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Abstract:  

Blastocystis is the most commonly found intestinal protist in the world. Accurate detection and 

differentiation of Blastocystis including its subtypes (arguably species) is essential for understanding 

its epidemiology and role in human health. We compared the (i) sensitivity of conventional PCR 

(cPCR) and qPCR in a set of 288 DNA samples obtained from stool samples of gut-healthy 

individuals and (ii) subtype diversity as detected by next-generation sequencing (NGS) versus Sanger 

sequencing. Real-time PCR resulted in more positive samples than cPCR, revealing high fecal load of 

Blastocystis based on the quantification curve in most samples. In subtype detection, NGS was largely 

in agreement with Sanger sequencing but showed higher sensitivity for mixed subtype colonization 

within one host. This fact together with using of the combination of qPCR and NGS and obtaining 

information on the fecal protist load will be beneficial for epidemiological and surveillance studies. 

 

Key words:  

Blastocystis; conventional-PCR; qPCR; sensitivity; quantification; NGS; 

 



 
 
 

3 
 

INTRODUCTION  1 

Blastocystis sp. is a unicellular eukaryote colonizing the gastrointestinal tract of humans and various 2 

other species. Although discovered more than a century ago, its role in human health and disease has 3 

not been fully understood. Knowledge gaps remain in its epidemiology and interaction with the host, 4 

as well as factors affecting host colonization [1-3]. Blastocystis may be the most common intestinal 5 

human protist in the world, colonizing more than 1 billion people [4]. In some cohorts, the prevalence 6 

of Blastocystis sp. may reach 100% [5]. Based on small ribosomal subunit (SSU rRNA) gene analysis, 7 

at least 22 subtypes (ST) exist across mammalian and avian hosts [6]. Among these subtypes, ST1–8 

ST9 and ST12 have been found in humans, with ST1–ST4 being commonly detected [3].  9 

Despite the numerous surveys on Blastocystis sp., no consensus has been reached on the 10 

choice of method(s) for detection and differentiation of the protist (reviewed in Skotarczak [7]). 11 

Moreover, in spite of the development of molecular approaches, traditional microscopic examination 12 

of ova and parasites (O&P) and xenic culturing is still commonly used in laboratories to detect 13 

Blastocystis [8]. However, these methods require specialized technicians [8], they are less sensitive, 14 

and do not provide subtype information [9-11]. Nevertheless, accurate detection and distinction of 15 

Blastocystis subtypes is essential for understanding the transmission and the role of this protist in 16 

human health. Due to their high sensitivity and specificity, molecular methods such as conventional 17 

PCR (cPCR) or real-time PCR (qPCR) are often used [7,12,13]. In addition, next-generation 18 

sequencing (NGS) is gaining prominence in detection Blastocystis and its subtypes [14-16].  19 

The aim of this study was to compare (i) the sensitivity of cPCR and qPCR on a set of DNA 20 

samples obtained from stool samples of individuals with no gastrointestinal symptoms and (ii) subtype 21 

diversity detected by cPCR and Sanger sequencing versus NGS. 22 

MATERIAL AND METHODS 23 

In this study, we used 288 DNA samples obtained from fresh stool samples from a cohort created 24 

during a previous survey on the prevalence and diversity of Blastocystis in a gut-healthy human 25 

population in the Czech Republic (for more details on the collection and DNA extraction see Lhotská 26 

et al. [11]). We also used data on the positivity rate of Blastocystis sp. resulted from cPCR [11] for 27 

comparison with qPCR results obtained in the present study. Here, we applied the diagnostic qPCR 28 

protocol published in the study by Stensvold et al. [12]. The primers target the SSU rDNA fragment of 29 

118 bp, which is detected by a Taqman probe. Samples were processed using a LightCycler LC 480 I 30 

(Roche, Basel, Switzerland) with a 96-well block. The cycling conditions consisted of primary 31 

denaturation (95 C/10 min) and 37× (95 C/15 s, 60 C/30 s, 72 C/30 s). The results of qPCR on 32 

Blastocystis were then compared with the results of conventional PCR (from Lhotská et al. [11]) using 33 

McNemar’s test with Yates’s correction (0.5). Statistical analysis was performed using the software 34 

SciStatCalc 2013 (https://scistatcalc.blogspot.com/2013/11/mcnemars-test-calculator.html ).  35 

https://scistatcalc.blogspot.com/2013/11/mcnemars-test-calculator.html
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Positive samples from qPCR were subjected to amplicon NGS to determine Blastocystis 36 

subtypes: an informative fragment of SSU rDNA (~450 bp) was amplified, indexed and sequenced on 37 

a MiSeq instrument with the Reagent Kit v2, 2×250 bp (Illumina); this was performed according to the 38 

method by Maloney et al. (2019) [17] with minor modifications in Cinek et al. [15] (for more detail 39 

see Supplementary data 1). These results were compared with the results on subtype diversity 40 

described in Lhotská et al. [11] based on Sanger sequencing. Fecal protist load was estimated based on 41 

a quantification curve generated from a dilution series of cultured Blastocystis ST3, which was set in 42 

the range of 100 to 105
 cells per one qPCR reaction: 100–101 - mild fecal protist load; 102–103 - 43 

moderate fecal protist load; 104–105 - high fecal protist load (Supplementary data 2). Blastocystis cells 44 

counts from culture were calculated using a Bürker`s chamber and then serially diluted to obtain 45 

aliquots containing 100, 101, 102, 103, 104, and 105 cells, which were subsequently subjected to DNA 46 

extraction according to Lhotská et al. [11]. All negative samples were checked for PCR inhibition 47 

using addition of foreign DNA (obtained from tissue of experimental rats) and a specific qPCR 48 

protocol (commercial primers and Taqman probe for detection of the rat gene for beta-2 49 

microglobulin; Thermofisher Scientific, Waltham, MA, USA).  50 

RESULTS 51 

In this study, the prevalence of Blastocystis was determined by qPCR and subsequently compared with 52 

the results from cPCR obtained in our previous study Lhotská et al. [11]. In the set of 288 stool 53 

samples from the gut-healthy volunteers, the qPCR revealed a prevalence of 29% (83/288; Table 1) 54 

compared to cPCR with the prevalence 24% (71/288). Real-time PCR revealed 12 more positive 55 

samples (Table 1), our results indicate that qPCR is a more sensitive method for detecting Blastocystis 56 

in stool samples than cPCR (p  0.05; 2 = 8.26; Table 2). There was a discrepancy between these 57 

methods for two samples that qPCR evaluated as negative and cPCR as positive (Table 1). No internal 58 

inhibition was detected in any of the samples. 59 

We established a quantification curve (100-105 of cells / 1 qPCR reaction) to evaluate the 60 

Blastocystis fecal load in positive samples and to extrapolate different colonization intensities from ct 61 

values (ct values are displayed for each sample in Table 1). In more than half of the samples positive 62 

in qPCR (52/83), colonization intensities reached 105 or more, with the range of ct values ranging 63 

from 15 to 20 (Table 3). Fecal protist load 103-104 (range of ct values between 21 and 27) was found 64 

in 13 samples, and 101-102 (range of ct values between 28 and 32) in 18 samples (Table 3). In the 65 

samples positive only in qPCR (n=12), a very low fecal protist load was found, i.e., 101-102 (Table 3). 66 

Subtype diversity for all 83 qPCR-positive samples was evaluated by NGS, which detected 67 

subtypes in 69 samples (69/83; Table 1 and 4). In case of the presence of one subtype in a sample the 68 

NGS results were consistent with our previous results based on Sanger sequencing [11]. Indeed, the 69 

great benefit of the NGS appears to be in an ability detecting mixed colonizations of different subtypes 70 

in one sample. Mixed colonizations were found in five more cases compared to Sanger sequencing, 71 



 
 
 

5 
 

specifically the subtype colonization mix: ST1+ST7, ST1+ST3, ST2+ST3 (2×), ST3+ST7 (Table 4). 72 

In the case of 12 samples positive only in qPCR with low fecal protist load, NGS detected subtypes in 73 

only five samples, namely ST2, ST5, ST3 (2×) and ST4 (Table 4). 74 

DISCUSSION 75 

To compare the sensitivity between the two PCR-based approaches for detection of Blastocystis, we 76 

used a dataset of 288 human stool samples obtained in the study by Lhotská et al. [11]. Revealing 12 77 

more positive samples, qPCR was the most sensitive method for detection of Blastocystis. The overall 78 

prevalence of Blastocystis by qPCR and cPCR was 29% and 24% (Lhotská et al. [11]), respectively. 79 

Surprisingly, it appears that this is the very first study comparing the sensitivity between commonly 80 

used cPCR protocol [18] and qPCR [12] for the detection of Blastocystis sp. Previously some studies 81 

showed higher sensitivity of qPCR in comparison with classical methods such as direct-light 82 

microscopy or xenic in vitro culture [12,13,19]. The study by Nourrison et al. [13] compared four 83 

qPCR protocols for detection of Blastocystis sp. and found that they differed in specificity and 84 

sensitivity. Furthermore, the authors recommend the qPCR protocol Stensvold et al. [12] for 85 

diagnostic purposes and to add another method for subtype identification.  86 

Despite higher sensitivity, qPCR scored two samples as negative, while conventional PCR 87 

scored them positive; these two samples were positive for ST3 and ST8. The two false-negative results 88 

by qPCR might be due to the degradation of DNA in the samples due to long-term storage and 89 

repeated freeze-thawing cycles of their aliquots. These DNA samples were tested again by cPCR, one 90 

sample appears to be negative and one (ST8) showed much less intensive amplicon in the 91 

electrophoresis. Alternatively, the qPCR protocol might have limited sensitivity for example for ST8, 92 

which was not used in the validation panel by Stensvold et al. [12], who developed the method. 93 

However, the applicability of the primers and probe was validated in silico using the alignment in the 94 

article’s Fig 1 with a 100% match to ST8, so this means that, at least in theory, the assay should be 95 

able to pick up this subtype. In addition, no inhibition was revealed in any sample during inhibition 96 

control using the foreign DNA. 97 

The advantage of qPCR-based diagnostic approach is the ability to estimate the fecal load of 98 

Blastocystis in colonized humans based on an established quantitative curve. Our results in individuals 99 

with healthy intestine (i.e., without inflammatory diseases) showed a high fecal Blastocystis load in 100 

more than half of the samples. This fecal load ranged in values of order from 105 to 106 cells per one 101 

qPCR reaction. In the 12 samples scored as positive only by qPCR, low fecal protist load was detected 102 

(101–102 cells per sample). A very recent study by Cinek et al. [15] quantified Blastocystis in feces of 103 

asymptomatic children and adolescents as one of the few. However, more studies on both healthy 104 

humans and patients with inflammatory of functional bowel diseases are warranted [20]. A 105 

comparison of fecal Blastocystis loads between healthy and sick individuals could fundamentally 106 

contribute to understanding the role of Blastocystis sp. in the human gut ecosystem and could be 107 
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important for experimental studies testing the effect of Blastocystis sp. on gut inflammation [21]. It is 108 

important to note that the quantification curve for assessing fecal Blastocystis load might be biased by 109 

different copy number of the SSU rRNA gene in individual subtypes and life stages of Blastocystis. 110 

This could slightly reduce the accuracy of quantification data. However, such data for Blastocystis and 111 

its subtypes are not yet available. Nevertheless, an approximate determination of Blastocystis fecal 112 

load can reveal trends between different human cohorts. 113 

In epidemiological studies on Blastocystis sp. in humans, the identification of its subtypes 114 

plays an important role [11,22-24]. Because different Blastocystis subtypes colonize different hosts 115 

and apparently differ in geographical distribution, surveys aimed at subtype determination might help 116 

reveal transmission pathways and potential sources of specific subtypes in a particular area. To date, 117 

most studies used Sanger sequencing for subtype identification [11,25,26] which may have limitations 118 

in detecting mixed subtype colonizations. Here, we subjected all 83 qPCR-positive samples to NGS 119 

analysis to determine subtypes. We found that subtype diversity was largely consistent with the results 120 

of Sanger sequencing by Lhotská et al. [11], in which Sanger sequencing was used. In 12 samples 121 

identified as positive only by qPCR, the NGS revealed subtypes only in five samples (ST2, ST5, 2× 122 

ST3, and ST4; Table 4) which was probably caused by low fecal load of Blastocystis (i.e., 101-102). 123 

Remaining seven samples were confirmed by Sanger sequencing from qPCR amplicons (118 bp), 124 

however, without information about subtypes. 125 

Although epidemiological studies usually describe colonization of an individual with only one 126 

subtype of Blastocystis sp. [11,23,27], mixed subtype colonization appears to be more common 127 

[7,14,28]. This situation is in part caused by limitations of some of the current molecular tools, which 128 

preferentially amplify the predominant subtypes present in a sample [17]. Here, the NGS-based 129 

approach showed higher sensitivity in determining mixed subtype colonization than a combination of 130 

methods, such as conventional PCR and Sanger sequencing (for more details see Lhotská et al. [11]). 131 

While Lhotská et al. [11] revealed a single case of mixed infection, NGS detected five more cases of 132 

mixed colonisation, specifically ST1+ST7, ST1+ST3, ST2+ST3 (2×) and ST3+ST7.  133 

From a diagnostic point-of-view, our results support the fact that qPCR is the most suitable 134 

method for detecting the presence of Blastocystis. NGS alone cannot achieve the qPCR sensitivity, 135 

mainly due to the known signal crosstalk between individual samples in a sequencing run [e.g., 29]. 136 

Although this issue can be alleviated by using unique dual indexing, it cannot be eliminated, so very 137 

low read counts do not necessarily indicate presence of the organism. Thus, the role of NGS in the 138 

Blastocystis diagnostics is primarily in the determination of its subtypes and disentangling mixed 139 

colonizations. Of the 83 total qPCR-positive samples, the NGS revealed subtypes in 69 samples. 140 

Conclusion: To understand the epidemiology of Blastocystis sp. it is necessary to establish a gold 141 

standard method for detection and subtype differentiation. A review of the Blastocystis literature so far 142 

suggests that detection and differentiation has not yet been harmonized [7]. The findings of the present 143 
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study showed that qPCR is a suitable tool for the highly sensitive detection of Blastocystis sp., and the 144 

NGS approach enables accurate assessment of the subtype diversity, in particular, mixed subtype 145 

colonization. We believe that the combination of these two approaches will be beneficial for future 146 

epidemiological surveys and surveillance studies on Blastocystis. 147 
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Table 1. Comparison of the sensitivity of conventional PCR and qPCR from the entire dataset of 

human samples (n=288). In addition, we also evaluated the success of Blastocystis detection by Next-

generation sequencing (NGS) only in a set of qPCR-positive samples (n=83). 

# sample 
methods 

# sample 
methods 

PCR qPCR Ct value NGS PCR qPCR Ct value NGS 

B1 + + 15 + B2 + + 19 + 

B13 + + 15 + B19 + + 19 + 

B24 + + 15 + B115 + + 19 + 

B59 + + 15 + B126 + + 19 + 

B68 + + 15 + B184 + + 19 + 

B195 + + 15 + B220 + + 19 + 

B201 + + 15 + B374 + + 19 + 

B226 + + 15 + B417 + + 19 + 

B235 + + 15 + B86 + + 20 + 

B312 + + 15 + B292 + + 20 + 

B339 + + 15 + B277 + + 21 - 

B371 + + 15 + B303 + + 21 + 

B373 + + 15 + B380 + + 21 + 

B9 + + 16 + B300 + + 22 + 

B37 + + 16 - B375 + + 22 + 

B42 + + 16 + B418 + + 22 + 

B45 + + 16 + B424 + + 22 + 

B49 + + 16 + B431 + + 23 + 

B120 + + 16 + B33 + + 24 + 

B225 + + 16 + B36 + + 24 + 

B327 + + 16 + B313 + + 24 + 

B343 + + 16 + B365 + + 24 + 

B352 + + 16 + B55 + + 26 + 

B364 + + 16 + B144 - + 28 + 

B412 + + 16 + B345 + + 28 + 

B15 + + 17 + B405 + + 29 + 

B30 + + 17 + B356 + + 30 - 

B65 + + 17 + B372 - + 31 + 

B82 + + 17 + B10 - + 32 - 

B99 + + 17 + B35 - + 32 - 

B113 + + 17 + B38 - + 32 - 

B185 + + 17 + B41 - + 32 + 

B336 + + 17 + B50 - + 32 - 

B341 + + 17 + B54 - + 32 - 

B353 + + 17 + B62 - + 32 - 

B363 + + 17 + B114 - + 32 + 

B31 + + 18 - B189 - + 32 - 

B224 + + 18 + B240 - + 32 + 
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B231 + + 18 + B248 - + 32 - 

B393 + + 18 - B398 - + 32 - 

B397 + + 18 + B425 + + 32 + 

B413 + + 18 +           

 

TABLE 2. Comparison of results of qPCR (Stensvold et al., 2012) and conventional PCR 

(Scicluna et al., 2006) in detection of Blastocystis sp. using McNemar test (p  0.004; 2 = 8.265). 

          

  qPCR  

    positive negative   

cPCR 
positive 69 2 71 (25 %) 

negative 14 203 217 (75 %) 

    83 (29 %) 205 (71 %) 288 

     
 

TABLE 3. Evaluation of fecal load of Blastocystis sp. in human samples based on the established 

quantification curve (set in the range of 100 to 105
 cells per 1 qPCR reaction). 

 

Estimated fecal 

protist load1 

Number of samples/Number 

of positive samples 
Ct value range 

101-102 18/83 28-32 

103-104 13/83 21-27 

105 -106 52/83 15-20 

1Number of cells per 1 qPCR reaction. 
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TABLE 4. Comparison of Blastocystis subtype data in a set of 83 qPCR-positive samples obtained by 

Sanger sequencing (results obtained in previous study Lhotská et al., 2020) and next-generation 

sequencing (NGS). 

 

# sample 
subtype 

# sample 
subtype 

Sanger sequencing NGS Sanger sequencing NGS 

B1 ST3  ST3 B225 ST1  ST1 

B2 ST1  ST1 B226 ST1  ST1 

B9 ST1  ST1 B231 ST3  ST3 + ST1 

B10 - - B235 ST3  ST3 

B13 ST1  ST1 B240 - ST3 

B15 ST3  ST3 B248 - - 

B19 ST3  ST3 B277 ST7  - 

B24 ST6  ST6 B292 ST7  ST7 

B30 ST3  ST3 B300 ST4  ST4 

B31 ST3  - B303 ST7  ST7 

B33 ST3  ST3 B312 ST3  ST3 

B35 - - B313 ST3  ST3 

B36 ST1  ST1 B327 ST2  ST2 

B37 ST2  - B336 ST3  ST3 

B38 - - B339 ST1  ST1 

B41 - ST3 B341 ST3  ST3 

B42 ST1  ST1 B343 ST5  ST5 

B45 ST1  ST1 + ST7 B345 ST6  ST6 

B49 ST1 ST1 B352 ST3  ST3 + ST2 

B50 - - B353 ST1 + ST3  ST1 + ST3 

B54 - - B356 ST3  - 

B55 ST3  ST3 B363 ST3  ST3 

B59 ST4  ST4 B364 ST3  ST3 + ST2 

B62 - - B365 ST7  ST7 + ST3 

B65 ST4  ST4 B371 ST4  ST4 

B68 ST3  ST3 B372 - ST4 

B82 ST2  ST2 B373 ST4  ST4 

B86 ST3 ST3 B374 ST2  ST2 

B99 ST3  ST3 B375 ST1  ST1 

B113 ST2  ST2 B380 ST3  ST3 

B114 - ST2 B393 ST7  - 

B115 ST7  ST7 B397 ST2  ST2 

B120 ST1  ST1 B398 - - 

B126 ST6  ST6 B405 ST6 ST6 

B144 - ST5 B412 ST2  ST2 

B184 ST3  ST3 B413 ST4  ST4 

B185 ST6  ST6 B417 ST2  ST2 
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B189 - - B418 ST2  ST2 

B195 ST3  ST3 B424 ST3  ST3 

B201 ST3  ST3 B425 ST2  ST2 

B220 ST3  ST3 B431 ST4  ST4 

B224 ST1  ST1       
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SUPPLEMENTARY DATA 1: Detailed description of the Next-generation sequencing protocol 

for Blastocystis. 

Positive samples from qPCR were subjected to NGS to determine Blastocystis subtypes according to 

the method by Maloney et al. (2019). Briefly, amplicons of an informative region (~450 bp) of the 

SSU rDNA gene were generated using overhang primers, purified, and provisioned with indices and 

sequencing adaptors using a limited number of PCR cycles with combinatorial indices (Nextera XT 

Index Kit v2 Set A and D, Illumina, San Diego, CA, USA). The amplicon libraries were purified and 

equalized using on the SequalPrep plates (Thermo, Waltham, MA, USA), pooled, supplemented with 

20% PhiX control to balance the amplicon signal, and sequenced on a MiSeq instrument with the 

Reagent Kit v2, 2x250 bp (Illumina). The ensuing sequences were downloaded from BaseSpace as 

demultiplexed fastq files, and processed using the USEARCH10 program (Edgar et al. 2010): primers 

were trimmed, reads were filtered for quality, and unique sequences defined as zero-radius operational 

taxonomic units, denoised, their frequencies were tabulated, off-target amplicons were removed and 

subtypes of Blastocystis identified by clustering with a reference set of representative sequences as 

described in Cinek et al. (2021). 
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Oikarinen S, Lebl J, Abdullah MA. 2021. Blastocystis in the faeces of children from six distant countries: prevalence, 

quantity, subtypes and the relation to the gut bacteriome. Parasites and Vectors, 14, 399.  
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SUPPLEMENTARY DATA 2: Quantification curve used in qPCR diagnostic protocol for evaluation of the fecal Blastocystis load in human DNA 

samples (in LightCycler LC 480 I; Roche, Basel, Switzerland). The curve was set in the range of 100 to 105
 cells per 1 qPCR reaction based on the 

Blastocystis ST3 culture. 

 


