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ABSTRACT 
This thesis is focused on a modification of the coating-substrate interface of 

NiCrAlY bond-coats deposited by water stabilized plasma technology on S235JRC+C steel 
substrates. Electron beam remelting was chosen as the technology used for the 
modification and two different modifications were investigated. Attempt has been made 
to determine the effect of remelting on the adhesive strength of the coatings. Further 
analysis of the microstructure, phase and chemical composition and microhardness were 
carried out in the state prior and after the modification. 

During the study it was found that change in phase composition occurs after the 
deposition as well as after the electron beam modification. It was also found that the 
electron beam modification caused melting of oxides in the coating original 
microstructure and resulted in resolidification of these oxides on the surface of the 
modified layer. Further it was found that electron beam modification resulted in 
decreased microhardness of the coatings due to oxide removal from the microstructure 
and coating-substrate material mixing. 

Adhesive strength of the coatings in as-sprayed condition was quantified, however 
in the case of electron beam modified coatings the adhesive strength could not be fully 
quantified due to premature failure at the coating-adhesive agent interface during 
adhesion testing. 

ABSTRAKT 
Tato práce je zaměřena na modifikaci charakteru rozhraní substrát-nástřik 

NiCrAlY povlaků nanesených pomocí technologie vodou stabilizované plazmy na 
substráty z oceli S235JRC+C. Přetavení žárové vrstvy elektronovým paprskem bylo 
zvoleno jako technologie pro modifikaci a dvě různé modifikace byly zkoumány. V práci 
byl proveden pokus o stanovení vlivu modifikací na adhezní vlastnosti nástřiku. Dále jsou 
v práci prezentovány analýzy mikrostruktury, fázového a chemického složení a 
mikrotvrdosti ve stavu před a po modifikaci. 

Během studie bylo zjištěno, že dochází ke změnám fázového složení jak během 
depozice, tak během modifikace elektronovým paprskem. Modifikace elektronovým 
paprskem způsobila roztavení oxidů původní mikrostruktury nástřiku, které následně 
rekrystalizovaly na povrchu modifikované vrstvy. Dalším získaným poznatkem bylo, že 
dochází ke snížení mikrotvrdosti po modifikaci, což bylo způsobeno odstraněním oxidů 
z mikrostruktury a promícháním materiálu substrátu a původního nástřiku. 

Adheze nástřiků vas-sprayed stavu byla kvantifikována. V případě nástřiků 
modifikovaných elektronovým paprskem přesná kvantifikace nebyla možná, z důvodu 
předčasného porušení na rozhraní nástřik-adhezivní pojivo během adhezních testů. 

KEYWORDS 
Thermal spray, water-stabilized plasma spray, WSP, adhesion testing electron beam, 
interface, NiCrAlY, coatings 

KLÍČOVÁ SLOVA 
Žárové technologie, vodou stabilizovaná plazma, WSP, adhezní zkoušení, elektronový 
svazek, rozhraní, NiCrAlY, povlak 



Bibliografická citace 
MAREŠ, J. Modifikace charakteru rozhranísubstrát-nástřik vrstev deponovaných technologiemi žárového 
nanášení pomocí technologie elektronového paprsku. Brno: Vysoké učení technické v Brně, Fakulta 
strojního inženýrství, 2015. 61 s. Vedoucí diplomové práce Ing. Jan Čížek, Ph.D.. 



Čestné Prohlášení 

Prohlašuji, že jsem diplomovou práci vypracoval samostatně na základě uvedených 
literárních pramenů a konzultací s vedoucím diplomové práce. 

V Brně dne 

Mareš Jiří 



Poděkování 

Tímto bych chtěl poděkovat panu Ing. Janu Čížkovi, Ph.D za jeho pomoc a rady 
poskytnuté pro vypracování této diplomové práce. Dále bych chtěl poděkovat panu 
Ing. Josefu Zapletalovi, Ph.D za jeho pomoc při návrhu přípravku na lepení a za pomoc při 
adhezních testech. Také bych chtěl také poděkovat panu Ing. Radku Mušálkovi Ph.D a jeho 
týmu za depozici nástřiků a také panu Bc. Janu Kouřilovi za porno v při přetavování 
nástřiků elektronovým paprskem. Poděkovat bych chtěl také panu Mgr. Janu Čuperovi, 
panu Ing. Janu Věžníkovi, slečně Ing. Petře Hanušové a panu Ing. Zdeňku Spotzovi, Ph.D 
za pomoc při analýzách použitých v experimentální části. 

Na závěr bych chtěl poděkovat také své rodině, za podporu během celého mého 
studia. 



Table of Contents 
1. Introduction 11 

2. Literature Research 12 

2.1. Thermal Spray Technology 12 

2.1.1. Brief History 12 

2.1.2. Thermal Spray Processes 12 

2.1.3. Plasma Spray Technology 13 

Plasma Forming Gasses 13 

Arc root Stabilization 14 

Direct Current Stick Type Cathode torch 15 

Radio Frequency (RF] Plasma Spray Torches 15 

Water-Stabilized Plasma Torch 16 

2.1.4. Plasma Sprayed Coating Formation and Characteristics 17 

In Flight Particle Interactions 17 

Droplet Impact, Spread and Splat Formation 18 

Plasma Sprayed Coating Structure and Characteristics 20 

2.1.5. Adhesion Mechanisms 21 

Physical Adherence 21 

Mechanical Anchorage and Thermal Mechanisms 22 

2.2. Materials 23 

2.2.1. Thermal Barrier Coatings (TBC) 23 

YSZ Top Coat 23 

MCrAlY Bond Coats 25 

Bondcoat/Substrate Diffusion 26 

Thermally Grown Oxide (TGO] 26 

2.3. Electron Beam 28 

2.3.1. EB System Design 28 

2.3.2. EB Generator 29 

2.3.3. Beam Manipulation and Formation 29 

2.3.4. Working Chamber 29 

2.4. EB Interaction With Material 29 

2.4.1. EB Surface Heating and Hardening 30 

2.4.2. EB Surface Remelting Alloying and Dispersion 31 

2.4.3. EB Welding 32 

3. Experimental Setup and Equipment 33 

3.1. Materials 33 

9 



3.1.1. NiCrAlY Powder 33 

3.1.2. Substrate Geometry and Material 34 

3.1.3. Water Stabilized Plasma Spray Deposition 35 

3.1.4. Coating Deposition 35 

3.1.5. In Flight Monitoring 37 

3.2. Electron Beam (EB) Modification 37 

3.2.1. Optimization of EB Parameters 37 

3.2.2. Final EB modifications 38 

3.3. Adhesion Testing 38 

3.3.1. Setup 39 

3.3.2. Fixing Tool 40 

3.4. Metallographic and Chemical Analysis 41 

3.5. Evaluation of Microhardness 42 

4. Results and Discussion 43 

4.1. Microstructure Analysis 43 

4.2. Coating and Modified Layer Thickness Analysis 44 

4.3. Chemical Analysis 45 

4.4. Evaluation of Microhardness 49 

4.5. Adhesion testing 50 

5. Conclusions 53 

6. Refferences 54 

7. List of Symbols and Shortcuts 58 

8. List of Figures 59 

9. List of Tables 61 

10 



1. Introduction 
Materials have always been pushed to their limits and their properties are often 

limiting when it comes to using technologies. Limiting not only in the sense of its 
mechanical or chemical properties, but also economically. When we consider for example 
corrosion resistance it is the surface that is subjected to the surrounding harsh 
environment while the bulk of the material stays intact. 

For this reason coating technologies have been developed. These are generally 
economically efficient way to get a workpiece with desired surface properties while the 
part itself can be made out of a much cheaper material than it would have to be in not 
coated condition. Further development of coating technologies led to applications that 
achieve combination of surface/bulk material properties that otherwise would not be 
possible. For this concept to work however, the coating adhesion to the workpiece is 
crucial. That is why this work is focused on modification of coating/substrate interface of 
plasma sprayed coatings and investigates influence of electron beam coating/interface 
modification on overall adhesion of the coating to the substrate. 

In the literature review section plasma sprayed technology and coating formation 
are discussed. Later its adhesion mechanisms are discussed along with thermal barrier 
coating systems with MCrAlY bond coats and electron beam technology. Further in the 
experimental part of this work, effect of electron beam modification of plasma sprayed 
MCrAlY bond coats on its characteristics will be studied. Particularly microhardness, 
coating microstructure using light and electron microscopy, adhesion, and chemical 
composition using EDX and XDR analysis. 
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2. Literature Research 

2.1. Thermal Spray Technology 

This wide group of technologies is used to apply metallic or nonmetallic coatings. 
Each technology differs by the energy source used to heat the coating material 
(depending on the technology, the coating material is supplied in powder, wire or rod 
form). Therefore temperatures of the processes differ widely as well as the deposition 
velocities. The power of thermal spray technologies is in its high flexibility, which makes 
it possible to apply almost any material onto almost and substrate resulting in a wide 
range of applications. Those are for example [1]: 

• Wear resistant coatings 
• Thermal insulation 
• Corrosion resistance 
• Abradables and abrasives 
• Electrically conductive coatings 
• Electrically resistive/insulating coatings 
• Dimensional restoration coatings 
• Bio-medical coatings 

2.1.1. Brief History 

The origins of thermal spray technology date back to patents registered in 1882 -
1889 by M. U. Schoop (Zurich, Switzerland) for a process that fed lead and tin wires into 
a modified oxyacetylene welding torch later modified further to accept powdered 
materials. Eventually, electric arc spray technology was patented in 1908 (also by 
Schoop) which allowed more metals to be sprayed [1]. 

However, significant expansion of thermal spray technology occurred not until 
after the World War II, when the plasma spray was developed. Reinecke was the first to 
demonstrate that powders injected into a plasma arc gas heater could create molten 
particles, which could be accelerated toward a surface to form a coating (first plasma 
spray coating in 1939) [1]. The advantages of plasma spray were high process 
temperatures compared to the combustion spray jet, independence of the material feed 
from the heat source and higher particle speeds [1]. Later technologies like detonation 
gun (D-gun) and HVOF were developed [1]. 

2.1.2. Thermal Spray Processes 

Each thermal spray technology uses concentrated heat source to melt feedstock 
materials and propel molten particulates towards prepared substrate using jets. Process 
technologies are differentiated by these energy sources. The source may be combustion 
of fuels with oxygen or air, electrical arc or plasma. Standalone category is cold spray, 
where feedstock material is given enough kinetic energy to surpass so called critical 
velocity and adhere to the substrate surface even without in-flight melting. Different 
thermal spray processes are compared in Table 1 [1, 2]. 
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Table 1 - Overview of thermal spray technologies [1] 

Attribute M i m u sj iray 

FJijjh^'elociu 
li ity Tu ľ I 

Detonation 
gun Air V a t u u n i planinu RiidinfrcQUEJicy 

Jet 
Jet temperature, K 
Jet velocities, m/s 

(ft/s) 
Cias How, sLm 
Gas types 
Power input, kW 

eqniv. 

Particle feed 
Particle temperature 

( m a x J ^ C C F ) 
Particle velocities, 

m/s (fl/s) 
Material Teed rate, 

g/min 

Deposit/coating 
Density range (%) 
Bond strength, MPs 

(ksi:) 
Oxides 

3500 
50-100 

(160-300) 
100-200 

02, acetylene 
20 

25 (X) (45(X1) 

50-100(160-300) 

30-50 

R5-90 
7-1 Si (1-3) 

High 

5500 
500-1200 

(1600-4000) 
400-1100 

150-300 

33 (X) (fi(XX)) 

200-1000 
(7(X)-33(X)) 

15-50 

>95 
ft* (10) 

Moderate 
to dispersed 

5500 
> I IlfX) (>3300) 

N ŕ A 
02, acetylene 

N / A 

NVA 
NVA 

>95 
82(12) 

>25.000 
50-100(160-300) 

5(X)-3(XX] 
Air, Nj , Ar 

2-5 

>3KÍX) (>6900) 

so-loo 
(160-300) 
150-2000 

mi-«s 
10-40(15-6) 

15.000 
3(X)-1(XX) 

(1U00-3300) 
I [50-2(10 

Ar, He, R,, N ; 

40-200 

>3R00 (>6<)(X)) 

2(X)-sno 
(700-2600) 

50-150 

90-95 
<6K (<I0) 

12.000 10.000 
200-600 (700-2000) 20-80 (70-300) 

.Small Moderate to high Moderate to coarse 

150-250 
Ar . I l e , IIj 

40-120 

>3H00 (>(W(X>) 

200-600 
(700-2000) 

25-150 

90-99 
XÍK (>I0) 

None 

75-150 
Ar. i k, II, 

40-200 (plate) 

>3S()0 (>W)(X)) 

20-50 (70-160) 

20-50 

95-99 
>6K (>I0) 

None 

2.1.3. Plasma Spray Technology 
This type of technology uses plasma, a gas heated to high temperatures causing its 

molecules to ionize and, as a result, the gas becomes electrically conductive [3]. The 
plasma gas rapidly expands through a nozzle and a plasma jet is created. This technology 
is one of the most versatile among the thermal spray technologies as it enables to spray 
basically any material [1]. The specifics of the plasma spray process are dependent on the 
plasma torch design which varies widely. The main differences in the plasma torch design 
are [4]: 

• Energy source (D.C. or Radio Frequency) 
• Power input levels (20 - 200+ kW) 
• Arc stabilization (gas, water, axial or vortex flow) 
• Gas speed (supersonic or subsonic) 
• Powder injection (internal axial or external radial) 

Plasma Forming Gasses 

Generally mandatory condition to achieve sustainable plasma is such that, at 
atmospheric pressure, its electrical conductivity is higher than 10 3 S.nr1. The most 
commonly used plasma spray gasses and gas mixtures are Ar, Ar-He, N2-H2, Ar-H2 [4]. For 
these gasses this condition is achieved as soon as the plasma gas temperature is higher 
than 8000 K [4]. Plasma temperature depends on its enthalpy and is calculated as power 
dissipated Pg in the gas divided by plasma-gas mass flow rate mg (eq. 1): 

Pa V - I - Q e 

T = _g_ = _ J £ £ 
mg mg 

Where V is the arc voltage, / is the arc current and Qe are losses in the cooling unit, 
mg is the plasma-gas mass flow rate and T is the temperature of the plasma gas. A 
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temperature of 8000 K corresponds to minimum critical enthalpy [He] and strongly 
depends on the plasma gas composition as can be seen in the Figure 1. 

enthalpy IMJ.kg 1] temperature [lfr'KI 

Figure 1 - Left - Evolution of plasma electrical conductivity versus gas mass enthalpy. Right - Evolution of 
mass enthalpy of certain gasses and gas mixtures versus the plasma temperature [4] 

It is worth noting that monoatomic gasses generally have lower enthalpy than 
molecular gasses. That is because molecular gasses need energy to dissociate before they 
start to ionize. Gas composition has to be tailored to the material that is being injected 
into the gas flow, so the right amount of heat and momentum is transferred to the injected 
powder. As can be seen in Figure 1 argon has the lowest enthalpy of the mentioned gasses, 
but because of its low heat conductivity hydrogen in 10-30% vol. is added. Hydrogen 
however has low molecular mass and could impair plasma jet momentum which drives 
the acceleration of the injected feedstock material, therefore reasonable balance has to 
be found [1, 4]. 

Arc root Stabilization 

For torches that use D.C. as an energy source electric arc stability is a major 
concern. The arc plasma is easily influenced by asymmetric cooling or by effects of 
magnetic fields. The dominant effect is the drag force exerted by the cold gas in the 
boundary layer that develops at the cooled anode wall. Combination of these effects can 
cause an arc-anode attachment extinction. Generally there are three types of arc-anode 
attachment movements and those are (Figure 2) [4, 5]: 

JIKI 

t • 
,1 :. 

(1 f 

A / 

i.o 
t [msj 

Figure 2 - Voltage-time evolution of different modes linked to arc root fluctuations at the anode [4] 
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• Steady mode (poor anode lifetime) 
• Take over mode (mostly with monatomic plasma gas) 
• Restrike mode (mostly occurring with diatomic plasma gas) 
• The mixed mode (combination of all three or two of the modes) 

Arc can be stabilized by a cylindrical wall (e.g. water cooled metal) or by flow 
stabilization when vortex flow is used. The vortex keeps the light high temperature gases 
at the flow axis while the heavier cold gases are flowing along the anode wall. These two 
methods are usually combined in plasma torches. 

Direct Current Stick Type Cathode torch 

The direct current (DC) plasma arc gun combines radially aligned cathode 
frequently made of thoriated tungsten and an anode/nozzle oxygen-free high purity 
copper (OFHC) (Figure 3). Tungsten is a good thermionic emitter and has a high melting 
point of 3695 K [1]. The anode is typically made of OFHP copper sometimes combined 
with insert made of tungsten [4]. 

Figure 3 - DC plasma torch design [4] 

Radio Frequency (RF) Plasma Spray Torches 

The radio-frequency plasma spray torches are taking advantage of the same 
phenomena that is being used in induction heating of metals. These torches have no 
electrodes and are built of a hollow glass or ceramic tube usually around 50 mm in 
diameter and 150 mm in length surrounded by an induction coil that is connected to a 
high frequency current generator [4, 6]. The gas and powder are injected at one end of 
the tube and the particles of the powder are induction heated while passing through the 
tube [4]. Due to large diameter of the nozzle compared to other designs, the injected 
powder velocities achieved are lower [6]. Schematically drawn RF torch can be seen in 
Figure 4. 
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Figure 4 - RF plasma torch design [4] 

Water-Stabilized Plasma Torch 

In regular plasma torch designs, the plasma gas temperature and enthalpy is 
limited as the flowing gas protects the arc chamber walls from thermal overloading and 
thus a minimum possible gas flow rate exists for given arc power. This is solved in WSP 
by water injection that stabilizes the arc instead of using gas. The walls of the chamber 
are then formed by water, which continuously evaporates. Water is dissociated by the arc 
and the result is ionized oxygen and hydrogen that forms the plasma. Because of the 
plasma composition this leads to a creation of high temperature and enthalpy plasma jet 
[7]. Significant development began in the Czech Republic in the mid-1980s by P. Chraska 
and continues up to this day [1, 4]. 

Schematic picture of the WSP torch can be seen in the Figure 5. The water is 
injected tangentially and a water vortex is created. The cathode is made out of a graphite 
rod and the anode is made of copper disc, which has internal cooling and rotates to reduce 
strong electrode erosion in the steam plasma. This torch is best suited for spraying large-
scale oxide ceramic coatings. However, metals (such as NiCrAlY bond-coats) and cermets 
can also be sprayed by WSP [4, 7]. 
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Figure 5 - Water stabilized plasma torch design [7] 

2.1.4. Plasma Sprayed Coating Formation and Characteristics 
Plasma spraying is a complex process and to fully understand the coating 

structure and its origin the process has to be understood as a whole. That is why the first 
part of this chapter is devoted to interactions of feedstock material with its surrounding 
atmosphere that occur during spraying. This is followed by discussion of what happens 
after the sprayed material impacts the surface and in the end of the chapter, final coating 
structure is discussed. 

In Flight Particle Interactions 

Because the material is melted when heated by the plasma, different types of 
interactions take place between the particles and its surrounding atmosphere. Fluid 
mechanics becomes relevant and qualities like kinematic viscosity of the gas and melted 
material, Reynolds number Re (defined in eq. 2) and Webber number We (defined in 
eq. 3) become important [4]. 

Re = (2] 
H 

w pVfDo (3) We = 
a 

Where Do is initial droplet diameter, Vo is impact velocity, p is liquid density, pi 
represents liquid viscosity and a stands for liquid-gas surface tension. 

As the powder enters the plasma jet, it immediately starts to gain kinetic and 
thermal energy from the plasma. Particles enter the plasma hot core, their surface is 
rapidly heated, and reaches the melting point in approximately 0,1 ms [8]. This time is 
relatively small compared to the time needed for latent heat dissipation during melting. 
This is not a problem for materials with high thermal conductivity (e.g. metals that also 
have high diffusivity) but in case of ceramic materials, large differences in surface, core 
and melting front temperatures start to develop due to its low thermal conductivity and 
high melting point. This often results in not fully melted particles [8]. 
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Another important aspect of melted particle interaction with its surrounding 
atmosphere is oxidation. There are two mechanisms governing this reaction. Generally it 
is controlled by diffusion, however if Reynolds number is higher than 20 and ratio of 
kinematic viscosities of the plasma and particle is higher than 50, a convective 
phenomenon is induced within the particle. That means the oxide forming on the particle 
surface is continuously being entrained into the particle so the surface is being 
continuously supplied with fresh metal [5, 9]. Oxides then form nodules inside the 
particle and the oxide phase is well distinguishable from the particle material due to high 
surface tension. Apart from oxidation, nitridation has also been proven to happen during 
plasma spraying in several cases [8,10]. 

When using materials with relatively low vaporization temperature during 
plasma spraying some fraction of the material may evaporate, especially small particles 
as they require smaller thermal energy input and dwell times to get into the vapor phase. 
This phenomenon is called selective vaporization. This can sometimes cause problems as 
some elements in the feedstock material may evaporate faster than others resulting in 
chemical composition differences of the coating when compared to the composition of 
the feedstock material [3]. This phenomena also causes lower deposition efficiency. 
Material that is vaporized can either be oxidized into an oxide or it condenses back into 
ultra-fine (sub-micron) particles. In the Figure 6 on the right it can be seen that number 
of submicronic particles increases significantly with greater distance from the plasma 
torch nozzle along the plasma jet axis. On the left in the Figure 6 can be seen effect of the 
particle diameter on evaporation in the axial distance from the plasma jet [11]. 

0.00 0.02 0.04 0.06 0.08 0.10 0 I 2 3 4 5 6 7 8 9 10 11 12 
Axial distance from the nozzle exit, in Plasma jet axis (cm) 

Figure 6 - Left - Experimental data of evaporation mass fraction of different particle sizes with increasing axial 
distance from the nozzle exit. Right - Amount of submicronic particles with increasing axial distance [11] 

Droplet Impact, Spread and Splat Formation 

When a particle impacts the surface it flattens, spreads itself onto the substrate 
surface, solidifies and forms a splat, basic building block of thermal spray coating. The 
degree of flattening has been shown to be a power function of the Reynolds number as 
can be seen in the eq. 4 [9]. 

There are two basic modes in which the flattening of the incident particle can 
occur and those are: flattening and splashing. The temperature at which both mechanism 
are controlling the particle flattening is called transition temperature (Figure 7). 
Splashing is undesirable and results in higher porosity levels and overall lower adhesion 
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and cohesion [9]. To determine what mode of flattening will occur at impact of the 
particle onto the substrate, temperature needs to be taken into account and has been 
shown to be determined by eq. 5 and eq. 6 [9]. 

£ = 1 . 2 9 « . « ( 4 ) 

K = We°'sRe0'25 -
I*5 J 

Kf = 0,Sall25Re-°'3K (6) 

Where D is diameter of the splat and d is diameter of the original particle, Re is 
defined in the eq. 2, a is a ratio of the flattening velocity to the impact velocity of the 
particle, K is a flattening coefficient, Kf is the splashing flattening coefficient and KCf is the 
critical splashing flattening coefficient. If Kf value is higher than Kef (critical value for 
certain thermal spray setup) it is expected that splashing mode is the most dominant 
mode. This value corresponds to substrate transition temperature Tt [9]. 

Figure 7 - Definition of the transition temperature Tt. a) splash splat collected at 
Ts = 300 K. b) disk splat collected at Ts = 723 K [2] 

This is of course true only in the case the particle is fully melted. As for not fully 
melted particles there is not a complete theory on how they behave during spreading and 
solidification after impact. However it is expected that the unmelted part enhances the 
kinetic energy dissipation (slows the spreading process) and could also bounce away 
from the substrate and induce particle splashing. The result may be: high unmelted splat 
(Figure 8), low deposition efficiency and high coating porosity [8]. 
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Figure 8 - a) completely melted hydroxyapatite particle and b) partially melted hydroxyapatite particle [15] 

Plasma Sprayed Coating Structure and Characteristics 

The final coating is built from many individual splats typical coating structure is 
shown in the Figure 9. The microstructure contains porosity, cracks, inclusion, unmelted 
particles and oxides. Oxides that are present in the sprayed droplets flatten after impact 
with the substrate and can be observed generally as dark elongated phases in the coating 
microstructure. Oxide inclusions increase the coatings hardness [1, 5]. High oxide content 
result in brittle coatings and can lead to low cohesive strength. However, in certain cases 
it is desired to have certain amount of oxides present in the microstructure, as they can 
increase wear resistance and lower the thermal conductivity [1]. 

Splat thickness Oxide Unmelted 
inclusions particle 

Figure 9 - Schematically drawn microstructure of a plasma sprayed coating [1] 

Another important coating feature is porosity. It is generally associated with a 
high number of unmelted or resolidified particles that become trapped in the coating 
structure but can originate from all kind of different sources some those are for example 
[1]: 

• Material shrinkage on cooling from the liquid state 
• Separation of splats due to low cohesion 
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• Poor wetting onto adjacent surfaces (due to for example cool or slow moving 
particles) 

• Intersplat or intrasplat cracking 
• High deposition angles leading to shadowing 

High porosity may result in poor coating adhesion and cohesion, premature 
cracking, delamination or spalling. It is especially undesirable in corrosion protection 
coatings as open porosity can short-circuit the corrosion resistance of the coating. It can 
also lead to poor surface finishes as non-uniform pits may form on the surface after 
grinding or honing porous coatings. Even though porosity does lower some coating 
properties it is sometimes desirable. In ceramic thermal barrier coatings low heat 
conductivity can further be lowered by inclusion of 8-15% porosity. Porosity can also 
serve as a reservoir for oil/grease or solid-lubricant in bearings, or in biomedical 
applications porous coatings can provide a structure that osteoblastic cells can grow into 

[!]• 

2.1.5. Adhesion Mechanisms 

The ability of the coating to stick to the substrate depends on several types of 
mechanisms. The adhesion mechanism is still not fully understood however it is expected 
that both mechanical anchorage and physical-metallurgical adhesion occur [12]. 

Physical Adherence 

According to a theory proposed by Zaat, the main conditions for physical 
adherence are [13]: 

• Intensive and permanent contact between substrate and lamella 
• Decrease in the Gibbs free energy of the substrate and lamella system 
• Very clean surfaces 

If two very clean surfaces without any mechanical stress approach each other to 
the field of attraction (i.e. smaller than 5 A), the Gibbs free energy of the atoms decreases 
and leads to enhanced adhesion. The Gibbs free energy of the atoms has to be increased 
again to separate the two surfaces and this according to the second law of 
thermodynamics, cannot happen without overcoming certain energy barrier first. The 
total decrease of the Gibbs free energy is given by [13,14]: 

AG = AGsurf - TcontASs + AHS (7) 

Where AGsurf is a decrease of the Gibbs free energy due to surface energy, Tcont is 
the contact temperature, ASs is increase of the entropy due to surface diffusion andAHsis 
a change of the enthalpy because of different potential curves for atoms combinations AA, 
BB and AB (A - substrate atoms, B - coating atoms). In the equation mechanical aspects 
like the residual stresses are not taken into account. In practice this decrease of the Gibbs 
free energy happens only in places where the contact between the coating layer and the 
substrate is close enough for surface atoms to reach the field of attraction. Therefore 
better and longer liquefied state of the sprayed material increases the probability for a 
better adherence [13]. 
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Mechanical Anchorage and Thermal Mechanisms 

Generally, mechanical anchorage is believed to have the biggest impact on the 
adhesion of the coating. This is especially true for ceramic and other high melting point 
materials where metallurgical or chemical reactions with the substrate during deposition 
are not expected. For good mechanical anchorage, it is important that the surface of the 
substrate is properly activated. This is achieved by a proper cleaning of the surface, 
proper surface roughness and substrate preheating [15,16]. Mechanical anchorage is the 
result of residual stresses induced in the coating during rapid solidification of splats. 
However thermal expansion of both substrate and coating material have to be taken into 
account as mismatch in these values could reduce the effect residual stresses have on the 
adhesion [16]. 

Preheating of the substrate is another important factor that influences adhesion. 
Wetting of the impacted particle is increased, the heat convection into the substrate is 
not as rapid and the particle remains in the molten state longer [15, 16]. Impacted 
particles may cause substrate melting resulting in formation of an alloy layer which 
exhibits superior adhesion strength when compared to mechanical anchorage. Substrate 
melting is only possible for certain material combinations. Generally if the melting point 
of the sprayed material is higher than that of the substrate, formation of an alloy layer 
could be expected if substrate is preheated enough [13]. Preheating also ensures burning 
off any residual greases, oils and moisture present at the substrate surface and has a 
positive effect on residual stresses in the coating [13]. 
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2.2. Materials 

2.2.1. Thermal Barrier Coatings (TBC) 
The gas turbine engines provide for one of the most challenging environments that 

material systems have to deal with today. Engine components are under enormous 
mechanical loading conditions (high temperatures, corrosive and erosive media, etc.) 
[17]. The best way to increase the efficiency of an engine is to increase the combustion 
temperature. Therefore advances in thermal spray technology led to the use of TBC 
coatings. These coatings are heat and oxidation resistant and protect the substrate from 
exposure to high thermal loads due to its low heat conductivity and thus allow for higher 
combustion temperatures [17]. TBC structure can be seen in the Figure 10. 

Figure 10 - Left - Microstructure of TBC system [20]. Right - Schematically drawn TBC system [3] 

Most common industrially used TBC coating system has been so far plasma 
sprayed Zr02 - (6-8 wt. %) Y2O3 ceramic layer (also referred to as YSZ) over a MCrAlY (M 
= mainly Ni, Co) bond coat layer [18]. 

YSZ Top Coat 

There is a wide selection of ceramic materials that could be used in TBC coatings. 
The reasons yttrium stabilized zirconia is so popular choice are its superior mechanical 
properties such as high strength and fracture toughness combined with wear resistance 
and on top of that it also has a thermal expansion coefficient close to that of metallic 
substrates as can be seen in the Figure 12 [19]. Zr02 exists in three crystallographic 
phases (Figure 11): low-temperature monoclinic phase, the intermediate-temperature 
tetragonal phase and the high-temperature cubic phase. The drawback is that the phase 
transformation of tetragonal to monoclinic phase is accompanied by significant volume 
expansion (approximately 3-5 vol.%). This transition induces stresses on the 
coating/substrate interface and generally contributes to the failure of the TBC system. 
Therefore, the amount of monoclinic phase in Zr02 is one of the important indicators of 
coating quality [20]. 
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Figure 11 - Phase diagram of ZrCh - Y2O3 system [21] 

To minimize the effect of volume expansion several oxides can be added (Y203, 
Ce02, MgO). These can stabilize the high-temperature cubic phase and repress the 
existence of the unwanted monoclinic phase. In the case of YSZ, rapid solidification during 
the plasma spray process can drive diffusionless transformation from the high-
temperature cubic phase to the non-transformable tetragonal phase without a 
composition change [22]. The non-transformable tetragonal phase is unstable with 
respect to diffusion at high temperatures. Therefore, additional phase transformation 
into the equilibrium high-yttria cubic and low-yttria tetragonal phases can be expected 
on high-temperature exposure. The phase transformation is additionally affected by 
various conditions, such as aging and cooling rate [20]. 
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Figure 12 - Diagram of thermal expansion coefficient versus thermal conductivity for different materials [23] 

MCrAlY Bond Coats 

As a bond coat for the TBC topcoat the most commonly used are the MCrAlY type 
coatings. Their composition is similar to that of superalloys that are being used for 
components working at high temperatures, so the coating is inherently resistant to 
elevated temperatures. Microstructure of MCrAlY coatings as with many other alloys is 
largely dependent on its composition and operating temperature. The phases present in 
the microstructure during its service life are (see Figure 13 for lattice structure of the 
most common phases) [19]: 

• (3 - Has BCC lattice and contains (Co, Ni)Al 
• y - Has a FCC lattice and is a solid solution of Co, Ni, Cr 
• y~ Ni3Al intermetallic phase 
• Other - other phases that may be present depending on the composition of the 

bond coat and are a - brittle phase and a phase which is high in chromium 
content. Both of these phases are undesirable 

Called 7 'phase (Ni3AI) 
(b) 

Figure 13 - Lattice structures of the most common phases present in MCrAlY coatings [19] 
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The most common phase combinations are y+(3 (the most desired) ory+p+others 
[19]. The (3 phase has NiAl chemistry in which other elements like Co and Cr can dissolve 
[24]. Co forms beta phase preferentially and can even replace Ni entirely [19]. Cr shows 
no special preference on Ni and Al sites in the (3 phase, but usually occupies the sites on 
which the element (Ni or Al) is poorer in content [24]. Cr usually has a higher solubility 
in y phase than in (3 phase [19]. Ternary diagrams of Ni-Cr-Al are well known and are 
presented in the Figure 14. When other elements like Co or Re are added however, the 
diagrams get very complicated [25]. 

As can be seen from Figure 14, phase transformations take place as the 
temperature increases. One of the most undesired transformations is y+p=a+y" which is 
accompanied by significant volume expansion and induces large stresses in the coating 
[24]. 

Bondcoat/Substrate Diffusion 

At high service temperatures negative diffusion processes occur (up to 1272 K) at 
the bond coat/substrate interface. These processes mainly occur due to large differences 
in chemical activity between the coating and the substrate material [25]. Ni-base 
superalloys contain a number of alloying elements such as Co, Re, W, Nb, Ti, ect. mainly 
to improve the high temperature mechanical properties. However, MCrAlY-type bond 
coats are rich in elements like Al and Cr to promote the formation of a protective oxide 
scale. This compositional difference acts as the driving force for the inter diffusion 
between the substrate and the coating. As a result, microstructural changes near the and 
at the coating/alloy interface are generated both in the substrate and in the coating. This 
inter diffusion can lead to the formation of detrimental phases, such as sigma-phase, 
Laves phases, brittle carbides and other coating imperfections like voids and porosity 
[25]. This leads to changes in the mechanical properties of the substrate and can 
eventually lead to failure [26, 28] [26]. 

Thermally Grown Oxide (TGO) 

When the MCrAlY bond coat is exposed to high temperatures, oxide layer forms at 
the bond coat/topcoat interface (see Figure 15). This layer acts as a barrier to oxidizing 
elements that penetrate through the porous topcoat. The TGO is mainly formed by 
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a-Ab03 and even though the growth phenomena in the TBC system is not quite 
quantitatively comprehended, the following findings are accepted as applicable [23]: 

The growth is essentially parabolic until spallation occurs. The growth rate is 
given by equation 9 [23]: 

h2 = 2kpt (8) 

Where h is thickness of TGO, t stands for time and kp is the parabolic rate 
constant. This process is controlled by diffusion. In some cases 0-alumina forms first and 
transforms to (X-AI2O3 [19]. Small amount of Cr and Ni oxides may also form first because 
of higher diffusivity of these elements. Mechanism of the TGO growth is a diffusion of 
oxygen either directly from ZrCh lattice or by oxygen penetration from surrounding 
atmosphere through the topcoat porous structure. The mechanism of TGO growth is 
therefore controlled by diffusion. As a source of Al serves the [B phase. After high 
temperature exposure depletion of this phase occurs and after a period of time depleted 
(3 phase zone becomes noticeable in the bond coat microstructure. During the service 
time, due to stresses induced by the TGO growth, the oxide layer spallation and cracking 
may occur. TGO is continuously being renewed, however after depletion of the (3 phase 
becomes significant, the renewal stops and leads to failure of the bond coat [26]. 

The adhesion of TGO is crucial to the bond coat lifetime. To increase this ability of 
adherence reactive elements such as yttrium or rhenium are added. Several mechanisms 
that are responsible for the adhesion increase have been proposed and most of them 
focus on modification of Al transport in the alloy. Those mechanisms are so called 
"pegging" of the coating by oxides of these reactive elements form or by altering of growth 
and TGO plasticity [29]. 

Apart from (X-AI2O3 other oxides like CnOs CoO and NiO may form as well as spinel 
oxides (e.g. (Co, Ni)(Cr, Al)204) at high temperatures and long exposure times. This is also 
a point where failure may occur because these oxides and especially spinels promote 
spallation [26, 27]. 

Figure 15 - MCrAlY coating after high temperature exposure, a) Highlighted formed spinel oxide on top of 
TGO and p depleted zone, b) Highlighted alumina TGO and p depleted zone [27] 
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2.3. Electron Beam 
Recently the technology of high power density heat sources such as electron and 

laser beams has gone through a rapid development and is being applied in welding 
cutting surface heat treating and alloying. Electron beam technology used for these 
purposes is very similar to the technology used in electron microscopes, but the energy 
density in this case is much higher [30]. 

2.3.1. EB System Design 

Typical EB machine is schematically represented in Figure 16. The main 
components of EB machine are: the beam generator, the beam forming and guiding 
sections (which has separate vacuum system) and a vacuum chamber [31]. The EB 
interacts with the surrounding atmosphere and this causes its scattering and a loss in its 
energy density. Vacuum is needed to minimize this effect [32]. 
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Figure 16 - Schematic representation of electron beam device [36] 
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2.3.2. EB Generator 
A tungsten cathode, which has been heated under vacuum, emits electrons by 

thermal emission. The electrons are accelerated by high voltage between the cathode and 
the pierced anode (see Figure 16). A modulating electrode called "Wehnelt cylinder", 
which is positioned between anode and cathode, regulates the electron flow. Dependent 
on the height of the cut-off voltage between the cathode and the modulating electrode, is 
a barrier field, which may pass only a certain quantity of electrons. This happens during 
an electron excess in front of the cathode where it culminates in a form of an electron 
cloud [31]. 

2.3.3. Beam Manipulation and Formation 

Because electrons of which the EB consists have an electric charge, the beam can 
be easily manipulated by magnetic fields. The beam starts to diverge after it emerges from 
the aperture in the anode because of mutual repulsion and other effects [31]. 

The beam is guided through a system of alignment and focusing coils onto the 
workpiece (stigmator coil may be added to correct aberrations of the lenses). Deflection 
coils below the system of focusing coils cause the beam to move to predetermined 
locations and it is focused to a spot of a diameter in the range of 0,1 - 1 mm. The coil is 
also being used to split the beam, allowing to combine multiple processes together [31]. 

2.3.4. Working Chamber 

The working chamber is evacuated and must be capable of withstanding the air 
pressure, which acts on the walls of the chamber. Usually, regular structural steel is used 
that significantly reduces the interfering effects of external magnetic fields. The chamber 
must also be equipped with appropriate positioning equipment for the workpiece. When 
in operation, especially while using high energy EB, a layer of metal condensate is 
continuously deposited on the surface of the internal walls of the chamber. For this 
reason metal plates can be mounted onto the internal walls of the chamber to simplify 
the cleaning process of the chamber [31]. 

2.4. EB Interaction With Material 

The electron beam interacts with the material atoms and becomes significantly 
scattered through elastic (trajectory of electrons changes, but its kinetic energy and 
velocity remain essentially constant) [33] and inelastic (interactions with the material 
trajectory of incident electron is only slightly changed, but its energy is lost through 
interactions with orbital electrons of the atoms in the substrate) [33]. Inelastic 
interactions produce diverse effects including (see Figure 17): 

• Emission of secondary electrons 
• Phonon excitation 
• Emission of characteristic x-ray radiation 
• Plasmon production 
• Auger electron emission 
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Figure 17 - Effects of interaction of EB with the substrate [36] 

Unlike in electron microscopy where most of the above mentioned effects are 
important, when using EB for surface treatment of the workpiece, the most important 
interaction is the phonon excitation of the workpiece atom lattice (although 
backscattered electrons can be used to monitor the process) [34], because that's how 
most of the EB kinetic energy is transferred into the workpiece. Phonon excitation 
macroscopically results in an increased temperature of the incident workpiece volume. 
Outcome of the EB interaction with the workpiece can be separated accordingly (with 
respect to the beam energy): 

• E i - the workpiece is heated but remains solid without undergoing any phase 
transformation 

• E2 - the heated substrate remains solid and phase transformation takes place 
• E3 - the substrate is heated above its liquidus temperature into a liquid phase 

(alloying, surface remelting) 
• E4 - the substrate is heated up to its vapor phase 

2.4.1. EB Surface Heating and Hardening 

First category of EB treatments can be used for are heating and hardening of 
metals. These treatments can eventually be combined with tempering to reduce induced 
stresses by rapid heating of the surface layer as can be seen in the Figure 18 [37]. This is 
done with the help of the deflection coil. For these kinds of treatments lower energies are 
used (energies corresponding to Ei , E2 as described in chapter 2.4). The substrate in this 
case remains in a solid state. EB surface hardening is a process that uses the heat 
generated by the impingement of an electron beam on the surface of the material to 
austenitize it, and then the austenitized layers are transformed to martensite because of 
a rapid conduction of heat into the cold interior of the workpiece [36]. This effect is 
known as self-quenching and the cooling rates are usually high enough to allow 
martensite formation, even in steels, which have a low hardening ability [37]. In addition 
the hardened microstructure obtained is usually finer than that from a conventional heat 
treatment, resulting in hardness and consequently fatigue resistance increase [38]. The 
thickness of such hardened layers usually varies from 0,1 to 1,7 mm [31]. 

E1<E2<E3< E4 (9) 
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Figure 18 - Combination of EB surface hardening and tempering [37] 

2.4.2. EB Surface Remelting, Alloying and Dispersion 

Another category of EB operations are surface remelting and alloying where 
higher energies are used (corresponding to E3 as described in chapter 2.4). Remelting the 
substrate surface alone by the high energy EB generally results in a finer grain structure 
of the material and can result in higher wear resistance and increased hardness. In some 
cases the rapid solidification can result in amorphous structure of the remelted surface 
layer [32]. The thickness of remelted layer ranges from 0.1 to 10 mm [31]. 

If a layer of certain element or alloy is applied onto the surface of the substrate 
(for example by a thermal spray technology, thin foil or vapor deposition) and 
subsequently the layer is remelted, it leads to mixing of the coating layer with the base 
material. Assuming that the beam penetration depth is larger than the thickness of the 
applied layer. This process is called alloying and creates a surface with properties that 
differ from those of the base material. Another process EB surface remelting is used for 
is called dispersion. This occurs when the material deposited onto the base material does 
not melt and it is dispersed into the substrate surface. Alloying suitable elements into the 
substrates surface results in better surface properties, like wear and corrosion resistance 
[31]. 

Line representing 
^ / o r i g i n a l surface 

Remelting Alloying Dispersion 

Figure 19 - Schematic picture of different processes in the liquid phase EB is used for [35] 

31 



2.4.3. EB Welding 

When EB with high enough energy (corresponding to E4) interacts with a 
substrate, the substrate material evaporates and allows the following electrons a deeper 
penetration. The result is a formation of a vapor cavity surrounded by a shell of fluid 
metal also called a keyhole. The diameter of the cavity approximately corresponds to the 
beam diameter [31]. 

To maintain the keyhole stability the vapor pressure must press the molten metal 
round the vapor column against the cavity walls, by counteracting its hydrostatic 
pressure and surface tension (see Figure 20) [31]. As the beam traverses over the base 
metal, the material melts at the leading edge of the keyhole, flows around the keyhole, 
and solidifies at the trailing edge (see Figure 20) [32]. This leads to continuous collapse 
and formation of the keyhole and formation of the weld. This type of welding can however 
result in cold shuts, porosity, or irregular penetration. These defects are to some extent 
corrected by modern beam power input control techniques [31]. Heat affected zone is 
narrow and depending on the material the EB is able to weld workpieces with up to 
500 mm (aluminum) in thickness. There is no need for additional material to form the 
weld and welding speeds are considerably higher compared to conventional methods 
[31]. 
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3. Experimental Setup and Equipment 

3.1. Materials 

3.1.1. NiCrAlY Powder 

Manufacturer of powder used for purposes of this work was H.C. Starck. The 
product name is Amperit 413 NiCrAlY and was made by gas atomization method. The 
powder was supplied by the Institute of Plasma Physics in Prague. The powder was 
analyzed using SEM, EDX, XDR and particle size analysis. Particles of the powder have 
relatively regular sphere shaped morphology which corresponds to the gas atomization 
method used for manufacturing. The particle bodies have attached node shaped satellites, 
as could be seen from Figure 21. 

Figure 21 - Morphology of the used NiCrAlY powder 

The particle size distribution was measured by laser diffraction method using 
Mastersizer 3000 device made by Malvern. This device allows using either wet or dry 
dispersion type and is able to measure size distributions in the range of 0.01 |im to 
3500 |im. Wet dispersion was used when carrying out the measurement, results of the 
measurement are presented in Figure 22. The distribution of the average particle size is 
following: D10: 49,0 |im; D50: 81,7 |im; D90: 137,0 |im. According to the information 
provided by the manufacturer the powder is suitable for deposition by APS, HVOF and 
VPS methods. The chemical composition from EDX can be seen in Table 2. Phase 
composition data acquired from the XDR analysis are in the Figure 23. The most 
dominant phase (67 %) in the powder microstructure is y - Ni(Cr) which is a solid 
solution of Ni and second phase present is intermetallic phase NiAl (33 %). 

Table 2 - Results from EDX mapping analysis of the NiCrAlY powder (in wt. %) 

Ni Cr Al Y 
66,1 23,9 9,0 1,0 
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Figure 22 - Particle size distribution of the used NiCrAlY powder 
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Figure 23 - XDR analysis of NiCrAlY powder 

3.1.2. Substrate Geometry and Material 

Material used for the substrate was grade 11 steel S235JRC+C. Chemical 
composition of the substrate material is in Table 3. The substrates were manufactured at 
FSI VUT Brno with guidelines provided by ASTM C-633, EN 582 standard for tensile 
strength adhesion testing. The substrate blueprint can be seen in the Figure 24. 

Table 3 - Chemical composition of the substrate (in wt. %) 

c Mn P S N Fe 
max 0,21 max 1,50 max 0,055 max 0,055 max 0,011 balance 
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Figure 24 - Scheme of the substrate used for deposition 

3.1.3. Water Stabilized Plasma Spray Deposition 

NiCrAlY coatings were deposited in Prague at the Institute of Plasma Physics using 
water stabilized plasma technology. Due to intellectual properly of the project partner, 
the exact deposition parameters will not be disclosed. Further to that, it is important to 
note that the used parameters and overall spraying conditions were not optimized 
and therefore the coating properties may not be ideal, mainly because of expected oxide 
content. 

3.1.4. Coating Deposition 

Prior to the deposition, the substrates were grit blasted with corundum and 
degreased in acetone. The substrates were mounted on a revolving carousel, which was 
turning at 2 rps (revolutions per second) to ensure uniform spraying. The samples were 
being cooled by argon gas during the deposition (see Figure 26). The deposited coating 
had a metallic coloration and layer of green colored oxides in the form of dust layer was 
present in the "out-of-sight" places as can be seen in the Figure 27. 

The temperature of the samples was monitored by a wireless thermocouple 
attached to the back of one of the samples. Thermal history of the monitored sample can 
be seen in Figure 25: 

• Preheat: 3 passes to about 150°C (no powder feeding) 
• Spraying: two deposition cycles; 2 passes up and 3 passes down in each cycle 
• Maximum temperature at the back of the monitored sample was below 180°C. See 

Figure 27 for the wireless thermocouple position. 
• Feed rate: 13 kg.hour 1 

• Torch vertical speed: 50 mm.sec 4 

• Carousel rotation speed: 2 rps 
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Figure 25 - Thermal history of a sample monitored by a thermocouple during NiCrAlY plasma deposition 

Figure 26 - Deposition setup 

Figure 27 - Samples after the deposition 
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3.1.5. In Flight Monitoring 
The in-flight particle properties were measured by DPV-2000 system. This system 

helps to determine the characteristics of spray particles during the flight phase in a 
specific area of the spray jet. The surface temperature (two-wavelength pyrometry), the 
flux amount, the particle diameter (iterative, manual adjustment of the emission 
coefficients) and the speed of the spray particles (light barrier principle) can all be 
measured simultaneously. The results of the measurement were the following: 

• Mean particles temperature: 2535 ± 89°C 
• Mean particles velocity: 45,3 ± 5,0 m.s - 1 

• Mean particles diameter: 79,3 ± 12,8 |im 

The particle was well above the melting temperature but the velocity was rather 
slow when compared to regular velocities achieved during WSP spraying (in hundreds 
rnrns-1) [2]. 

3.2. Electron Beam (EB) Modification 

EB surface remelting has been chosen as a method to modify the 
coating/substrate interface. The type of the machine used was K26 made by German 
company Pro-beam. This device was acquired under the project NETME. This device has 
a vacuum chamber with a multi-axis platform with numerical control positioning system 
and a electron gun. Included are also bushings for supply of inert gasses and cooling 
water. This device can be used for welding regular and reactive metals and for heat 
treatment including quenching, surface remelting and alloying of surface layers. 

3.2.1. Optimization of EB Parameters 

Modification of thermally sprayed layers is a novel research at VUT FSI in Brno 
and is being explored by this institution. For this reason it has been decided to gradually 
try several optimization steps. After evaluation of each result, 2 most promising sets of 
parameters were chosen and used to modify specimens that were later be used for 
adhesion testing. The electron beam was set to oscillate to form a 30 mm long line pattern 
to ensure even distribution of the heat energy input into the specimens. The parameters 
that were being optimized and its expected influence on final structure were the 
following: 

• Oscillation frequency - better uniformity of the final surface with increasing 
frequency 

• Power input - depth of the modified zone increasing with higher power input 
• Velocity of the beam shifting - the higher the speed the lower the heat input 

into the specimen and lower depth of the modified zone 

After a successful modification of the substrate/coating interface, dark phases 
formed on the surface. After several optimization steps it was assumed that it was most 
likely not possible to suppress formation of this phase. Focus was then directed only on 
the quality of the modified interface and after evaluation of the microstructures of each 
specimen 2 most promising sets of parameters were selected for final sets preparation. 
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3.2.2. Final EB modifications 
The parameters chosen for modification of the final two series (B and C series; A 

series being the substrates in as-sprayed condition) can be seen in the Table 4. 

Table 4 - Parameters chosen for final modifications 

Series Velocity Current Voltage Power Input Series 
[mm.s-1] [mA] [kV] [W] 

Series B 10 25 120 3000 
Series C 5 18 120 2160 

However when modifying specimen from series B and C, the results were different 
from those achieved during optimization. First problem was that the dark phase (that 
formed only in some places on the surface during optimization) now formed a consistent 
layer covering the whole surface of the specimen. Second complication was a geometry 
of the modified surface. This was most likely caused by migration of the material when in 
the liquid phase due to convective phenomena. Each specimen was therefore grinded 
using abrasive papers of a grit size 800 and 1200 for 3 minutes for each paper. It did not 
result in removal of the oxide surface layer but it did even up the surface. After this 
preparation series of tests of specimens from series B were carried out to test the 
adhesive strength of the oxide layer. 

After the adhesion test of the oxide layer grinding was done on a magnetic grinder 
to achieve planar like surface. The profile of the reference specimen in each series was 
analyzed using light microscopy to determine how much material can be grinded away 
to get plane like geometry of the surface while the modified layer still stays intact. Series 
B before and after grinding can be seen in the Figure 28. 

Figure 28 - Left - series B before grinding. Right - series B after grinding 

3.3. Adhesion Testing 
Adhesion tests were carried out according to guidelines provided by ASTM C-633, 

EN 582) standard [39,40]. The method serves for determination of the degree of bonding 
strength of a coating to a substrate or the cohesive strength of the coating in a tension 
normal to the substrate. The test consists of coating one face of a substrate fixture, 
bonding this coating to the face of a loading fixture, and subjecting this assembly to a 
tensile load normal to the plane of the coating. This method is particularly adapted for 
testing of thermally sprayed coatings. Ambient temperature is the most suitable for 
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performing the tests. In case of using different temperatures the operating temperature 
of the bonding agent has to be taken into account. 

The minimum recommended thickness of the tested coating is 0,38 mm. This 
limitation is imposed because the adhesive bonding agent is used and in some cases it is 
possible for the agent to penetrate through the coating get in contact with the substrate 
surface and invalidate the results. However if the coating is dense enough or the bonding 
agent has high surface tension (eliminating the danger of the bonding agent leaking 
through the coating) coatings with lower thickness may be used. 

The values of adhesive/cohesive strength of thermal spray coatings obtained by 
this method should not be considered for a direct use in making calculations, e.g. to 
determine whether a coating will withstand specific environmental stresses. It has to be 
kept in mind that because of residual stresses, the actual adhesive strength strongly 
depends on the shape of the particular coated part. 

3.3.1. Setup 

The coating was applied on a base of one fixture and then bonded with a base of 
another fixture using adhesive agent, the setup for the testing is represented in the Figure 
29. The tests were carried out using a Zwick Z250 Allround-Line, tCII. According to the 
standard, the constant rate of the cross-head travel should be in the range between 
0,013 mm.S"1 to 0,021 mm.S"1 which was fulfilled during our testing. Self-aligning devices 
for applying the tensile load to the assembly of the coating and fixtures did not permit 
eccentric load or bending moment to the specimen. All specimens were degreased in 
acetone prior to testing. 
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Saddle 

Figure 29 - Setup used for adhesion testing 

3.3.2. Fixing Tool 

The adhesive bonding agent used for testing was FM1000 made by Cytec company 
(USA). It requires curing for 1 hour at 442 K under activation load of 140 N. To achieve 
the pre loading strength, a fixing device was developed within the scope of this thesis. Its 
construction can be seen in Figure 30. Al l parts were cut on laser CNC machine which 
achieves cutting to the precision of 0,1 mm. The holes in the fixating plate have diameter 
25,0 mm to accommodate the substrates. The frame of the device was bent on a bending 
machine. After adding the samples and assembling, springs are put on top of each 
substrate/fixture stack and then another plate is put on top of that assembly. Thereby, 
the load is applied (1120 N for the whole assembly) and the loading plate is fixed in the 
required position by two stoppers. The springs used were manufactured by Alcomex 
Spring Works s.r.o. and the dimension are 2,5 x 20,0 x 36,0 mm. 
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Figure 30 - Pre-loading device with substrates stacked inside and load applied 

It was decided that total 5 series of tests are going to be carried out to test the 
tensile bonding strength of the adhesive film, coating tensile strength in as-sprayed 
modified condition. 

3.4. Metallographic and Chemical Analysis 

Metallographic analysis was carried out using light microscope Axio Vert A l and 
electron microscope FEG SEM Zeiss Ultra Plus both made by the Zeiss company. Light 
microscope metallographic analysis served for evaluation of microstructure after EB 
each optimization step. SEM metallographic analysis was used to analyze the reference 
samples from each of the final modified series. 

Al l specimens used for metallographic and chemical analysis were mounted using 
Leco PR-4X. The prepared metallurgical mount was then subjected to series of grinding 
on a Struers Pedemin-2 device using silicon carbide abrasive papers. Each specimen was 
grinded on 5 abrasive papers with the grit size range 220, 320, 500, 800 and 1000 (4 
minutes of specimen grinding on each abrasive paper). The specimen were polished to 
remove the abrasion-damage layer that includes plastically deformed material and the 
slip/twin/shear damage immediately beneath the surface. Polishing was again carried 
out on Struers Pedemin-2. 3 u_m and 1 u_m diamond polish were used and polishing times 
were 4 minutes for each grade. 

Electron microcopy was used to analyze coating/substrate interface for the two 
chosen EB modifications. Depth of the modified zone was measured and EDX module was 
used to perform chemical analysis. It is important to note that during the chemical 
analysis, the values of carbon were not taken into account. The analysis was carried out 
for the modified layer and for analysis of the dark phases formed on the surface of the 
substrates after EB modification. 
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3.5. Evaluation of Microhardness 
Vickers microhardness measurements were carried out following guidelines 

provided by CSN EN ISO 6507 standard. The indenter used in these measurements is a 
diamond pyramid with the apex angle of 136° (Figure 31). Tests were carried out on a 
LECO microhardness tester LM 247AT. 

When measuring the microhardness, loading force of 1 N had been applied. The 
specimen were prepared properly in the form of metallographic sample. The time since 
the beginning of applying maximum load was be in the range of 2 to 8 s while the rate of 
loading did not exceed 0,2 mm.S"1. Vickers hardness the calculated by the following 
equation: 

Where F is a load in kg, d is an arithmetic mean of the two diagonals, dl and d2 in 
mm and HV stands for Vickers hardness. 

HV = 
2Fsin 136° 

2 (1) 

F 

z 

Figure 31 - Scheme of Vickers hardness apparatus setup 
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4. Results and Discussion 

4.1. Microstructure Analysis 
In this section will be discussed the microstructure and the coating/substrate 

interface of the coating in as-sprayed condition as well as the modified layer. 
Metallographic analysis was carried out using electron and light microscope and stereo 
magnifier as described in chapter 3.4. 

The microstructure of the coating from series A in as-sprayed condition can be 
seen in the Figure 32. In the as-prayed coating structure individual splats are apparent, 
which is typical for plasma sprayed coatings. Oxides are present which was confirmed by 
the EDX analysis (see Chapter 4.3), as well as porosity. Roughness appears to be relatevily 
high. It also appears that little to none metallurgical bonding occurred with the substrate 
and the primary adhesion mechanism of the coating is expected to be mechanical 
anchorage. In the case of series B and C the porosity decreased as well as roughness. 
Quality of the substrate/coating interface was clearly different. No pores were present at 
the interface and the microstructure suggested that mixing of the substrate and the 
coating material occurred (Figure 33). 

Figure 32 - Microstructure of specimen of series A observed on SEM 

Figure 33 - Microstructures of the modified layers: Left - Series B, Right - Series C 
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The specimens from both B and C series (Figure 34) had a dark layer on the surface 
that formed after the modification. It composed of a phase different from the rest of the 
modified coating layer. Spallation of this phase occurred during cooling after the electron 
beam deposition, suggesting it is a brittle phase with different thermal expansion 
coefficient than the rest of the modified coating. Results from EDX analysis identified 
these phases as AI2O3 and Y2O3 (see chapter 4.3). The oxides formed on the surface 
correlated with the oxide content in the microstructure of the coating. Given that the EB 
modification was performed in a vacuum (no significant oxidation during modification is 
expected) and that the coating/substrate material were in a molten state during the 
modification it was concluded that the oxides from the original microstructure floated up 
to the surface (ratio of the densities is approximately 1:4, oxides being the less dense 
phase). The oxide phase exhibits a dendritic structure (Figure 35). Because oxides from 
the original coating do not exhibit this kind of structure, it can be concluded that these 
phases melted and resolidified on the surface during the EB modification. 

Places of 
spallation^. 

• 
Figure 34 - Surface of the modified specimen Left - series B. Right - series C 

Figure 35 - Structure of the oxide phase layer formed on the surface: Left - series B, Right - series C 

4.2. Coating and Modified Layer Thickness Analysis 

The thickness of coating in as-sprayed condition and modified layers was analyzed 
using light microscopy using a dedicated software. The results of the measurements can 
be seen in the Table 5. It should be noted that in case of series B and C the oxide layer is 
included in the thickness. Also it should be taken into account that during the EB 
modification spark emission occurred and some of the coating material has been 
dispersed around the vacuum chamber. 
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Table 5 - Results of the layer thickness measurements of series A, B and C (in urn) 

Series A Series B Series C 
0 149,3 ± 24,0 0 170,3 ± 26,7 0 184,5 ± 13,8 

From the results it can be seen that series C had higher thickness of the modified 
layer. This was most likely caused by different EB parameters which resulted in higher 
heat energy input into the material. 

4.3. Chemical Analysis 

Chemical composition of coatings and substrates was studied using EDX module 
of an electron microscope. Both EDX mapping and linear analysis was used. Changes in 
chemical composition occurred after the EB modification, mainly due to the material 
mixing of the substrate/coating material. 

Chemical composition of the series A using EDX mapping can be seen in the 
Table 6. The analysis showed that oxides were present. From in-flight particle 
temperature that was discussed in the Chapter 3.1.5 it can be concluded that oxides 
originated from the inflight particle oxidation during WSP spraying. For series B and C 
linear EDX analysis was carried out to see whether or not mixing of substrate and coating 
occurred. Because similar results were obtained from both series (except that the depth 
of material mixing is about 30 |im larger, most likely due to larger energy input) only 
results from linear EDX analysis of series B will be commented (results from series C can 
be seen in the Figure 37). In the results from the linear EDX analysis of series B there are 
three distinguishable regions (Figure 36). One in the range of 0 |im (0 |im representing 
the surface of the specimen) to about 30 |im which belongs to the composition of oxide 
phase formed on the surface. From the EDX measurement it could be seen that this layer 
is high in aluminum yttrium and oxygen content, aluminum being the dominant phase. 
Next region is in the range of 30 to 200 |im where mixing of the substrate and the coating 
material occurred and the third region starts at 200 |im where the chemical composition 
corresponds to that of the substrate (for series C the ranges are: 400-350 |im for oxide 
layer; 350-170 |im material mixing; 170-0 |im substrate material). Using the EDX 
mapping it was concluded that the layer composed mainly from AI2O3 and Y2O3. 

Table 6 - Results EDX mapping of series A layer (in wt. %) 

Ni Cr Al O Y 
57,2 17,6 15,3 8,0 0,7 

Mixing of the substrate and the coating layer material is most obvious from the 
evolution of the wt.% curves of Fe and Ni from the EDX linear analysis in the 30-200 |im 
region, as no Fe was present prior the modification in the coating layer and no Ni was 
present in the substrate. The wt.% of Fe is about 5 wt.% right below the oxide layer and 
gradually increases with the increasing depth with direction into the substrate. At about 
150 um the concentration gets on par with Ni content (40 wt.%.). This supports the 
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assumption that was made during the metallographic analysis that good material mixing 
occurred at the substrate/coating interface and that metallurgical bonding most likely 
occurred. 

EDX Linear Analysis of Series B 
A l l E l e m e n t s 

D 50 100 150 200 250 300 350 400 450 

p.rri 
Figure 36 - Linear EDX analysis of the series C 

Figure 37 - Linear EDX analysis of the series C 

The wt.% of Al in the modified layer below the surface oxide is fairly low and drops 
below 5 %, while in the original coating it was found to be 15,4 %, so the depletion of Al 
in the layer could be explained by formation of AI2O3 on the surface. Because little to no 
oxidation was expected to occur during the EB modification the low content suggests that 
most of the Al oxidized during the deposition. This is also evident from high Al content in 
the surface oxide layer in results from EDX linear analysis 

XRD analysis was carried out on samples from series A, B and C and summarized 
data can be seen in the Table 7. It was found that the series A with coating in as-sprayed 
condition several phases were present, the most dominant being Ni - (Cr) and NiAl which 
is a typical structure for MCrAlY type of coatings. NisY phase is an intermetallic phase and 
is known to form in plasma spray coatings due to low solubility of Y in Ni solid solution 
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[41]. Oxide phases present in the series A microstructure are most likely a results of 
in-flight oxidation during deposition. 

After electron beam modification only one phase was present and that was a solid 
solution of Ni as can be seen in the Figure 39. Because the results of XRD analysis of series 
B and C were almost the same (only difference is that there was impurity NiCCte present 
in small quantity in the series C; results in Figure 40), for this reason only results from 
analyzing series B are commented. No NiAl or Ni3Al phases were present. There might be 
several reasons for this. First one might be the presence of Fe in fairly high content (about 
10 wt.% at the surface), which stabilized the Ni solution and only one phase was formed. 
The second one may be a fairly low content of Al which was according to EDX linear 
analysis below 5 wt. % together with chemical composition homogenization that most 
likely occurred during EB modification. Therefore the Al may have dissolved in the Ni 
solid solution as all other elements. 

Table 7 - Summarized results from the XDR analysis of A, B and C series (in wt. %) 

Powder Series A Series B Series C 
Ni solid solution 67,3 76,2 100 98,4 
NiAl 32,7 12,3 0 0 
NisY 0 2,9 0 0 
NiO 0 1,7 0 0 
N i A l 2 0 4 0 7 0 0 
NiCOs 0 0 0 1,6 

Results of XRD Analysis Series A 

Posit ion [ n2Theta] (Copper (Cu]] 

Figure 38 - Results of XRD analysis of specimen from series A 
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Results of XRD Analysis Series B 
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Figure 39 - Results of XRD analysis of specimen from series B 

Results of XRD Analysis Series C 
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Figure 40 - Results of XRD analysis of series C 
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4.4. Evaluation of Microhardness 
The method used for microhardness measurement was described in the chapter 

3.6. 

Microhardness of the A series with coating in as-sprayed condition varied widely. 
This was due to oxide content in the layer. Oxides had higher microhardness than the 
splats therefore the results of measurements of microhardness of series A coating has a 
high variance. Microhardness of the B and C series with coatings modified by the EB was 
considerably lower than in the cause of series A. This was expected as the EB modification 
caused all the oxides in the original coating structure to move up to the surface and the 
diffusion of Fe into the layer after the modification could also be the reason for the 
decrease. The results can be seen in the Table 8. 

Table 8 - Results of microhardness measurements (in HV 0,1) 

Series A Series B Series C Substrate 
0 276 ± 6 8 0 199 ± 1 5 0 188 ± 9 0194 ± 1 4 

Evolution of microhardnes in the direction into the substrate was also analyzed to 
reveal the effect of EB modification on the substrate microhardness. The results can be 
seen in the Figure 41. There are three distinguishable regions: Area I in the range of 0 to 
0,2 mm (0 representing the surface), which represents the area of the original coating. 
Then Area II in the range of 0,2 to 0,5 mm where hardening for specimens from series B 
and C occurred and Area III where the hardness of the base material returns to normal 
for all series. Hardenability of low carbon steels is generally poor, however some 
hardening occurred in the case of B and C series. Larger hardening occurred for series B. 
The reason hardening in the case of series C was not as high could that the energy input 
during the EB modification was about 50% higher, therefore it is expected that after 
hardening tempering of the modified layer occurred to a larger degree in the case of 
series C and caused lowering of the hardness. 
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Figure 41 - Hardness evolution in the direction into the substrate 
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4.5. Adhesion testing 
Adhesion tests were carried out using an experimental setup and method 

described in Chapter 3.3. 

Total 5 series of tests were carried out plus 2 series of tests to find out the 
influence of acetone degreasing on the bonding strength of FM1000. The results can be 
seen in the Table 8. First series tested had no coating applied and served only as a way to 
determine adhesive strength of the FM1000. The adhesive strength is higher than 
estimated adhesive strength of coatings sprayed with WSP technology. Bonding agent is 
therefore suitable for adhesive strength testing of these coatings. 

Table 9 - Summarized data from adhesion strength testing 

Series Tensile adhesive Number of 
strength [MPa] tested samples 

FM1000 only - Grinded fixtures 0 69,4 ± 2,2 8 
Series A - Sandblasted fixtures 0 22,8 ± 1,4 8 
Series B (with oxide layer) - Sandblasted fixtures 0 13,9 ± 5,0 8 
Series B (grinded) - Sandblasted fixtures 0 22,1 ± 7,6 8 
Series C (grinded) - Grinded fixtures 0 32,0 ± 3,3 8 
FM1000 only - Grinded fixtures (degreased) 0 46,0 ± 0,6 2 
FM1000 only - Grinded fixtures (no degreasing) 0 47,2 ± 0,8 2 

In next series of tests specimens from series A with coatings in as-sprayed 
condition were tested. Results can be seen in the Table 9. From the analysis of the 
fractured surface it could be seen that cohesive failure occurred (Figure 42). Low 
cohesive strength of the coating was most likely caused by not optimized deposition 
parameters, leading to high oxide content, discontinuities and porosity and also by 
individual splat structure. 

Figure 42 - Series A after adhesion testing 

On the modified B specimens two series of tests were carried out. The first one 
was to determine the adhesive strength of the oxide layer that formed on the surface. The 
adhesive strength was however quite low and varied significantly as can be seen from the 
variance of the results in Table 9. In another series of tests the B specimens were in 
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grinded condition to remove the oxide layer formed during EB modification. The 
measured adhesive strength in this case does not correspond to real value of the B series 
coating adhesion as the failure occurred at the glue-coating interface, adhesive strength 
of the modified layer of series B is therefore greater than the value measured. Results can 
be seen in the Table 9. This could have been a consequence of improper bonding (Figure 
43) of the FM1000 agent to the surface. Further testing is planned to overcome this 
problem and obtain the modified coating adhesive strength. 

Figure 43 - Series of adhesion tests of specimen B (grinded). Failure occurred in the adhesive film 

FM1000 adhesive film the FM1000 film 

Figure 44 - Left - FM1000 activation before the first FM1000 series of tests. Right - FM1000 activation before 
the B series of tests (oxide layer) 

The problem seemed to be in the activation of the adhesive film (see Figure 44). It 
looked like the adhesive had a too high surface tension to get into proper contact with the 
sandblasted surface of the loading fixture. That also suggest the remnants of the blasted 
loading fixture material on the adhesive film (Figure 43). The adhesive film got into 
proper contact only with the higher parts of blasted rough profile and these were ripped 
out during the adhesion testing. Because all the specimen were degreased in acetone, we 
further investigated its effect on the bonding strength. Because blasting seemed to be 
causing problems, the loading fixtures used for testing the influence of acetone on 
bonding strength were grinded on a magnetic grinder to achieve a smooth surface. 
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It was found that acetone degreasing had little to no effect on the bonding strength 
of the FM1000 and the results can be seen in Table 9 (subsequent FM1000 tests), 
however the bonding strength decreased by 33 % as opposed to the FM1000 only for 
unidentified reason, improper bonding agent activation occurred in both cases. 

Because grinded fixtures exhibited better adhesive strength than sandblasted 
fixtures adhesion tests on series C were carried out using grinded loading fixtures. 
Improper activation occurred again and the measured adhesive strength again does not 
correspond to real value of the C series coating adhesion as the failure occurred at the 
glue-coating interface (see Figure 45), adhesive strength of the modified layer of the 
series C is therefore greater than the value measured. Results can be seen in the Table 8. 
However this time the adhesive strength measured was significantly higher than that of 
that of the series A (by approximately 40%). Therefore it can be concluded that the EB 
modification in the case of series C did significantly increase the coating adhesive 
strength of the WSP sprayed NiCrAlY coating. 

Fixture with Loading fixture modified 
modified layer 
layer 

Figure 45 - Specimen from series C after adhesion testing 
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5. Conclusions 
The objectives of this thesis were to study modifications of the substrate/coating 

interface of thermally sprayed NiCrAlY bond-coatings with the electron beam technology 
and to attempt to determine the influence of the EB modification on the quantitative 
values of tensile adhesive strength of the modified layers. 

• The NiCrAlY coatings were successfully deposited using WSP technology. WSP is 
therefore suitable technology for deposition of NiCrAlY coatings. The coating 
chemical composition was different to that of the feedstock powder. The 
difference was caused mainly by oxidation of the NiCrAlY material during the 
deposition. 

• EB modification of the coating-substrate interface was successfully carried out 
and mixing of the substrate and coating material occurred. EB technology is 
therefore suitable for remelting of NiCrAlY coatings. The EB modification of the 
NiCrAlY coatings led to increase in quality of the substrate-coating interface and 
metallurgical bonding most likely occurred. 

• Phase composition of the EB modified layers changed when compared to that of 
the coating in the as-sprayed condition. This was caused by homogenization of the 
coating layer chemical composition, displacement of the oxides to the surface, and 
diffusion of Fe from the substrate. 

• The EB modification of the NiCrAlY layer caused fusing of the A I 2 O 3 , Y 2 O 3 oxides 
within the original coating microstructure and dislocating them onto the surface 
forming a homogenous oxide layer. Due to dendritic structure of the oxide layer it 
was concluded that the oxides from the original coating structure were heated up 
enough to reach the liquid phase. Reason why these phases were dislocated onto 
the surface could be the difference in density of the oxides and rest of the material. 

• Coatings in as sprayed condition failed cohesively during the adhesion tests. This 
was caused most likely by oxide content, porosity and intersplat voids. Adhesion 
tests of the modified layers of series B and C failed prematurely at the 
coating-adhesive interface due to unidentified reason and will be investigated in 
study follow-up. Because EB modification of series B and C removed possible 
sources of the cohesive failure that occurred in series A, it is expected that 
cohesive strength of the modified layers is higher. This assumption was neither 
denied or proven when testing series B due to already mentioned premature 
failure at the substrate-bonding agent interface during testing however it was 
proven correct when testing series C where the results showed the cohesive 
strength is at least 40 % higher than that of the layer in as-sprayed condition in 
series A. 

• For the adhesion testing of EB modified layers study follow-up, it is recommended 
to deposit a layer of higher thickness (exceeding 400 |im) so that the surface can 
be finished to remove the formed oxide scale and to achieve planar surface 
geometry. 
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7. List of Symbols and Shortcuts 

^ |., Ratio of flattening velocity and impact velocity of the incident 
L i particle 

D [mm] Splat diameter 
D [mm] Initial particle diameter 
DC Direct current 
Ei ; E 2 ; E 3 ; E 4 [J] Energy of the electron beam 
EB Electron beam 
AG [J] Gibbs free energy 
AGsurf [J] Decrease of the Gibbs free energy due to surface energy 
H [mm] TGO thickness 
AHc [J] Critical enthalpy of plasma gas 
^ „ , Change of enthalpy because of different potential curves for 

s U J atom combinations 
HVOF High velocity oxygen fuel 
I [A] Arc current 
K [-] Flattening coefficient 
KCf [-] Critical splashing flattening coefficient 
Kf [-] Splashing flattening coefficient 
k P [g 2cra 4s 4] Parabolic rate constant 
mg [kg-s-1] Mass flow rate 
OFHC Oxygen-free high purity copper 
P g [W] Dissipated power 
Q e [J] Losses in the cooling unit 
Re [-] Reynolds number 
RF Radio frequency 
ASs [J.K^kg-1] Increase in entrophy due to surface diffusion 
T [K] Plasma temperature 
T [s] time 
TBC Thermal barrier coating 
1 cont [K] Contact temperature 
TGO Thermally grown oxide 
Tt [K] Substrate temperature 
VPS Vacuum plasma spray 
Vo [m3] Liquid volume 
We [-] Webber number 
WSP Water stabilized plasma 
YSZ Yttrium-stabilized zirconia 
Z [N.nr1] Liquid-gas surface tension 
P [kg.nr3] Liquid density 
| i [N.s.nr2] Liquid viscosity 
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