Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta

Srovnání molekulárně diagnostických přístupů pro detekci a diferenciaci střevního prvoka *Blastocystis* sp. u lidí

Rigorózní práce Martina Šloufová Rigorózní práce

Šloufová M., 2022. Srovnání molekulárně diagnostických přístupů pro detekci a diferenciaci

střevního prvoka Blastocystis sp. u lidí. [Comparison of molecular diagnostic approaches for

the detection and differentiation of the intestinal protist Blastocystis sp. in humans] 16 pp.,

Faculty of Science, University of South Bohemia in České Budějovice.

Annotation:

Blastocystis is the most commonly found intestinal protist in the world. Accurate detection

and differentiation of Blastocystis including its subtypes (arguably species) is essential for

understanding its epidemiology and role in human health. We compared the sensitivity of

conventional PCR (cPCR) and qPCR in a set of 288 DNA samples obtained from stool

samples of gut-healthy individuals and subtype diversity as detected by next-generation

sequencing (NGS) versus Sanger sequencing.

Prohlášení:

Prohlašuji, že jsem autorem této kvalifikační práce a že jsem ji vypracovala pouze s použitím

pramenů a literatury uvedených v seznamu použitých zdrojů.

V Českých Budějovicích dne 13. 5. 2022

Comparison of molecular diagnostic approaches for the detection and differentiation of the intestinal protist *Blastocystis* sp. in humans

Martina Šloufová^{1,2}, Zuzana Lhotská^{1,2}, Milan Jirků¹, Klára J. Petrželková^{1,3}, C. Rune Stensvold⁴, Ondřej Cinek⁵, Kateřina Jirků Pomajbíková^{1,2*}

Authors` affiliations:

¹Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice, Czech Republic

²Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

³Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic

⁴Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark

⁵Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic

*Correspondence:

Kateřina Jirků Pomajbíková; Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; email: pomajbikova@paru.cas.cz, phone: +420387775420

Abstract:

Blastocystis is the most commonly found intestinal protist in the world. Accurate detection and differentiation of Blastocystis including its subtypes (arguably species) is essential for understanding its epidemiology and role in human health. We compared the (i) sensitivity of conventional PCR (cPCR) and qPCR in a set of 288 DNA samples obtained from stool samples of gut-healthy individuals and (ii) subtype diversity as detected by next-generation sequencing (NGS) versus Sanger sequencing. Real-time PCR resulted in more positive samples than cPCR, revealing high fecal load of Blastocystis based on the quantification curve in most samples. In subtype detection, NGS was largely in agreement with Sanger sequencing but showed higher sensitivity for mixed subtype colonization within one host. This fact together with using of the combination of qPCR and NGS and obtaining information on the fecal protist load will be beneficial for epidemiological and surveillance studies.

Key words:

Blastocystis; conventional-PCR; qPCR; sensitivity; quantification; NGS;

INTRODUCTION

1

23

- 2 Blastocystis sp. is a unicellular eukaryote colonizing the gastrointestinal tract of humans and various
- 3 other species. Although discovered more than a century ago, its role in human health and disease has
- 4 not been fully understood. Knowledge gaps remain in its epidemiology and interaction with the host,
- 5 as well as factors affecting host colonization [1-3]. *Blastocystis* may be the most common intestinal
- 6 human protist in the world, colonizing more than 1 billion people [4]. In some cohorts, the prevalence
- 7 of *Blastocystis* sp. may reach 100% [5]. Based on small ribosomal subunit (SSU *rRNA*) gene analysis,
- 8 at least 22 subtypes (ST) exist across mammalian and avian hosts [6]. Among these subtypes, ST1-
- 9 ST9 and ST12 have been found in humans, with ST1–ST4 being commonly detected [3].
- Despite the numerous surveys on *Blastocystis* sp., no consensus has been reached on the
- choice of method(s) for detection and differentiation of the protist (reviewed in Skotarczak [7]).
- 12 Moreover, in spite of the development of molecular approaches, traditional microscopic examination
- of ova and parasites (O&P) and xenic culturing is still commonly used in laboratories to detect
- 14 Blastocystis [8]. However, these methods require specialized technicians [8], they are less sensitive,
- and do not provide subtype information [9-11]. Nevertheless, accurate detection and distinction of
- 16 Blastocystis subtypes is essential for understanding the transmission and the role of this protist in
- 17 human health. Due to their high sensitivity and specificity, molecular methods such as conventional
- PCR (cPCR) or real-time PCR (qPCR) are often used [7,12,13]. In addition, next-generation
- sequencing (NGS) is gaining prominence in detection *Blastocystis* and its subtypes [14-16].
- The aim of this study was to compare (i) the sensitivity of cPCR and qPCR on a set of DNA
- 21 samples obtained from stool samples of individuals with no gastrointestinal symptoms and (ii) subtype
- 22 diversity detected by cPCR and Sanger sequencing versus NGS.

MATERIAL AND METHODS

- In this study, we used 288 DNA samples obtained from fresh stool samples from a cohort created
- during a previous survey on the prevalence and diversity of *Blastocystis* in a gut-healthy human
- population in the Czech Republic (for more details on the collection and DNA extraction see Lhotská
- et al. [11]). We also used data on the positivity rate of *Blastocystis* sp. resulted from cPCR [11] for
- 28 comparison with qPCR results obtained in the present study. Here, we applied the diagnostic qPCR
- 29 protocol published in the study by Stensvold et al. [12]. The primers target the SSU rDNA fragment of
- 30 118 bp, which is detected by a Taqman probe. Samples were processed using a LightCycler LC 480 I
- 31 (Roche, Basel, Switzerland) with a 96-well block. The cycling conditions consisted of primary
- denaturation (95 °C/10 min) and $37 \times$ (95 °C/15 s, 60 °C/30 s, 72 °C/30 s). The results of qPCR on
- 33 Blastocystis were then compared with the results of conventional PCR (from Lhotská et al. [11]) using
- 34 McNemar's test with Yates's correction (0.5). Statistical analysis was performed using the software
- 35 SciStatCalc 2013 (https://scistatcalc.blogspot.com/2013/11/mcnemars-test-calculator.html).

Positive samples from qPCR were subjected to amplicon NGS to determine *Blastocystis* subtypes: an informative fragment of SSU rDNA (~450 bp) was amplified, indexed and sequenced on a MiSeq instrument with the Reagent Kit v2, 2×250 bp (Illumina); this was performed according to the method by Maloney et al. (2019) [17] with minor modifications in Cinek et al. [15] (for more detail see Supplementary data 1). These results were compared with the results on subtype diversity described in Lhotská et al. [11] based on Sanger sequencing. Fecal protist load was estimated based on a quantification curve generated from a dilution series of cultured *Blastocystis* ST3, which was set in the range of 10° to 10⁵ cells per one qPCR reaction: 10°-10¹ - mild fecal protist load; 10²-10³ - moderate fecal protist load; 10⁴-10⁵ - high fecal protist load (Supplementary data 2). *Blastocystis* cells counts from culture were calculated using a Bürker's chamber and then serially diluted to obtain aliquots containing 10°, 10¹, 10², 10³, 10⁴, and 10⁵ cells, which were subsequently subjected to DNA extraction according to Lhotská et al. [11]. All negative samples were checked for PCR inhibition using addition of foreign DNA (obtained from tissue of experimental rats) and a specific qPCR protocol (commercial primers and Taqman probe for detection of the rat gene for beta-2 microglobulin; Thermofisher Scientific, Waltham, MA, USA).

RESULTS

In this study, the prevalence of *Blastocystis* was determined by qPCR and subsequently compared with the results from cPCR obtained in our previous study Lhotská et al. [11]. In the set of 288 stool samples from the gut-healthy volunteers, the qPCR revealed a prevalence of 29% (83/288; Table 1) compared to cPCR with the prevalence 24% (71/288). Real-time PCR revealed 12 more positive samples (Table 1), our results indicate that qPCR is a more sensitive method for detecting *Blastocystis* in stool samples than cPCR (p < 0.05; χ^2 = 8.26; Table 2). There was a discrepancy between these methods for two samples that qPCR evaluated as negative and cPCR as positive (Table 1). No internal inhibition was detected in any of the samples.

We established a quantification curve $(10^0-10^5 \text{ of cells / 1 qPCR reaction})$ to evaluate the *Blastocystis* fecal load in positive samples and to extrapolate different colonization intensities from ct values (ct values are displayed for each sample in Table 1). In more than half of the samples positive in qPCR (52/83), colonization intensities reached 10^5 or more, with the range of ct values ranging from 15 to 20 (Table 3). Fecal protist load 10^3-10^4 (range of ct values between 21 and 27) was found in 13 samples, and 10^1-10^2 (range of ct values between 28 and 32) in 18 samples (Table 3). In the samples positive only in qPCR (n=12), a very low fecal protist load was found, i.e., 10^1-10^2 (Table 3).

Subtype diversity for all 83 qPCR-positive samples was evaluated by NGS, which detected subtypes in 69 samples (69/83; Table 1 and 4). In case of the presence of one subtype in a sample the NGS results were consistent with our previous results based on Sanger sequencing [11]. Indeed, the great benefit of the NGS appears to be in an ability detecting mixed colonizations of different subtypes in one sample. Mixed colonizations were found in five more cases compared to Sanger sequencing,

- specifically the subtype colonization mix: ST1+ST7, ST1+ST3, ST2+ST3 (2×), ST3+ST7 (Table 4).
- 73 In the case of 12 samples positive only in qPCR with low fecal protist load, NGS detected subtypes in
- only five samples, namely ST2, ST5, ST3 $(2\times)$ and ST4 (Table 4).

DISCUSSION

76 To compare the sensitivity between the two PCR-based approaches for detection of *Blastocystis*, we

used a dataset of 288 human stool samples obtained in the study by Lhotská et al. [11]. Revealing 12

more positive samples, qPCR was the most sensitive method for detection of *Blastocystis*. The overall

prevalence of *Blastocystis* by qPCR and cPCR was 29% and 24% (Lhotská et al. [11]), respectively.

80 Surprisingly, it appears that this is the very first study comparing the sensitivity between commonly

used cPCR protocol [18] and qPCR [12] for the detection of *Blastocystis* sp. Previously some studies

showed higher sensitivity of qPCR in comparison with classical methods such as direct-light

microscopy or xenic in vitro culture [12,13,19]. The study by Nourrison et al. [13] compared four

qPCR protocols for detection of Blastocystis sp. and found that they differed in specificity and

sensitivity. Furthermore, the authors recommend the qPCR protocol Stensvold et al. [12] for

86 diagnostic purposes and to add another method for subtype identification.

Despite higher sensitivity, qPCR scored two samples as negative, while conventional PCR scored them positive; these two samples were positive for ST3 and ST8. The two false-negative results by qPCR might be due to the degradation of DNA in the samples due to long-term storage and repeated freeze-thawing cycles of their aliquots. These DNA samples were tested again by cPCR, one sample appears to be negative and one (ST8) showed much less intensive amplicon in the electrophoresis. Alternatively, the qPCR protocol might have limited sensitivity for example for ST8, which was not used in the validation panel by Stensvold et al. [12], who developed the method. However, the applicability of the primers and probe was validated *in silico* using the alignment in the article's Fig 1 with a 100% match to ST8, so this means that, at least in theory, the assay should be able to pick up this subtype. In addition, no inhibition was revealed in any sample during inhibition control using the foreign DNA.

The advantage of qPCR-based diagnostic approach is the ability to estimate the fecal load of *Blastocystis* in colonized humans based on an established quantitative curve. Our results in individuals with healthy intestine (i.e., without inflammatory diseases) showed a high fecal *Blastocystis* load in more than half of the samples. This fecal load ranged in values of order from 10⁵ to 10⁶ cells per one qPCR reaction. In the 12 samples scored as positive only by qPCR, low fecal protist load was detected (10¹–10² cells per sample). A very recent study by Cinek et al. [15] quantified *Blastocystis* in feces of asymptomatic children and adolescents as one of the few. However, more studies on both healthy humans and patients with inflammatory of functional bowel diseases are warranted [20]. A comparison of fecal *Blastocystis* loads between healthy and sick individuals could fundamentally contribute to understanding the role of *Blastocystis* sp. in the human gut ecosystem and could be

important for experimental studies testing the effect of *Blastocystis* sp. on gut inflammation [21]. It is important to note that the quantification curve for assessing fecal *Blastocystis* load might be biased by different copy number of the SSU rRNA gene in individual subtypes and life stages of *Blastocystis*. This could slightly reduce the accuracy of quantification data. However, such data for *Blastocystis* and its subtypes are not yet available. Nevertheless, an approximate determination of *Blastocystis* fecal load can reveal trends between different human cohorts.

In epidemiological studies on *Blastocystis* sp. in humans, the identification of its subtypes plays an important role [11,22-24]. Because different *Blastocystis* subtypes colonize different hosts and apparently differ in geographical distribution, surveys aimed at subtype determination might help reveal transmission pathways and potential sources of specific subtypes in a particular area. To date, most studies used Sanger sequencing for subtype identification [11,25,26] which may have limitations in detecting mixed subtype colonizations. Here, we subjected all 83 qPCR-positive samples to NGS analysis to determine subtypes. We found that subtype diversity was largely consistent with the results of Sanger sequencing by Lhotská et al. [11], in which Sanger sequencing was used. In 12 samples identified as positive only by qPCR, the NGS revealed subtypes only in five samples (ST2, ST5, 2× ST3, and ST4; Table 4) which was probably caused by low fecal load of *Blastocystis* (i.e., 10¹-10²). Remaining seven samples were confirmed by Sanger sequencing from qPCR amplicons (118 bp), however, without information about subtypes.

Although epidemiological studies usually describe colonization of an individual with only one subtype of *Blastocystis* sp. [11,23,27], mixed subtype colonization appears to be more common [7,14,28]. This situation is in part caused by limitations of some of the current molecular tools, which preferentially amplify the predominant subtypes present in a sample [17]. Here, the NGS-based approach showed higher sensitivity in determining mixed subtype colonization than a combination of methods, such as conventional PCR and Sanger sequencing (for more details see Lhotská et al. [11]). While Lhotská et al. [11] revealed a single case of mixed infection, NGS detected five more cases of mixed colonisation, specifically ST1+ST7, ST1+ST3, ST2+ST3 (2×) and ST3+ST7.

From a diagnostic point-of-view, our results support the fact that qPCR is the most suitable method for detecting the presence of *Blastocystis*. NGS alone cannot achieve the qPCR sensitivity, mainly due to the known signal crosstalk between individual samples in a sequencing run [e.g., 29]. Although this issue can be alleviated by using unique dual indexing, it cannot be eliminated, so very low read counts do not necessarily indicate presence of the organism. Thus, the role of NGS in the *Blastocystis* diagnostics is primarily in the determination of its subtypes and disentangling mixed colonizations. Of the 83 total qPCR-positive samples, the NGS revealed subtypes in 69 samples.

Conclusion: To understand the epidemiology of *Blastocystis* sp. it is necessary to establish a gold standard method for detection and subtype differentiation. A review of the *Blastocystis* literature so far

suggests that detection and differentiation has not yet been harmonized [7]. The findings of the present

- 144 study showed that qPCR is a suitable tool for the highly sensitive detection of Blastocystis sp., and the 145 NGS approach enables accurate assessment of the subtype diversity, in particular, mixed subtype 146 colonization. We believe that the combination of these two approaches will be beneficial for future 147 epidemiological surveys and surveillance studies on Blastocystis. 148 **CONFLICT OF INTEREST:** Authors declare no conflict of interest. 149 150 **ETHICS STATEMENT:** The studies involving human participants were reviewed and approved by 151 Ethics Committee of the Biology Center of the Czech Academy of Sciences (reference number: 152 1/2017). Written informed consent to participate in this study was provided by the participants' legal 153 guardian/next of kin. All data were anonymized and processed according to valid laws of the Czech 154 Republic (e.g., Act no. 101/2000 Coll and subsequent regulations). In case of the rat tissue used for 155 testing of the internal inhibition, we used samples from the experiment approved by the Committee on the Ethics of Animal Experiments of the Biology Centre of the Czech Academy of Sciences (České 156 157 Budějovice, permit no. 33/2018) and by the Resort Committee of the Czech Academy of Sciences 158 (Prague, Czech Republic) according to strict accordance with Czech legislation (Act No. 166/1999 159 Coll. on veterinary care and on changes of some related laws, and Act No. 246/1992 Coll. on the 160 protection of animals against cruelty), as well as the legislation of the European Union. 161 ACKNOWLEDGMENTS: We thank to Oldřiška Kadlecová, Andrea Kašparová, Kristýna Brožová, 163 and Kateřina Poláčková for laboratory assistance. This work was financially supported by the grants 164 from the Human Frontiers Science Programme (RGY0078/2015) and from the Czech Science
- 162

- Foundation (22-04837S) to K.J.Pomajbíková, by the grant from the Student Grant Agency (SGA) at 165
- the Faculty of Science of the University of South Bohemia to MŠ (in 2021), and by the Ministry of 166
- Health of the Czech Republic, a project for the conceptual development of research organization, 167
- University Hospital Motol, Prague (00064203) to OC. 168

169

170

REFERENCES:

- 1. Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. 2015. Are human intestinal 171 172 eukaryotes beneficial or commensals? PLoS Pathogens, 11, e1005039.
- 173 2. Chabé M, Lokmer A, Ségurel L. 2017. Gut protozoa: friends or foes of the human gut 174 microbiota? Trends in Parasitology, 33, 925–934.
- 175 3. Stensvold CR, Tan KSW, Clark CG. 2020. *Blastocystis*. Trends in Parasitology, 36, 315–316.
- 176 4. Andersen LOB, Stensvold CR. 2016. Blastocystis in health and disease: are we moving from a 177 clinical to a public health perspective? Journal of Clinical Microbiology, 54, 524–528.
- 178 5. El Safadi D, Gaayeb L, Meloni D, Cian A, Poirier P, Wawrzyniak I, Delbac F, Dabboussi F,

- Delhaes L, Seck M, Hamze M, Riveau G, Viscogliosi E. 2014. Children of senegal river basin
- show the highest prevalence of *Blastocystis* sp. ever observed worldwide. BMC Infection Diseseas,
- 181 14, 399.
- 6. Stensvold CR, Clark CG. 2020. Pre-empting pandora's box: *Blastocystis* subtypes revisited.
- 183 Trends in Parasitology, 36, 229–232.
- 7. Skotarczak B. 2018. Genetic diversity and pathogenicity of *Blastocystis*. Annals of Agricultural
- and Environmental Medicine, 25, 411–416.
- 8. McHardy IH, Wu M, Shimizu-Cohen R, Roger Couturier M, Humphries RM. 2014. Detection
- of intestinal protozoa in the clinical laboratory. Journal of Clinical Microbiology, 52, 712–720.
- 9. Stensvold CR, Arendrup MC, Jespersgaard C, Mølbak K, Nielsen HV. 2007. Detecting
- 189 Blastocystis using parasitologic and DNA-based methods: a comparative study. Diagnotic
- Microbiology and Infectious Disease, 59, 303–307.
- 191 10. Tan KSW. 2008. New insights on classification, identification, and clinical relevance of
- 192 *Blastocystis* spp. Clinical Microbiology Reviews, 21, 639–665.
- 11. Lhotská Z, Jirků M, Hložková O, Brožová K, Jirsová D, Stensvold CR, Kolísko M, Jirků-
- Pomajbíková K. 2020. A study on the prevalence and subtype diversity of the intestinal protist
- 195 Blastocystis sp. in a gut-healthy human population in the Czech republic. Frontiers in Cellular and
- 196 Infectious Microbiology, 10, 544335.
- 197 12. Stensvold CR, Ahmed UN, Andersen LOB, Nielsen HV. 2012. Development and evaluation of
- a genus-specific, probe-based, internal-process-controlled real-time PCR assay for sensitive and
- specific detection of *Blastocystis* spp. Journal of Clinical Microbiology, 50, 1847–1851.
- 200 13. Nourrisson C, Brunet J, Flori P, Moniot M, Bonnin V, Delbac F, Poirier P. 2020. Comparison
- of DNA extraction methods and real-time PCR assays for the detection of *Blastocystis* sp. in stool
- specimens. Microorganisms, 8, 1768
- 203 14. Rojas-Velázquez L, Maloney JG, Molokin A, Morán P, Serrano-Vázquez A, González E,
- Pérez-Juárez H, Ximénez C, Santin M. 2019. Use of next-generation amplicon sequencing to
- study *Blastocystis* genetic diversity in a rural human population from Mexico. Parasites and
- 206 Vectors, 12, 566.
- 207 15. Cinek O, Polačková K, Odeh R, Alassaf A, Kramná L, Ibekwe MAU, Majaliwa ES, Ahmadov
- G, Elmahi BME, Mekki H, Oikarinen S, Lebl J, Abdullah MA. 2021. Blastocystis in the faeces
- of children from six distant countries: prevalence, quantity, subtypes and the relation to the gut
- bacteriome. Parasites and Vectors, 14, 399.
- 211 16. Stensvold CR, Jirků Pomajbíková K, Wegener Tams K, Jokelainen P, Berg RPKD, Marving
- E, Petersen RF, Andersen LOB, Angen O, Nielsen HV. 2021. Parasitic intestinal protists of
- zoonotic relevance detected in pigs by metabarcoding and real-time PCR. Microorganisms, 9:1189.
- 214 17. Maloney JG, Molokin A, Santin M. 2019. Next generation amplicon sequencing improves
- detection of *Blastocystis* mixed subtype infections. Infection, Genetics and Evolution, 73,119–125.

- 216 **18. Scicluna SM, Tawari B, Clark CG. 2006.** DNA barcoding of *Blastocystis*. Protist, 157, 77–85.
- 217 19. Poirier P, Wawrzyniak I, Albert A, El Alaoui H, Delbac F, Livrelli V. 2011. Development and
- evaluation of a real-time PCR assay for detection and quantification of *Blastocystis* parasites in
- 219 human stool samples: prospective study of patients with hematological malignancies. Journal of
- 220 Clinical Microbiology, 49, 975–983.
- 221 20. Nourrisson C, Scanzi J, Pereira B, NkoudMongo C, Wawrzyniak I, Cian A, Viscogliosi E,
- Livrelli V, Delbac F, Dapoigny M, Poirier P. 2014. Blastocystis is associated with decrease of
- fecal microbiotaprotective bacteria: comparative analysis between patients with irritable bowel
- syndrome and control subjects. PLoS One, 9, e111868.
- 21. Billy V, Lhotská Z, Jirků M, Kadlecová O, Frgelevocá L, Wegener Parfrey L, Jirků-
- Pomajbíková K. 2021. *Blastocystis* colonization alters the gut microbiome and, in some cases,
- promotes faster recovery from induced colitis. Frontiers in Microbiology, 12, 641483.
- 228 22.El Safadi D, Cian A, Nourrisson C, Pereira B, Morelle C, Bastien P, Bellanger AP, Botterel F,
- Candolfi E, Desoubeaux G, Lachaud L, Morio F, Pomares C, Rabodonirina M, Wawrzyniak
- 230 I, Delbac F, Gantois N, Certad G, Delhaes L, Poirier P, Viscogliosi E. 2016. Prevalence, risk
- factors for infection and subtype distribution of the intestinal parasite *Blastocystis* sp. from a large-
- scale multi-center study in France. BMC Infection Diseseas, 16, 451.
- 233 23. Seyer A, Karasartova D, Ruh E, Güreser AS, Turgal E, Imir T, Taylan-Ozkan A. 2017.
- Epidemiology and prevalence of *Blastocystis* spp. in North Cyprus. American Journal of Tropical
- 235 Medicine and Hygiene, 96, 1164–1170.
- 24. Popruk S, Adao DEV, Rivera WL. 2021. Epidemiology and subtype distribution of *Blastocystis*
- in humans: a review. Infection, Genetics and Evolution, 95, 1–14.
- 238 25. Haghighi L, Talebnia SE, Mikaeili F, Asgari Q, Gholizadeh F, Zomorodian K. 2020.
- Prevalence and subtype identification of *Blastocystis* isolated from human in Shiraz city, southern
- Iran. Clinical Epidemiology and Global Health, 8, 840–844.
- 241 **26.Scanlan PD, Stensvold CR, Cotter PD. 2015.** Development and application of a *Blastocystis*
- subtype-specific PCR assay reveals that mixed-subtype infections are common in a healthy human
- population. Applied and Environmental Microbiology, 81, 4071–4076.
- 24. Scanlan PD, Knight R, Song SJ, Ackermann G, Cotter PD. 2016. Prevalence and genetic
- 245 diversity of *Blastocystis* in family units living in the United States. Infection, Genetics and
- Evolution, 45, 95–97.
- 28. Vega L, Herrera G, Munoz M, Patarroyo MA, Maloney JG, Santin M, Ramírez JD. 2021. Gut
- 248 microbiota profiles in diarrheic patients with co-occurrence of *Clostridioides difficile* and
- 249 *Blastocystis.* PLoS One, 16, e0248185.
- 250 29.MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K, Light M, Lai K,
- Jarosz M, McNeil MS, Ducar MD, Meyerson M, Thorner AR. 2018. Unique, dual-indexed
- sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve

sensitivity of massively parallel sequencing. BMC Genomics, 19:30.

Table 1. Comparison of the sensitivity of conventional PCR and qPCR from the entire dataset of human samples (n=288). In addition, we also evaluated the success of *Blastocystis* detection by Next-generation sequencing (NGS) only in a set of qPCR-positive samples (n=83).

# sample _		met	thods			methods			
	PCR	qPCR	Ct value	NGS	_ # sample _	PCR	qPCR	Ct value	NGS
B1	+	+	15	+	B2	+	+	19	+
B13	+	+	15	+	B19	+	+	19	+
B24	+	+	15	+	B115	+	+	19	+
B59	+	+	15	+	B126	+	+	19	+
B68	+	+	15	+	B184	+	+	19	+
B195	+	+	15	+	B220	+	+	19	+
B201	+	+	15	+	B374	+	+	19	+
B226	+	+	15	+	B417	+	+	19	+
B235	+	+	15	+	B86	+	+	20	+
B312	+	+	15	+	B292	+	+	20	+
B339	+	+	15	+	B277	+	+	21	-
B371	+	+	15	+	B303	+	+	21	+
B373	+	+	15	+	B380	+	+	21	+
B9	+	+	16	+	B300	+	+	22	+
B37	+	+	16	-	B375	+	+	22	+
B42	+	+	16	+	B418	+	+	22	+
B45	+	+	16	+	B424	+	+	22	+
B49	+	+	16	+	B431	+	+	23	+
B120	+	+	16	+	B33	+	+	24	+
B225	+	+	16	+	B36	+	+	24	+
B327	+	+	16	+	B313	+	+	24	+
B343	+	+	16	+	B365	+	+	24	+
B352	+	+	16	+	B55	+	+	26	+
B364	+	+	16	+	B144	-	+	28	+
B412	+	+	16	+	B345	+	+	28	+
B15	+	+	17	+	B405	+	+	29	+
B30	+	+	17	+	B356	+	+	30	-
B65	+	+	17	+	B372	-	+	31	+
B82	+	+	17	+	B10	-	+	32	-
B99	+	+	17	+	B35	-	+	32	-
B113	+	+	17	+	B38	-	+	32	-
B185	+	+	17	+	B41	-	+	32	+
B336	+	+	17	+	B50	-	+	32	-
B341	+	+	17	+	B54	-	+	32	-
B353	+	+	17	+	B62	-	+	32	-
B363	+	+	17	+	B114	-	+	32	+
B31	+	+	18	-	B189	-	+	32	-
B224	+	+	18	+	B240	-	+	32	+

B231	+	+	18	+	B248	-	+	32	-
B393	+	+	18	-	B398	-	+	32	-
B397	+	+	18	+	B425	+	+	32	+
B413	+	+	18	+					

TABLE 2. Comparison of results of qPCR (Stensvold et al., 2012) and conventional PCR (Scicluna et al., 2006) in detection of *Blastocystis* sp. using McNemar test (p < 0.004; χ^2 = 8.265).

		qPe		
	-	positive	negative	
cPCR	positive	69	2	71 (25 %)
	negative	14	203	217 (75 %)
		83 (29 %)	205 (71 %)	288

TABLE 3. Evaluation of fecal load of *Blastocystis* sp. in human samples based on the established quantification curve (set in the range of 10^0 to 10^5 cells per 1 qPCR reaction).

Estimated fecal protist load ¹	Number of samples/Number of positive samples	Ct value range
10^{1} - 10^{2}	18/83	28-32
$10^3 - 10^4$	13/83	21-27
$10^5 - 10^6$	52/83	15-20

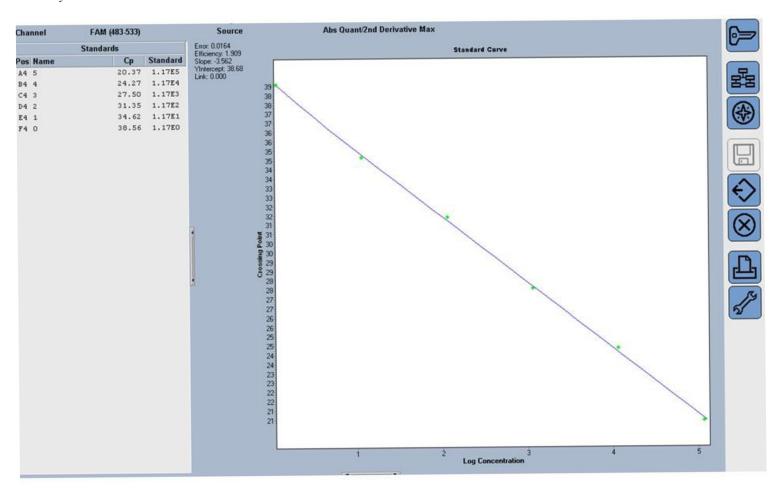
¹Number of cells per 1 qPCR reaction.

TABLE 4. Comparison of *Blastocystis* subtype data in a set of 83 qPCR-positive samples obtained by Sanger sequencing (results obtained in previous study Lhotská et al., 2020) and next-generation sequencing (NGS).

# sample Kos # sample NGS <	# sample _	subtype		" "	subtype		
B2 ST1 ST1 B226 ST1 ST3 + ST1 B9 ST1 ST1 B231 ST3 ST3 + ST1 B10 - - B235 ST3 ST3 B13 ST1 ST1 B240 - ST3 B15 ST3 ST3 B248 - - B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 ST3 B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2		Sanger sequencing	NGS	_ # sample _	Sanger sequencing	NGS	
B9 STI STI B231 ST3 ST3 ST3 B10 - - B235 ST3 ST3 B13 STI ST1 B240 - ST3 B15 ST3 ST3 B248 - - B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B313 ST3 ST3 B38 - - B336 ST3 ST3 B41 - ST3 B341 ST3 ST3	B1	ST3	ST3	B225	ST1	ST1	
B10 - - B235 ST3 ST3 B13 ST1 ST1 B240 - ST3 B15 ST3 ST3 B248 - - B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 ST3 B300 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 + ST3 ST5 ST5 B45 <t< td=""><td>B2</td><td>ST1</td><td>ST1</td><td>B226</td><td>ST1</td><td>ST1</td></t<>	B2	ST1	ST1	B226	ST1	ST1	
B13 ST1 ST1 B240 - ST3 B15 ST3 ST3 B248 - - B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 ST3 B300 ST4 ST4 B31 ST3 ST3 B300 ST7 ST7 B33 ST3 ST3 B303 ST7 ST7 B33 ST3 ST3 B313 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 <th< td=""><td>В9</td><td>ST1</td><td>ST1</td><td>B231</td><td>ST3</td><td>ST3 + ST1</td></th<>	В9	ST1	ST1	B231	ST3	ST3 + ST1	
B15 ST3 ST3 B248 - - B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST3 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3 + ST2 <td>B10</td> <td>-</td> <td>-</td> <td>B235</td> <td>ST3</td> <td>ST3</td>	B10	-	-	B235	ST3	ST3	
B19 ST3 ST3 B277 ST7 - B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1+ST7 B345 ST6 ST6 B49 ST1 ST1+ST3 ST3+ST2 ST3 ST3+ST2 B50 - - B355 ST3 ST3 ST3	B13	ST1	ST1	B240	-	ST3	
B24 ST6 ST6 B292 ST7 ST7 B30 ST3 ST3 B300 ST4 ST4 B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B227 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST7 B345 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST3 + ST2 B55 ST3 ST3 B364 ST3 S	B15	ST3	ST3	B248	-	-	
B30 ST3 ST3 B300 ST4 ST4 B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST3 B352 ST3 ST3 + ST2 B50 - - B356 ST3 ST3 + ST2 B54 - - B356 ST3 ST3	B19	ST3	ST3	B277	ST7	-	
B31 ST3 - B303 ST7 ST7 B33 ST3 ST3 B312 ST3 ST3 B35 - - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 ST3 ST3 B55 ST3 ST3 B363 ST3 ST3 ST3 B65 ST4 ST4	B24	ST6	ST6	B292	ST7	ST7	
B33 ST3 ST3 B312 ST3 ST3 B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 +ST7 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3 +ST2 B50 - - B353 ST1 +ST3 ST1 +ST3 B54 - - B356 ST3 ST3 ST3 B55 ST3 ST3 ST3 ST3 ST3 ST3 ST3 B55 ST4 ST4 B364 ST3 ST3 +ST2 ST4 ST4 ST4 ST4	B30	ST3	ST3	B300	ST4	ST4	
B35 - - B313 ST3 ST3 B36 ST1 ST1 B327 ST2 ST2 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST3 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 ST3 ST3 B55 ST3 ST3 B363 ST3 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B65 ST4 ST4 B371 ST4 ST4 B65 ST4 ST3 B372	B31	ST3	-	B303	ST7	ST7	
B36 STI ST2 - B336 ST3 ST3 B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1+ST7 B345 ST6 ST6 B49 ST1 ST1+ST7 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3+ST2 B50 - - B356 ST3 ST1+ST3 ST1+ST3 B54 - - B356 ST3 ST4 ST4 ST4 ST4 ST4	B33	ST3	ST3	B312	ST3	ST3	
B37 ST2 - B336 ST3 ST3 B38 - - B339 ST1 ST1 B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 + ST3 ST3 ST3 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 ST1 + ST3 B55 ST3 ST3 ST3 ST3 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B80 ST3 ST3	B35	-	-	B313	ST3	ST3	
B38 - - B339 STI STI B41 - ST3 B341 ST3 ST3 B42 STI ST1 B343 ST5 ST5 B45 STI ST1 + ST7 B345 ST6 ST6 B49 STI ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 ST3 ST3 ST3 <td>B36</td> <td>ST1</td> <td>ST1</td> <td>B327</td> <td>ST2</td> <td>ST2</td>	B36	ST1	ST1	B327	ST2	ST2	
B41 - ST3 B341 ST3 ST3 B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 S	B37	ST2	-	B336	ST3	ST3	
B42 ST1 ST1 B343 ST5 ST5 B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 <t< td=""><td>B38</td><td>-</td><td>-</td><td>B339</td><td>ST1</td><td>ST1</td></t<>	B38	-	-	B339	ST1	ST1	
B45 ST1 ST1 + ST7 B345 ST6 ST6 B49 ST1 ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 <th< td=""><td>B41</td><td>-</td><td>ST3</td><td>B341</td><td>ST3</td><td>ST3</td></th<>	B41	-	ST3	B341	ST3	ST3	
B49 ST1 ST1 B352 ST3 ST3 + ST2 B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 <td>B42</td> <td>ST1</td> <td>ST1</td> <td>B343</td> <td>ST5</td> <td>ST5</td>	B42	ST1	ST1	B343	ST5	ST5	
B50 - - B353 ST1 + ST3 ST1 + ST3 B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST2 ST2 B99 ST3 ST3 B374 ST2 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6	B45	ST1	ST1 + ST7	B345	ST6	ST6	
B54 - - B356 ST3 - B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6	B49	ST1	ST1	B352	ST3	ST3 + ST2	
B55 ST3 ST3 B363 ST3 ST3 B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 <t< td=""><td>B50</td><td>-</td><td>-</td><td>B353</td><td>ST1 + ST3</td><td>ST1 + ST3</td></t<>	B50	-	-	B353	ST1 + ST3	ST1 + ST3	
B59 ST4 ST4 B364 ST3 ST3 + ST2 B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 <	B54	-	-	B356	ST3	-	
B62 - - B365 ST7 ST7 + ST3 B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B55	ST3	ST3	B363	ST3	ST3	
B65 ST4 ST4 B371 ST4 ST4 B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B59	ST4	ST4	B364	ST3	ST3 + ST2	
B68 ST3 ST3 B372 - ST4 B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B62	-	-	B365	ST7	ST7 + ST3	
B82 ST2 ST2 B373 ST4 ST4 B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B65	ST4	ST4	B371	ST4	ST4	
B86 ST3 ST3 B374 ST2 ST2 B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B68	ST3	ST3	B372	-	ST4	
B99 ST3 ST3 B375 ST1 ST1 B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B82	ST2	ST2	B373	ST4	ST4	
B113 ST2 ST2 B380 ST3 ST3 B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B86	ST3	ST3	B374	ST2	ST2	
B114 - ST2 B393 ST7 - B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B99	ST3	ST3	B375	ST1	ST1	
B115 ST7 ST7 B397 ST2 ST2 B120 ST1 ST1 B398 - - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B113	ST2	ST2	B380	ST3	ST3	
B120 ST1 ST1 B398 - - B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B114	-	ST2	B393	ST7	-	
B126 ST6 ST6 B405 ST6 ST6 B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B115	ST7	ST7	B397	ST2	ST2	
B144 - ST5 B412 ST2 ST2 B184 ST3 ST3 B413 ST4 ST4	B120	ST1	ST1	B398	-	-	
B184 ST3 ST3 B413 ST4 ST4	B126	ST6	ST6	B405	ST6	ST6	
	B144	-	ST5	B412	ST2	ST2	
B185 ST6 ST6 B417 ST2 ST2	B184	ST3	ST3	B413	ST4	ST4	
	B185	ST6	ST6	B417	ST2	ST2	

B189	-	-	B418	ST2	ST2
B195	ST3	ST3	B424	ST3	ST3
B201	ST3	ST3	B425	ST2	ST2
B220	ST3	ST3	B431	ST4	ST4
B224	ST1	ST1			

SUPPLEMENTARY DATA 1: Detailed description of the Next-generation sequencing protocol for *Blastocystis*.


Positive samples from qPCR were subjected to NGS to determine *Blastocystis* subtypes according to the method by Maloney et al. (2019). Briefly, amplicons of an informative region (~450 bp) of the SSU rDNA gene were generated using overhang primers, purified, and provisioned with indices and sequencing adaptors using a limited number of PCR cycles with combinatorial indices (Nextera XT Index Kit v2 Set A and D, Illumina, San Diego, CA, USA). The amplicon libraries were purified and equalized using on the SequalPrep plates (Thermo, Waltham, MA, USA), pooled, supplemented with 20% PhiX control to balance the amplicon signal, and sequenced on a MiSeq instrument with the Reagent Kit v2, 2x250 bp (Illumina). The ensuing sequences were downloaded from BaseSpace as demultiplexed fastq files, and processed using the USEARCH10 program (Edgar et al. 2010): primers were trimmed, reads were filtered for quality, and unique sequences defined as zero-radius operational taxonomic units, denoised, their frequencies were tabulated, off-target amplicons were removed and subtypes of *Blastocystis* identified by clustering with a reference set of representative sequences as described in Cinek et al. (2021).

References:

Maloney JG, Molokin A, Santin M. 2019. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infection, Genetics and Evolution, 73,119–125.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-1. Cinek O, Polačková K, Odeh R, Alassaf A, Kramná L, Ibekwe MAU, Majaliwa ES, Ahmadov G, Elmahi BME, Mekki H, Oikarinen S, Lebl J, Abdullah MA. 2021. Blastocystis in the faeces of children from six distant countries: prevalence, quantity, subtypes and the relation to the gut bacteriome. Parasites and Vectors, 14, 399.

SUPPLEMENTARY DATA 2: Quantification curve used in qPCR diagnostic protocol for evaluation of the fecal *Blastocystis* load in human DNA samples (in LightCycler LC 480 I; Roche, Basel, Switzerland). The curve was set in the range of 10^o to 10⁵ cells per 1 qPCR reaction based on the *Blastocystis* ST3 culture.

