B D O L R A S H I D I , A . Finger-GAN: Generating Realistic Fingerprint
Images Using Connectivity Imposed G A N . CoRR. 2018, abs/1812.10482. Available
at: http: //arxiv.org/abs/1812.10482.

[28] M I R Z A , M . and O S I N D E R O , S. Conditional Generative Adversarial Nets. CoRR.
2014, abs/1411.1784. Available at: http://arxiv.org/abs/1411.1784.

[29] O T S U , N . A Threshold Selection Method from Gray-Level Histograms. IEEE
Transactions on Systems, Man, and Cybernetics. 1979, vol. 9, no. 1, p. 62-66. DOI:
10.1109/TSMC.1979.4310076.

[30] R A D F O R D , A . , M E T Z , L . and C H I N T A L A , S. Unsupervised representation learning

with deep convolutional generative adversarial networks. ArXiv preprint
arXiv:1511.06484. 2015.

[31] S A N K A R A N , A . , A G A R W A L , A . , K E S H A R I , R., G H O S H , S., S H A R M A , A . et al. Latent
fingerprint from multiple surfaces: Database and quality analysis. In: 2015 IEEE 7th
International Conference on Biometrics Theory, Applications and Systems (BTAS).
2015, p. 1-6. DOI: 10.1109/BTAS.2015.7358773.

[32] S A N K A R A N , A . , V A T S A , M . and S I N G H , R. Multisensor Optical and Latent
Fingerprint Database. IEEE Access. 2015, vol. 3, p. 653-665. DOI:
10.1109/ACCESS.2015.2428631.

[33] S E I D L I T Z , S., J Ü R G E N S , K . , M A K R U S H I N , A . , K R A E T Z E R , C. and D I T T M A N N , J.
Generation of Privacy-friendly Datasets of Latent Fingerprint Images using
Generative Adversarial Networks. In:. January 2021, p. 345-352. DOI:
10.5220/0010251603450352.

[34] U L E R Y , B. , H I C K L I N , R., W A T S O N , C. I., I N D O V I N A , M . D. , H A N A O K A , K . et al. Slap

fingerprint segmentation evaluation 2004 analysis report. 2005.

[35] V A T S A , M . , S I N G H , R., N O O R E , A . and M O R R I S , K . Simultaneous latent fingerprint
recognition. Applied Soft Computing. 2011, vol. 11, no. 7, p. 4260-4266. DOI:
https://doi.Org/10.1016/j.asoc.2011.02.005. ISSN 1568-4946. Soft Computing for
Information System Security. Available at:
https: //www. sciencedirect.com/science/article/pii/S1568494611000652.

[36] V I E I R A W Y Z Y K O W S K I , A . B. , S E G U N D O , M . P. and P A U L A L E M E S , R. de. Level
Three Synthetic Fingerprint Generation. In: 2020 25th International Conference on
Pattern Recognition (ICPR). 2021, p. 9250-9257. DOI:
10.1109/ICPR48806.2021.9412304.

[37] W A T S O N , C. I. NIST special database 14. Fingerprint Database, US National
Institute of Standards and Technology. Citeseer. 1993.

[38] W A T S O N , C. I. and W I L S O N , C. L . NIST special database 4. Fingerprint Database,
National Institute of Standards and Technology. Citeseer. 1992, vol. 17, no. 77, p. 5.

[39] X u , Y . , W A N G , Y . , L I A N G , J . and J I A N G , Y . Augmentation Data Synthesis Via
Gans: Boosting Latent Fingerprint Reconstruction. In: ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, p. 2932-2936. DOI: 10.1109/ICASSP40776.2020.9053801.

60

http://arxiv.org/abs/1411.1784
https://doi.Org/10.1016/j.asoc.2011.02.005
http://sciencedirect.com/science/article/pii/S156849461

[40] Y O O N , S. and J A I N , A . K . Longitudinal study of fingerprint recognition. Proceedings
of the National Academy of Sciences. 2015 , vol. 112, no. 28, p. 8555-8560. DOI:
10.1073/pnas .1410272112. Available at:
https://www.pnas.org/doi/abs/10.1073/pnas.1410272112.

[41] Z H A O , Q . , Z H A N G , D., Z H A N G , L . and L u o , N . High resolution partial fingerprint
alignment using pore-valley descriptors. Pattern Recognition. 2010 , vol. 43 , no. 3,
p. 1 0 5 0 - 1 0 6 1 . DOI: https://doi.Org/10.1016/j.patcog.2009.08.004. ISSN 0031-3203 .
Available at:
https: //www. sciencedirect.com/science/article/pii/S0031320309003045.

[42] Z H U , J . , P A R K , T., I S O L A , P . and E F R O S , A . A . Unpaired Image-to-image
Translation using Cycle-Consistent Adversarial Networks. CoRR. 2017,
abs/1703.10593. Available at: http://arxiv.org/abs/1703.10593.

61

https://www.pnas.org/doi/abs/10.1073/pnas.1410272112
https://doi.Org/10.1016/j.patcog.2009.08.004
http://sciencedirect.com/science/article/pii/S0031320309003045
http://arxiv.org/abs/1703.10593

