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Abstract

The main goal of this Master Thesis is the formulation, approxi-

mation and numerical solution of the Darcy-Forchheimer equation

for non-linear flow in fractured porous media. For the numerical

solution, three linearization methods have been chosen; Picard iter-

ations, Newton’s method and L-scheme method. All three of them

have been implemented into the software Flow123d. The methods

have been compared and verified on a simple analytical solution,

and on a problem of two perpendicular fractures. Finally, one lin-

earization method was chosen and tested on a benchmark case.

Keywords: Darcy-Forchheimer equation, non-linear partial dif-

ferential equation, mixed hybrid approximation, finite element

method, iterative methods, Picard iterations, Newton’s method,

L-scheme method, Flow123d, benchmark
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Abstrakt

Hlavńım ćılem této diplomové práce je formulace, aproximace

a numerické řešeńı Darcyovy-Forchheimerovy rovnice. Pro nume-

rické řešeńı byly vybrány tři linearizačńı metody; Picardova iterace,

Newtonova metoda a metoda L-schéma. Všechny tři linearizačńı

metody byly naimplementovány do softwaru Flow123d. Metody

byly nejdř́ıve otestovány na jednoduchém analytickém řešeńı a na

problému dvou kolmých puklin. Nakonec byla vybrána jedna li-

nearizačńı metoda a otestována na benchmarkovém problému.

Kĺıčová slova: Darcyova-Forchheimerova rovnice, nelineárńı

parciálńı diferenciálńı rovnice, smı́̌sená hybridńı formulace, metoda

konečných prvk̊u, iteračńı metody, Picardova iterace, Newtonova

metoda, metoda L-schéma, Flow123d, benchmark
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Introduction

Fluid flow through porous media has been becoming an important part of today’s

world. There are numerous examples of porous media playing critical roles in tech-

nology. Hydrology (and hydrogeology), which deals with the movement of water

through the subsurface geological system, is one of the most important technologies

that rely on the properties of porous media [1]. Some of the examples of applications

are subsurface applications, including nuclear waste disposal [5], CO2 storage [3],

geothermal energy recovery [4] and hydraulic fracturing.

Porous media flow is usually described by the Darcy equation, where there is a

linear relationship between the flux and the pressure gradient. However, it is well

established that this relationship becomes nonlinear at sufficiently large Reynolds

numbers. For these cases, the flow is supposed to follow the Forchheimer equation,

where we find an extra term that depends quadratically on the flow rate [11].

For several years, the Darcy and Forchheimer equations have been used to de-

scribe flow in porous media and fractures. The Forchheimer regime is more likely to

occur in fractures, as the fractures have a significant impact on the flow. With the

Forchheimer term present in the equation, the equation becomes non-linear. Solu-

tion of such problem then becomes much more involved and its efficiency depends

on the chosen linearization strategy.

This work consists of 3 chapters. In the first one we introduce the Darcy-

Forchheimer equation. In the second chapter, we make the essential steps to derive

the mixed-hybrid formulation from the D-F equation. We also describe 3 chosen lin-

earization methods, explain the implementation into the software Flow123d and we

present the results of our test problems. The last chapter focuses on the comparison

of results from a chosen benchmark problem and our results.

14



1 Fluid flow in a porous medium at high ve-

locities

Porous materials can be found in almost every aspect of everyday life, in technology

and in nature. Essentially all solid and semi-solid materials are porous to some de-

gree, with the exception of metals and some very dense rocks. In order for a medium

to be defined as porous, a material or structure must have these two attributes [1]:

1. It must contain spaces, so-called voids or pores, free of solids, embedded in

the solid or semi-solid matrix. The pores contain fluid, such as air, water, oil

or a mixture of different fluids.

2. It must be permeable to a variety of fluids, i.e., fluids should be able to pene-

trate through one face of a sample of material and emerge on the other side.

The texture of a porous material is quite complicated. For example, a rock consists

of mineral grains of various shapes and sizes and its pore structure is extremely

complex. The most important factors of the pore structure are how much space

there is between these grains and what their shapes are. That is because the spaces

between these grains serve to either mainly transport fluids forming connecting

pores, or to store the fluids forming storage pores. Basically, there are two types

of porous materials based on the space between the grains: porous non-permeable

(unconnected pore spaces) and porous permeable (connected pore spaces). However,

it is quite impracticable to think about a rock in this microscopic measure. For the

purpose of maths and physics, we describe the medium macroscopically and perform

model homogenisation based on a representative elementary volume. We can only

perform this if the size of pores is much smaller than the size of the medium. Physical

quantity describing a rock through its pores is called porosity and is defined as:

n =
Vpores
Vmedium

, 0 < n < 1, (1.1)

where Vpores stands for the volume of pore space and Vmedium stands for the volume
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of the whole medium. Value of porosity in natural and commonly found rocks is

usually n < 0.4.

The flow through a porous medium was famously described in 1855 by Henri

Darcy [2], a French hydraulic engineer. He performed an experiment in order to

understand the rates of water flow through sand layers. Darcy’s experiments con-

sisted of a vertical column filled with sand, with a water inlet at one end and an

outlet at the other. The water pressure was controlled at the inlet and outlet ends

of the column using reservoirs with constant water levels. Volume flow through the

column is described as:

Q =
S

l
K(h1 − h2), (1.2)

where Q is the volume flow, S is the cross-section of the column, l is the length of the

column, K is conductivity and h1, respectively h2 are the water levels as described

in Figure 1.1.

Figure 1.1: Darcy’s experiment

It was Darcy’s findings that laid the foundation for the modern science of hydro-

geology. Darcy’s law, refined by Morris Muskat [7], in the absence of gravitational
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forces and in a homogeneously permeable medium, is given by a simple proportion-

ality relationship between the instantaneous flux u (also called the Darcy velocity),

the conductivity tensor K of the medium and the hydraulic gradient ∇p over a given

distance, in the form:

u = −Q
S

= −K · ∇p. (1.3)

The ”Darcy velocity” is not the velocity at which the fluid is travelling through the

pores. Such velocity is called the flux velocity v and the relationship between the

Darcy velocity u and flux velocity v is described by porosity n:

v =
u

n
. (1.4)

As we can see from the equation, the Darcy velocity is always smaller than the

actual flux velocity.

However, the Darcy law only applies to cases with slow, viscous flow, with a linear

relationship between the flux and the pressure gradient, for which inertial effects

are negligible. The Darcy equation is typically used for small Reynolds number,

indicating clearly laminar flow in a porous or fractured medium. Reynolds number

is a dimensionless number describing the behaviour of fluid flow. For flow through

porous media the Reynolds number is expressed as:

Re =
vd

ν
(1.5)

where v is specific discharge (not the flow velocity), d is the representative diameter

for porous media (for fractured media it would be the mean aperture of the fracture)

and ν is the kinematic viscosity of the fluid.

However, for higher flow rates cases where the Reynolds number is typically

greater than 1, the results of the Darcy law do not match the results of experiments;

the flow rate predicted by the Darcy law is too high. At high flowrates, inertial

effects (i.e., kinetic energy) become dominant, and we expect a pressure drop that

is proportional to the velocity squared [12]. For this reason the so-called Darcy-

Forchheimer equation was introduced, which contains a quadratic rate-dependent

term which slows down the flow:

K−1u+ β|u|u+∇p = 0. (1.6)

The term with β is the non-linear Forchheimer term. When β = 0, (1.6) reduces to

the Darcy equation (1.3). When the flow is sufficiently rapid, the Forchheimer term
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gives better results at the approximation of the relation between the gradient of the

pressure and the flow rate [11].

Fractures are common in porous media and have significant impact on flow and

transport. The permeability of the fracture, in particular, may be much higher than

that of the host rock. As a result, while flow in the host rock can be well defined by

Darcy’s linear law, flow in the fractures can possibly indicate non-linear effects. Flow

and transport issues in a porous medium containing fractures are encountered in a

variety of energy and environmental applications, including carbon sequestration,

geothermal energy, and ground-water pollution.

The Forchheimer term solves issues that the standard Darcy equation had for

flows with high Reynolds number, however, the solution of such equation is rather

difficult. Ideally, after time and space discretization of the problem, we want to have

a system of linear algebraic equations (preferably with a symmetric positive defini-

tive matrix). The direct discretization of the Darcy-Forchheimer equation would

lead to a system of nonlinear equations. Solving a nonlinear system of equations

requires appropriate linearization methods. The linearization methods that can be

applied in order to solve the Darcy-Forchheimer equation will be introduced and

studied in the following chapters of this work.
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2 Numerical solution of Darcy-Forchheimer

equations in a domain with fractures

The content of the chapter is the discretization and linearization of the Darcy-

Forchheimer equation in a region formed by intersecting fractures. Generally, there

can be many fractures with different geometries, but for simplicity of presentation,

we show discretization on a simple area formed by two perpendicular fractures. The

generalization to the case of any number of fractures and their intersection will be

straightforward. The problem is discretized using the mixed hybrid formulation

[9], [10] and linearized using 3 different linearization methods: Picard iterations,

Newton’s method and L-scheme.

Let Ω represent a union of two planar fractures Ωi in R3 with boundaries ∂Ωi,

i = 1, 2, where Ω1 = (0, 1)× (0, 1)× {0.5} and Ω2 = {0.5} × (0.5, 1.5)× (0, 1). The

boundary ∂Ω1 ∪ ∂Ω2 is decomposed into two parts ΓD and ΓN , n is the outer unit

normal to the boundary and Γ = Ω1 ∩ Ω2 represents the intersection of fractures.

Figure 2.1: Geometry of the problem

The flow through Ω is described by the Darcy-Forchheimer equation with a

scaling coefficient δ representing the cross-section of the fracture [11] to model a 3D
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fracture as a 2D interface, and continuity equation for an incompressible fluid:

K−1u+ δ−1β|u|u+ δ∇p = 0

∇ · u = f

}
in Ω \ Γ, (2.1)

where the unknowns are the pressure p and the velocity of the fluid u. ∇ is the

tangent gradient in Ω1, respectively Ω2, δ is a cross-section coefficient of the fracture

and f is a scalar source term. For simplicity, we assume δ = 1.

Let us denote pi := p|Ωi
, ui := u|Ωi

(and similar for other functions) and let ni

be the outer unit normal to ∂Ωi , i = 1, 2. We define unit normal vectors n+
i = −n−i

on the set Γ lying in the plane Ωi. Their orientation is arbitrarily chosen, but fixed.

The function ui has two values (traces) on Γ - we will denote these by u+
i and u−i ,

so that u+
i is the trace from that side of Ωi, which lies against the direction of the

vector n+
i .

The boundary conditions are defined as follows:

p = pD on ΓD, (2.2)

u · n = uN on ΓN , (2.3)

where pD, uN is a given sufficiently smooth pressure trace and flux, respectively. We

consider the continuity of the normal flux and of the pressure at the intersection of

fractures, i.e. the following conditions hold:∑
i=1,2

∑
∗∈{+,−} u

∗
i · n∗i = 0

p is continuous

}
on Γ. (2.4)

We declare (u, p) as the classical solution of the problem (2.1)-(2.4), if p is a con-

tinuous function in Ω and continuously differentiable in Ω1 \ Γ and Ω2 \ Γ, u is

continuous in Ω \ Γ and equations (2.1) - (2.4) are satisfied at each point of the

relevant set.

2.1 Weak formulation

In what follows we shall introduce a numerical scheme for (2.1)-(2.4) based on the

mixed hybrid formulation. We start by deriving the weak formulation. The conti-

nuity of the normal fluxes on Γ is enforced by Lagrange multipliers ( λ = p|Γ ) [6]
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and flux balance on Γ.

Let Lp(Ωi) denote the Lebesgue space:

Lp(Ωi) = {q : Ωi → R;

∫
Ωi

|q|pdx <∞}

with the scalar product (q1, q2)Ωi
=
∫

Ωi
q1q2dx, i = 1, 2.

We define the space for velocity as:

VuN := {v : Ω→ R3; vi ∈ (L3(Ωi))
3, ∇ · vi ∈ L2(Ωi), i = 1, 2,

v · n = uN on ΓN , v1z = 0, v2x = 0}

and the corresponding space for test functions:

V := {v : Ω→ R3; vi ∈ (L3(Ωi))
3, ∇ · vi ∈ L2(Ωi), i = 1, 2,

v · n = 0 on ΓN , v1z = 0, v2x = 0}.

We also define the space for pressure:

Q := {q : Ω→ R; q|i ∈ L2(Ωi), i = 1, 2}

and the space for λ:

Λ = L2(Γ).

To pass from the strong formulation (2.1)-(2.4) to weak formulation, we need to

multiply the equations (2.1) by test functions, integrate them and apply the Green

theorem. Let us focus on the third term from the first equation in (2.1).

If v ∈ V , then:

(∇p,v)Ωi
= (pini,vi)∂Ωi

+
∑
∗∈{+,−}

(pn∗i ,v
∗
i )Γ − (p,∇ · v)Ωi

= (pDni,vi)ΓD∩∂Ωi
+ (pi,vi · ni︸ ︷︷ ︸

=0

)ΓN∩∂Ωi

+
∑
∗∈{+,−}

(pn∗i ,v
∗
i )Γ − (p,∇ · v)Ωi

.
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For the first equation in (2.1) we then get:

∑
i=1,2

(
(K−1u+ β|u|u,v)Ωi

− (p,∇ · v)Ωi
+ (pD,vi · ni)ΓD∩∂Ωi

+
∑
∗∈{+,−}

(p,v∗i · n∗i )Γ

)
= 0.

The weak formulation of (2.1)-(2.4) reads:

Find (u, p, λ) ∈ VuN ×Q× Λ such that:

∀v ∈ V :
2∑
i=1

((
K−1
i ui + β|ui|ui,v

)
Ωi
− (pi,∇ · vi)Ωi

+

∑
∗∈{+,−}

(λ,v∗i · n∗i )Γ + (pD,vi · ni)ΓD∩∂Ω

)
= 0,

∀q ∈ Q :
2∑
i=1

(∇ · ui, qi)Ωi
=

2∑
i=1

(fi, qi)Ωi
,

∀µ ∈ Λ :
2∑
i=1

∑
∗∈{+,−}

(
u∗i · n∗i , µ

)
Γ

= 0.

(2.5)

2.2 Mixed hybrid formulation

In this section, we still describe the equations in infinite space. The finite-dimensional

discretization will be done in following section. We consider triangulations εh,i of

the domains Ωi, i=1,2, and define: the set of all elements εh := εh,1 ∪ εh,2, the

set of element faces Sh :=
⋃
e∈εh,1∪εh,2 ∂e \ ΓD and the discretization parameter

h = maxe∈εh{diam e} [9]. For any e ∈ εh we denote pe := p|e, u
e := u|e (and

similarly for other functions).

We introduce the function space:

H(div, εh) = {v : Ω→ R3; v1z = 0, v2x = 0,v|e ∈ (L3(e))3;∇·v|e ∈ (L2(e))2,∀e ∈ εh}.

In the mixed-hybrid formulation of the problem (2.1)-(2.4), we replace the space

VuN by H(div, εh), ie. the velocity can be discontinuous across element boundaries.

To recover the continuity of the flux u · n, the Lagrange multiplier is extended to

Sn.

The mixed-hybrid formulation of (2.1)-(2.4) reads:
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Find (u, p, λ) ∈ H(div, εh)×Q× L2(Sh) such that:

∀v ∈ H(div, εh) :
∑
e∈εh

((
K−1ue + β|ue|ue,ve

)
e
− (pe,∇ · ve)e+

(λ,ve · ne)∂e\ΓD
+ (peD,v

e · ne)∂e∩ΓD

)
= 0,

∀q ∈ Q :
∑
e∈εh

(∇ · ue, qe)e =
∑
e∈εh

(f e, qe)e,

∀µ ∈ L2(Sh) :
∑
e∈εh

(
ue · ne, µ

)
∂e\ΓD

= (uN , µ)ΓN
.

(2.6)

2.3 Finite-dimensional approximation

The formulation (2.6) is based on a discretization of the set Ω. In this section we

further discretize the equations using the lowest order Raviart-Thomas element [9]

for the velocity and piecewise constant approximation of the pressure and its trace.

The velocity function u will be approximated by a discontinuous function linear

on every element e ∈ εh. We define the Raviart-Thomas space RT 0(e):

RT 0(e) = {ve;ve(x) =
3∑
j=1

νjv
e
j(x), x ∈ e}

with linearly independent basis functions vej such that if e ⊂ Ω1, then vejz = 0, if

e ⊂ Ω2, then vejx = 0, j = 1, .., 3, and such that the functionals:

F ej (vei ) :=

∫
fej

nej · veidS

satisfy: F ej (vei ) = δij, i, j = 1, ..., 3.

Here f ej denotes the jth face of the element e and nej is its outer normal vector.

We also define a space of vector functions linear on each element

RT 0
εh

= {vh : Ω→ R3;veh ∈ RT 0(e),∀e ∈ εh}.

Let us denote the space of scalar functions constant on an element e by M0
e , and sim-

ilarly the space of scalar functions constant on a face f by M0
f . Next, we introduce

a space for piece-wise constant functions on the elements in h:

M0
εh

= {qh : Ω→ R3; qeh ∈M0
e , ∀e ∈ εh}.

23



Similarly the space

M0
Sh

= {µh : Sh → R;µfh ∈M
0
f ,∀f ∈ Sh}

consists of functions constant on every face of Sh. Furthermore, let pD,h and uN,h

be the local L2 projections of pD and uN , respectively, onto piece-wise constants:∫
f

(pD,h − pD) = 0; ∀f ∈
⋃
e∈εh

∂e ∩ ΓD,

∫
f

(uN,h − uN) = 0; ∀f ∈
⋃
e∈εh

∂e ∩ ΓN .

Then we introduce the following approximation of the mixed-hybrid formulation:

Find (uh, ph, λh) ∈ RT 0
εh
×M0

εh
×M0

Sh
:

∀vh ∈ RT 0
εh

:
∑
e∈εh

((
K−1uh + β|uh|uh,vh

)
e
− (ph,∇ · vh)e+

(λh,v
e
h · ne)∂e\ΓD

+ (pD,h,vh · ne)∂e∩ΓD

)
= 0,

∀qh ∈M0
εh

:
∑
e∈εh

(∇ · uh, qh)e = (fh, qh)e.

∀µh ∈M0
Sh

:
∑
e∈εh

(
ueh · ne, µh

)
∂e\ΓD

= (uN , µh)ΓN
.

(2.7)

2.4 Linearization of Forchheimer term

The set of equations (2.7) is a nonlinear problem with the unknowns (uh, ph, λh).

In this section, we introduce three methods for solving the problem (2.7); Picard

iteration, Newton’s method and L-scheme. The Picard method is commonly used to

solve nonlinear equations. It is easy to program and computationally inexpensive,

but it has been known to fail or converge slowly. The Newton’s method is more

complex and expensive (on a per-iteration basis) than Picard iterations [13]. It is

robust and has a quadratic rate of convergence, however its convergence is only

local, which means that for the scheme to be convergent, the initial guess of the

solution for the iterations must be near enough to the actual solution. To address

this, we propose a fixed-term iteration scheme called L-scheme, a robust quasi-

Newton method with a parameter L > 0 mimicking the Jacobian [14]. The L-scheme

method is linearly convergent but it has the interesting property of unconditional
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convergence, meaning that its convergence is independent of the choice of initial

solution guess [14].

The article [13] discusses Picard and Newton’s method for Richard’s equation,

however the behaviour of mentioned methods is generally valid.

2.4.1 Picard iterations

We introduce a Picard iteration with k as an iteration counter. Let ukn, k = 0, 1, ...

be the approximation of the unknown uh at k-th step. The solution using Picard

iterations states:

K−1uk+1
n + β

∣∣ukn∣∣uk+1 +∇pkn = 0. (2.8)

Written in the mixed-hybrid formulation after the discretization of the problem:

Find (uh, ph, λh) ∈ RT 0
εh
×M0

εh
×M0

Sh
such that:

∀vh ∈ RT 0
εh

:
∑
e∈εh

((
K−1uk+1

h + β
∣∣ukn∣∣uk+1

h ,vh
)
e
−
(
pk+1
h ,∇ · vh

)
e
+

(λeh,v
e
h · n)∂e\ΓD

+ (pD,h,vh · n)∂e∩ΓD

)
= 0,

∀qh ∈M0
εh

:
∑
e∈εh

(∇ · uk+1
h , qh)e = (fh, qh)e,

∀µh ∈M0
Sh

:
∑
e∈εh

(
uk+1,e
h · ne, µh

)
∂e\ΓD

= (uN , µh)ΓN
.

(2.9)

The iteration process is typically stopped when the change in the solution is below

a given tolerance or when the residual of the equation is small enough.

2.4.2 Newton’s method

The non-linear problem (2.7) can be written in the algebraic form [17] as:

F (x) = 0, (2.10)

where F : RN → RN and the vector x ∈ RN is the vector of degrees of freedom.

The Newton method solves a linearized problem:

(∇F (xk))∆x = F (xk) (2.11)
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where∇F (xk) is a Jacobian matrix and ∆x is the vector of increments which defines

a new approximation as: xk+1 = xk + ∆x.

Using the Newton method, we generate a sequence of approximations {(ukh, pkh, λkh)}∞k=1

as follows. Let (ukh, p
k
h, λ

k
h) ∈ RT 0(εh)×M0(εh)×M0(Sh) be given. Then we define

(uk+1
h , pk+1

h , λk+1
h ) := (ukh − δu, pkh − δp, λkh − δλ), where (δu, δp, δλ) is the solution

of the linearized problem:

Find (δu, δp, δλ) ∈ RT 0
εh
×M0

εh
×M0

Sh
such that ∀(vh, qh, µh) ∈ RT 0

εh
×M0

εh
×M0

Sh
:

∑
e∈εh

((
K−1δu+ β

(
(δu · ukh)ukh∣∣ukh∣∣ +

∣∣ukh∣∣δu),vh)
e

+ (δλ,veh · ne)∂e\ΓD

−(δp,∇ · vh)e
)

=
∑
e∈εh

((
K−1ukh + β

∣∣ukh∣∣ukh,vh)e + (λkh,v
e
h · ne)∂e\ΓD

−
(
pkh,∇ · vh

)
e

+ (pD,h,vh · n)∂e∩ΓD

)
,∑

e∈εh

(∇ · δu, qh)e =
∑
e∈εh

(∇ · ukh, qh)e − (f, qh)e,∑
e∈εh

(δue · ne, µh)∂e\ΓD
=
∑
e∈εh

(uk,eh · n
e, µh)∂e\ΓD

− (uN , µh)ΓN
.

(2.12)

2.4.3 L-scheme method

The L-scheme method is a cross between Picard iterations and Newton’s method.

As mentioned before, it adds a new coefficient L, which approximates the Jacobian

from Newton’s method. Another way to describe it is looking at the new term

with coefficient L; the difference between solutions mimics time discretization of a

time-depend term. The L-scheme method reads:
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Given initial approximation u0
h and stabilization parameter L > 0, find for k =

0, 1, 2, ... the functions (uk+1
h , pk+1

h , λk+1
h ) ∈ RT 0

εh
×M0

εh
×M0

Sh
:

∀vh ∈ RT 0
εh

:
∑
e∈εh

((
K−1uk+1

h + β
∣∣ukh∣∣ukh + L

(
uk+1
h − ukh

)
,vh
)
e
−
(
pk+1
h ,∇ · vh

)
e

+(λk+1
h ,veh · ne)∂e\ΓD

+ (pD,h,vh · n)∂e∩ΓD

)
= 0,

∀qh ∈M0
εh

:
∑
e∈εh

(∇ · uk+1
h , qh)e = (fh, qh)e,

∀µh ∈M0
Sh

:
∑
e∈εh

(
uk+1,e
h · n, µh

)
∂e\ΓD

= (uN , µh)ΓN
.

(2.13)

2.5 Implementation into Flow123d

In the following section we describe the implementation of the Darcy-Forchheimer

equation and its three linearization methods into a software called Flow123d [15].

Flow123d is an open source simulator of underground water flow, solute and heat

transport in fractured porous media. Computation on complex meshes consisting of

simplicial elements of various dimensions is a unique feature of this program. As a

result, we can use a combination of continuum and discrete fracture network models.

Before any changes that we made, two water flow models had been available: the

water flow model for a saturated medium based on the Darcy law and the model for

partially saturated medium described by the Richards equation. Both models use

the mixed-hybrid finite element method for the space discretization and the implicit

Euler method for the time discretization. Since in this work we focus on saturated

Darcy-Forchheimer flow, other parts of Flow123d will not be discussed but can be

read in the User’s manual [15]. Flow123d is coded in C/C++ using PETSc library

for linear algebra. The input file is either YAML or JSON file.

The structure of Flow123d is quite complex, as the software can be used to solve

more problems than just fluid flow in fractured media. For our work, we were only

moving ourselves in the part called flow, which governs everything connected to fluid

flow, including Richards equation. The two main files that we have been working

on are called assembly mh.cc and darcy flow mh.cc.

Since the Darcy equation had already been implemented before we started work-

ing on the D-F equation, the first rather simple step was to add the term with β in
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order to make the D-F equation. The parameter β is an input parameter and when

not given, the equation remains a Darcy equation.

Next we implemented the Picard method. When the user assigns β 6= 0 to

a certain physical region, the solver switches to non-linear regime. This switch

happens when the linear system is assembled in the method

DarcyMH::assembly linear system().

The main changes made in the code for Picard iterations are adding the respective

term with β (see 2.4.1) into the already existing class AssemblyMH. Since the default

value of β is zero, no other changes were needed in this class.

The implementation of Newton’s method was a lot more complicated, as a whole

new linear system and therefore a whole new class AssemblyMH Newton had to be

implemented. We took advantage of our previously implemented Picard iterations

and the process of solving the D-F equation using Newton’s method looks like:

1. Assemble linear system for Picard iterations and set its residual as the RHS

for Newton’s method

2. Assemble the matrix for the Newton method

3. Solve the linear system for Newton’s method

4. Update solution

This time some changes in the solving process itself were needed, as well as making

sure the user is able to switch between the linearization methods. We did that

by implementing a new key called solver type in the non-linear solver context,

for which the default setting is Picard iterations. The user specifies the key in

the YAML file. We implemented an int called ns type that is used for switching

between user specified methods (see the contructor of DarcyMH).

The implementation of the L-scheme method was a lot easier than the imple-

mentation of Newton’s method, which is its advantage. Since the method is a cross

between the Picard and Newton’s method, a simple addition of respected terms from

2.4.3 into AssemblyMH was needed. This class uses the previously mentioned switch

ns type to switch between an assembly for Picard iterations or L-scheme method in

its methods where we assembly the RHS and LHS. Besides that, we also needed to

define the coefficient L, the same way as we defined the coefficient β. The detailed

changes consist of over 700 new lines of code and can be seen on GitHub [16].

The coefficient L needs to be defined by the user in the YAML file, otherwise

it’s set to 0 and the L-scheme method will not function correctly.
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For Newton’s method the user input in the YAML file looks like:

flow equation: !Flow Darcy MH

nonlinear solver:

solver type: Newton

linear solver: !Petsc

input fields:

- region: fracture

beta: 1

The parameter β is specified for all the regions that are nonlinear, and for the

regions that would remain linear (domain), we don’t need to specify any value. For

Picard iterations, the only change needed is to write solver type: Picard and

for L-scheme, the set up would look like:

flow equation: !Flow Darcy MH

nonlinear solver:

solver type: Lscheme

linear solver: !Petsc

input fields:

- region: fracture

beta: 1

l param: 1

2.6 Analytical solution of the Darcy-Forchheimer equa-

tion

To verify the correct implementation of the methods, an analytical solution was

derived for the problem in the square domain (0, 1) × (0, 1). Assuming a constant

velocity field u = (ux, uy), the pressure can be expressed as:

p = x(−K−1ux − β|u|ux) + y(−K−1uy − β|u|uy). (2.14)

The calculated pressure was prescribed as a boundary condition, and the resulting

velocity was compared with the input data of the analytical solution. The perfor-

mance of the linearization methods was measured in the overall number of iterations

needed to reach the stopping criteria, mainly because the computational complexity

of 1 iteration is similar in all of the three methods. Stopping criteria used for non-

linear solver is the residual tolerance tolerance = 10−6 (the maximum number of
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iterations was always set very high, so the solver would never stop because of reach-

ing that point), and for linear solver we used the residual tolerance r tol = 10−10

and absolute residual tolerance a tol = 10−10. All calculations were performed on

a computer with an Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz 1.80GHz and

8GB of RAM. We present the results of the comparison on two model settings:

1. u = (2, 2),K = I

For a visual representation of the solution of this problem, see Figure 2.2.

Figure 2.2: Visualisation of results for problem 1, β = 1, Picard iterations

We considered 18 values of β from 0.1 to 5, the other parameters remained

fixed. The resulting number of iterations for each method can be seen in the

Table 2.1 and Figures 2.3-2.4.

Table 2.1: Number of iterations for all 3 linearization methods for selected values of
β, problem 1.

beta Picard iterations Newton’s method L-scheme method
0.5 31 5 5
1 56 6 6
2 107 7 6
4 214 8 6
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Figure 2.3: Number of iterations dependent on the value of coefficient β, problem 1.

As we can see, the number of iterations for Picard’s method rises linearly and

is already from the beginning much higher than for the Newton and L-scheme

method. For a strongly non-linear problem it performs quite slow and requires

a high number of iterations. A detailed comparison of iteration count for the

Newton and L-scheme method is depicted in Figure 2.4.
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Figure 2.4: Number of iterations dependent on the value of coefficient β for Newton’s
and L-scheme method, problem 1.

The number of iterations of these two methods grows very slowly, even for a

strongly non-linear problem. The L-scheme method performs better than the

Newton’s method, but it’s performance is very closely connected to the right

choice of coefficient the L. For each value of β , the best L coefficient was

chosen. The results can be seen in Table 2.2.
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Table 2.2: The value of coefficient L for each different value of coefficient β (problem
1 and 2).

β value L value (problem 1) L value (problem 2)
0.1 0.55 0.8
0.2 1.1 1.8
0.3 1.7 2.7
0.4 2.3 3.5
0.5 2.8 4.5
0.6 3.3 5.5
0.7 3.9 6
0.8 4.7 7
0.9 5.1 8
1 5.5 9

1.5 8.5 13
2 11 18

2.5 14 22
3 17 27

3.5 20 31
4 23 36

4.5 25 40
5 27 45

To briefly demonstrate the importance of the value of L coefficient, let us fix

the value of β = 1 and other parameters in problem 1 and change the value of

L, from 1 to 10 with a uniform step of 0.5.

Figure 2.5: Number of iterations depending on the value of coefficient L, problem 1.
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As we can see in Figure 2.5, the value of L is crucial to the number of iterations

in which the solution converges. For values of L below 2.5 the problem did

not even converge, as the residual was increasing instead of decreasing. The

lowest number of iterations needed to solve the problem was at L = 5.5 and

with the increase of the L coefficient, the number of iterations was increasing

as well. However, further theoretical study of the choice of L coefficient is not

provided in this work.

2. u = (4,−2),K = I

For a visual representation of the solution of this problem, see Figure 2.6.

Figure 2.6: Visualisation of results for problem 2, β = 1, L-scheme method

Again, we consider 18 values of β from 0.1 to 5, just like in problem 1, and

the other parameters remained fixed.

Table 2.3: Number of iterations for all 3 linearization methods for β = 1, problem
2.

beta Picard iterations Newton’s method L-scheme method
0.5 40 6 5
1 88 7 6
2 173 8 6
4 X 9 6
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Figure 2.7: Number of iterations dependent on the value of coefficient β, problem 2.

The Picard method performed similarly as in problem 1, linearly rising with

the coefficient β. However, because of higher velocity magnitude, it did not

converge for β > 3.5 and the residual of the equations was oscillating.

Figure 2.8: Number of iterations dependent on the value of coefficient β for Newton’s
and L-scheme method, problem 2.

The values of L can be seen in Table 2.2. We can observe that on the same
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problem with just higher velocity magnitude, the value of the coefficient is also

higher.

In other aspects, the three methods behaved very similarly to problem 1.

2.7 Solution of the model of two perpendicular frac-

tures

In this section, we present the numerical solution in the domain consisting of two

perpendicular fractures defined in the beginning of the section 2 and show how the

linearization methods behave for different values of parameter β. Other parameters

that were fixed include: hydraulic conductivity K = I, cross section of fractures

cs = 1e− 3, hydraulic head on the inlet 1 and hydraulic head on the outlet 0; which

means that the fluid flow is controlled by the pressure drop. The stopping criteria

were the same as in section 2.6.

The mesh for this model contains 3444 elements and is locally refined at the

line of intersection of the fractures, where 45 equally large elements were set for the

intersection, and on the vertical wall of the second domain, 20 gradually increasing

elements were set in the direction from the intersection, see Figure 2.9.

Figure 2.9: Mesh for the problem of two perpendicular fractures.

The problem was solved using the three linearization methods for 21 values of

β, ranging from 0.1 to 100.
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Table 2.4: Number of iterations for all 3 linearization methods for β = 1, problem
of two fractures.

beta Picard iterations Newton’s method L-scheme method
0.1 5 3 5
0.5 10 4 8
1 13 4 10
2 18 5 13
4 25 6 17
8 34 6 22
10 34 7 22
100 113 9 37

Figure 2.10: Number of iterations dependent on the value of coefficient β, problem
of two fractures.

As we can see from in Figure 2.10, Picard method did converge on all the tests,

but still had the highest amount of iterations from all the methods. On the other

hand, here we can see that Newton’s method performed better than L-scheme, and

that overall, the number of iterations is way lower than in the testing we did for

the two analytical problems. That is most likely because the pressure drop was

not sufficient enough to create high velocity magnitude, as we can see in Figure

2.12. The reason behind Newton’s method performing better than L-scheme on this

kind of problem is most likely because L-scheme doesn’t behave that well when the

velocity field is singular. We can observe some singularities in Figure 2.12, at the

intersection of the two fractures.
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Table 2.5: The value of coefficient L for each different value of coefficient β, problem
of two fractures.

β value L value (coarse grid) L value (finer grid)
0.1 0.1 0.1
0.2 0.25 0.25
0.3 0.4 0.5
0.4 0.45 0.65
0.5 0.6 0.8
0.6 0.7 0.85
0.7 0.75 0.9
0.8 0.9 1
0.9 0.9 1.1
1 1.1 1.2
2 1.6 2
3 2.2 2.4
4 2.6 3.2
5 2.9 3.9
6 3.2 4.2
7 3.5 4.6
8 4.2 5
9 4.6 5.3
10 4.9 5.8
20 7 8.4
100 17.5 20

In Table 2.5 we can look into the values of coefficient L. We can see that the

values are overall smaller than in Table 2.2, that is because of the fact that the

velocity magnitude is not as high as in the analytical problems.

We have also examined the dependency of L-scheme method on the domain

discretization. We refined the mesh, so it would count roughly 3x more elements.

Both Picard iterations and Newton’s method did not change the number of iterations

they needed to solve the equations. L-scheme method did need slightly more then

before, however the difference is not immense, see Figure 2.11.
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Figure 2.11: Comparison of L-scheme method on finer and coarser grid.

Having a look again in Table 2.5, the value of L for a case with a finer grid is

slightly different too, but just like the difference between the iterations, it is not

large. For visual representation of the solution, see Figure 2.12.

For this problem, we also measured the computation complexity. It was per-

formed on both grids, with the fixed value β = 1. We can see that the Picard

method is the slowest and Newton’s method the fastest, which was to be expected,

see Table 2.6.

Table 2.6: Computational complexity for all three methods, β = 1

Method Mesh Computational time [s]
Picard iterations coarse 18.8
Newton’s method coarse 10.8
L-scheme method coarse 16.0
Picard iterations finer 60.0
Newton’s method finer 41.8
L-scheme method finer 50.7
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Figure 2.12: Visualisation of the solution for two perpendicular fractures (Newton’s
method, coarse grid), β = 1.

40



3 Solution of computational benchmark prob-

lem

In this chapter, we demonstrate our implementation of the D-F equation on a bench-

mark problem defined in [18] using one chosen linearization method. The article

mentions 4 benchmark problems, from which we chose one (Case 2.1.) We chose

a 3D problem based on a synthetic network composed of nine, regularly oriented

fractures. The benchmark problem itself only describes the flow as Darcian, how-

ever, since the fractures are highly conductive compared to the matrix, we will also

consider the Darcy-Forchheimer equation in the fractures and their intersections.

The domain is given by the unit cube Ω = (0, 1) × (0, 1) × (0, 1) and contains

9 perpendicular fractures, see Figure 3.1. The geometry of the problem can be

downloaded from the repository on Github [19].

Figure 3.1: Representation of the domain and fractures for benchmark problem [18].
Here the inlet and outlet are coloured blue and purple, respectively.
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The domain is divided into two sections, Ω3,0 and Ω3,1:

Ω3,0 = Ω3 \ Ω3,1

Ω3,1 = {(x, y, z) ∈ Ω3 : x > 0.5 m ∧ y < 0.5 m}

∪ {(x, y, z) ∈ Ω3 : x > 0.75 m ∧ 0.5 m < y < 0.75 m ∧ z > 0.5 m}

∪ {(x, y, z) ∈ Ω3 : 0.625 m < x < 0.75 m ∧ 0.5 m < y < 0.625 m

∧ 0.5 m < z < 0.75 m}

which vary in the value of conductivity K3,0 and K3,1, respectively. The fractures

are marked as Ω2 and the value of conductivity for fractures K2. The boundary ∂Ω

is divided into three sections, each corresponding to a chosen boundary condition.

First, ∂Ωh = {(x, y, z) ∈ ∂Ω : x, y, z > 0.875 m} is a part of the boundary on which

we impose the Dirichlet condition h = 1 m, where h stands for the hydraulic head.

Second, we set a total flux boundary condition on ∂Ωin = {(x, y, z) ∈ ∂Ω : x, y, z <

0.25 m}, uN = 1 m/s. On the remaining parts of ∂Ω we impose no-flow conditions.

It is worth noting that different notation for conductivity was used in the article.

For us Keq
3,0 = K3,0 and similarly for other indexes. The article uses the notation of K

for a bit different conductivity, and the conversion between K and Keq is explained

in the article [18] in equations 6a and 6b.

In order to be able to compare our results with the benchmark results, we also

created a transport problem on the same domain. The transport problem uses

the so called tracer, a solute that is prescribed by a given concentration on the

inlet boundary c = 1 m−3. A complete overview of the parameters used in this

benchmark case is given in Table 3.2. The transport problem allows us to verify

the velocity, as we can observe the mean concentration over time in the matrix.

The transport problem consists of only advective flow (no diffusion was considered)

and the equations used for this problem had already been implemented in Flow123d

before we started working on D-F equation. More about the transport equation can

be read in the User’s manual [15].

The results were collected on two variants of the benchmark problem: one where

we considered only steady Darcian flow, just like in the article, and one where we

considered steady Darcy flow in the domain and steady Darcy-Forchheimer flow in

the fractures. We compared these two together with the results from benchmark.

The mesh created for this problem used approximately 32k cells. For the non-linear

problem, we chose Newton method for linearization and the value of β = 1. This

choice has no particular physical reason and it is only a numerical test.
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First, we compared the results of hydraulic head over line the line (0, 0, 0) −
(1, 1, 1), see Figure 3.2. The hydraulic head for the case of only Darcy flux has

lower values than the one with the D-F flow, however, by the end of the line, the

values are the same. That is because we prescribed a Dirichlet boundary condition

for the outlet, which is where the abscissa ends, so both cases had to have the

same value. The results from the article correspond to our results of β = 0. The

benchmark problem also compared different numerical methods (see that Figure 3.2

(b) contains a lot of them). For the comparison, we went with a case that had

the same number of mesh cells as ours, where the difference in solution between

numerical methods is negligible.

(a) Results obtained by us for β = 0
and β = 1.

(b) Benchmark results.

Figure 3.2: Comparison of our results and the results from the article [18] for hy-
draulic head over the line (0,0,0)-(1,1,1).

Second, we compared mean matrix concentration over time in three subregions of

the domain.This concerns the solution of the transport equation. Looking at the first

comparison in Figure 3.3, we can see that the time at which the concentration begins

to develop in that region is the same for our results (linear case) and the benchmark

results. They differ in the value of average concentration. It is also worth noting that

the benchmark mesh only contained around 4k cells, but ours contained 32k cells.

Another inaccuracy may be caused by 0D dimensional elements. The intersection

volume is defined by physical points in the geo file. Unfortunately, physical points

that are not part of the boundary are not yet supported by Flow123d. However, the

points are just points, and the difference should not be significant. Looking at the
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difference between the results for linear and non-linear case, we can see that there

is a certain retardation in the development of the concentration for the nonlinear

case. That is because the Forchheimer term in the equation was introduced to cases

with high velocities and its impact is the decrease of the flow velocity.

(a) Results obtained by us for β = 0
and β = 1.

(b) Benchmark results.

Figure 3.3: Comparison of our results and the results from the article [18] for mean
matrix concentration over time in the first region.

In the second region (see Figure 3.4), the average concentration in the top middle

region in the nonlinear case was almost zero. That is because at the end time

t = 0.25 s, there was almost no tracer in the region yet, as the flow is slower than in

the linear case. Almost identical behaviour can be seen in the next comparison (see

Figure 3.5). The concentration for only the non-linear case in the second and third

region can be seen in Figure 3.6. For that reason, we decided to run the transport

equation again, but this time with t = 1 s, ∆t = 0.01 s and with a locally refined

mesh at the intersections of fractures. The mesh was now using 120k elements. The

results can be seen in Figure 3.7. The regions through which we calculated the

average concentration remain the same.

In the first region, which is the closest region of the three to inlet, we can see

a very small retardation in the nonlinear case compared to the linear case. The

concentrations settle at a very similar value, the settlement for the non-linear case

happens slightly earlier than for the linear case. In the second region, the retardation

is way more prominent and we can see that the non-linear concentration curve is way
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steeper than for the linear case. Again, they settle at a very similar value. The reason

behind the concentration settling at a very similar value as in the first region is that

the second region is a part of Ω3,0, a part of domain with the higher conductivity.

In the last region, we can see the biggest retardation, with the concentration for the

non-linear case being very low. That is because this region is the furthest away from

the inlet, so the impact of the Forchheimer term can be observed very well here and

because the region is a part of the domain Ω3,1 where the conductivity is lower than

in the fractures or the domain Ω3,0.

(a) Results obtained by us for β = 0
and β = 1.

(b) Benchmark results.

Figure 3.4: Comparison of our results and the results from the article [18] for mean
matrix concentration over time in the second region.
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(a) Results obtained by us for β = 0
and β = 1.

(b) Benchmark results.

Figure 3.5: Comparison of our results and the results from the article [18] for mean
matrix concentration over time in the third region.

(a) Results for the non-linear case,
second region.

(b) Results for the non-linear case,
third region.

Figure 3.6: Comparison of the results of mean matrix concentration for the non-
linear case in second and third region.

For convenience, we have included the benchmark case’s computational time, see

Table 3.1.
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Figure 3.7: Average matrix concentration over time, t = 1 s.

Table 3.1: Computational complexity of the benchmark problem, flow equation,
Newton’s method, β = 1

Type Mesh Computational time [s]
Non-linear problem 32k 793

Linear problem 32k 1.02
Non-linear problem 120k 2803

Linear problem 120k 2.03

Table 3.2: Parameters used to calculate the benchmark problem.

Parameter Value Units
Matrix hydraulic conductivity K3|Ω3,0 I m/s
Matrix hydraulic conductivity K3|Ω3,1 1× 10−1I m/s
Fracture hydraulic conductivity K2 1× 104I m/s

Intersection hydraulic conductivity K1 1× 104I m/s
Fracture cross-sectional length δ2 1× 10−4 m
Intersection cross-sectional area δ1 1× 10−8 m

Matrix porosity n3 1× 10−1 -
Fracture porosity n2 9× 10−1 -

Intersection porosity n1 9× 10−1 -
Total simulation time 2.5× 10−1 s

Time step ∆t 2.5× 10−3 s
Non-linear solver tolerance 10−6 -

Maximum number of iterations 100 -
Linear solver residual tolerance 10−15 -
Linear solver absolute tolerance 10−15 -
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Conclusion

In this Master Thesis, we solved the non-linear Darcy-Forchheimer equation in do-

mains containing fractures. In the second chapter, we derived the weak formulation,

the mixed hybrid formulation and the finite-dimensional approximation. Three lin-

earization methods have been proposed; Picard iterations, Newton’s method and

L-scheme method. The Picard method is computationally very cheap and it is easy

to implement, however it has proven to converge very slowly or even fail. For that

reason, we proposed Newton’s method, which has a quadratic convergence, how-

ever is hard to implement. To address these problems, last method was proposed:

L-scheme method. This method is not that well known yet, but it has interesting

properties, such as unconditional convergence.

The most challenging part was the implementation into already existing software

Flow123d. We implemented over 700 lines of code, extending the software and

adding the Darcy-Forchheimer equation, as well as all of the proposed linearization

methods. The process of implementing and debugging new additions into already

existing software is always difficult, especially without any previous experience with

its structure.

The methods have been tested and compared on two simple analytical problems

of the Darcy-Forchheimer equation, and also on a slightly more advanced problem

of two intersecting fractures. The main measurement for the results of the three

methods was the number of iterations they needed to converge, as the computational

complexity of one iteration is almost identical for all of them. From these tests, the

L-scheme and Newton’s method came out as the better options, with L-scheme

performing slightly better at the simplest problems. However, the L-scheme method

highly depends on the chosen value of its parameter L, it performs slightly worse on

finer meshes and might have problems when the velocity field has singularities.

Finally, in the last chapter, we compare our results to benchmark results. The

benchmark case consisted of a cube and nine perpendicular fractures, making it

more accurate to real world problems than prior experiments, however it still is
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not completely realistic. We used the same geometry and parameters as in the

benchmark case, and computed two variants of the problem. We started with a linear

problem (using only Darcy equation) and because the fractures are highly conductive

compared to the domain, we also computed the non-linear problem (using Darcy-

Forchheimer equation). For the lineatization method, we chose Newton’s method.

We compared these two problems together as well as the results from the benchmark.

We confirmed that the Forchheimer term has a great impact on the flow; it slows it

down sufficiently.

The relevance of the selection of the parameter L and its effect on the L-scheme

method’s convergence may be the subject of subsequent research. Following a thor-

ough examination of the optimal L parameter, future research could compare all

three linearization methods on a benchmark problem.
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