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General Introduction1 
Large use of artificial insemination and the global trade of semen have a strong influence 
on the genetic diversity of cattle breeds. Knowledge of the genetic dynamics in a breed is 
necessary for avoiding unfavourable trends, like severe reduction of genetic diversity in the 
population. A considerable number of genetic distance studies for several livestock species 
was carried out during the past decade by research teams from all over the world. Most 
studies are based on microsatellite loci, although a number of other  polymorphic systems 
like protein polymorphisms, blood group, or other molecular marker systems, were used 
alternatively or additionally. Under the coordination of FAO, an initiative called Measure-
ment of Domestic Animal Diversity (MoDAD) was started to provide technical recomme-
dations for such studies in farm animals (FAO - Measuremens of Domestic Animal Diver-
sity). To define species-specific standards, the International Society for Animal Genetics 
(International Society for Animal Genetics) formed a FAO/ISAG advisory group on animal 
genetic diversity in 1995, which set up recommended species specific lists of microsatellite 
loci (about 30 per species) for cattle, chicken, sheep and swine to be used in diversity studies 
(Clave, 2003). Molecular characterization of animal genetic resources may contribute to a 
rational approach to (Hanotte and Jianlin, 2005) by giving a high priority to breeds that are 
taxonomically most distinct (Barker, 1999). Moreover, information on diversity and popula-
tion structure can provide a more rational basis for making the conservation policies and 
for planning the genetic improvement in future.

With growth development of the informatics and routine genotyping, new problems 
were formulated based on genetic diversity concept. These problems are connected with 
large datasets manipulations, their effective evaluation, interpretation of results, creations 
of new algorithms for specific tasks (traceability, identification, breed discrimination, proba-
bilistic founding of potential parents etc.). Part of mentioned problems concerning genetic 
diversity of microsatellites in cattle create main aim of this thesis.

http://dad.fao.org
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Objectives of the Thesis2 
Description of the genetic diversity and characterisation of the selected cattle  –
breeds in the Czech Republic.
Estimation and validation paternity testing by microsatellite loci in selected cattle  –
breeds.
Creation of the software support for routine genotyping of microsatellite loci un- –
der the reference laboratory conditions.
To prove of usability of machine learning methods in cattle breed discrimination  –
task.
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Literature Review3 

Evolution of Cattle 3.1 

Cattle are the most common type of large domesticated ungulates. They are a prominent 
modern member of the subfamily Bovinae and are the most widespread species of the genus 
Bos. Prehistoric cattle originated many millions of years ago in India, and by early Pleisto-
cene times had migrated to Europe, North Africa, and the rest of Asia. Mitochondrial DNA-, 
allozyme-, and microsatellite-based studies have demonstrated that the main subdivision 
of cattle into Bos taurus and B. indicus corresponded to a deep bifurcation (200 000–1 000 
000 years ago), which predates archaeological estimates of cattle domestication (roughly 12 
000 year ago) (Baker and Manwell, 1980; Loftus et al., 1994; Bradley et al., 1996; Machugh et 
al., 1997; Troy et al., 2001). Therefore, it cannot be ruled out that the aurochs were domes-
ticated not only in Southwest Asia, but also in Europe. Indeed, archaeological and genetic 
evidence suggest that modern cattle might result from two domestication events of aurochs 
(Bos primigenius) in southwest Asia, which gave rise to taurine (Bos taurus) and zebuine (Bos 
indicus) cattle, respectively (Loftus et al., 1994; Troy et al., 2001; Helmer et al., 2005). Studies 
of variation in mitochondrial DNA (mtDNA) sequences showed that these two cattle sub-
species are highly diverged from each other and reflect two independent domestications in 
Africa (Bradley et al., 1998; Hanotte et al., 2002) and East Asia (Mannen et al., 2004) from dif-
ferent aurochs subspecies. However, (Troy et al., 2001) studied  mtDNA diversity in modern 
cattle from Europe, the Near East and Africa and in extinct aurochs and determined a Near-
Eastern origin in all European cattle. Similar findings were also reported by (Achilli et al., 
2008) whose findings also support a single Neolithic domestication event for B. taurus in the 
Near East, 9–11 thousand years ago. Most cattle in North Eastern Asia that are classified as 
Bos taurus (Phillips, 1961) appeared in this region as domesticated between 5000 and 4000 
years B.P. i.e. several thousand years after primary aurochs domestication in West Asia 
(Payne and Hodges, 1997). It is supposed that the domestic cattle in North Eastern Asia 
originated from local wild cattle or perhaps from migrants from the early domestic center 
of the Near East (Mannen et al., 2004). Based on the mitochondrial DNA (mtDNA) diversity 
studies, (Mannen et al., 1998) suggested that multiple strains of ancestral aurochs were ad-
opted in geographically and temporally separate stages of the domestication process.

Bovine genome3.2 

The genome of the cattle (Bos taurus) is similar in size to the genomes of humans and other 
mammals, containing approximately 3 billion DNA base pairs. The breed of cattle selected 
for initial sequencing was Hereford, which is used in beef production. Sequencing began in 
December 2003 and a first draft was completed in October 2004. Sequencing of additional 
cattle breeds, including the Holstein, Angus, Jersey, Limousin, Norwegian Red and Brah-
man, allows tracking of the DNA differences among these breeds to assist in the discovery 
of traits improving meat and milk production and to model human diseases as well.
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Breeds characterisation3.3 

Charolais 3.3.1 

The Charolais breed was developed in the district around Charolles in Central France (Czech 
Beef Breeders Association; American International Charolais Association). The breed be-
came established there and achieved considerable regard as a producer of highly rated 
meat in the markets at Lyon and Villefranche in the 16th and 17th centuries. However, it 
can be speculated that Charolais dates back to Roman times in ancient Italy and entered the 
France during invasions of Romans to France and England. First written reference to white 
steers appears in a French document from the year 878 A.D. Due to historical accident and 
political peculiarity the forebearers of today’s Charolais were isolated around Charolles in 
east central France from the fourteenth century until 1772. This forced segregation greatly 
benefited the development of the Charolais breed. The Charolais strain was kept fairly pure, 
and of necessity, the breeders selected only the best of the white cattle. After the region was 
reunited with France in 1772, the Charolais cattle began moving throughout France. Two 
major branches of the breed ensued, the original Charolais and the Nivernais which was 
centered in the French province of Niever. In 1864, a Nivernais breeder, Count Charles de 
Bouille, set up a breed herd book. In 1882 the Charolais breeders followed suit and began 
registering cattle in the province of Saône-et-Loire. To avoid pedigree confusions the two 
books merged in 1919 with the older Niever Herdbook assimilating the Charolais book 
(Felius, 1995).

The French have long selected their cattle for size and  muscling. They selected for  
boneand power to a greater extent than was true in the British Isles. The  French breeders 
stressed rapid growth in addition to cattle that would ultimately reach a large size. These 
were men that wanted cattle that not only grew out well but could be depended upon for 
draft   power. Little attention was paid to refinement, but great stress was laid on utility. 

Charolais cattle is white or creamy white in color, but the skin carries appreciable pig-
mentation. Charolais is a naturally horned beef animal. But through the breeding-up pro-
gram, where naturally polled breeds were sometimes used as foundation animals, polled 
Charolais have emerged as an important part of the breed. Charolais cattle breed has large 
with mature bulls weighing from 900 to well over 1100 kg and cows weighing from 600 to 
over 900 kg (Purdy et al., 2008).

Aberdeen Angus3.3.2 

The Aberdeen-Angus belongs to one of three distinct and well-defined breeds of polled 
cattle in the United Kingdom. Polled cattle apparently existed in Scotland before recorded 
history because the likeness of such cattle is found in prehistoric carvings of Aberdeen and 
Angus. Some historians feel that the Aberdeen-Angus breed and the other Scottish breeds 
sprang from the aboriginal cattle of the country and that the breeds as we find them today 
are indigenous to the districts in which they are still found. Although little is known about 
the early origin of the catle that later became known as the Aberdeen-Angus breed, it is 

http://dad.fao.org
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thought that the improvement of the original stock found in the area began in the last half 
of the 18th century. Two strains known as Angus doddies and Buchan humlies were used in 
the formation of what later became known as the Aberdeen-Angus breed of cattle (doddies, 
humlies are mentioned as polled in the old Scottish writings) (Purdy et al., 2008). 

Apparently little attention was given to the breeding of cattle before the middle of the 
18th century, but in the last half of that century, crossing and recrossing these strains of 
cattle eventually led to a distinct breed that was not far different from either type, since 
the two strains were originally of rather similar type and color pattern. At the beginning 
of the 19th century when good herds of Shorthorn cattle were established in Scotland, the 
Shorthorn were used in the improvement of native stock. It is often suggested that some 
Shorthorn blood found its way into the Aberdeen-Angus breed prior to the time the Herd 
Book was closed. On the other hand, the tribes from which the Aberdeen-Angus breed were 
drawn were supplying England with beef cattle for generations before the beef Shorthorn 
was used for improvement. Aberdeen-Angus cattle breed has mature bulls weight ranging 
from 900 to 1050 kg and cows weigh from 550 to 700 kg (American Angus Association).

Although originally black, within the breed, there is a strain known as Red Angus that 
was gaining in popularity in the late 20th century, particularly for purposes of outcrossing 
and crossbreeding.

Hereford3.3.3 

The Hereford is one of the UK’s oldest native beef breeds, originating in the County of 
Herefordshire in the mid 1700’s as a product of necessity to produce beef for the expanding 
food market created by Britain’s industrial revolution. To succeed in Herefordshire, farm-
ers must have cattle which could efficiently convert their native grass to beef. There was no 
breed in existence at the time to fill that need, so the farmers of Herefordshire founded the 
beef breed that became known as Herefords selected for a high yield of beef and efficiency 
of production. Herefords in the 1700’s and early 1800’s in England were much larger than 
today. Gradually, the type and conformation changed to less extreme size and weight to 
get more smoothness, quality and efficiency. The herd book was opened in 1846 and since 
1886 has been closed to any animal whose sire or dam had not previously been recorded, 
so for over 120 years, the purity of the breed has remained intact (Purdy et al., 2008; Felius, 
1995).

Holstein 3.3.4 

The Holstein cow originated in Europe. The major historical development of the well-known 
and highly selected Holstein breed occurred in the Netherlands, and more specifically in 
the two northern provinces of North Holland and West Friesland, which lay on either side 
of the Zuider Zee. The original stocks were the black and white animals of the Batavians 
and Friesians, typical of migrant European tribes who settled in the Rhine Delta region 
about 2000 years ago (Del Bol et al., 2001).  
Nowadays, Holstein breed is used as a major milk prodction breed all over the world. As re-
cent breeding methods were always applied, Holstein breed reflects as a result all of advan-
tages (high production, precisely selected breeding animals, etc.) as well as disatvantages 
(spread genetic diseases, higher level of inbreeding, more costy and time consuming animal 
treatment, etc.) of this effort (Purdy et al., 2008; Holstein Association USA).

http://dad.fao.org
http://dad.fao.org
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Limousin3.3.5 

The history of Limousin cattle may very well be as old as the European continent itself be-
cause cattle found in cave drawings estimated to be 20,000 years old in the Lascaux Cave 
near Montignac, France, have a striking resemblance to today’s Limousin.  Limousin cattle 
is native to the south central part of France in the regions of Limousin and Marche. As 
a result of their homeland environment (rugged and rolling with rocky soil and a harsh 
climate), Limousin cattle evolved into a breed of unusual sturdiness, health and adapt-
ability. The lack of natural resources enabled the region to remain relatively isolated and 
the farmers free to develop their cattle with little outside genetic interference. During these 
early times, Limousin were kept as work animals in addition to their beef qualities. Once 
in the 1700s and again in the mid-1800s, an a  empt was made by a small number of French 
Limousin breeders to crossbreed their cattle in hopes of gaining both size and scale. In 1840, 
several breeders crossbred their Limousin with oxen of Agenaise variety. Unfortunately, 
these crossbred cattle proved not to be economical in the majority of the region thus Limou-
sin breeders concentrated upon improving the breed through a very tough natural selective 
process resulting in an outstanding herd of “purebred” Limousin. The widespread use of 
natural selection made it important to record the bloodlines of the outstanding Limousin 
bulls and females as well. So, in November of 1886, the first Limousin herd book was estab-
lished. Through the late 1800s and early 1900s, Limousin breeders payed close attention to 
morpho- logical characteristics as the breed developed. The medium size of these cattle as 
compared to other European breeds was, and is still, an outstanding breed trait. They also 
selected for the dark golden-red hide with wheat colored underpinnings. French records 
also show a great deal of emphasis was stressed upon deep chest, a strong top-line, well-
placed tailhead and strongly-muscled hindquarter. The end result was an efficient, hardy, 
adaptable animal that was extremely well-suited for its only intended purpose - to produce 
beef (Felius, 1995; Purdy et al., 2008; Czech Beef Breeders Association).

Piedmontese3.3.6 

The Piedmontese belongs to the cattle breeds of the Northern Italy Lowland group, the 
ancestral origin of which is referred to Bos brachyceros and to a mixing of B. brachyceros and 
Bos primigenius (Baker and Manwell, 1980). Typical of a triple-purpose breed, it was selected 
in the 1970s for improvement of milk production, through milk performance recording of 
productivity, while maintaining beef characteristics. In the 1980s, the Breed Society (Na-
tional Association of Piemontese Cattle Breeders) decided to give up milk recording activity 
and modified the breeding goal to improve beef traits only. The particular characteristic of 
the Piedmontese cattle breed is in fact muscular hypertrophy, better known as the „double 
muscle factor“. Milk production of the breed is, however, still more than sufficient to suckle 
the calf, and several farmers still milk their cows and process milk into typical cheeses. 
Selection for improving beef characteristics has been regular and intense, and has taken 
advantage of artificial insemination, which is widespread in this breed. The first herd book 
was opened in 1887, and improvement campaign and standard of merit have led to many 
years of genetic selection to eliminate detrimental aspects generally associated with DM. 
In Italy, the Piedmontese have been (and many still are today) utilized as a dual-purpose 
animal having very rich milk used for speciality cheese production and beef marketed as a 
premium product (Purdy et al., 2008).

http://dad.fao.org
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Simmental 3.3.7 

The Simmental is one of the oldest and most widely distributed of all breeds of cattle in 
the world. Its history dates back to the Middle Ages and is believed to be the result of a 
cross between large German cattle and a small Swiss indigenous breed (Bonadonna, 1959). 
Although the first herd book was established in the Swiss Canton of Berne in 1806, there is 
evidence of large, productive red and white cattle found much earlier in ecclesiastical and 
secular property records of western Switzerland. These red and white animals were highly 
sought because of their rapid growth development; outstanding production of milk, but-
ter, and cheese; and for their usege as draught animals. Since its origin in Switzerland, the 
breed has spread to all six continents. Total numbers are estimated between 40 and 60 mil-
lions Simmental cattle world-wide. More than half of these are in Europe. The spread was 
gradual until the late 1960s. Records show that a few animals were exported to Italy as early 
as the 1400s. During the 19th century, Simmental were distributed through most of Eastern 
Europe, the Balkans, and Russia, ultimately reaching South Africa in 1895. Guatemala im-
ported the first Simmental into the southern hemisphere in 1897, with Brazil following suite 
in 1918 and Argentina in 1922. The breed is known by a variety of names, including “Fleck-
vieh” in Germany, Austria and Switzerland as well as many other European countries, “Pie 
Rouge”; “Montbeliard”, and “Abondance” in France and “Pezzata Rossa” in Italy. The Sim-
mental name is derived from their original location, the Simme Valley of Switzerland. In 
German language, Thal or Tal means valley, thus the name literally means “Simme Valley” 
(Felius, 1995; Canadian Simmental Association).

Fleckvieh cattle3.3.8 

Fleckvieh cattle belongs to the group of European Simmental dualpurpose spotted cattle 
breeds (Czernekova et al., 2006) started in 1830 when original Simmental Cattle from Swit-
zerland were imported to Bavaria and to Austria to improve the local dual-purpose breeds. 
At these times, the Simmental cattle were famous for their milk production and draught 
capacity but were late maturing with little depth and coarse bones. In 1920 the herd book in 
Southern Germany was closed and the Fleckvieh was developed as an independent dual-
purpose breed in Southern Germany, Austria, later also in parts of Italy and France. The 
breeding aims now are focused on a „middle of the road type“ – dual purpose animal with 
excellent musculing, good milk production, in past also with good draught performance. 
Therefore an excellent performance testing system and a strict breeding programme exist. 
Thanks to the  systematic improvement of the production traits Fleckvieh presents a mod-
ern, high productive dual purpose breed that fits the actual economical needs.

In the last decade of the last century and first decades of this century the breed was 
utilised for milk, beef and draught purposes in Europe and for extensive beef production in 
Namibia and South Africa. In the late sixties and during the decade between 1970 and 1980 
the breed which had been changed to a dual purpose breed (milk and beef), established 
itself on all the continents. The basic colours of the original Simmental-Fleckvieh breed are 
light to dark yellow and red to dark red with white spots or patches in any pattern way be 
irregularly spread over the body. The muzzle is cream to pink and may have small grey 
brown pigmented spots. The breed is still bred as a milk-beef dual purpose breed in central 
European countries; however, a few countries have started to give more consideration to 
milk production.

http://dad.fao.org
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During the first half of the 19th century, a great number of cattle breeds and cattle strains 
were bred in the what is now the Czech Republic. The original domestic cattle, typical for 
central Europe is called Cervinka. They were bred on the gentry and church estates. The 
Cervinka cattle were upgraded by crossing with imported animals, which came mainly 
from area of Austrian regions. Since the second half of the 19th century, Simmental cattle 
were imported in increasing numbers from Switzerland. At the close of the19th century, the 
Fleckvieh cattle were present in many areas of the Czech Republic. In 1920, the records of 
the breeding of pied cattle were consolidated. Some of the top European bulls were bred 
with cows to initiate new lines of animals in Bohemia (World Simmental Fleckvieh Federa-
tion).

In the post-war period (since 1945), breeding system oriented at production of triple 
performance offspring was characteristic for Fleckvieh. More than 1/3 of animals was used 
for draught purposes. This influenced considerably the type of animals; these animals were 
not able to conform to the desired traits and higher body density. Because of this, the pop-
ulation was upgraded by using Ayshires, and later, Red Holstein cattle with the aim of 
maintaining the dual performance (beef-milk) characteristics. Regarding to Ayshires milk 
components were increased significantly to very suitable level, in combination with Red 
Holstein influence, good milk yield was also reached. The percentage of upgraded animals 
was from 25% to 37%. Then Hereford bulls were largely used to improve beef production 
potential of Czech Fleckvieh breed producing crossbreds, so it is evident that breed is suit-
able for production high quality milk on good production level as well as farmers can sell 
young animals or feeded bulls for beef. Beef oriented part of production brought very good 
reproduction performance as well as easy calving in crossbreds. Nowadays, Czech Fleck-
vieh  appears to be one of economical sustainable breed under EU conditions, which repre-
sent compromise between high milk performance needings and treatment and extensively 
kept beef animals (Czech Fleckvieh Breeders Association).

http://dad.fao.org
http://dad.fao.org
http://dad.fao.org
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Population genetic measures3.4 

The existence of genetic polymorphism or diversity in a population is the basis for genetic 
improvement by selection and needs to be accurately estimated (Tautz, 1993). In the past 
decades, animal genetic diversity has been assessed according to various criteria including 
phenotypic, biochemical, and molecular parameters. With the development of molecular 
biology techniques, nucleotide variations in DNA sequences can be detected directly such 
as microsatellite markers identified in all eukaryotic species investigated so far (Bradley et 
al., 1998; Saitou and Nei, 1987).  Population genetic diversity and structure can be evaluated 
by numerous methods of inter- and within- populations and subpopulations parameters 
(Weir, 1996) (e.g. the number of alleles per locus, the average number of alleles for all loci, 
heterozygosity, and PIC value, F-statistics, PCA metod, cluster methods, genetic distances 
etc.) which usage and state-of-art are described in following text.

Basic genetic diversity measures3.4.1 

Basic genetic diversity for subpopulation or population genetic diversity description are 
namely:

number of observations, –
number of alleles per locus, per all watched loci, –
alleles and genotypes frequencies.  –

These measures give a basic information about the population genetic diversity and their 
calculation is neccessary for decisions about connected results and their confidency (num- 
ber of observations, number of alleles per loci). The alleles and genotype frequencies are 
also basic inputs into the estimation of numerous genetic divesity parameters (e.g. genetic 
distances) and they are neccessary for frequency based calculations and algorithms (Weir, 
1996; Liu and Muse, 2005; Hedrick, 2011).

Heterozygosity3.4.2 

Heterozygosity is an population-level parameter of genetic diversity. It gives an iformation 
about the proportion of loci expected to be heterozygous. Heterozygosity values range from 
0 – no heterezygous genotypes to 1.0 – all genotypes heterozygous. Heterozygosity is the 
one of the basic parameter of the genetic structure of a population at time. Low heterozygos-
ity value indicates effects of small basic population size (inbreeding, bottleneck or reduced 
of genetic variation). If heterozygosity value is high, we might consider an isolate-breaking 
effect in genetic structure of population (the mixing of two independant populations). 

Typically, the observed (H0 ) and expected (HE ) heterozygosities are calculated and 
compared. Differences between these two measures are connected closely with Hardy-
Weinberg equlibrium and its testing. Expected heterozygosity reffers about a heterozygos-
ity in population under H-W equlibrium and observed heterozygosity reflects real state in 
population (Weir, 1996).
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The Hardy–Weinberg equilibrium3.4.3 

 The Hardy–Weinberg equilibrium (also principle or theorem) states that both allele and 
genotype frequencies in a population remain constant from generation to generation. Static 
allele frequencies in a population across generations assume: random mating, no mutation, 
no migration or emigration, infinitely large population size, and no selective pressure for 
or against any traits. The Hardy–Weinberg equilibrium is impossible in nature and is an 
ideal state that provides a baseline to measure genetic change against. In the simplest case 
of a single locus with one allelic pair, the allele frequencies are p q+ = 1  and genotype fre-
quencies are p pq q2 22 1+ + = , where p  is the frequency of the dominant allele and q   is 
the frequency of the recessive allele. Based on these equations, we can determine useful but 
difficult-to-measure facts about a population.
Disequilibrium coefficient Duv  for alleles Au , Av  is calculated as
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The chi-square goodnes of fit desribed in (Weir, 1996) is used for calculations of testing H-W 
equlibrium for multiallelic loci. Chi-square statistics for multiallelic loci is then given by 
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with k k l( ) /- 2  degrees of freedom, where k  is the number of alleles at the loci.
Hardy-Weinberg equilibrium refers to the expectation that genotype frequencies will 

tend to be stable and predictable as a simple function of individual allelic frequencies, un- 
less there is some evolutionary force. Described model is useful only for two alleles loci. 
For multiallelic loci, it is useful to estimate Fisher’s exact test or likelihood-ratio test for 
described task (Liu and Muse, 2005; Hedrick, 2011).

Linkage disequilibrium3.4.4 

Linkage disequilibrium  (LD) has been defined as non-random association between two 
loci within a population (Weir, 1996). LD describes a situation in which some combinations 
of alleles or genetic markers occur more or less frequently in a population than would be 
expected from a random formation of haplotypes from alleles based on their frequencies. 
Non-random associations between polymorphisms at different loci are measured by the 
degree of LD. In natural populations, LD is affected by many factors such as genetic drift, 
population structure, migration, admixture, selection, mutation and recombination (He-
drick, 2011). LD can play an important role in identifying genes causing simple or complex 
disease in human populations (Wang et al., 2005). Recently, LD has been estimated in dairy 
cattle (Farnir et al., 2000; Tenesa et al., 2003; Tenesa et al., 2007) and beef cattle populations 
(Odani et al., 2006) using microsatellite markers. The extent of LD across genomic regions 
is a crucial parameter for defining the statistical power of association studies utilizing sin-
gle nucleotide polymorphisms (SNPs) as surrogate genetic markers (Schork, 2002), and for 
guiding the selection and spacing of such polymorphisms to create marker maps useful in 
candidate gene, candidate region and wholegenome association studies (De la Vega et al., 
2002). Linkage disequilibrium mapping methods have higher resolution than linkage map-
ping methods because they use information based on historical recombination with larger 
numbers of individuals (Pritchard and Przeworski, 2001).
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Effective population size3.4.5 

When introduced, effective population size ( Ne ) was defined as „the number of breeding 
individuals in an idealized population that would show the same amount of dispersion 
of allele frequencies under random genetic drift or the same amount of inbreeding as the 
population under consideration“ (Wright, 1965). Estimation of effective population size is 
useful for understanding and modelling the genetic architecture of a population (Tenesa et 
al., 2007). Effective population size can be estimated using small DNA fragments (approxi-
mately 10 kb) based on the coalescent model. In cattle, recent effective population size has 
been estimated from inbreeding status in populations (Nomura et al., 2001; Sorensen et al., 
2005). An alternative Ne  estimation method applies the relationship between LD and re-
combination rate between closely linked markers (Hill, 1981). Hayes et al. (2009) estimated 
the past effective population size in dairy cattle using LD between microsatellite markers.

Genetic distances3.4.6 

Genetic distances are measures of similarities and dissimilarities between and among spe- 
cies and individuals. They seem to be good tools to construct genetic trees, dendograms 
and phylograms which are typical tasks in evoluonationary and ecological studies. They 
were developed especially for describing wild animals species populations and their evo-
lutianory processes. However domestic animal species have completely different type of 
evaluation, hardly influenced by geographic aspects, by selection and by breeding strate-
gies (and business as well), genetic distances and connected methods are used as well for 
describing genetic influences like genetic pressure, bottleneck, population drift etc. which 
are evident in short term meaning thanks to mentioned influences. A lot of genetic dis-
tances types exist. We can divide them into the groups according to model on which based 
they are calculated.

Nei’s 1972 standard distance has an expected value linearly related to the time since 
divergence. It is assuming that all loci have the same rate of neutral mutation, and that the 
genetic variation is maintained by the equilibrium between infinite-alleles mutation and 
genetic drift, with the effective population size of each population remaining constant (Nei, 
1972).

None of the geometric distances described in (Nei, 1972; Nei, 1973; Nei et al., 1983) 
involve any evolutionary models. Assuming that there is no mutation, and that all gene 
frequency changes are done by genetic drift alone, the following two quanties are expected 
to rise linearly with the amount of genetic drift (Infinite Allele Model).

Genetic distances widely used in population studies are also Reynold’s genetic distance 
for short term evolution (Reynolds et al., 1983), Cavalli-Sforza and Edwards (Cavalli-Sforza 
and Edwards, 1967) distance what gives the chord distance between two populations if we 
represent two populations on the surface of a multidimensional hypersphere, Roger’s dis-
tance (Rogers, 1972). Roger’s distance is based on geometric distances, which are not nega-
tive, symmetrical and which satisfy the triangle inequality. 
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Cavali-Sforza and Edwards’chord distance 

Cavalli-Sforza and Edwards (1967) distance gives the chord distance between the two pop-
ulations if we represent two populations on the surface of a multidimensional hypersphere 
using allele frequencies at the j th locus:
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Rogers’ distance

Geometric distances are not negative, symmetric and satisfy the triangle inequality. Rogers 
(1972) is a scaled Euclidian distance:
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The most common distance is the Euclidean distance. The other distance based on geomet-
ric distances is Prevosti et al.s’ distance (Prevosti et al., 1975).

The main difficulty posed by microsatellite loci for their use in the evaluation of genetic 
distance is their relatively high mutation rate. This makes it difficult to adopt any of the 
two main mutation models used in population genetics, the infinite alleles or the stepwise 
mutation model. There is still uncertainty as to whether allele sizes are unconstrained or 
whether there are certain limits to the number of repeats present (Estoup et al., 1995; Garza 
et al., 1995). Assuming a stepwise mutation model (Slatkin, 1995; Goldstein et al., 1995a), we 
have recently proposed distance measure for microsatellite alleles. The distance between 
two alleles is a simple transformation of the number of repeat units. The within population 
measure of distance is obtained as the average sum of squares of the differences in number 
of repeats between alleles (Liu and Muse, 2005).

Microsatellite variation appears to result from slippage in replication, which is most 
likely to add or delete a single repeat unit. As a result, alleles more similar in size will pre-
sumably be more closely related. This additional phylogenetic information can be used in 
assessing genetic differentiation or genetic distance.  The stepwise mutation model (SMM) 
is an alternative to the infinite alleles model (IAM) as the basis for deriving measures of 
genetic differentiation.

Stepwise mutation index is defined as the maximal proportion of alleles that follows the 
stepwise mutation microsatellite data pattern. This statistic needs the length of the repeat 
unit to be specified. This information has to be included in the covariate table of the markers 
and the column property needs to be numeric. In the group of genetic distances calculated 
under SSM we include e.g. Goldstein et al. distance (Goldstein et al., 1995b; Goldstein et al., 
1995a), Average Square Distance (ASD) (Slatkin, 1995).

Shriver investigated the correlation between observed and simulated values based on 
the SMM and estimated distance based on these correlations (Shriver et al., 1995). This study 
compared three parameters; the number of alleles, the range of allele sizes, and the number 
of modes in the distribution of alleles. Another commonly used distance, the shared allele 
distance DSA  was defined by (Chakraborty and Jin, 1993).

Also, other concepts of genetic models are considered for genetic distance calculations. 
Relative entropy is a very important concept in quantum information theory, as well as 
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statistical mechanics (Qian, 2001). Ot the base of this concept, e.g. Kullback-Leiber distance 
was established.

Kullback-Leibler distance

A discrete distribution have probability function pk , and let a second  discrete distribution 
have probability function qk . Then the relative entropy of p  with respect to q , also called 
the Kullback-Leibler distance (Kullback, 1987), is defined by
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Although  DS p q DS q pKL KL( , ) ( , )¹ , so relative entropy is therefore not a true metric, it satis-
fies many important mathematical properties. For example, it is a convex function of pk , is 
always non-negative and equals zero only if p qk k= .

 Wright’s inbreeding coefficient and F-statistics3.4.7 

Level of inbreeding for individual can be defined by coefficient FX , of the following state-
ments:

1. The probability that both genes of a pair in an individual are identical by descent,
i.e. homozygous.
2. The probable proportion of an individual’s loci containing genes that are identical
by descent.

An equation for estimation of individual inbreeding coefficient was formulated by Sewell 
Wright (Wright, 1922) as:
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where FX  is the inbreeding coefficient, FA  is the inbreeding coefficient of the common an-
cestor, n1  is the number of generations from the sire to the common ancestor, and n2   is the 
number of generations from the dam to the common ancestor.

A very useful measure of population subdivision is the F-statistics developed by 
(Wright, 1965). F-statistics can be thought of as a measure of the correlation of alleles within 
individuals. This correlation is influenced by several evolutionary processes, such as muta-
tion, migration, inbreeding, natural selection, or the Wahlund effect, but it was originally 
designed to measure the amount of allelic fixation owing to genetic drift. F-statistics de-
scribe the amount inbreeding-like effects within subpopulations (FIS  or f  ) – the inbreed-
ing coefficient of an individual (I) relative to the subpopulation (S) – inbreeding coefficient, 
among populations (FST   or  q ) – coefficient of subpopulations (S) compared to the total 
population (T) – fixation index, and within the entire population (FIT   or  F ) – the inbreed-
ing coeeficient of individual (I) relative to the total population (T) – overall fixation index. 
Lets define

HI  = mean observed heterozygosity per individual within subpopulations, 
HS  = mean expected heterozygosity within random mating subpopulations, 
HT  = expected heterozygosity in random mating total population.
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The inbreeding coefficient measures the reduction in individual heterozygosity due to de-
viations from random mating in the local populations. This inbreeding coefficient is repre-
sented by FIS  and is given by: 

F
H H
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S
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-

.

The effects of population subdivision can be quantified by means of the fixation index FST . 
This index demonstrates the reduction in the heterozygosity in a subpopulation due to non-
random mating with respect to the total population. FST  is given by:
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An alternative interpretation of FST  in its diallelic version is the ratio between the expected 
and observed variances of gene frequency considered among all subpopulations –

F
p qST
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.

A coancestry matrix is formed by calculating q  for each pair of populations. It be can re-
quested for the log transformation ( ln( ))= - -1 q  to be performed, which leads to a measure 
of genetic distance under a drift model.
Overall fixation index is given by:
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The following relationship holds for F-statistics:

 1 1 1-( ) -( ) = -( )F F FIS ST IT .
Population specific F-Statistics extends the classical F-statistics by allowing different lev-
els of coancestry for different populations and by allowing non-zero coancestries between 
pairs of populations. The procedure of estimating population specific F-Statistics and be-
tween- population F-Statistics was formulated by (Weir and Hill, 2002).

Microsatellite panel effectiveness measures3.4.8 

Methods described bellow in this paragraph are neccessary to calculate if we want to prove 
an usability of microsatellite set to routine genotyping and parentity testing. Usually, PIC  
(Botstein et al., 1980), PE( )1 , PE( )2 , PE( )3   and CEP   (Jamieson and Taylor, 1997) measures 
are calculated accross the loci in set.

Informativeness of polymorphic markers can be quantitatively measured by a statistic 
called the polymorphism information content, or PIC  - the ability of microsatellite length 
polymorphism distinguish genotypes on small number of loci. This measure can be also 
used to identify and locate a hard-to-define marker locus.

The probability of exclusion non correct parent, when the genotypes of offspring and-
both parents are known is marked as PE( )1 . One of the parent is verified based on sample 
of population allele frequencies in this case.

The probability of non correct parent exclusion, when one of genotype of parents is 
unknown is called PE( )2 .

PE( )3 is the probability of exclusion non correct parents, when the genotype of off- spring 
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and both parents are known. For given probabilities this relation – PE PE PE( ) ( ) ( )2 1 3< <  
– is valid.
Combined Exclusion Probability is calculated for each type (n = 1 2 3, ,  ) of paternity exclu-
sion:

CEP n PE n PE n PE n k( ) ( ( ) )( ( ) )...( ( ) )= - - - -1 1 1 11 2 ,
where index 1,2,3...k indicates numbers of microsatellite loci.
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Population genetic structure using machine 3.5 
learning methods

 Machine learning – state of art3.5.1 

The convergence of computing and communication has produced a society that feeds on in-
formation. Anyway, most of the information is in its raw form: data. Data are characterized 
as recorded facts, then information is the set of patterns or expectations, that underlie the 
data. There is a huge amount of information locked – data include information that is po-
tentially important but has not been discovered yet (Witten et al., 2011). Data mining is the 
extraction of implicit and previously unknown information from data (in comparison with 
statistical methods, where we prove a pre-formulated hypothesis). Concept of datamining 
was formulated in 90’s. The basic idea is to built robust algorithms for seeking patterns (non 
banal or inunderstanding) in databases, generalize them to make an accurate predictions 
on future data.

Machine learning provides the technical basis of datamining. It is used to exract an 
important information from the raw data by using algorithms built on basic principles of 
artificial intelligence. As datamining is a proccess of data understanding, machine learning 
is one of the instruments to find and generalize patterns in data with usage of computers. 
Finding of patterns and their reliability are easy comparable across different algorithms 
thanks to established measures of different pattern quality (Berka, 2001).

Machine learning methods are in generally designed as mathematically fomulated sim-
ulations of one of basic human ability: learning. Basic scheme of machine learning system 
can be described as following schema:

Figure 3.1 Schema of learning system.
Process of machine learning has basicaly three phases. For machine learning methods, good 
data preparation i.e. object description is neccessary – first phase. On the other side, for 
most of machine learning methods, no predispositions (like distribution etc.) of data have 
to be satisfied as in classical mathematical statistics. Process of the model training (training 
data is used) creates a second phase. With usage of training data, model is prepared. The 
third phase is an usage of created model in one of typical task, or its countinuous training 
(Bishop, 2006).
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Typical usage of machine learning methods is in following problems areas (Berka, 2001; 
Witten et al., 1999):

classification, –
prediction, –
clusterization, –
datamining – representation of obtained, primarly hidden information in data. –

The basic concepts of probability are quite straight forward (Bishop, 2006) and directly con- 
nected with machine learning methods. First basic concept of probability can be illustrated 
e.g. by segregation in the mating of individuals with heterozygous genotypes. The possible 
genotypes of each progeny – AA, Aa, aa  are realized with probabilities, ¼ ,½, ¼ (addi-
tional rule – according to OR in logic or + in probability of at least one of two independent 
events). In large dataset and under random mating, genotype frequencies will reflect these 
probabilities. Also multiplication rule – according to AND in logic or * in probability of two 
independent events happening together – is a second basic principle of probability.  With 
regard on these paradigms all of machine learning methods are created.
We can divide machine learning methods accroding to type of data used for model train-
ing:

methods based on learning with teacher – preclassified data for model building –  –
e.g. decision trees,
methods based on learning without teacher – dataset consists of non-classified –
data – hidden structure of data is exploring – e.g. clusterization methods, –
methods of learning based on imitation – continuous learning based on user reac- –
tions and behaviour – e.g. some web searching engines,
methods of boosting – model is continuously trained and system of penalisation –
is defined for model – e.g. control systems. –

Machine learning represents dynamic science. A comlex system of methods, their 
modifications and theoretical  background were created in past 20 years. Based on meth-
ods´ theoretical background we divide them as follows (Bishop, 2006):

statistical methods – Bayes Classifiers, Markov chains or Hidden Markov models  –
(Andrieu et al., 2003), Instance Based Learning Methods (Aha et al., 1991), Cluster 
analysis, Regression methods (Quinlan, 1992),
symbolic methods of artificial intelligence – Decision Trees (Quinlan, 1986), Deci- –
sion Rules, Association rules, Inductive Logic Programming,
sub-symbolic methods of artificial intelligence – Neural Networks, Support Vector  –
Machines (Michie et al., 1994).

Two typical problems of machine learning (classification – class is known and clusteriza-
tion – unknown class) and their applications in population genetics could be used widely 
thanks to routine genotyping under the condition of their validation. Typical usage of these 
methods represents a problem of a breed discrimination and problem of genetic population 
hidden structure. All of machine learning methods calculate with probability of assigment 
to the clusters or classes, therefore they can also be useful for the visualization of genetic 
structure. The precision of classification or other quality-of-fit measures on the population 
level can be also used as the measure of genetic distance.

These tools are still not widely applied for genetic analysis, except a few works (Beau-
mont and Rannala, 2004; Pearse and Crandall, 2004; Kruger et al., 2005). In following chap-
ters, Following chapters describe basic usage of machine learning methods and their prin-
ciples in tasks of population genetic structure and diversity.



3 Literature Review

28

Classification3.5.2 

Classification methods solve a problem described as to build a model which can classify 
instances-data rows to their known classes with the best possible parameters with which 
the model fits the training data. Also, classification problem is generalized problem of re-
gression and vice versa.

Built models can be validated with a lot of methods which can describe models ro-
bustness (n-fold cross validation, training set validation, test set validation, leave-one-out, 
boot- strap) (Witten et al., 1999; Witten et al., 2011). By this validation methods, plenty of 
measures of classification quality can be obtained. Parameters of model performance calcu-
lated during model validation are typically (Berka, 2001):

confusion matrix, –
overall accuracy and error, –
accuracy and error calculated for each class, –
precission and recall, –
F-measure, –
Kappa Statistics, –
Mean absolute error and Root mean squared error, –
Relative absolute error and Root relative squared error –
ROC curves and cost curves, –
etc. –

In the context of classification task, we use some basic terms, which it is necessary to define 
at this place:

attribute – parametr or variable used for description of objects‘ features, like in- –
come,
temperature, genotype etc. –
dataspace – space given by values of attributes, each attribute represents an axis  –
in multidimensional space,
instance – data representation of described object, set of concrete attributes values,  –
one row in dataset,
dataset – collection of instances with the same attributes, –
class – one of attributes, the aim attribute, specify the attribute which is used for  –
classification model – representation of dataset created by some method which 
represents a dataset usually in generalized form, it describes real state included in 
dataset,
training of model – process of model creation based on dataset, the part of dataset  –
used for is called training set,
testing of model – process of testing model classification performance by using  –
plenty of measures.

Methods of classification are useful when we have a data with typically a lot of attributes 
and we want to build model which can classify or discriminate data or predict one chosen 
attribute called a class. We can also analyze the structure and the relationships between and 
among classes.
Methods of classification of individuals into the breeds based on variable genotype data can 
be used as a practical result of a genetic diversity analysis (Masuda and Pella, 2004; Canon 
et al., 2000) for the purpose of breed discrimination (Burócziová and Říha, 2009). However, 
only if classification power of the model is decided to be usable. Models with high precis-
sion of classification based on genetic variability data can be used for breed or another 
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choosen level discrimination in traceability and safety of food resources e.g. (Guinand et al., 
2002; Dawson and Belkhir, 2001; Manel et al., 2002; Masuda and Pella, 2004).
In case of genotype data, we can discuss the results as precission of classification calculated 
on many levels as the genetic distance given by chosen model. For groups of two breeds 
only we can use precision of classification using a chosen method as a genetic distance be-
tween the breeds (Kitada et al., 2000). Also we can analyze errors of classifications which 
lead to similarity of instances. When we want to discuss the relationships among breeds 
we can analyse a confusion matrix of classification models with high classification power  
(Masuda and Pella, 2004).

For the breed discrimination task, good results are achieved especially thanks to meth-
ods built for usage with frequency data (Burócziová and Říha, 2009). Therefore, Bayes Na-
ive Classifier, Bayes Net and MCMC are typical representatives of this class of algorithms 
(Witten et al., 2011). Methods based on generalization of data are not applicable for this task 
usually (Guinand et al., 2002; Burócziová and Říha, 2009).

For discussion of variability, generalized algorithms (IB5, J48, JRip) are more useful 
than precise classifiers. If the results of classification match overall selected models, it is 
better to use generalized methods for discussion of genetic variability, i. e. based on confu- 
sion matrix, because we want to discuss breed characteristics, so the aim is different than in 
breed discrimination problem (Masuda and Pella, 2004).

As all selected methods work with probability, they are also useful for visualization 
of genetic variability data on e.g. plot diagrams of individuals and their predicted class or 
cluster classification (Pritchard et al., 2000; Glowatzki-Mullis et al., 2006).

ZeroR3.5.2.1 

ZeroR is a base classifier to control how different models of classification power are better 
or worse in comparison with the basic one. ZeroR always predicts the mean for numeric 
class or most frequent class for nominal attributes for each new instance, so it could be used 
as a good performance reference classification method which can shows that model is over-
learned especially in the case of non-equal numbers of instances in different classes.

Decision trees3.5.2.2 

Decision trees are effective method for representation of knowledge (e.g. keys to determi-
nation, guidelines etc.). Using decision trees we can resolve the problem of classification 
into the classes. So, when algorithms to their induction from large datasets appeared, they 
have became one of the key method of machine learning and knowlegde discovery. They 
do not function, as many methods of machine learning (e.g. Support Vector Machine) as 
blackbox, but they allow to represent derived knowledge about multinominal dataspace in 
comprehensible form.
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Figure 3.2 Example of decision tree.
Decision trees induction (Quinlan, 1986) uses „divide and conquer“ strategy. The dataspace 
is dividing into the subsets of selected parameter from dataspace during the induction of 
tree, so that subsets consisting mainly from instances of one of attribute classes. In other 
interpretation, decision trees divide the dataspace into the classes by using hyperplanes 
parallel with the axes (attributes).

The induction of decision tree is based on top-down specialization in hypothesis space. 
On the start of induction, all data create first node of the tree. During the process of in-
duction, the tree is specialized and on the end the final tree has nodes with instances of 
one class for each attribute. Under assumption of representing sub-population selection 
for training dataset we can use decision tree for classification by walking through decision 
tree nodes according to values of attributes of classified instance. For this instance we make 
decissions according attributes values and the conditions in nodes. The infered decision 
tree has the decision rule for selected attribute in each node which determine the subtree 
belongs for instances with this value of attribute. When a leaf node is reached, class of leaf 
node matches the class of instance.

TDIDT algorithm

Choose one attribute as the root of decision subtree.1. 
Divide data in this node according chosen attribute values into the subgroups 2. 
and add nodes for each subgroup.
If the node with instances of two or more classes exists, do 1 for this node, other-3. 
wise finish.

The selection of attribute in first step of algorithm can be done by plenty of measures:
entrophy –

H p pt
t

T

= - ( )
=
å 1

1

log

where pt  is a probability of occurence of the class t  and T  is the number of class-
es;
information gain,  – gain A H C H A( ) ( ) ( )= - , H C

n

n

n

n
t t

t

T

( ) log= -
=
å 2

1

, 

where H C( )  is an entrophy for full dataset, H A( )  in an entrophy for attribute A ;
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Gini index,  – Gini pt
t

T

= -
=
å1 2

1

, where pt  is a probability that instance p  has class t ;
C2 – .

The presumption that node have to contain only instances of one class is often replaced due 
to generalization of trees (otherwise large trees could be inducted) by usage of „prunning“ 
methos e.g. Occam’s razor, so the node must have only prevalent number of instances of the 
dominant class because of when the noise is present in training data algorithm leads into 
very large trees.
We can also represent decission trees as the set of decission rules in the form: 

IF conjunction of premises THEN deduction.
The set of rules that represents decission tree should be obtained by summarize of each 
way from the root of the tree to leafs. Conditions included in nodes make a conjunction in 
premise of implication, the leaf is deduction of decission rule. This principle is used also for 
decision trees post-prunning.

Prunning algorithm

convert a decision tree into the set of rules.1. 
generalize the rule by condition removal from premise if estimated improvement 2. 
of classification is reached
make an order of rules due estimated to improvement – in this order they will 3. 
use for classification.

Pesimistic estimation of classification improvement

calculate accuracy of rule as portion of well classified instances and instances 1. 
covered by rule
calculate standard deviation of this accuracy2. 
take the lower estimatition of accuracy as characteristics of the rule3. 

TDIDT algorithm can handle only categorical attributes. It is possible to handle categorical 
and continuous attributes in decission tree induction with a few modifications of the basic 
algorithm (e.g. binarization of numeric attributes). Most known modification of the basic 
induction algorithm is e.g. C4.5 algorithm (Quinlan, 1993) which is implemented in Weka-
3-6-6 framework as J48 algorithm (Witten et al., 1999) and which is used in this work.

Decision rules3.5.2.3 

Decision rules are useful for the same task as decision trees – classification of instances into 
the classes. The construction of decision rules from decision trees in no only possibility to 
obtain decision rules based on the training dataset. In many cases more universal rules than 
implication with conjunction in premise are needed. We want to obtain decison rules in the 
form:

IF THEN ,Ant Class Ant Classi.e. Þ

where Ant is universal combination of conditions based on attributes‘ values connected 
with operators of basic logic (conjunciton, negation, disjuction, etc.). Class is a class of in-
stance – category of the target attribute (Bishop, 2006).
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The interpretation power of decison rules is the same as of decision trees. They also divide 
the space of attributes according to hyperlanes parallel with attributes‘ axes. In comparison, 
different type of algorithms is used for their induction – „separate and conquare“. Basic 
principle of these type of algorithms represents the algorithm of Sets covering.

Sets covering algorithm

Choose a class.1. 
Find rule that covers only positive examples (which belong to covering class, not 2. 
negative ones) by generalization of positive example.
Delete covered examples of training set.3. 
If any non covered examples remained go to 2, else done and continue for next 4. 
class.

Also, in connection with decision rules we can mentione the decision lists. Decision lists are 
decision rules in form:

 

IF THEN ,

ELSE IF THEN ,

...,

ELSE IF THEN

Ant Class

Ant Class

Ant Cl

i

j

n

1

2

aassk .

In this case, each rule (except the first one) in list contains exclusion of previous rules in 
list, so the rules in list are not independant. This method may be usable in cases when data 
contain general rules with small numbers of important exceptions which could not be cap-
tured by normal decision rule.

For this work purposes, the JRip algorithm implemented in Weka-3-6-6 software was 
selected. The JRip algortihm is the implementation of the RIPPER one (Cohen, 1995).

RIPPER algorithm

Initialize set of rules as RS = Æ{ } , and for each class from the less prevalent one to the 
more frequent one, DO:

1. Building stage:
Repeat 1.1 and 1.2 until the description length (DL) of the rule set and examples is 64 bits 
greater than the smallest DL met so far, or there are no positive examples, or the error rate 
³  50%.

1.1. Grow phase:
Grow one rule by greedily adding antecedents (or conditions) to the rule until the rule is 
perfect (i.e. 100% accurate).  The procedure tries every possible value of each attribute and 
selects the condition with highest information gain: p p t P Tlog / log /( ) - ( )( ) .

1.2. Prune phase:
Incrementally prune each rule and allow the pruning of any final sequences of the an-
tecedents; The pruning metric is p n p n-( ) +( )/ , respectively 2 1p p n/ +( ) - , so in this 
implementation we simply use p p n/ +( ) (actually p p n+( ) + +( )1 2/ , thus if p n+  is 0, 
it’s 0.5).
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2. Optimization stage:
After generating the initial ruleset Ri { } , generate and prune two variants of each rule Ri   
from randomized data using procedure 1.1 and 1.2. But one variant is generated from an 
empty rule while the other is generated by greedily adding antecedents to the original rule. 
Moreover, the pruning metric used here is TP+ TN / P+ N( ) ( ) .Then the smallest possible 
DL for each variant and the original rule is computed.  The variant with the minimal DL 
is selected as the final representative of Ri  in the ruleset. After all the rules in Ri { }  have 
been examined and if there are still residual positives, more rules are generated based on 
the residual positives using Building Stage again.

3. Delete the rules from the ruleset that would increase the DL of the whole ruleset if it 
were in it. and add resultant ruleset to RS.

ENDDO

Naive Bayes classifier3.5.2.4 

Bayesian classification is based on applying Baye’s theorem about the conditioned probabil-
ities. Bayes theorem defines the probability of hypotesis H  (class in this case) in conditon of 
hypothesis E  (attributes) acceptance like

 

P H E
P E H P H

P E
|

|
.( ) =

( ) ( )
( )

Apriori probability P H( )  corresponds to class distibutions without regard to the other in-
formation. P E( )  represents probability of evidence (observation). Conditioned probability  
P H E|( ) , called aposteriori probability, represents  change of hypothesis probability when   
E  occurs.
In the context of classification, we need to find the hypothesis with maximum probability 
for given evidence. This hypothesis is given by this formula:

H H P H E
P E H P H

P EMAP J J t

t t= Û ( ) =
( ) ( )

( )
| max

|
.

This formula give most probable hypothesis in condition of one evidence. The advantage of 
Bayesian classification is also that they given probabilistic classification primarily by calcu-
lating of all aposterior probabilities. Described classification is useful only for one evidence. 
For more evidences, we need to estimate aposteriori probability P H E Ek| , ...,1( ) .

One of the method to do this under the assumption of independant evidences is Naive 
Bayes classifier. Naive Bayes classifier can estimate the probability of hypothesis which de-
pend on the acceptance of  independent evidences (variables, attributes) by this equation:

P H E E
P E E H P H

P E E

P H

P EK
K

K

| ,...,
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1 1
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1

so we find hypothesis with maximum aposterior probability as

H H P H P E H P H P E HMAP J J K J
k

K

t t K t
k

K

= Û ( ) ( ) = ( ) ( )
æ

è

ççççç

ö

ø= =
Õ Õ| max |

1 1
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.

Assume, that E A vk j k= ( ) , where A vj k( )  means probability of occurence of attribute Aj  
with value v  in class k ; H C vt t= ( )  is probability of occurence of instance with value v  in 
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class t . Afterthat, we can calculate probabilities P Ht( )  and P E Hk t|( )   from training set 
as:

P H P C v
n

n

P E H P A v C v
n A v

n

t t
t

k t j k t
t j k

t

( ) = ( )( ) =

( ) = ( ) ( )( ) =
( )( )

,

| | .

Depending on the precise nature of the probabilities, Naive Bayes classifier can be trained 
very efficiently in described supervised learning scheme, especially for large datasets (be-
couse only aposteriori probabilities have to be calculated simply directly from dataset). In 
spite of naive design and assumptions of independant evidences, this classifier often work 
much better in many complex situations than one might expect (Kohavi, 1996). Recently, 
careful analysis of the Bayesian classification show us some theoretical reasons for the ap-
parently unreasonable efficiency of Naive Bayes classifier.  An advantage of the Naive Bayes 
classifier is that it requires, in case of representative dataset, not large training datasets to 
estimate the probabilities necessary for classification. Also, it is very useful, as it is evident 
from text above, for classification of data based on frequencies changes which the genotype 
datasets (Roeder et al., 1998; Dawson and Belkhir, 2001; Masuda and Pella, 2004; Beaumont 
and Rannala, 2004) exactly are.

BayesNet classificator3.5.2.5 

The main problem of Naive Bayes classifier – assumption that evidences are independant 
– is to compute all of combinations of evidences probability. As it is a complex problem, 
problem of independant evidences assumption or complex computations can be pass ef-
fectively by Bayes networks (Berka, 2001; Bishop, 2006).

Bayes networks can represent partial depency evidences and use this representation 
to make a decisions. Evidences A  and B  are semi-independent when hypothesis H  prob-
ability is given as 

 
P A B H P A H P B H, | | | .( ) = ( ) ( )

Bayes network is oriented as an acyclic graph where:
1.   Edges are probabilities of dependency among independent variables (nodes).
2.   Every nodes u has the probability of distributions P u parents u| ( )( ) .

When we make an order of nodes and number them as parents of nodes have a lower num-
ber than children, it is valid, that every node is semi-independent at each node with the 
lower number with exception of its‘ parents and parents of parents.

On the base of this proposition, we can calculate probability distribution of all network 
as:

P u u P u parents un i i
i

n

1
1

, ..., | .( ) = ( )( )
=
Õ

Bayes networks combine two types of knowledge representations: probabilities of nodes 
(attributes) and structure of network (depency of nodes). The stucture of network may be 
known but in many cases so we can design it (make known egdes between attributes), we 
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have to infer it which is also complex problem of searching in space of models. For this 
purpose, a lot of methods can be used like (Witten et al., 2011):

genetic programming - works by having a population of Bayes network structures  –
and allow them to mutate and apply cross over to get offspring. The best network 
structure found during the process is returned,
hill climber - uses a hill climbing algorithm adding, deleting and reversing arcs.  –
The search is not restricted by an order on the variables (unlike K2).,
K2 - uses a hill climbing algorithm restricted by an order on the variables,  –
EM alghorithm etc., –

which lead to appropriate solutions.
Bayes Network learning algorithm implemented in Weka-3-6-6 software using various 
search algorithms and quality measures for infer the network structure and probabilities of 
infered nodes and facilities common to Bayes Network learning algorithms.

Instance based classifiers3.5.2.6 

Instance based classifiers are typical methods based on principle of analogy. The principle 
of analogy means, that in case of learning or making decision we do not use generalized 
examples for this but we use most similar example from training stage. On the base of this 
example, decision is processed and new example is classified (Bishop, 2006).

Key concept of methods based on analogy is the metrics of similarity. A lot of types 
of metrics (also called distance functions) are defined. Also, database for chosen instances 
storage have to be created for this type of learning methods.

Each instance based learning algorith need following three methods implemented:
1.   function to measure the instances distance – distance function – the similarity of
instances can be expressed by this function
2.   function for choosing of instances which are saved in the database,
3.   function for classification of new instances.

Metrics is a function, which satisfy this definition:
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Typical distance functions which express distance between two instances 
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For storage of instances e.g. IBk methods (Aha et al., 1991) are widely used. IB1 method 
stored into the database all of training in stances which is usable especially when data in-
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clude noise. IB2 method try to classify new training instance first, if failed, instance is stored 
in database. IB3 uses sofisticated algorithms based on frequencies of corret and incorrect 
classification for choosing of instances to store.

Algorithm of k-nearest neighbours is often used for classification of new instances. It 
uses weighted voting of new instance class based on the distances of k nearest instances in 
the database. Centroids of classes are also often used instead of all of class instances (Aha 
et al., 1991).

k-NN algorithm

1. find k nearest neghbours  of the classified instance  .
2. classify the instance according to:

y y y y y y

y y y

i j k
k

K

i j k
k

K

j k i

? , max , ,

,

= Û ( ) = ( )

( ) =
= =
å åd d

d
1 1

1where for == ( ) =y y yk j kelse d , .0

In other words, by the chosen metrics, k nearest instances are founded, afterthat, frequency 
of classes determines the class of new instance.

MCMC algorithm3.5.2.7 

Via a process called Markov chain Monte Carlo (MCMC) we can accurately reflect very 
complicated desired probability distributions. In recent years this allowed a wide range 
of posterior distributions to be simulated and their parameters found numerically in e.g. 
Bayes Networks.
Monte Carlo Markov Chain algorithm is based on intensive simulations generalizationof 
Expectation Maximalization algorithm (Andrieu et al., 2003) and it is an approximation 
technique. Two phases of algorithm (burn-in period and after burn period with output) 
are performed to learn the distributions of propabilities of attributes and assignment of 
instances to the clusters. Every state of Markov Chain is depended only on the previous 
state and propabilities (frequencies) of it which are changed in the next step. After random 
sampling of dataspace an algorithm converges, what is mean that it found a local extreme. 
All algorithms presume that the catched local extreme is also the global one, so the model, 
infered distributions and propabilities relates to given dataset.

Instead of primary usage for clusterization and distributions estimation, MCMC algo-
rithm is also useable for classification (Andrieu et al., 2003) approach with primary class 
knowledge, also in population genetics (Pritchard et al., 2000). It results in the structure 
similar to Bayes network structure – Markov chain. In this case convergence is reached 
more quickly (because both of periods can be shorter, but the classifier can converge to local 
extreme) and classifiers built by this method are usually robust and with high level of preci-
sion of classification. This is result of primary usage of MCMC in intensive simulations so, 
the function is highly depent on the dataset (precision is very good also in small datasets, 
but they should not catch variability of real state of problem – problem of local extreme 
convergence).
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Neural Networks3.5.2.8 

The principle of neural networks is derived from the simulation of human neurons (Michie 
et al., 1994). Neurons react on stimulations and pass on impuls (based on non-linear func-
tion) to connected neurons. One of the first concept of neuron simulation was Adaline (Fig-
ure 3.3) which may function as binary classifier. Input is represented by stimulation inputs 
a a1 2,  (attributes in classification). Values of stimulations are weighted by weights w w1 2, . 

When sum of weights is greater than treshold value w0 , output from Adaline is -1. Else 
the value of sum is passed to the decision model, where computation of resulting value is 
performed. Typical function used for this purpose is sigmoidal function

f SUM
c SUM

( ) =
+ -

1

1
,

so the output from Adaline is in interval [0,1].

Adaline model. Figure 3.3 
Adaline, or the other model of neuron could be learned by modifications of weights from 
training set (e.g. with usage of Hebb law, gradient method of mean classification error mini-
malization, stochastic approximation, back error propagation) (Michie et al., 1994).

Neural networks (layers of connected neurons) divide the space of instances by non-
linear hyperplanes, so they can cath more complicated problems (e.g. in comparison with 
decision trees). The basic neural network is perceptron which was created according to hu-
man visual system. Perceptron consists from three layers of neurons (Figure 3.4).

 Figure 3.4  Model of perceptron.
The first layer – receptors – matches number of incoming stimulations (attributes values) 
with 0 and 1 outputs. Associative elements created the second layer of perceptron. They are 
connected with receptors by randomly selected linkages. After sum of inputs is calculated, 
associative elements output +1 or -1. The last layer is created by reactive elements (their 
number corresponds to number of classes), which realized weighted sum of inputs. Also, 
on this layer learning by corrections of weights is performed. In the last stage of classifica-
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tion, element with maximum sum of weighted inputs is selected and it correspond to the 
class of instance. Modification of the basic perceptron is multilayer perceptron, where no 
connections between neurons in one layer exist, but every neuron from one layer is con-
nected with every neuron in higher layer (Figure 3.4). Algorithms of neural network classi-
fication have generally a lot of properties to set. Working with neural networks is due to this 
reason often called as „alchemy“ in machine learning community – it is hard to make good 
neural network which reflect robustly the reality and is usable for classification. However, 
the ability of catch very complex problem (e.g. it is possible to solve any logical circuit by 
neural network) makes this method one of the most usage in machine learning. Multilayer 
perceptron algorithm with error backpropagation from Weka-3-6-6 (Witten et al., 1999; Wit-
ten et al., 2011) is used for this work purposes.

Support Vector Machines3.5.2.9 

Support Vector Machines have the similar predicative ability as neural networks (they di-
vide dataspace using non-linear curves or hyperplanes respectively) but they actually do it 
by usage the different methods. The basic principle lie in finding of kernel function which 
transform non-linear separable data to the dataspace in which data are linear separeble. I.e. 
kernel function transforms data into the dataspace with higher dimensionality, where the 
key goal is to find the linear hyperplane which divide them and which is used for classifica-
tion afterthat (Figure 3.5).

 Figure 3.5  Principle of SVM method.
As the kernel functions, polynominal functions, gaussian function or popular RBF function 
is often used. New axes are created and instances are recalculated in this space using kernel 
function The finding of hyperplane in higher dimension dataspace is realized by usage of 
quadratic programming. The most important for hyperplane finding are support vectors 
(Figure 3.6).

 Figure 3.6  Classification by using SVM.
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As we describe SVM, they are usable only for binary classification. When we want to clas-
sify into the more than two classes, one-against-all method is used. Firstly, one of the classes 
is selected and SVM for classification to this class ond the others class is created. Afterthat, 
next class is selected. So, at the end, tree of classifiers is created. SVM method is very com-
putationaly fast, becouse of only functional transformations of data are performed. I used 
SMO algorithm implemented in Weka-3-6-6 to process the genotype data. This algorithm 
replaces all missing values and transforms nominal attributes into binary ones. It also nor-
malizes all attributes by default. Multi-class problems are solved using one-against all clas-
sification.

Metalearning algorithms3.5.2.10 

In this paragraph I want to describe methods usually called as metalearning methods. 
They enable us to combine classification power of multiple classifiers into one classification 
method or they are intend for „power“ learning, when a lot of interations of basic method 
are performed to improve the classification. Each of used method is implemented also in 
Weka-3-6-6 software (Witten et al., 1999).

Boosting

Algortihm of boosting (Michie et al., 1994).

1.   Assign the initial weight to each instance.
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Typical example of boosting methods is Adaboost M1 method (Witten et al., 2011). Only 
nominal class problems can be tackled. This method often dramatically improves perfor-
mance, but sometimes overfits. Experiments on generated datasets proved that boosted 
classifiers have ~15 % lower error than non-boosted ones (Freund and Schapire, 1996).
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Bagging3.5.2.11 

Bagging is used for a any basic classifier to reduce variance in datasets.

Bagging algorithm

1. For t T= 1 2, , ...,  trials with randomly generated training datasets with N  instances 
with repeats.

2. For each t T= 1 2, , ...,  make a classifier Ct .
3. For new classified instance perform a voting on classifiers - C *  - the most frequently 

class – is voted.

Voting3.5.2.12 

Using different methods of voting we are able to combine number of classifiers. Each classi-
fier can be usable for different task and different dataset, but many real problems generated 
datasets which contains few types of problems and also character of data may be different 
during the sampling e.g. according to noise or changed type of measuring. Many combina-
tions of probability estimates for classification by a voted classifier combined from different 
type of basic classifiers, i.e. to perform voted method on classifiers are available:

Average of probabilities,  –
Product of probabilities,  –
Majority voting,  –
Minimum probability,  –
Maximum probability,  –
Median. –

Evaluation of classification models3.5.2.13 

The main classification task is to build a model which can separate instances to their classes 
most accurately. Traning of classification models can be evaluated with a plenty of meth-
ods (10-fold cross validation, training set validation, test set validation, bootstraping). The 
goal of evaluation methods is to show how model created using training data will classify 
a new instances – i.e. how robust model is. Basic evaluation method is training set valida-
tion – we buid a model using training data and perform a classification on the same dataset. 
However, no information about robustness is given by this method. We can only evaluate, 
how good is the model fit, how good model describe training set. It is also useful, when we 
need to derive representation of large dataset in comprehensible form (e.g. decission rules 
or trees).
We can also divide dataset into two groups – training examples and testing examples. The 
portion between their sizes is not strictly given. After model was infered, we use an train-
ing dataset and perform a classification on them. But, derived model parameters are highly 
depent on algorithm of both dataset sampling.

Most usable for derivation robust metrics about model classification power is n-fold 
cross validation method (Witten et al., 1999; Berka, 2001) . During the cross validation, data-
set is divided into n parts. n-1 parts are given for model built (learning phase) and remain-
ing one is used for model testing. n iterations are performed and in each iteration another 
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part of dataset is used as testing one. Afterthat, results of performed n classifications are 
averaged and output for model infered for the whole dataset. Special case (but unusable 
due to computer time cosumption in many machine learning methos) of n-fold validation is 
leave-one-out method where n is set to dataset instances count. In this work, every machine 
learning method is validated using 10-fold cross validation which is considered as robust 
enough (Witten et al., 2011).

In case of genetic (MS) data, we can discuss the results as precission of classification cal-
culated on many levels as the genetic distance given by chosen model. Also we can discuss 
an errors of classifications which leads to similarity of instances. Models with high precis-
sion of classification based on genetic variability data can be used for breed or another 
choosen level discrimination.

Most used methods for calculation of model usability metrics using any chosen of vali-
dation method are mainly:

confusion matrix, –
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+ -
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- False Positive True negative

overall accuracy and error, –
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 – Kappa Statistics which is an index which compares the agreement against that 

which might be expected by chance. Kappa can be thought of as the chance-
corrected proportional agreement, and possible values range from +1 (perfect 
agreement) via 0 (no agreement above that expected by chance) to -1 (complete 
disagreement) (Eugenio and Glass, 2004).
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Where
N - number of observations or sum of weights,
Ei - predicted value of case,
Oi - observed value of case.

Clusterization3.5.3 

Clusterization methods allow us to derive the hidden structure of the data. They are used 
to infer clusters of instances with similar attributes values. These clusters being derived, 
we can discuss, in our case, inferred structure in connection with some traits or other at-
tributes, number of infered clusters, clusters assignments of individuals (Pritchard et al., 
2000; Pritchard and Przeworski, 2001). Many methods e.g. k-means clusterization, MCMC 
simulations, hiearchical clustering (unknown number of clusters), EM algorithm can be 
performed to infer population structure. It depends on the method of clusterization if num-
ber of clusters is infered too or if we have to know how many cluters we want to infer.  
Methods of clusterization are usefull when we have a data, with typically a lot of attributes, 
and we do not known anything about their structure and relationships between structure 
elements (clusters). In our case, attributes are represented by high polymorphic genotype 
data, so during the clusterization genetically similar groups of individuals are clustered 
together. We also know the breed membership of this individual, but this attribute is not 
primarily used in analysis. We use it only for comparison of analysis results with the real 
state of problem and for dealing with unexpected results.

We can perform analyses for a user-defined number of clusters to find out how cluster-
ization converges and to uncover populations structure. On the basis of this type of results 
we can discuss if our expectations about the real state of the problem correlated with the 
clusters (Pritchard et al., 2000).

According to the previous paragraph, when the results are unexpected, we can contin-
ue with the experiment for another assumed number for clusters. We can reach explainable 
results for another assumed number of clusters when they are clearly defined – clusteriza-
tion is not random.
This method is useful for the identification of the relationship among genetically different 
groups. In connection with the information about the breed membership of individuals, we 



3 Literature Review

43

obtained results about variability and migration proportions in selected populations.
As the results of clustering (EM, MCMC algorithms) show, the results of this type of analy-
sis based on MS genotype data also correspond to empirical facts of breeding programmes 
of each breed.
Same modifications of the common methods also compute under assumptions of popu-
lation genetic postulates, so we have to use datasets with numeric values (Pritchard and 
Przeworski, 2001) what means e.g. the lenght of microsatellite repetitions. Results of clus-
terization are usually:

number of infered clusters (in case they are unknown), –
the probabilities of membership of the individual in cluster, –
the probabilities of membership calculated on the population (or any agregation) –
level,
main aggregation attribute in infered clusters, –
calculated distances of clusters.Usage of cluster methods to describe genetic struc- –
ture of sampled subpopulations.

Definition of the problem

Problem is to explore clusters in genotype dataset of predefined cattle breed to describe 
their genetic structure, i.e. find an algorithm of clusterization which produce uniform clus-
ters based on genotype data or produce clusters most simmilar to predefined breeds.

In context of machine learning, cluster analysis is used to divide the samples/datarows 
into the clusters with similar attributes, i.e. clusters have describable properties based on 
attributes. These methods are example of methods based on learning without teacher. All 
of algorithms works with probability that instance belongs to the cluster, but the known 
classification of instance have not influence to clustering. We can only use preclassified in-
stances to prove the clusterization. We can divide these algorithms into two groups – meth-
ods in first of them can estimate number of clusters, for methods in second group, number 
of clusters has to be specified (Berka, 2001).  Basic method of clusterization is hierachical 
structuring.

Hierarchical clustering3.5.3.1 

Initialization

1.   calculate distances between all of instances
2.   all of instances are in separate cluster

Main procedure

1.   until more than one cluster exists
2.   find most similar clusters and join them
3.   calculate new distances between all of clusters

A lot of problems are connected with hierachical clusterization. When the number of clus-
ters reflects best the real state? How to choose optimal stop step in clusterization? The 
order of instances influence results. Another principles of clusterization offer the solution 
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based on statistical clusterization. However, the accuracy of the clusters assigments when 
genotype data are analyzed depends on a number of loci, the amount of admixture, and the 
extent of allele- frequency differences among populations.

K-means algorithm3.5.3.2 

K-means algorithm is one of the basic clusterization algorithms. It needs to specify apriori 
number of clusters. In comparison of hierarchical clusterization, the results are not too de-
pent on order of instances, but we can not inspect process of clusterization. So, for optimal 
clusterization when we do not know this number, we need to perform clusterization several 
times for optimal results. E.g. algorithm implemented in Weka-3-6-6 (Witten et al., 1999) 
seems to be usable to cluster genotype datasets.

k-means clustering algorithm

1. Randomly separate instances into the k clusters
2. Estimate centroids for each cluster in actual separation
3. Estimate distance from each centroid for each instance
4. Remove instance in the cluster which centroid minimalize the distance
5. If a remove happens go to 2, otherwise exit

EM algorithm3.5.3.3 

The EM algorithm assigns a probability distribution to each instance which indicates the 
probability of it belonging to each of the clusters. The EM (Expectation Maximalization) al-
gorithm described bellow is implemented also in Weka-3-6-6 software (Witten et al., 1999). 
Algorithm can predict optimal numer of clusters using a cross validation, so we do not need 
to specify it. After clusters number estimation, generalization of k-means clusterization is 
used under mixture model to estimate optimal probabilities of instances belonging to clus-
ters. Two steps are used – expectation step, when probabilities of instances are calculated 
and maximatization step, when new average probabilities of clusters are estimated. These 
two steps iterations converge to optimal solution of clusterization measured by overall like-
lihood (Witten et al., 2011).

Basic EM algorithm

Initialization

Randomly choose distribution parameters – probability that instance belongs to 1. 
the cluster

Iteration

Calculate values of hidden elements on parameters of distribution – cluster aver-1. 
age probabilities and instance probabilities
On actualized data calculate maximal likelihood estimate of distribution param-2. 
eters
If distribution parameters were changed go to 1 else end3. 
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The cross validation performed to determine the number of clusters is done in the following 
steps.

Cross validation

the number of clusters is set to 11. 
the training set is split randomly into 10 folds.2. 
EM is performed 10 times using the 10 folds the usual CV way.3. 
the loglikelihood is averaged over all 10 results.4. 
if loglikelihood has increased the number of clusters is increased by 1 and the 5. 
program continues at step 2. 

Markov chains3.5.3.4 

A Markov chain is a sequence of random variables X X X1 2 3, , ,...  with the Markov property, 
namely that, given the present state, the future and past states are independent. Formally,
Pr | , , ..., Pr |X x X x X x X x X X xn n n n n n+ += = = =( ) = =( )1 1 1 2 2 1 .
The probability of being state xi  at the „time“ n + 1  is conditioned only by state n  and not 
by the previous states. Strictly speaking this is a first order Markov chain. Figure 3.7 shows 
an example of a Markov chain. Markov chains are often described by a directed graph, 
where the edges are labeled by the probabilities of going from one state to the other states.

Figure 3.7 Example of Markov Chain to clustering/classification based on genotype data.
Figure 3.7 shows the example of Markov Chain which can be used for clusterization of 
genotype data. States of Markov chain labeled M M1 4, ..., represent genotypes of four loci,    
s0 represents a start state of Markov chain and states labeled C C1 2, represent two clusters of 
individuals infered using genotype data. When classes of clusters are specified, described 
Markov chain will classify individuals according to their class (e.g. breed). This Markov 
chain shows probabilities of transitions from each state based on genotype data. The figure 
shows the state when Markov Chain is „trained“, so the probabilities of transitions from 
each state are determined. How do we obtain this solution? 

The precise solving of this problem represents a hard complexity problem (exponential 
number of combinations should be computed to calculate accurate probabilities which re-
flect original dataset). A lot of approximative algorithms were created to avoid the complex-
ity of exact solution. They found an optimal solution of probabilities computation, so they 
find a local minimum of the problem. 

One of these approximative alghorithms is called Monte Carlo, so the Markov chain 
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created by this method  is called Monte Carlo Markov chain. Monte Carlo approximation 
is based on intensive simmulations based on random walking through the dataspace. First 
phase consist of probabilistic determination of transitions. Algorithm selected random seed 
what represents randomly selected instance of data. Afterthat, random walking through 
dataspace is performed. Neighbouring instances are selected and they are processed in ini-
tial Markov chain (where all of states can be joint) to asses transitions between states (which 
represent attributes of data). This phase is called „burn-in period“. The second phase (called 
„after burn“) serve to estimate of probabilities of transitions between the states and it is also 
performed by random walking in dataspace. Throught the random walking, each instance 
in dataset can be choose more than one times, so we do not need the large dataset to built 
Monte Carlo Markov Chain. 

But, there are a lot of problems connected with this approximative algorithm. The re-
sult is highly depent on the chosen random seed and we can obtain different result during 
the repetition of processing. The other problem is to estimate length of burn-in and after 
burn periods on which the result is also highly depent. These problems are large discussed, 
but no appropriate resolution was given nowadays. The general recommendations say, that 
both of two phases should be as long as it is possible due to computional time and to pro-
cess more than one computation to prove the results.
Method recommended for clusterization task of genotype data was developed by (Pritchard 
et al., 2000). Described method is based on MCMC clusterization to the defined number of 
clusters. Also, software implementation of this method exists – STRUCTURE 2.0 software. 
As the other clusterization methods, this method is also useful for indetifying populations 
and assigning individuals with a little information about population structure for indetify-
ing populations and assigning individuals with a little information about population struc-
ture as (Pritchard et al., 2000) wrote.
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Microsatellites in Cattle Studies3.6 

Microsatellites are abundant highly polymorphic markers well dispersed over the genome. 
They have been described as length variations within tandem arrays of short nucleotide 
motifs and are unequivocally defined by specific sequences of primers in PCR. They have 
been shown to be useful for a variety of purposes, such as genome mapping, parentage de-
termination, legal medicine, disease research, cancer research, and determination of genetic 
variation (Hancock et al., 1999). Several studies have shown that microsatellites can be used 
to identify the population of the origin of an individual e.g. (Paetkau et al., 1998; Rannala 
and Mountain, 1997; Cornuet et al., 1999) and for the estimation of genetic diversity and re-
lationships among livestock breeds (Buchanan et al., 1994; Saitbekova et al., 1999; Schmid et 
al., 1999). The high variability of microsatellites and their distribution give them advantages 
over other markers. (Arranz et al., 1996) showed that microsatellite loci were much more 
useful than protein markers in determining heterozygosity and genetic distances between 
Brown Swiss and three other breeds of Spanish cattle.

Recently, microsatellites represent the commonest markers used for population ge-
netic studies of cattle. Applications of this technique was successful in characterization of 
cattle breeds throughout the world, it is elucidation of origin, migration and admixture 
of cattle breeds during domestication, assessment of intrapopulation diversity, genetic 
differentiation and relationship of modern cattle populations (Kantanen et al., 2000; Canon 
et al., 2001; Hanotte et al., 2002; Beja-Pereira et al., 2003; Troy et al., 2001; Freeman et al., 
2004; Freeman et al., 2006). These studies have progressively used common sets of micro-
satellite markers thus facilitating comparative surveys of diversity and relationship and 
the consolidation and analysis of large datasets for multiple breeding, evolutionary and 
conservation applications. Using an array of microsatellite markers, it is thus possible to 
use individual genotype information to determine the source population with a high rate 
of confidence (Bjornstad and Roed, 2002; Fan et al., 2002; Koskinen, 2003).

Up to now most studies have focused on a small set of microsatellite loci, typically 
the ones suggested by the FAO. The microsatellite markers used accodrding to FAO rec-
comendations are BM1824, CSSM08, CSSM33, CSSM60, CSSM66, ETH3, ETH10, ETH225, 
HAUT27, HEL01, HEL5, HEL09, ILSTS005, ILSTS006, ILSTS011, ILSTS033, ILSTS034, IN-
RA05, INRA63, INRA35, MM8, MM12, TGLA53, TGLA122 and TGLA227. Also set recom-
mended by ISAG is widely used in population genetic studies, thanks to routine genotyping 
of this set in numerous countries and consecutive easy comparison of obtained results. A 
set of the ISAG recommended microsatellite loci: BM2113, BM1824, ETH3, ETH10, ETH225, 
INRA23, SPS115, TGLA53, TGLA122, TGLA126 and TGLA227.
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Diversity in Studied Cattle Breeds3.7 

Cattle holds a unique position among domestic livestock species thanks to its key agricul-
ture, economic, cultural and even religious roles in historical and current societies (Bradley 
et al., 1998). Most of the productive dairy and beef cattle breeds kept worldwide are of Eu-
ropean origin (Lenstra, 2006). Along with the evolutionary forces (gene flow, genetic drift 
and natural selection), artificial breeding practices (e.g. artificial insemination and embryo 
transfer) have been the main process influencing the genetic diversity of domestic animal 
populations (Hall, 2004; Li et al., 2007). Highly selected and intensively managed breeds 
such as the dairy Holstein Friesian cattle have now grown in numbers at the expense of lo-
cal cattle breeds, which have become endangered or extinct. At the same time, the intensive 
selection of top sires resulted in more uniform populations and in decrease of the effective 
population sizes. These developments lead to the loss of genetic variation and adaptations 
to local conditions or extensive management (Barker, 1999). Loss of genetic variability and 
inbreeding in small populations is the main focus of attention in conservation genetics (Hall, 
2004). Description of biodiversity in cattle is important as an aid to conservation of animal 
genetic resources and national heritage.

Genetic diversity can be evaluated on the basis of the number of alleles per locus, 
heterozygosity and polymorphic information content (Czernekova et al., 2006). Machugh et 
al. (1997; 1998) used 20 microsatellites for clarifing the genetic relationships between cattle 
populations from Africa, Europe and Asia and provided support for a separate origin of 
domestication for Bos taurus and Bos indicus cattle. Kumar et al. (2003) used 20 microsatel-
lite markers for studying extent of genetic differentiation among breeds of cattle from India, 
Europe and the Near East. When considering European breeds, similar values of genetic 
diversity have been obtained using microsatellite data: 11.2% of similarity for 7 European 
breeds (MacHugh et al., 1998), 10.7% for 20 northern European breeds (Kantanen et al., 
2000), and 6.8% for 18 southwestern European cattle breeds (Beja-Pereira et al., 2003), 9.9% 
for European breeds (Gautier et al., 2007).

Hereford 3.7.1 

Studies on genetic diversity of Hereford breed are scarce. Blott et al. (1998a) subsampled 
Herefords from Canada and the United Kingdom and found significant genetic differences 
between countries. Furthermore, all the Hereford populations were significantly different 
from the six other breeds tested (Aberdeen Angus, Chianina, Limousin, Shorthorn, Sim-
mental and Sussex, P < 0.00001). According to their findings, Canadian Herefords were 
more homozygous than cattle in other countries, and displaced almost completely British 
Hereford genetics in a significant proportion of the British Hereford population. The ex-
pected average heterozygosities ranged between 0.19 and 0.26. The lowest heterozygosities 
were observed in the Canadian polled and in the Canadian horned groups (1960s). As for 
the British groups, the lowest heterozygosity was found in „traditional“ Hereford, the high-
est ones were observed in the „hybrid“ animals (1970s), and in Swedish Herefords. Other 
studied breeds had generally higher heterozygosities than the Hereford groups, with the 
exception of the Sussex breed. Number of alleles observed in the Hereford groups ranged 
from 48 in the „traditional“ group to 60 in Swedish, and 61 in Irish Herefords. There are 
several earlier studies focused on inbreeding in the Hereford population. Willhalm (1937) 
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sampled population lines from the entire breed in 1930 and calculated a mean inbreeding 
coefficient of 8.1%. Stonaker (1951) reported 30.7% inbreeding  for a closed herd in 1947, 
and Russell et al. (1984) reported 37.0% inbreeding for another closed line in 1984.

Holstein3.7.2 

The Holstein breed is known worldwide as one of the top yielding dairy breeds. Breeding 
strategies to improve milk production, based on the import of purebred Holstein heifers 
and semen have been implemented by many developed and developing countries over the 
last 40 years. The strong selection for milk production in conjunction with the extensive 
usage of artificial insemination has reduced the genetic diversity within this breed as ap-
parent in the data of (Mc Kay et al., 2008). No significant divergence is evident between 
geographically separated populations of Holstein cattle probably due to mentioned facts, 
historic occurrences of gene flow between populations and selection for similar traits. Mau-
det et al. (2002) observed low number of alleles per locus (5.83) and the heterozygote deficit; 
mean observed and expected heterozygosities were  0.669 and 0.686, respectively, in the 
sample of Holstein bulls. Furthermore, the exact test for Hardy-Weinberg disequilibrium 
within breeds showed a significant deviation in the French Holstein breed (P < 0.0001). The 
average heterozygosity in Holstein population for the 17 loci in the study of (Del Bol et 
al., 2001) was 0.68. Total of 110 alleles were found in the Holstein breed. Czernekova et al. 
(2006) reported the lowest variability in microsatellite loci in Holstein cattle in comparison 
to other breed studies in their work. According to (Hanslik et al., 2000) the low number of 
alleles in Holstein cattle is resulting from an intensive selection. Furthermore, in the study 
of (Czernekova et al., 2006) or (Del Bol et al., 2001) Holstein was found as the most diver-
gent breed. Similarly, Hanslik et al. (2000) showed that the Holstein breed is highly struc-
tured between the Old World and the New World populations. The possible explanation 
for this findings is that the Holstein breed was created relatively recently in comparison 
to other breeds. On the other hand, Del Bol et al. (2001) found that Italian breed Burlina 
(among all the Italian breeds) was the closest to Holstein (0.272) probably because of the 
common origin of these two breeds. Machado et al. (2003) who analysed  the genetic diver-
sity within and among four cattle breeds found that Holstein breed was the most distinct 
from the other breeds: 1.15 in relation to Gyr, 1.12 in relation to Nellore and 0.94 in relation 
to Guzerat. In their study, 64 alleles were detected in all four breeds using 9 microsatellite 
primers. The average heterozygosity detected for the nine loci was 35 % and the expected 
value for Hardy-Weinberg equilibrium was 53 %. Further, each breed showed 53% of the 
total number of alleles. The average number of alleles per locus was 7.11 +/- 3.21.

 Piedmontese3.7.3 

Studies on genetic diversity of Piedmontese breed are scarce. Ciampolini et al. (1995) used 
17 bovine microsatellite system to study four different Italian breeds (Chianina, Marchi- 
giana, Romagnola and Piedmontese). They observed 181 alleles in total, considering these 
four breeds as a whole. The average number of alleles per microsatellite was 10.59. Fur-
thermore, they discovered some Piedmontese-specific alleles, sometimes with relatively 
high frequencies (36% for INRA5, allele 4, 27% for INRA5, allele 5 and 20% for INRA16, 
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allele 10). The sum of the frequencies of typical alleles in the Piedmontese breed shows 
an average of 3.4 specific alleles which are never found in other breeds. Genetic distances 
calculated for these four breeds demonstrated that the Piedmontese is the most distinct of 
all four breeds. Recently, Moioli et al. (2004) studied three native Italian cattle breeds, Pied-
montese, Maremmana, and Podolica using 21 microsatellites located on 13 chromosomes. 
As for the Piedmontese, mean number of alleles per locus was 7.3. Average gene diversity 
over all loci in the Piedmontese breed was 0.738. The values of heterozygosity, both ob-
served and expected was  0.148  (+0.083)  and 0.163  (+0.083), respectively. Inbreeding rate 
was 0.102. Genetic distances were as follows: 0.069 (Piedmontese versus Maremmana) and 
0.050 (Piedmontese versus Podolica). According to findings of (Moioli et al., 2004), 82 % 
Piedmontese animals analyzed in this study fit in the appropriate cluster with a probability 
higher than 90 %. The mentioned fact may result from the long-term selection activity made 
in the framework of one performance station and using AI in large extent.

Simmental3.7.4 

Del Bol et al. (2001) used 17 microsatellites to determine the genetic structure of seven Ital-
ian and six Swiss and German cattle breeds. In Simmental cattle, they found a total allele 
number of 95, with average heterozygosity being 0.62. Furthermore, Simmental showed a 
certain differentiation as compared to Brown Swiss (0.164), in spite of their common geo-
graphical origin, probably due to limited admixture. The genetic distances between Sim-
mental and the other alpine breeds were roughly similar (0.204±0.337).

Fleckvieh3.7.5 

Czernekova et al. (2006) found a very close similarity between Fleckvieh (Czech Pied cattle) 
and Slovak Pied breeds that is a result of an analogous breeding programme in the former 
Czechoslovakia. The mentioned study and the study of (Čítek and Řehout, 2001) demon-
strated the highest values of heterozygosity, polymorphic information content, and effective 
population size in Czech Pied Cattle.

Limousin, Charolais, Aberdeen Angus3.7.6 

 For the Limousin breed, Maudet et al. (2002) found the mean number of alleles per locus of 
5.78. The values of heterozygosity, both observed and expected, was 0.674 and 0.675, respec-
tively. In the same study, mean number alleles per locus in Charolais cattle was 6.00. Mean 
observed heterozygosity was 0.640 and mean expected heterozygosity was 0.661. Maudet et 
al. (2002) and Moazamigoudarzi et al. (1994) determined that the Limousin and Charolais 
breeds clustered together and were clearly differentiated from the dairy breeds, suggest-
ing a possible common origin or recent gene flow between these two breeds. Russell et al. 
(2000) used Aberdeen Angus, Hereford, Charolais and Simmental as comparisons to be  er 
define Criollo cattle. They found that the Charolais breed is the most similar or closely re-
lated to Criollo cattle, and the Angus breed is the most different. According to (Russell et al., 
2000), geographic location coudl be possible explanation for relatedness of the Criollo and 



3 Literature Review

51

the Charolais. The Criollo originated from Spanish animals, and the Charolais originated in 
France. The Angus originated in Scotlandland, therefore, was geographically distant from 
the Criollo. Russell et al. (2000) used the methods described in (Nei, 1972) for determinat-
ing genetic distances between Simmental and Charolais (0.405), Simmental and Aberdeen  
Angus (1.569), Simmental and Hereford (0.944), Charolais and Aberdeen Angus (0.750), 
Charolais and Hereford (1.651) and finally Angus and Hereford (1.895).
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Material and Methods4 

Microsatellite loci4.1 

Ten microsatellite loci (BM1824, BM2113, ETH3, ETH10, ETH225, INRA023, SPS115, TG-
LA122, TGLA126, TGLA227) considered by ISAG (International Society for Animal Genet-
ics) for individual identification (genetic type) and parentage verification are used for rou-
tine genotyping in the Czech Republic.

Individuals included in datasets were genotyped in Lamgen laboratory (registred labo-
ratory no. 1030.3 accredited by ČIA according ČSN EN ISO/IEC 17025) on the Department 
of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel Univer-
sity, Brno. Genotyping of the 10 microsatellite markers was performed by usage multiplex 
PCR using StockMarks® Genotyping kit and for detection of PCR products DNA sequenc-
ing machine ABI PRISM TM 310® Genetic Analyzer (Applied Biosystems, Foster City, CA, 
USA) was used.

Datasets4.2 

General Dataset - Purebred Individuals4.2.1 

For the purpose of this work, 3300 from 7776 total (genotyped from 2002 to July 2009)
puredbred genotyped individuals with breed attribute declared were selected using the 
software support described in following text. The breed counts included in this basic data-
set are illustrated in table 4.1 with abbreviations used below in following chapters.

Breed Breed abbreviation Number of individuals
Czech Simmental* SM100 730

Charolais T100 705
Aberdeen Angus G100 700
Czech Fleckvieh** C100 363

Holstein H100 243
Limousin Y100 188
Hereford U100 137

Piedmontese P100 125
Blonde d’Aquitaine Q100 73

Galloway W100 66

Numbers of indivuduals of selected breeds in general dataset. Table 4.1  *Czech Simmental 
is here defined as beef breed of Simmental cattle kept in Czech Republic. **Czech Fleckvieh is here 

defined as dual purpose cattle breed of Fleckvieh type, known as České červenostrakaté.

http://dad.fao.org
http://dad.fao.org
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Individual level of identification attribute was set to “laboratory number” – unique num-
ber within laboratary operations. This attribute can be used as unique identification key of 
individual without regard on declared data. It is used it for the control purposes – if some 
insane results appear, it is possible to find an errors in dataset by return. Individual is rep-
resented in the general dataset as:
individual laboratory number breed m m

general DS
= é
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ù
û, , ,...,1 10 úú

-

.
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So, the general dataset is defined as generalDS individuals individuals individual
generalDS

= { }| : . 

Crossbred dataset4.2.2 

For purposes of machine learning methods used for breed discrimination, dataset of 380 
crosssbred individuals with various portions of breed attribute declared were selected. In 
all of individuals Czech Flekckvieh breed is included in breed declaration, as the Czech 
Fleckvieh is mostly used for producing crossbreds under the conditions in the Czech Re-
public.  This dataset crossDS generalDSÇ = Æ is used as control dataset in machine learning proccessing and 
the results of classification task can be inspected afterthat to explore if they are usable also 
for breed mixture prediction. In all tasks, where this dataset is used, it is valid that none 
of instance from crossDS generalDSÇ = Æ is not used in training set. Also, crossDS generalDSÇ = Æ , type of 
crossDS =type of generalDS  with exception:
breed B SM T G C H
crossDS generalDS

: string Ï = 100 100 100 100 100, , , , ,, , , , ,Y U P Q W

breed B
crossDS crossD

100 100 100 100 100{ }
Ï

,

: string 
SS

breed portion breed portion= { }| .: string

Union of crossbred and general datasets are used to show and describe genetic variability.

Machine learning datasets4.2.3 

In case of unknown gametic phase, we need to define representation the genotype data of 
microsatellite loci. So, we do not know which allele in genotype representation m a ai = é

ëê
ù
ûú1 2  

is on the first position in fact. The genotyping method does not allow us to derive this 
knowledge a priori. Because of machine learning methods are created for categorical data 
which represent in one attribute complex knowledge of this attribute (problem 1), we need 
to define form of genotype data attribute which contains knowledge about two alleles which 
position in genotype representation is unknown (problem 2). In other words, the position of 
one allele has to be standardized because it is the key aspect of machine learning presump-
tions. So, three types of genotype data representation are decided for the purpose of usage 
machine learning methods to breed discrimination task and they are evaluated for this task 
in this work.
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Genotype dataset4.2.3.1 

The first type of the dataset used for machine learning is the genotype dataset described 
above as generalDS . Two alleles a a1 2,  in genotype representation m a ai = é

ëê
ù
ûú1 2  are ordered 

according to their length. Imagine two genotypes [ / ],[ / ]195 210 178 195  of two diffrerent in-
dividuals in the same loci. They will be considered as different by any machine learning 
method but they contain half simmilar information about genotypes in fact. However, this 
representation does not reflect the real state and can distort real relationships in described 
populations if it is used in machine learning methods, the results show, that is is usable 
in breed discrimination (Dawson and Belkhir, 2001; Manel et al., 2002; Masuda and Pella, 
2004; Burócziová and Říha, 2009).

Allele-length dataset4.2.3.2 

In this representation of genotype data, all loci are represented by two attributes, the first 
expressed the shorter allele, the second attribute the longer one. The allelelengthDS  is de-
fined as generalDS  with exception of:
individual laboratory number breed m m
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= [ , , ,...,1 200

1 20

].

,..., [ ],

[ ]

m m m a where

m a
ij j

ij j

: integer

is genotype of

=
  allele in locus represents the length of allj i a N aj j, ?,Î + eele repetition

where  is odd

,

, , .( )m m M a a iij i k j k+ Î <1

So, now the genotype information is not reduced (problem 1 is resolved), and machine 
learning methods can use this infomation in classifications. But the problem 2 is still pres-
ent, because of independent attributes expressing genotype information in one loci which 
are depent in fact.

Allele-frequency dataset4.2.3.3 

The method which can avoid us partly the simple order according allele lengths descibed 
above and reflect the real genetic relationships in populations better is to order an alleles 
according to their frequencies in population sample. So, the third dataset allelefrequencyDS  
is defined as  allelelengthDS  with exception of:
individual laboratory number breed m

allelefrequencyDS
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 Function frequency ai( )  returns frequency of allele ai  computed across the whole data-
set generalDS .
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Used methods4.3 

Description of the genetic diversity and characterisation of 4.3.1 

the selected cattle breeds in the Czech Republic

Definition of the problem

Problem is to describe effectively genetic diversity based on microsatellite markers of the 
selected cattle breeds in the Czech Republic and to create comparable results of their ge-
netic characterization.

Selected methods

All selected methods to describe the genetic diversity are implemented in PowerMarker 
V3.25 software (Liu, 2006). Most of methods implemented in this software are designed ac-
cording (Weir, 1996). These methods are namely:

number of observations and availability, –
major allele frequencies, –
number of alleles and genotypes, –
within-population inbreeding coefficient, –
allele and genotype frequencies, –
observed and expected heterozygosities, –
selected genetic distances (Euclidean, Shared Allele, Golsdstein, Nei 72, Shriver,  –
Slatkin),
vizualization of genetic distances (UPGMA and neighbour-joining genetic trees). –

For all of these summary statistics, nonparametric bootsrapping (1000 repetitions) across 
loci is used for variances and confidence intervals estimation. The bootstrap is based on the 
statistical procedure of sampling with replacement. The idea is to built datasets randomly 
with replacement, perform calculations on these datasets and average the results. More 
real-like distributions and variances can be obtain by this method. It is also good solution 
for situation when nonequal numbers of individuals are included in dataset groups (e.g. 
nonequal numer of individuals of each breed) (Witten et al., 1999; Witten et al., 2011). Also, 
for genetic distances visualization, PhyloDraw 1.2.2 (Choi et al., 2000), ATV 4.00 Alpha 5 
(Zmasek and Eddy, 2001) and Archeopteryx 0.96 (Han and Zmasek, 2009) software imple-
mentations were used.

Number of observation4.3.1.1 

The number of observation for a microsatellite loci is formulated as the number of nonmiss-
ing alleles (for haploid data) or nonmissing genotypes (for diploid data) observed in the 
dataset. A genotype is already considered as missing if one of its two alleles is missing (Liu 
and Muse, 2005).
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Availability4.3.1.2 

Availability is defined as 1 -Observed n/ , where Observed  is the number of alleles observed 
(succesfully genotyped) and n  is the number of individuals sampled (Liu and Muse, 
2005).

Within-population inbreeding coefficient4.3.1.3 

An EM algorithm described in (Weir, 1996) is used fo calculation of this measure. The pa-
rameter is estimated using method of moments and this method may converge for negative 
values of inbreeding coefficient.

Allele and genotype frequencies4.3.1.4 

Allele and genotype frequencies are calculated for different input datasets subdivisions in 
this work (on breed level, on entire dataset level etc.). These two measures are neccessary to 
calculate as input to other methods (e.g. genetic distances calculations).

The sample allele frequencies are calculated as p n nu u= / 2   (Weir, 1996), with the vari-
ance estimated as

 

var( ) .
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Where   means “estimated by”.  The sample genotype frequencies Puv  are calculated as 
n nuv , n  is the number of individuals sampled. Both the  p Puv uv,  are unbiased maximum 
likelihood estimates (MLEs) of the population frequencies. Confidence intervals for allele 
and genotype frequencies are formed by resampling individuals from the dataset (Liu and 
Muse, 2005).

Observed heterozygosity (4.3.1.5  H0 )

Observed heterozygosity is the observed proportion of heterozygous individuals in the 
population. At single locus it is estimated (Weir, 1996) as
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where, Pluu  is population frequency of genotype A Au u  in the l th locus of k  loci.

Expected heterozygosity (4.3.1.6  He )

Expected heterozygosity known also as gene diversity is defined as 1.0 minus the sum of 
the squared gene frequencies. The values range from zero (no heterozygosity) to nearly 1.0 
(for a a large number of equally frequent alleles).

Expected heterozygosity is defined as the probability that two randomly chosen alleles 
from the population are different. It can be calculated as the common biased estimator of 
the gene diversity in locus l , plu

2  is an allele frequency of Au  in population, n  is number of 
individuals, k  is number of alleles in loci l ,
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If we want to calculate gene diversity accross several loci, we need double summation and 
subscripting as follows:
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An unbiased estimator of gene diversity based at method of moments (Weir, 1996) at the l th 
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where f  is an inbreeding coefficient.

Genetic distances4.3.1.7 

Genetic distances are measures of similarity between and among spieces, populations sub-
populations or individuals. They are suitable to construct genetic trees – phylograms.

 For this chapter purposes, let pij  and qij  be the frequencies of i th allele at the j th locus 
in the populations X  and Y  respectively, while aj  is the number of alleles at the j th locus 
and m  is the number of loci examined.

Euclidean distance4.3.1.8 

Euclidean distance, as the most common geometric based distance is defined by: 
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Nei’s standard genetic distance4.3.1.9 

Nei (1972)standard distance has an expected value linearly related to the time since diver-
gence, assuming that all loci have the same rate of neutral mutation, and that the genetic 
variation is maintained by the equilibrium between infinite-alleles mutation and genetic 
draft, with the effective population size of each population remaining constant.
The quantity is defined as:
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As well, Nei’s distance modification comes from (Nei et al., 1983) is widely used for calcula-
tion oof geometric based distances.
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Goldstein distance 4.3.1.10 

A modification of the average sum of square distance method has recently been made by 
(Goldstein et al., 1995a). With the stepwise mutation model (SMM) assumption, Goldstein 
et al. (1995a) proposed that the following distance be used for microsatellite loci:
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pkj , qkj  are frequencies of the allele with k  repeats at the j th locus in population X  and 
population Y . The measures can be useful for estimation genetic distance closely relat-
ed populations. An extension of this method, incorporating the analysis of microsatellite 
data into an AMOVA framework, has been recently proposed by (Michalakis and Excoffier, 
1996).

Slatkin ASD distance4.3.1.11 

A distance measure closely related to dm( )2  is the average square distance (ASD) de-
fined by (Slatkin, 1995), which is given by formula:
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Shriver DSW distance4.3.1.12 

Shriver investigated the correlation between observed and simulation values based on the 
SMM. This study compared three parameters; the number of alleles, the range of allele 
sizes, and the number of modes in the distribution of alleles. Shriver et al. (1995) distance 
is defined as:
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Shared Allele Distance4.3.1.13 

Another commonly used distance, the shared allele distance DSA (Chakraborty and Jin, 
1993), is defined as:
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The measure D DLS SA= - -( )ln 1  usually known as Log Shared Distance has also been pro-
posed.
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Estimation and validation of paternity testing by 4.3.2 

microsatellite loci in selected cattle breeds

Definition of the problem

Is the panel of 10 selected microsatellites useful for paternity testing for overall and each 
breed?

Selected methods

Calculating of polymorphish information content (PIC) is implemented in PowerMarker 
V3.25 software (Liu and Muse, 2005; Liu, 2006). Another measures desribed above (in sec-
tion ) are also implemented in the software for data operations.

Polymorphism information content4.3.2.1 

Informativeness of polymorphic markers can be quantitatively measured by a statistic 
called the polymorphism information content, or PIC (Botstein et al., 1980). Metrics shows 
ability of microsatellite lenght polymorphism distinguish genotypes on small number of 
loci. It is also used to identify and locate a hard-to-define marker locus.
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where xi  – the frequency of i th allele;  k – the number of alleles.

Paternity exclusion (PE1)4.3.2.2 

The probability of exclusion non correct parent, when the genotypes of offspring and both 
parents are known os given by formula created by (Jamieson and Taylor, 1997). One of the 
parent is verified based on sample of population allele frequencies.
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where xi  – the frequency of i th allele;  k – the number of alleles.

Paternity exclusion  - one parental genotype unavailable (PE2)4.3.2.3 

The probability of exclusion non correct parent, when one of genotype of parents is un-
known (Jamieson and Taylor, 1997).
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where xi  – the frequency of i th allele;  k – the number of alleles.
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Parentage exclusion (PE3)4.3.2.4 

The probability of exclusion non correct parents, when the genotype of offspring and both 
parents are known (Jamieson and Taylor, 1997).
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where xi  – the frequency of i th allele;  k – the number of alleles.

For paternity exclusion measures, following relationship is valid:
PE PE PE( ) ( ) ( ).2 1 3< <

Combined Exclusion Probability4.3.2.5 

Combined Exclusion Probability is calculated for each Paternity exclusion (PE n n( ), , ,= 1 2 3 ) 
type as CEP( )1 , CEP( )2 , CEP( )3  (Jamieson and Taylor, 1997).

CEP n PE n PE n PE n k( ) ( ( ) )( ( ) )...( ( ) )= − − − −1 1 1 11 2

where index 1 2 3, , ,...,k  indicates numbers of microsatellite loci.

Creation of the software support for routine genotyping of 4.3.3 

microsatellite loci under the reference laboratory conditions

Definition of the problem

Problem is to create a software support for the reference laboratory Lamgen (MENDELU 
Brno) which can handle large cattle genotype datasets, can operate with them on local net-
works effectively and securely and allows:

automatization of genotype and individual data inserting, –
making effective individual and group selections based on identification data, –
creation of individual genotyping reports, –
performing a parentage testing, –
calculations of MS panel usability, –
secure operations of multiple users. –

Selected methods

As genotype and identification data storage framework for descibed purposes, freeware 
SQL database solution Firebird 2.0 (Firebird Database Project, 2008) was selected. The main 
user interface is created in Borland Delphi 2005 Architect Edition development environent 
(Borland Inc., 2007). As described, reporting functions are needed, so freeware component 
(Fast Reports Inc., 2007) was used for this purpose. FreeReport is reporting tool compo-
nent. It consists of report, designer and preview engines. It is fully written in Object Pascal 
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programming language (Delphi programming language). Capabilities of FreeReports 2.33 
component used during the software creation are mainly:

Band-oriented report generator. –
Build-in powerful designer, also available in run-time. –
Preview like in MS Word. –
Compact code - w/o designer smaller than QR1. –
Unlimited number of pages in prepared report. –
Multi-page reports; composite reports; subreports; groups; –
Multi-column reports; master-detail-detail reports; –
Cross-tab reports; two-pass reports. –
Full control over printing process; support all paper sizes. –
TXT, RTF, CSV, HTML export. –
Text search in prepared report. –

For fast calculations of MS panel effectivity measures, implementation of container data-
types (hash tables, lists and vectors) is needed. Programming with these datatypes can re-
duce computional time radical (thanks to non linear or non exponential searching in large 
data structures). The component package DIContainers 3.0 (The Delphi Inspiration, 2008) 
implementation was used for handlig described datatypes.

Proving of usability of machine learning methods in cattle 4.3.4 

breed discrimination task

Definition of the problem

Problem is defined as to find an machine learning algorithm and its parameters which is 
most appropriate to classify individuals into their breed class declared using cattle geno-
type data according to measures of classification power and to find most suitable data rep-
resentation for usage with machine learning algorithms for the same issue - breed discrimi-
natition in cattle based on genotype data.

Subproblem: To find an appropriate form of genotype data set for breed discrimination 
task.

Selected methods

For comparison of results obtained in previous work in horses (genotype data of 17 MS 
markers) (Burócziová and Říha, 2009), methods described in mentioned paper were used:

J48 algorithm (decision trees), –
JRip algorithm for decision rules induction, –
Naive Bayes classifier, –
Bayes Net probability classifier, –
IB1, IB5 instance based classifier; –

and these additional methods not yet analyzed for this task were added:
ZeroR as the base for result comprison, –
Support Vector Machines (SMO implementation), –
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modification of IB1 classifier (distance function created for genotype data), –
algorithms for combining of classifiers (Vote classifier algorithms). –

Most of described methods are implemented in Weka-3-6-6 software (Witten et al., 1999) 
framework, modification of IB1 classifier with new distance function was self- implemented 
in Borland Delphi 2005 development environment (Borland Inc., 2007). Three types of data-
sets generalDS , allelelengthDS , allelefrequencyDS   described in 4.2 section were used for each 
method (except modified IB1 classifier where only generalDS  dataset and designed metrics 
were used). Then all of datasets were processed in Weka 3-6-6 Explorer and Experimenter 
environment for all of proposed algorithms to find most suitable parameters for each algo-
rithm. Only best reached results are then reported for each method.

G-metric classifier4.3.4.1 

In case of special character of genotype data described in section 4.2, special distance metric 
was determined. This measure reflects genetic distance of two individuals based on geno-
type data obtained in uknown stage of gametic phase. Metric for measuring distance of two 
genotypes Gdis  is defined as follows. 
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This metrics was implemented with IB1 algorithm and Slope classifications in Borland Del-
phi (Borland Inc., 2007) to prove a classification power of method used Gmeasure  on geno-
type dataset i.e. generalDS .

G-metric

compute max diff in length –
chose two most similar alleles compute distance –
distance=((100-(abs(length1-length2)/max diff*100)):2)/100 compute distance for  –
second pair
whole distance: 1-sum distances for pairs –
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Evaluation of classification models4.3.4.2 

For this thesis purpose, we used following measures of model quality as they are defined 
in 3.5.2.13:

confusion matrix, –
overall accuracy and error, –
accuracy and error calculated for each class, –
precission and recall, –
F-measure, –
Kappa Statistics, –
graph of probablity predictions for individuals on training dataset. –
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Results and Discussion5 

Description of the genetic diversity and 5.1 
characterisation of selected cattle breeds in the 
Czech Republic.

Summary results of genetic variability for microsatellite data 5.1.1 

by breeds

General dataset5.1.1.1 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.313 26 3329 10 1.000 0.745 0.712 0.699 0.045
BM2113 0.215 52 3277 12 0.984 0.854 0.793 0.837 0.071

ETH3 0.466 36 3284 10 0.986 0.700 0.686 0.661 0.020
ETH10 0.566 31 3269 8 0.982 0.614 0.526 0.570 0.144
ETH225 0.342 37 3299 11 0.991 0.763 0.718 0.726 0.059

INRA023 0.321 70 3245 14 0.974 0.799 0.741 0.774 0.073
SPS115 0.535 33 3053 11 0.917 0.661 0.622 0.629 0.059

TGLA122 0.390 121 3259 24 0.979 0.765 0.689 0.737 0.100
TGLA126 0.476 27 3250 8 0.976 0.667 0.631 0.616 0.054
TGLA227 0.251 80 3269 16 0.982 0.848 0.818 0.832 0.036

Mean 0.388 51.3 3253.4 12.4 0.977 0.742 0.694 0.708 0.065

Results of basic genetic variability for general dataset (n=3300).Table 5.1 

Summary values obtained by analysis of the whole general dataset for 3300 purebred in-
dividuals are summarized in table 5.1. Under availability equals 0.977, across all ten loci 
0.388 as major allele frequency, 51.3 genotypes per loci 12.4 alleles per loci were reached. 
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Expected heterozygosity was calculated as 0.742 and observed heterozygosity as 0.694. PIC 
was calculated as 0.708 and inbreeding coefficient Fis as 0.065 what represent near random 
mating across all loci and the whole sampled subpopulatin. Most different alleles were 
detected in TGLA122 (24) which then create 121 different genotypes. As the most diver-
gent loci was evaluated BM2113 what create only with 12 different alleles 52 differenbt 
genotypes (He=0.854, H0=0.793, PIC=0.837) and TGLA227 with 16 different alleles create 80 
genotypes (He=0.848, H0=0.818, PIC=0.832).

Both ETH3 and TGLA126 contain only 8 different detected alleles and have 31 and 27 
different genotypes, respectively. They seem to be the most less divergent loci in panel for 
general dataset.
All of loci show positive values of Fis, however ~0.000, except ETH10 (0.144) and TGLA122 
(0.100). As ETH10 is used as genetic marker as well (DeAtley et al., 2008; DeAtley et al., 
2011; Meirelles et al., 2011a), we can see influence of breeding selection in this case.

Crossbred dataset5.1.1.2 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.267 17 380 7 1.000 0.757 0.718 0.714 0.053
BM2113 0.230 35 376 11 0.989 0.844 0.856 0.825 -0.014

ETH3 0.446 25 379 8 0.997 0.703 0.694 0.660 0.015
ETH10 0.444 22 375 8 0.987 0.705 0.656 0.663 0.071
ETH225 0.320 25 378 9 0.995 0.764 0.767 0.726 -0.003

INRA023 0.316 41 375 13 0.987 0.785 0.771 0.754 0.019
SPS115 0.507 19 353 7 0.929 0.683 0.637 0.649 0.068

TGLA122 0.387 54 377 17 0.992 0.775 0.682 0.750 0.122
TGLA126 0.468 21 374 8 0.984 0.667 0.642 0.613 0.039
TGLA227 0.270 61 368 13 0.968 0.854 0.851 0.840 0.006

Mean 0.366 32 373.5 10.1 0.983 0.754 0.727 0.719 0.036

Results of genetic variability for crossbred dataset (n=380).Table 5.2 

Table 5.2 summarizes results calculated for crossbred dataset in the meaning of genetic 
variability across all of loci. With availability across all loci 0.983, major allele frequency 
for dataset was calculated as 0.366, average number of genotypes as 32 (ranges from 19 in 
SPS115 to 61 in TGLA227), average number of distinct alleles as 10.1 (from 7 in BM1824 
and SPS115 to 17 in TGLA122). Regarding the most and the less variable markers, results 
are fully comparable to general dataset ones (see chapter 5.1.1.1). Anyway, in crossbred 
dataset, little bit higher results were obtained for observed heterosygosity (0.856 in BM2113 
and 0.851 in TGLA227), what is in accordance with minimal presence of selection pressure 
on crossbreds represented mainly by beef breeds and dual purpose ones. Also, values less 
than zero and smaller values in comparison with purebreds were obtained for inbreeding 
coefficient in BM2113 and ETH225 as signs of bulls usage for production crossbred animals 
selected carefuly by farmers of beef cattle.
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Czech Fleckvieh5.1.1.3 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.288 14 363 7 1.000 0.749 0.736 0.702 0.019
BM2113 0.296 30 358 10 0.986 0.799 0.799 0.771 0.001

ETH3 0.350 18 363 7 1.000 0.736 0.771 0.691 -0.047
ETH10 0.464 21 362 7 0.997 0.704 0.693 0.666 0.017
ETH225 0.409 23 358 9 0.986 0.734 0.743 0.695 -0.011

INRA023 0.294 41 357 11 0.983 0.793 0.784 0.764 0.012
SPS115 0.511 18 348 7 0.959 0.674 0.615 0.637 0.088

TGLA122 0.355 41 361 14 0.994 0.783 0.723 0.755 0.078
TGLA126 0.499 21 360 8 0.992 0.649 0.672 0.596 -0.034
TGLA227 0.291 43 358 13 0.986 0.833 0.869 0.814 -0.041

Mean 0.376 27 358.8 9.3 0.988 0.745 0.741 0.709 0.008

Results of genetic variability for Czech Fleckvieh breed (n=363).Table 5.3 

The highest value of different genotypes and alleles were detected in Czech Fleckvieh data-
set in loci TGLA227 (43, 13) and TGLA122 (41, 14). As the most divergent loci, TGLA227 
with He=0.833, H0=0.869, PIC=0.814 was evaluated. Negative values of inbreeding coeffi-
cient were obtained for ETH3, ETH225, TGLA126 and TGLA227. All of values of FIS point 
Czech Fleckvieh as population near to random mating what corresponds to large breeding 
animals pool and carefuly selected bulls used in breeding strategies in fact.

Very high average results for He, H0 and PIC were reached for Czech Fleckvieh as well 
as in study of (Čítek and Řehout, 2001) or (Putnova et al., 2011; Radko, 2010). Similar results 
were also obtained in (D’Andrea et al., 2011) study for Serbian local breed called Podolica. 
Otherwise, it is local kept breed as Czech Fleckvieh is but not as widely influenced by oth-
er breeds, results are highly comparable - He=0.73, H0=0.71, PIC=0.70, FIS=0.05 in Podolian 
cattle in comparison with He=0.745, H0=0.741, PIC=0.709, Fis=0.008 in Czech Fleckvieh. As 
well, similar results were reached in study by (Stevanovic et al., 2010) where YU Simmental 
population were examined with following average results - He=0.750, H0=0.651, PIC=0.720, 
average number of alleles per loci equaled to 8.273 and major allele frequency with value 
0.379. In this study, also TGLA227 was evaluated as the most divergent loci with values as 
follows - He=0.851, H0=0.733, PIC=0.820.
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Aberdeen Angus5.1.1.4 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.384 10 700 4 1.000 0.714 0.739 0.662 -0.034
BM2113 0.252 34 691 8 0.987 0.819 0.816 0.795 0.005

ETH3 0.361 14 685 5 0.979 0.717 0.745 0.666 -0.037
ETH10 0.500 17 685 6 0.979 0.649 0.650 0.594 0.000
ETH225 0.284 20 695 8 0.993 0.767 0.758 0.727 0.012

INRA023 0.517 23 684 8 0.977 0.668 0.684 0.630 -0.024
SPS115 0.458 14 631 6 0.901 0.665 0.667 0.608 -0.002

TGLA122 0.620 30 685 12 0.979 0.575 0.587 0.543 -0.020
TGLA126 0.399 18 692 7 0.989 0.681 0.698 0.624 -0.025
TGLA227 0.283 30 693 10 0.990 0.789 0.766 0.757 0.030

Mean 0.406 21 684.1 7.4 0.977 0.704 0.711 0.661 -0.009

Results of genetic variability for Aberdeen Angus breed (n=700).Table 5.4 

The similar situation to other beef breeds in the meaning of genetic variability appeared for 
Aberdeen Angus beef breed. As one of the most interesting result, we can reported only 4 
different alleles detected in locus BM1824, when 700 individuals were genotyped in dataset. 
Anyway, with so small variability, negative value of inbreeding coefficient was calculated, 
what shows, as the other results, that Aberdeen Angus subpopulation in Czech is well con-
trolled in the meaning of inbreeding avoiding and preservation of genetic variability. It can 
be caused by fact, that bulls of Aberdeen Angus used in Czech came mainly from very dif-
ferent (geographical, genetical) imported sources in early 90´s and their offsprings are still 
used in breeding by farmers who are avoiding to use inbred animals carefuly, otherwise, 
bulls are usually used to produce couple of generations on farms when they are selected 
and bought by breeder.
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Holstein5.1.1.5 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.284 15 243 6 1.000 0.758 0.790 0.715 -0.040
BM2113 0.331 29 239 8 0.984 0.785 0.787 0.755 0.000

ETH3 0.456 16 238 6 0.979 0.707 0.693 0.667 0.022
ETH10 0.523 20 239 8 0.984 0.667 0.611 0.633 0.087
ETH225 0.381 21 239 7 0.984 0.719 0.707 0.673 0.019

INRA023 0.300 27 237 9 0.975 0.792 0.797 0.762 -0.004
SPS115 0.573 17 232 7 0.955 0.608 0.621 0.564 -0.019

TGLA122 0.279 41 231 16 0.951 0.816 0.784 0.793 0.042
TGLA126 0.457 16 232 6 0.955 0.662 0.651 0.605 0.020
TGLA227 0.302 45 235 12 0.967 0.833 0.843 0.814 -0.010

Mean 0.389 24.7 236.5 8.5 0.973 0.735 0.728 0.698 0.011

Results of genetic variability for Holstein breed (n=243).Table 5.5 

When results in table 5.5 are inspected, we can identify sampled subpopulation (243 in-
dividuals) of Holstein breed in Czech Republic a stable and well controlled population in 
the meaning of its parameters of genetic diversity. Extremely carefully selected animals 
are recommended and used in population as it is normal all over the world in this breed. 
TGLA122 with 16 alleles and 41 different genotypes (He=0.951, H0=0.816, PIC=0.793) and 
TGLA227 with 12 alleles and 45 genotypes (He=0.967, H0=0.833, PIC=0.814) represent the 
most divergent markers included in this dataset. In the contrary, comparison of heterozy-
gosity expected and observed values in these two loci shows, that large breeding effort 
reduced heterozygosity as well.

We recognize higher number of alleles per loci (8.5) than (Maudet et al., 2002) report-
ed (5.83) as well as higher expected (0.735) and observed (0.728) hetezygoties in compari-
son with Maudet´s study (0.669, 0.686) and than Del Bol et al. (2001) who showed average 
heterozygosity equals to 0.68. Results are then more comparable to (Machado et al., 2003) 
(e.g. average number of alleles per loci 7.11).

In opposite of what was reported by (Mc Kay et al., 2008), we can not say that there 
is evident reduction of genetic variability in subsampled poulation selected in Czech. As 
breeding associations and private companies have good control over the breeding strate-
gies, it can be said that Holstein has comparable genetic variability with breeds which are 
not so sofistically and hard-pressured breed.

Better results in the meaning of higher genetic variability were reached also in compari-
son with (D’Andrea et al., 2011). Numbers reached for Serbian Holstein population (n=34) 
were: He=0.64, H0=0.62, PIC=0.59, FIS=0.05 in comparison of average values of subpopulation 
equals to He=0.735, H0=0.728, PIC=0.698, FIS=0.011.
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Piedmontese5.1.1.6 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.432 18 125 8 1.000 0.724 0.672 0.686 0.076
BM2113 0.238 25 124 8 0.992 0.819 0.871 0.794 -0.059

ETH3 0.512 13 124 6 0.992 0.656 0.702 0.610 -0.065
ETH10 0.416 16 119 6 0.952 0.704 0.697 0.654 0.013
ETH225 0.347 20 124 7 0.992 0.768 0.758 0.734 0.017

INRA023 0.268 37 123 11 0.984 0.822 0.854 0.800 -0.035
SPS115 0.483 14 115 5 0.92 0.698 0.722 0.663 -0.029

TGLA122 0.335 40 124 15 0.992 0.812 0.847 0.791 -0.039
TGLA126 0.365 13 122 5 0.976 0.733 0.713 0.688 0.032
TGLA227 0.216 40 125 10 1.000 0.870 0.880 0.857 -0.007

Mean 0.361 23.6 122.5 8.1 0.980 0.761 0.772 0.728 -0.010

Results of genetic variability for Piedmontese breed (n=125).Table 5.6 

Results obtained for Piedmontese breed subpopulation sampled only within 125 individu-
als show similar results in comparison with another beef breed examined. As there are just 
small population of Piedmontese in the Czech Republic, we can expect results summarized 
in table 5.6 - results show population with selected bulls used, genetically near to random 
mating one. Results reached for INRA023 can be mentioned in comparison with the other 
breeds examined - with 11 different allele and 37 different genotypes, there is difference in 
comparison to the other breeds, where INRA023 is not so divergent. 

At all when results are compared to the ones previous reported, (Ciampolini et al., 
1995) shows higher number of alleles per loci in Italian poupalation and 17 MS analyzed 
(10.59 in comparison with 8.1 in our study), so ours are more simmilar to (Moioli et al., 
2004) who reported 7.3 alleles per locus for 21 MS loci, gene diversity (0.738) and inbreed-
ing coefficient  0.102.

In comparison with results reached by (D’Andrea et al., 2011) in Italian Piedmotese 
(n=48), expected heterozygosity was found as 0.72 (in comparison with 0.761 in our ob-
servation), observed heterozygosity equaled to 0.71 (0.772), PIC=0.68 (0.728) and positive 
inbreeding coefficient was reached as 0.03 (-0.01).
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Blonde d’Aquitaine5.1.1.7 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.425 10 73 4 1.000 0.698 0.726 0.646 -0.034
BM2113 0.347 23 72 9 0.986 0.797 0.819 0.772 -0.021

ETH3 0.389 12 72 6 0.986 0.728 0.653 0.683 0.110
ETH10 0.430 12 71 6 0.973 0.704 0.789 0.658 -0.113
ETH225 0.390 13 73 6 1.000 0.749 0.822 0.713 -0.090

INRA023 0.433 16 67 6 0.918 0.739 0.657 0.708 0.119
SPS115 0.583 9 60 5 0.822 0.599 0.650 0.556 -0.076

TGLA122 0.281 23 73 10 1.000 0.812 0.849 0.788 -0.039
TGLA126 0.326 13 72 5 0.986 0.746 0.736 0.702 0.020
TGLA227 0.342 30 73 11 1.000 0.809 0.795 0.789 0.025

Mean 0.395 16.1 70.6 6.8 0.967 0.738 0.750 0.702 -0.008

Results of genetic variability for Blonde d’Aquitaine breed (n=73).Table 5.7 

In the subpopulation of Blonde d´Aquitaine, we can identify (table 5.7) quite a small num-
bers of alleles detected in comparison with the other breeds - BM1824 (4), SPS115 (5), TG-
LA126 (5) - what could be caused by really small sample of individuals (73) in dataset. 
Positive values of inbreeding coefficient in ETH3 and INRA023, if we assume that results 
obtained for this subpopulation are valid, can show that there is real genetic relationship 
between these two loci and beef yeild parametrs (Choroszy et al., 2006; Ciampolini et al., 
2002) as Blonde d´Aquitaine is widely, longterm and hardly breeded in France as well as 
Western Europe. 
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Czech Simmental 5.1.1.8 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.328 15 730 5 1.000 0.734 0.725 0.686 0.013
BM2113 0.480 35 712 11 0.975 0.716 0.719 0.690 -0.003

ETH3 0.558 23 717 8 0.982 0.629 0.660 0.589 -0.049
ETH10 0.692 15 718 7 0.984 0.489 0.500 0.456 -0.023
ETH225 0.368 22 719 9 0.985 0.715 0.694 0.667 0.030

INRA023 0.345 36 711 11 0.974 0.763 0.765 0.726 -0.002
SPS115 0.663 17 673 6 0.922 0.518 0.525 0.481 -0.011

TGLA122 0.380 40 708 13 0.970 0.733 0.614 0.690 0.163
TGLA126 0.479 19 700 8 0.959 0.615 0.594 0.541 0.035
TGLA227 0.351 48 707 12 0.968 0.794 0.795 0.770 0.000

Mean 0.465 27 709.5 9 0.972 0.671 0.659 0.630 0.018

Results of genetic variability for Simmental breed (n=730).Table 5.8 

From results summarizing genetic variability in all observed loci for Czech Simmental, we 
can mention results reached for SPS115 locus. With 6 different alleles and 17 different gen-
otypes, it has major allele frequency 0.663, so related parameters as (He=0.518, H0=0.525, 
PIC=0.481) are very low as well in comparison with results obtained for other breeds. Any-
way, other results are fully comparable to the other beef breed kept in Czech and observed 
in this work. Results are comparable to (Del Bol et al., 2001) who reported e.g. average 
heterozygosity equals to 0.62. Similar results were also reached in comparison with (Radko, 
2010).
Stevanovic et al. (2010) reported when they examined population of Simmental cattle in 
Serbia, average number of alleles per loci as 8.364 in comparison with 9.0 reached in our 
dataset, average PIC was investigated as 0.73 in comparison with 0.630, most frequency 
allele (0.372) in comparison with 0.692 in ETH10. They reported TGLA227 as one of the 
most polymorphic loci with results like 9 alleles per loci, PIC=0.840, frequency of major 
allele qualed to 0.274 as well as INRA023 (11 alleles per loci, PIC=0.860, most frequent al-
lele grequency=0.167).  We can compare results obtained for our dataset - TGLA227 has 12 
different alleles with major one´s frequency equals to 0.351 and PIC=0.770, INRA023 has 11 
different alleles with major one´s frequency equals to 0.345 and PIC=0.726. Then, we can 
describe Czech Simmental as more uniform breed in comparison with Serbian population 
and results shown. D’Andrea et al. (2011) analyzed similar parameters in 13 of European 
cattle breeds. In Italien Simmental, they observed average expected heterozygosity equaled 
to 0.59 (0.671), expected one equaled to 0.59 (0.659), PIC=0.55 (0.630) and simmilar values of 
inbreeding coeficient - 0.02 (0.018).
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Charolais5.1.1.9 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.448 14 704 6 0.999 0.699 0.670 0.652 0.041
BM2113 0.256 28 695 7 0.986 0.833 0.833 0.812 0.001

ETH3 0.526 19 698 8 0.990 0.616 0.635 0.555 -0.029
ETH10 0.902 8 697 5 0.989 0.181 0.188 0.171 -0.039
ETH225 0.417 23 702 7 0.996 0.675 0.682 0.616 -0.011

INRA023 0.372 60 687 14 0.974 0.803 0.803 0.784 0.000
SPS115 0.570 21 651 8 0.923 0.625 0.634 0.591 -0.014

TGLA122 0.376 52 696 14 0.987 0.743 0.751 0.707 -0.011
TGLA126 0.638 15 694 6 0.984 0.541 0.556 0.497 -0.028
TGLA227 0.253 48 697 10 0.989 0.834 0.845 0.814 -0.013

Mean 0.476 28.8 692.1 8.5 0.982 0.655 0.660 0.620 -0.007

Results of genetic variability for Charolais breed (n=705).Table 5.9 

Table 5.9 summarizes results obtained regarding genetic diversity parameters for all of loci 
used in subpopulation of 705 individuals of Charolais kept in Czech. It can be pointed, that 
results reached for ETH10 are interesting from the point of view of genetic variability. Five 
different alleles were investigated in ETH10 which create only 8 different genotypes with 
major allele frequency 0.902. Extremely low values for He=0.181, H0=0.188, PIC=0.171 are 
then calculated for this loci. Again, ETH10 seems to be connected with beef traits which are 
used in breeding strategy in Charolais widely (Choroszy et al., 2006; DeAtley et al., 2008; 
Moore and Hansen, 2003; Kuhn et al., 2005; Meirelles et al., 2011b; DeAtley et al., 2011;  Hall 
et al., 2009).
The highest value of heterozygoties was reached for TGLA227 locus what is similar to (Put-
nová et al., 2011). Regarding the other results, what was written in previous and following 
chapters about beef breeds and their genetic variability result in Czech is valid for Charolais 
as well (imports of selected bulls from different locations, carefully selected bulls, popula-
tion near random mating one). Anyway, negative inbreeding coefficients were obtained 
for ETH3, ETH10, ETH225, SPS115, TGLA122, TGLA126 and TGLA227. This points to quite 
large usage of AI and embryo transfer in the past which allow to select really different ge-
netic material used for breeding.

We have found higher number of alleles per loci than (Maudet et al., 2002) as well as 
very comparable values of average expected (0.655) and observed (0.640) heterygosities.
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Hereford5.1.1.10 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.547 9 137 4 1.000 0.620 0.591 0.568 0.050
BM2113 0.328 22 134 8 0.978 0.790 0.791 0.761 0.002

ETH3 0.519 7 135 5 0.985 0.542 0.578 0.440 -0.062
ETH10 0.467 12 135 6 0.985 0.662 0.630 0.605 0.052
ETH225 0.350 16 137 7 1.000 0.767 0.803 0.732 -0.043

INRA023 0.780 9 134 5 0.978 0.367 0.373 0.337 -0.013
SPS115 0.434 16 129 6 0.942 0.714 0.705 0.671 0.016

TGLA122 0.601 18 134 10 0.978 0.601 0.604 0.572 -0.002
TGLA126 0.596 9 130 6 0.949 0.559 0.615 0.498 -0.096
TGLA227 0.379 23 136 10 0.993 0.745 0.772 0.710 -0.032

Mean 0.500 14.1 134.1 6.7 0.979 0.637 0.646 0.589 -0.011

Results of genetic variability for Hereford breed (n=137).Table 5.10 

Similar results as for other beef breeds were obtained at all for Hereford one and are com-
parable to study of (Blott et al., 1998b) regarding number of alleles observed and heterozy-
goties in traditional Hereford groups within breed. In Hereford, we can see reduced genetic 
variability in INRA023 (compare with Charolais in section 5.1.1.9). Five different alleles 
resulted only into 9 different genotypes with a major allele frequency 0.780 and He=0.367, 
H0=0.373, PIC=0.337. Reasons for these results are comparable with Charolais as INRA023 
could be connected with beef traits as well (Choroszy et al., 2006).

Not such inbreeding was observed in Czech subpopulation sampled as (Stonaker, 1951) 
or (Russell et al., 2000) reported. It can be result of general breeding strategy in Hereford 
as well as very carefuly (or completely randomly) selected bulls or animals imported and 
used in Czech Republic.
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Galloway5.1.1.11 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.553 9 66 4 1.000 0.622 0.621 0.576 0.010
BM2113 0.652 7 66 5 1.000 0.521 0.561 0.474 -0.068

ETH3 0.625 7 64 4 0.970 0.549 0.594 0.500 -0.074
ETH10 0.523 5 65 4 0.985 0.527 0.462 0.417 0.132
ETH225 0.280 18 66 6 1.000 0.795 0.773 0.764 0.036

INRA023 0.364 12 66 6 1.000 0.723 0.667 0.672 0.085
SPS115 0.398 12 49 5 0.742 0.702 0.551 0.650 0.225

TGLA122 0.508 16 65 8 0.985 0.693 0.723 0.665 -0.036
TGLA126 0.589 6 62 3 0.939 0.557 0.532 0.488 0.053
TGLA227 0.208 26 65 10 0.985 0.854 0.831 0.837 0.035

Mean 0.470 11.8 63.4 5.5 0.961 0.654 0.631 0.604 0.043

Results of genetic variability for Galloway breed (n=66).Table 5.11 

Only 66 individuals of Galloway were sampled in general dataset. Anyway, similar re-
sults as for the others beef breeds were obtained. Similar to Charolais, ETH10 locus re-
ported results should be considered as ones indicate low or reduced genetic variability 
with He=0.527, H0=0.462, PIC=0.417. In the opposite of Charolais results, in ETH10 there was 
calculated positive (0.132) inbreeding coefficient in Galloway. The quite high positive value 
of Fis (0.225) was reached as well in locus SPS115. This can be caused by just very genetically 
related animal analyzed in small subpopulation coming from common ancestors when just 
couple of embryos, semen dosages were imported in Czech republic instead of live animals 
in past. Plus, still nowadays, Galloway genetics is geographically isolated in comparison 
with whole world spread breeds.
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Limousin5.1.1.12 

Marker Major Allele 
Freq.

No. of 
Genotypes

No. of 
Obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

BM1824 0.402 10 188 4 1.000 0.689 0.707 0.631 -0.024
BM2113 0.234 29 186 10 0.989 0.830 0.866 0.807 -0.041

ETH3 0.473 14 188 6 1.000 0.676 0.707 0.625 -0.045
ETH10 0.368 21 178 7 0.947 0.751 0.753 0.713 0.000
ETH225 0.395 14 186 5 0.989 0.689 0.613 0.634 0.113

INRA023 0.344 28 179 10 0.952 0.769 0.721 0.735 0.066
SPS115 0.503 11 165 5 0.878 0.647 0.697 0.593 -0.075

TGLA122 0.341 41 182 12 0.968 0.810 0.813 0.789 -0.001
TGLA126 0.551 15 186 6 0.989 0.639 0.651 0.602 -0.016
TGLA227 0.297 35 180 10 0.957 0.823 0.867 0.802 -0.050

Mean 0.391 21.8 181.8 7.5 0.967 0.732 0.739 0.693 -0.007

Results of genetic variability for Limousin breed (n=188).Table 5.12 

When we inspect results obtained for Limousin subpopulation (188 individuals), it can be 
seen that similar results in comparison with the others beef breed were obtained. Only 
higher value of Fis in ETH225 should be mentioned (0.113). As the other values of inbreed-
ing coefficient are rather ~0 or negative, it pointed to situation similar as in Galloway and 
its results obtained for loci ETH10.

In comparison, we have found higher number of alleles per loci (7.5) than (Maudet et 
al., 2002), as well as higher expected and observed heterozigoties (0.732, 0.739) as Maudet 
has found (0.675, 0,674).
When we compare results with (D’Andrea et al., 2011), following comparison is shown: ex-
pected heterozygosity among Limousine kept in Serbia was 0.67 (0.732), observed one was 
0.65 (0.739), PIC=0.62 (0.693) and inbreeding coefficient was 0.03 (-0.007). As in all of other 
same breeds, Sebian cattle populations show lower genetic variability what can be caused 
by later start of imports, so results are more comparable to previous ones obtained in Czech 
in past (Czernekova et al., 2006).
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Summary results of genetic variability for breeds5.1.1.13 

Breed
Major 
Allele 
Freq.

No. of 
Geno-
types

Sample 
Size

No. of 
obs.

No. of 
Alleles

Avail-
ability He H0 PIC FIS

C100 0.376 27 363 358.800 9.300 0.988 0.745 0.741 0.709 0.008
G100 0.406 21 700 684.100 7.400 0.977 0.704 0.711 0.661 -0.009
H100 0.389 24.7 243 236.500 8.500 0.973 0.735 0.728 0.698 0.011
P100 0.361 23.6 125 122.500 8.100 0.980 0.761 0.772 0.728 -0.010
Q100 0.395 16.1 73 70.600 6.800 0.967 0.738 0.750 0.702 -0.008

SM100 0.465 27 730 709.500 9.000 0.972 0.671 0.659 0.630 0.018
T100 0.476 28.8 705 692.100 8.500 0.982 0.655 0.660 0.620 -0.007
U100 0.500 14.1 137 134.100 6.700 0.979 0.637 0.646 0.589 -0.011
W100 0.470 11.8 66 63.400 5.500 0.961 0.654 0.631 0.604 0.043
Y100 0.391 21.8 188 181.800 7.500 0.967 0.732 0.739 0.693 -0.007

X 0.366 32 380 373.500 10.100 0.983 0.754 0.727 0.719 0.036

Summary results of genetic variability for 10 selected breeds and crossbred Table 5.13 
dataset (n=3680). For breeds abbreviations see table 4.1.

When we see results of genetic variability calculated across all loci examined for whole 
breeds and crossbred dataset (table 5.13), in the meaing of major alleles frequencies, most 
uniform breed is Hereford (0.500), the lowest value was detected for Piedmontese breed 
(0.361) and crossbred dataset (0.366). The highest average number of genotypes across all 
loci was detected at all in Charolais (28.8), the lowest value in Galloway (11.8). In average, 
9.3 different alleles were detected in all of loci in Czech Fleckvieh, only 5.5 different alleles 
in Galloway. As Czech Fleckvieh is relatively young breed established after WW II, with in-
fluence of couple of breeds and as a dual purpose one, these results are in accordance with 
breeding strategy and selection processes in the Czech Fleckvieh. In Galloway, as we men-
tioned above, only 66 individuals were analyzed and only very limited imports happent 
in past what is probably reason of results mentioned. Very similar results in mentioned 
parameters as in Czech Fleckvieh were obtained for Czech Simmental as well. 

As well, there is nothing suprising on fact, that crossbred dataset resulted in 10 dif-
ferent alleles with 32 different genotypes which are highest values in the whole dataset 
ordered by breeds.

Regarding results of expected and observed heterozygoties, it can be noted that large-
ly kept breeds in Czech or world-wide (like Czech Fleckvieh, Holstein, Limousin, Blonde 
d´Aquitaine), genetically and evoluationary different kept in Czech (Piedmontese) and 
crossbreds are more heterozygous in comparison with minor kept ones however genetical-
ly different (Galloway) and more uniform beef populations like Hereford, Czech Simmen-
tal, Charolais and Abredeen Angus are. These results can be near generalized according to 
breeding strategies for beef and dairy or dual purpose breeds with exceptions mentioned.

In results of all methods for computing genetic distances, Hereford breed was observed 
as the most different one, what is result highly comaparable to previous studies done (Blott 
et al., 1998b).
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Genetic distances5.1.2 

Euclidean and Nei 1972 genetic distance5.1.2.1 

C100 G100 H100 P100 Q100 SM100 T100 U100 W100 X Y100
C100 0.281 0.276 0.223 0.239 0.167 0.264 0.423 0.373 0.090 0.244
G100 0.173 0.334 0.299 0.347 0.339 0.325 0.438 0.337 0.241 0.334
H100 0.185 0.254 0.249 0.306 0.318 0.345 0.421 0.429 0.239 0.353
P100 0.115 0.184 0.141 0.256 0.267 0.316 0.412 0.370 0.177 0.257
Q100 0.140 0.277 0.213 0.152 0.289 0.353 0.422 0.446 0.228 0.277

SM100 0.047 0.228 0.232 0.150 0.165 0.251 0.459 0.403 0.168 0.293
T100 0.129 0.185 0.292 0.224 0.241 0.109 0.472 0.380 0.234 0.309
U100 0.342 0.426 0.360 0.331 0.341 0.382 0.458 0.503 0.402 0.449
W100 0.304 0.212 0.390 0.292 0.421 0.332 0.275 0.515 0.339 0.432

X 0.018 0.122 0.139 0.075 0.128 0.048 0.106 0.306 0.233 0.225
Y100 0.131 0.231 0.283 0.151 0.180 0.187 0.243 0.431 0.387 0.114

Euclidean (above) and Nei 1972 (bellow diagonal) genetic distance.Table 5.14 

Geometric distance results represented by Euclidean distance calculated across the whole 
general and crossbred datasets show, that in the meaning of simple geometric distance, 
seems to be the most divergent from each other Hereford breed with average distance of 
each other equals 0.4401. The highest result was reached for Hereford x Galloway distance 
(0.503), the lowest one for Czech Fleckvieh x Czech Simmental (0.167) and Czech Fleckvieh 
x crossbreds which is in accordance with state when the most crossbreds are produced 
within Czech Fleckvieh cows and Czech Fleckvieh is largely influenced by Simmental as 
well.

Nei 1972 genetic distance reported similar results, as one which is under the assumption 
of biological model which assume drift and mutations as power of genetic evolution (Nei, 
1972). Anyway, under this assumptions allele frequencies which are considered to remain 
the same in time as mutation is assumed as a random process. The Hereford seems to be 
the most distanced breed with average value of Nei 1972 distance equals 0.3892. As well as 
in Euclidean distance, pairs represented by Czech Fleckvieh x crossbreds, Czech Fleckvieh, 
Czech Simmental seem to be the most closest under assumptions of Nei 1972 distance.

In comparison with study done in (Russell et al., 2000), who reported Nei 1972 dis-
tance of Charolais and Simmental qualed to 0.405, we obtained just 0.109 between Charolais 
and Czech Simmental, 0.129 between Charolais and Czech Fleckvieh. Regarding Aberdeen 
Angus, we have found distance between this breed and Czech Simmental equals to 0.228 
and between  Aberdeen Angus and Czech Fleckvieh equals to 0.173 in contrary of 1.569 
in (Russell et al., 2000). This can be caused by specificity of Czech Simmental as well as of 
Czech Fleckvieh which can significantly differ from breed kept like pure Simmental breeds 
abroad. As Russell et al. (2000), we have found highest value of distance between Aberdeen 
Angus and Hereford.
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Goldstein and Shriver genetic distance5.1.2.2 

C100 G100 H100 P100 Q100 SM100 T100 U100 W100 X Y100
C100 1.324 3.175 1.185 3.708 0.979 1.377 7.316 3.566 0.102 2.313
G100 0.231 3.603 1.986 2.953 1.962 1.850 8.387 1.976 1.102 1.363
H100 0.266 0.397 4.039 7.491 4.769 6.607 11.812 4.392 3.375 6.572
P100 0.164 0.269 0.299 2.078 1.837 2.526 7.177 4.868 0.812 1.489
Q100 0.326 0.407 0.470 0.194 3.004 2.680 4.617 7.056 3.041 2.953

SM100 0.094 0.314 0.390 0.225 0.341 1.088 5.719 3.767 0.738 2.942
T100 0.171 0.251 0.477 0.293 0.377 0.184 6.609 5.186 1.305 3.000
U100 0.763 0.917 0.881 0.674 0.658 0.782 0.825 9.449 6.880 8.309
W100 0.421 0.307 0.534 0.500 0.725 0.436 0.480 0.896 3.317 3.503

X 0.019 0.183 0.246 0.107 0.269 0.080 0.149 0.689 0.360 1.767
Y100 0.262 0.259 0.550 0.201 0.352 0.330 0.360 0.845 0.480 0.206

Goldstein (above) and Shriver (bellow diagonal) genetic distance.Table 5.15 

Goldstein´s genetic distance is assuming and calculating genetic distances under the SMM 
model and it represents one which is designed espeacially for microsatelitte markers, how-
ever SMM can cause errors especially in small datasets when genetic drift is assumed as 
mutation (Goldstein et al., 1995a). Anyway, from most distanced from each other under 
assumtions mentioned seems to be Hereford (7.6275) followed by Holstein breed with aver-
age distance 5.58. The longest distance was otained between Hereford and Holtein breeds 
(11.812), the lowest ones between crossbreds and Czech Fleckvieh, crossbreds and Sim-
mental. 
Shriver´s genetic distance is another one created especially for high polymorphic loci which 
extends Nei minimum genetic distance and is based on frequency-weighted means of the 
absolute value of the difference in number of repeats over pairs of alleles, both within and 
between populations (Shriver et al., 1995). Under these assumptions, also Hereford popula-
tion (with average distance from each other breed equals 0.793) is on of the most divergent. 
Also, relationship between Hereford and Aberdeen Angus has the highest distance - 0.917. 
In opposite, Czech Fleckvieh and crossbred dataset seems to be most closest with distance 
equals to 0.019.



5 Results and Discussion

79

Slatkin and SharedAllele genetic distance5.1.2.3 

C100 G100 H100 P100 Q100 SM100 T100 U100 W100 X Y100
C100 46.480 59.915 55.065 53.958 46.027 47.016 49.053 49.254 51.784 51.484
G100 0.301 53.758 49.281 46.619 40.426 40.904 43.538 41.079 46.198 43.949
H100 0.302 0.364 62.919 62.740 54.817 57.246 58.548 55.079 60.056 60.743
P100 0.241 0.334 0.295 54.467 49.024 50.304 51.053 52.695 54.633 52.799
Q100 0.271 0.374 0.342 0.297 46.562 46.828 44.863 51.253 53.232 50.634

SM100 0.173 0.351 0.307 0.274 0.300 40.034 40.763 42.762 45.727 45.421
T100 0.286 0.342 0.363 0.330 0.360 0.273 42.244 44.771 46.884 46.069
U100 0.423 0.407 0.413 0.401 0.406 0.449 0.435 45.133 48.558 47.476
W100 0.385 0.334 0.448 0.390 0.462 0.398 0.384 0.473 48.945 46.622

X 0.100 0.262 0.259 0.200 0.259 0.167 0.251 0.394 0.353 50.878
Y100 0.267 0.349 0.377 0.280 0.297 0.300 0.301 0.438 0.440 0.242

Slatkin (above) and Shared Allele (bellow diagonal) genetic distance.Table 5.16 

Slatkin´s genetic distance (Slatkin, 1995) is an analogue of Wright’s FST, adapted to micro-
satellite loci by assuming a high-rate stepwise mutation model instead of a low-rate K- 
or infinite-allele mutation model. Under these conditions, Holstein with average distance 
58.58 is the most distant of all other breeds. Smallest distance was observed between Czech 
Simmental and Charolais breeds (40.034) and between Czech Simmental and Aberdeen An-
gus (40.426).
As a ShareadAllele genetic distance is one of the simplest estimations of genetic distance, it 
is based on the proportion of shared alleles and can be also used to evaluate microsatellite 
data, escpecially with usage of small datasets within well defined populations (Chakraborty 
and Jin, 1993). Highest values of SharedAllele ditance can be observed for Hereford as well 
as for other distances evaluated. As well, highest distance was observed between Hereford 
and Galloway breeds (0.473). The lowest value was observed between Czech Fleckvieh and 
crossbred dataset.

Phylogenetic trees5.1.3 

Phylogenetic trees based on 6 genetic distances calculated on general and crossbred joint 
datasets are used to show compressed results given by these distances. Dendrograms con-
structed by UPGMA (Unweighted Pair Group Method with Arithmetic mean) and Neigh-
bour Joining methods of clustering are used to show results for each genetic distance cal-
culated. As trees are unrooted in time, there are displaying just relationship in the meaning 
of each genetic distance and clustering algorithm instead of evaluationary relationships 
themselves. Mainly, results are discussed and are in accordance at all with e.g. (Negrini et 
al., 2007) and (Felius et al., 2011).
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Euclidean NJ and UPMGA trees5.1.3.1 

Euclidean NJ phylogenetic tree.Figure 5.1 

Figure 5.2 Euclidean UPGMA phylogenetic tree.
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On the figures 5.1 and 5.2 NJ and UPGMA dendrogram of Euclidean distance can be seen. 
As Euclidean distance is geometric based measure without any assumptions based on bio-
logical basis, it can not be used to discuss similarities between breeds on biological basis as 
well. Anyway, as we used machine learning algorithms (like IB1 and IB5), they are usually 
data independant, so it can be useful to discuss geometric based distance in comparison 
with the others. On both of trees can be identified, that Euclidean distance reflects quite 
well real state of breeds - Czech Fleckvieh is clustered in the same branche as crossbreds, 
then Czech Simmental and Charolais are on the same subtree of NJ one. Aberdeen Angus 
and Galloway create another well defined subtree, however they are quite distant of each 
other. Blonde d´Aquitaine and Limousin, Piedmontese and Holstein then create two sepa-
rate branches. The most distant of each other, not grouped with another breed is Hereford 
(both of clustering methods).

Nei 1972 NJ and UPGMA trees5.1.3.2 

Figure 5.3 Nei 1972 NJ phylogenetic tree.
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Figure 5.4 Nei 1972 UPGMA phylogenetic tree.

Dendrograms of Nei 1972 distance are displayed on figures 5.3 and 5.4. Most distant and 
separete is Hereford breed with closest connection to Holstein. Then Galloway repre-
sent the most distant breed from Hereford and Holstein. Limousin, Piemontese, Blonde 
d´Aquitaine with Holstein represent breeds closer connected to Hereford. On the other 
hand, Aberdeen Angus and Charolais represent are closer to Galloway branch on the other 
side of tree. Czech Simmental and Czech Fleckvieh represent one branch of tree between 
both of groups, closest connected to group of crossbreds. However, Nei´s standard distance 
is one of basic one under biological assumptions, it reflects quite good real state of cattle 
breeds in Czech Republic.
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Goldstein NJ and UPGMA trees5.1.3.3 

Figure 5.5 Goldstein NJ phylogenetic tree.

Figure 5.6 Goldstein UPGMA phylogenetic tree.
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Under assumptions of SMM which is used for calculation of Goldstein´s genetic distance, 
dendrograms on figures 5.5 and 5.6 were obtained. Most than real relationships of breeds it 
can be analyzed from point of view of similar breeding strategies, however it is highly influ-
enced by small population sizes of some breeds. Also, if we known real state of cattle breed-
ing, it is clear that similarity between Holstein and Galloway, Piedmontese and Limousin 
can not be explained anyway by breeding of populations, mating in them etc. However, 
it is interesting how populations resulted to similarities under complete different genetic 
pressure on them in point of view of SMM. Czech Fleckvieh and crossbreds are clustered 
together in spite of facts discussed.

Shriver NJ and UPGMA trees5.1.3.4 

Figure 5.7 Shriver NJ phylogenetic tree.
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Figure 5.8 Shriver UPGMA phylogenetic tree.

Results obtained for Shriver distance which measures similarities between breeds under 
the same assumption of Nei´s distance with regards to multiallelic loci show Hereford and 
Galloway the most distant as the other methods. Shriver distance can express well how 
Simmental like breeds are structured (Czech Fleckvieh, Czech Simmental and crossbreds). 
Charolais is then clustered with this group together what can be explained by very similar 
results of genetic variability of this breed as is mentioned in previous chapters. Then, Hol-
stein, Limousin and Blonde d´Aquitaine plus Piedmontese and Aberdeen Angus represent 
very separated branches in the meaning of genetic drift and similarities of microsatelitte 
loci.
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Slatkin NJ and UPGMA trees5.1.3.5 

Figure 5.9 Slatkin NJ phylogenetic tree.

Figure 5.10 Slatkin UPGMA phylogenetic tree.
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As analogous method in comparison with Wright FST, Slatkin´s distance represent method 
how to separate populations the most effectively based on microsatellite multiallelic loci. 
The results can be seen on figure 5.9 easily. All of breeds are well separated except Czech 
Fleckvieh which create branch with crossbreds and Piedmontese and Limousine breeds. 
Best separated by this methods are Holstein and Blonde d´Aquitaine breeds what refers to 
very different genetic (based on microsatelittes selected) basis of both. Similar results were 
obtained by (Yves Amigues, Simon Boitard) and showed also that Blonde d’Aquitaine and 
well-defined cattle populations (Salers) are genetically more similar to each other than to 
the Limousin.

Shared Allele NJ and UPGMA trees5.1.3.6 

Shared Allele phylogenetic tree.Figure 5.11 
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Figure 5.12 Shared Allele UPGMA phylogenetic tree.

Based on portion of alleles shared within populations, Czech Fleckvieh and crossbreds were 
clustered together as well as Aberdeen Angus and Galloway; Limousin and Charolais what 
is the same result as (Maudet et al., 2002) obtained. 
This reflects very good, in according with results of lazy classifiers, what portion of al-
leles is shared between watched breeds (see section 5.4). All of other breeds create separate 
branches in trees. However, it is quite insteresting result that Piedmontese breed is closest 
to Simmental type group of breeds (figure 5.12). Piedmontese at all not to be so different 
from other breeds as (Moioli et al., 2004) reported across all of methods. Also, as can be seen 
from other aspects in results of different distance methods, also regarding portion of shared 
alleles, Hereford, as well as group represented by Aberdeen Angus and Galloway breeds 
are the most distinct.
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Estimation and validation paternity testing by 5.2 
microsatellite loci in selected cattle breeds

CEP 1 CEP 2 CEP 3 PIC
C100 0.998123 0.988668 0.999998 0.709
H100 0.997526 0.987431 0.999997 0.698
T100 0.986215 0.976321 0.999986 0.620

SM100 0.980362 0.964416 0.999969 0.630
P100 0.999183 0.993402 0.999999 0.728
Y100 0.997262 0.986747 0.999991 0.693
U100 0.953371 0.948479 0.999907 0.589
Q100 0.997591 0.987107 0.999997 0.702
W100 0.972259 0.961617 0.999948 0.604
G100 0.991806 0.974167 0.999982 0.661

Whole set 0.998385 0.990697 0.99999 0.663

Results of combined probabilities of paternity exclusion and polymorphic in-Table 5.17 
formation content by breeds calculated for general dataset.

By using software environment created to handle large sets of genotype data, results sum-
marized in table 5.17 were obtained for general dataset. All three scenarios of combined 
exclusion of paternity were calculated across all of 10 MS loci. Best probability for exclusion 
of one parent (CEP 1), when the genotypes of both parents and ancestor are known, was 
reached for Piedmontese breed (0.999183). For the whole general dataset, CEP 1 was calcu-
lated as 0.998385. The worst value was obtained for Hereford breed (0.953371). 

In case of CEP 2 scenario, when one of parents genotype is unknown, whole set prob-
ability was calculated as 0.990697, best one was reached for Piedmontese breed (0.993402), 
the worst one for Hereford (0.948479).
CEP 3 results, when all of three genotypes are known (parents and offspring), but we want 
to know what is the probability of exclusion of both parents, show that for whole dataset 
CEP 3=0.999990, the best was reached for Piedmontese (0.999999), the worst one for Her-
eford breed (0.999907). At all, results reached are fully comparable to (Putnova et al., 2011; 
Radko, 2010). Polymorhic information content ranges from 0.589 in Hereford to 0.728 in 
Piedmontese, the value calculated for the whole general dataset (n=3300) equals 0.663 what 
is less than (D’Andrea et al., 2011) observed.

Results of combined probabilities and polymorphic information content reflect real 
situation and breed strategies in all of observed breeds. Not well defined breeds or breeds 
with “weak” acceptance of breeding animals pedigree show higher values in all of pa-
rameters as result of higher genetic variability within breeds. Anyway, results proved that 
panel of microsatellite loci used for genotyping of general dataset fullfils recommendations 
on paternity exclusion as well as studies of genetic diversity of selected cattle breeds (In-
ternational Society for Animal Genetics; FAO - Measuremens of Domestic Animal Diver-
sity). Nowadays, as normaly done by ISAG, recommended panel of microsatellite loci was 
extended to 17 loci (SPS113, BM1818, RM067, ILST006, MGTG4B, CSSM66, CSRM60 were 
added for routine testing) thanks to reduced genetic variability in whole world spread, well 
controlled cattle populations like Holstein is.

http://dad.fao.org
http://dad.fao.org
http://dad.fao.org
http://dad.fao.org
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Creation of the software support for routine 5.3 
genotyping of microsatellite loci under the 
reference laboratory conditions

Following chapters describe created software solution for storing, operating and reporting 
issues with microsatellite data under accredited laboratory conditions. Text is aimed to ex-
plain detailed solution, processes and software structure in many aspects.

Network model5.3.1 

Router

Switch

PrinterMail ServerWeb Server

Print Station Workstation 1 Workstation 2

Firewall

Internet

AbiPrism 310

Backup ServerDatabase Server

Figure 5.13 Schema of network model of the system.

Recommended network connection for which applications is designed is shown on figure 
5.13. There is a public section of network which can be used especially for reporting to labo-
ratory customers as well as for automatization of data input in future. In case of security, 
there is no public IP address allowed in private network. So, there is no chance for comput-
ers from Internet area to access any of computers included in private network. 

The whole system can operate on 1..n computers according to laboratory needings. 
There must be at least one computer which can represent Workstations, Print Station and 
provides connection to AbiPrism 310 genetic analyser. In this case computer is used as data-
base and backup server as well. Normaly, we can assume Workstation 1 is used for manual 
data input, Workstation 2 works with data from genetic analyser, Print Station is used for 
protocols and database issues and another computer in network is dedicated as Backup 
Server, where database is saved daily.
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Application model5.3.2 

Outputs
Communication

Protocols

Computations
Special

On database

GUI

Operations

Inputs

Selections

Special issues

Fixed mode
Operations

Calculations

Inputs

Database

Data storage

Dynamic operations

Network communication

Backup

Database, analysers

Figure 5.14 Application design.

The software application is designed in three layers. Top layer operates with data outputs 
and inputs thorough graphical user interface, second layer performs user inputs, commu-
nicates with database and performs software calculations and manipulations over data. 
Lowest layer operates directly with database interface thorough SQL and with network - 
backups and security issues. Top layer is half implemented in Borland Delphi (Borland Inc., 
2007), half with usage of reporting system - Fast Reports (Fast Reports Inc., 2007).

Middle layer of the system is implemented fully In Borland Delphi environment and 
coded in Object Pascal. Database server used is represent by Firebird SQL Server XXX. Net-
work layer is implemented in Object Pascal and in assembler code.

Key processes5.3.3 

For identification, description and definition of key processes, UML case diagram syntax 
was used as it offers simple, readable and repeatable tool for complex software design based 
on processes in system. Use cases syntax operates with only three basic pronciples:

use case - ellipse, defined as process on the chosen level of abstraction which cre- –
ates closed group of activities and can be more specify on more detail level of ab-
straction. On the mottom levels processes can be easily converted to code classes 
in case of object programming. On the oppostie, on the top level of abstraction, 
system is created by only one process and actors.
actor - person, operator, who interacts with the system, resp. who interacts with  –
the system thorough interaction processes. Role of actors is very useful because 
they allow everybody to imagine easily who and how interact with system.
relation - oriented line, by which type of relation is defined. –

As a system model is quite simple, lets skip top levels of abstraction and then, three basic 
processes with their particular subprocesses, actors and relation can be identified. The first 
one is represent by most simple case - order for genetic type identification whom use case 
diagram is displyed on figure 5.15. Order comes from farmer/breeder, who communicates 
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with lab manager directly by phone, on trade fairs, by email etc. When they agree on sam-
ple type and sample of tissue is sent by breeder to the lab, lab manager processes ID data as 
well as sample. He inputs ID data into the database, initiates farmers data (or selects them 
from databes when they are already present) and marks sample with unique ID lab num-
ber. This laboratory unique identifier comes with the sample thorough the whole process in 
lab and it is stored with results in database too. It identifies sample, pairing with breeders 
data, with the results of analysis, with animal ID. When lab ID is set, lab manager passes 
the sample to lab, where laboratory operator starts routine process doing DNA analysis on 
sample. When raw data (labeled with previously set unique lab ID) are ready as output of 
DNA analyser, then process of their joining in database is started automaticly. Lab man-
ager who see actual state of database then contorls results of analysis and issues analysis 
protocol which is sent to farmer finally. When farmer re-orders analysis/protocol, he com-
municates with lab manager again and he just performs database search for given animal 
ID (which is already present in database) and re-issue protocol again. So, farmers can also 
run e.g. paternity testing based on protocols re-issued manually to perform self-control as 
they can obtain complete pedigree of their animals in the moment.

Farmer

Order: Genetic
type

Input Individual
data

Sample + ID

DNA Analysis

Raw data

Joint of data ProtocolData selection

Lab operator

<<performs>>

Lab manager

<<inputs>> <<issues>><<process>>

<<sends>>

<<communicates>>

Re-issue

Figure 5.15 Use case diagram of genetic type test issue.

Second use case displays process of paternity testing issue (figure 5.16). When farmer sends 
an order, with individual sample which should be tested, he can send samples of desired 
parents as well, or he can supply their animal IDs when he wants to test individuals tested 
previously which are considered to be parents of testing individual. Also, he can do combi-
nation of both or he can supply set of possible mothers/fathers separately or he can ask to 
find possible parents from animals inserted in the database. Next, the whole process of data 
inputs, analysis and actors interactions is simmilar to previous use case described above. 
Only more than one analysis is done typically. Post processing of data consist of selection 
of possible parents sets:

automatically by database engine, when parents animal IDs (or names, or lab  –
numbers) are given,
manually, when number of possible parents is given by breeder, considered by lab  –
management.

Then paternity validation process is execute on all of combinations of desired mothers/fa-
thers for one individual. Depending on paternity testing description wanted by farmer (ex-
clusion of paternity, testing of parents, finding of possible parents, ...) protocol for selected 
task is issued then.
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Figure 5.16 Use case diagram of paternity testing issue.

As Lamgen laboratory is accredited by Czech accreditation institute as well as it is part 
of ISAG/FAO round tests and lab network and issues protocols with DNA profiles and 
performs paternity testing, it is highly recommended to control usability of chosen micro-
sattelite panel for noted tasks. As probability of the same genetic profile, probability of pa-
ternity exclusions etc. are based on the results obtained for microsattelite data analyzed for 
selected group (breed, animals, etc.) previously they can be proved only for “results based“ 
state which is also widely used when genetic profiles play roles in forensics. As inbreeding, 
special breeding strategies can reduce genetic variability dramatically, set given by ISAG/
FAO is updated based on routine genotyping results time to time. For this purpose, the 
software system contains calculations for used panel evaluation as well. This evaluation 
process could be described by diagram on figure 5.17. Farmer/customer has feedback of his 
results given by statistical calculation done over the whole database day-by-day. Authori-
ties have a direct feedback and lab can be connected to world lab networks which contrib-
ute on evaluation of panels recommended. At the end, outputs of described statistics can 
be used for research in genetic variability as well. Simple and fast calculations can bring 
reliable results on selected groups of animals in comparison with the others on very large 
database which is filling by daily routine lab operations.

Filling
database

Evaluation
of MS panel

Farmer

Placing orders

Lab staff
<<communicates>> <<performs>>

<<uses>>

ISAG/FAO,
Authorities

<<wants>>

standards

<<issues>>

<<wants information>>

<<influences>>
<<influences>>

Tests

<<isuess & uses>>

<<performs>>

Figure 5.17 Use case diagram of microsattelite panel usage evaluation.
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Database5.3.4 

SQL database design used for SW creation is displayed on figure 5.18 in notation of ERD 
diagram. Basis of database design is created by table Individual with unique key (primery 
key) LabID. By using this primary key, all of data are paired in the database. Individual ta-
ble contains then animal ID (issued by authority), breed declaration, desired parents/grand 
parents IDs, sex of individual, customer IDs and notes. Individual table should be filled by 
lab manager whenever he receives sample and order manually. 
When Individual data are set, Sample table is created for individual (can be created manu-
ally as well, when Individual data are unavailable). To individual account, one ore many 
sample tables can be attached, as sample can be resent many times by customer for any 
reason. Opposite relationship Sample-Individual is uniqe as the same sample can be link 
with one and only one individual. Sample table includes LabID as well as identification of 
sample storage (if it is stored in genetic bank) according to lab identification, dates of sam-
ple receiving and testing (input automaticly by genetic analyser). Type of sample (blood, 
tissue, hair, ...) is also stored.

Genetic profile table and Functional genes table are created automaticly with relation-
ship one and only one (both directions) when Sample table is created for individual sample. 
These tables are filled automaticaly, when sequencing machine outputs results of analysis 
with LabIDs included in these tables. Tables for sets of desired parents deduced from In-
dividual table are also used in database design with zero-to many bi-directional relation-
ships. These tables are used then for paternity testing when it is recommended and can be 
filled both manually and semi- or full- automaticaly.

Individual

ID
Name
LabID

Breed
Registry

Sex
FatherID
MotherID
Registry of

grandparents
Notes

Farm ID

Sample

LabID

Type of sample
StorageID

Received: Date;
Analysed : Date;

Genetic profile

LabID

BM1824
BM2113

ETH3
ETH10
ETH225
INRA023
SPS115

TGLA122
TGLA126
TGLA227
+ 7 others

Functional genes

LabID

DGTA1
KAPPA_ CN
BETA_ CN

CVM
RED
TG5

BETA_ LG
MSTN
PRNP

has

gives

is defined by

Possible mothers

ID
Name
LabID

Breed
Registry

Sex
FatherID
MotherID
Registry of

grandparents
Notes

Farm ID

Possible father

ID
Name
LabID

Breed
Registry

Sex
FatherID
MotherID
Registry of

grandparents
Notes

Farm ID

has set of

Figure 5.18 ERD diagram of database used for storage of samples data.
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Datatypes used for data storage 
   AnimalID VARCHAR (25) CHARACTER SET WIN1250 NOT NULL COLLATE WIN1250,
   AnimalID_corrected VARCHAR (20) CHARACTER SET WIN1250 COLLATE WIN1250,
   Name VARCHAR (40) CHARACTER SET WIN1250 COLLATE WIN1250,
   LAB_ID VARCHAR (15) CHARACTER SET WIN1250 COLLATE WIN1250,
   GEN_BANK_ID VARCHAR (20) CHARACTER SET WIN1250 COLLATE WIN1250,
   GEN_BANK_2ND_ID VARCHAR (5) CHARACTER SET WIN1250 COLLATE WIN1250,
   FARM_ID VARCHAR (45) CHARACTER SET WIN1250 COLLATE WIN1250,
   ANIMAL_REGISTRY VARCHAR (7) CHARACTER SET WIN1250 COLLATE WIN1250,
   SEX VARCHAR (1) CHARACTER SET WIN1250 COLLATE WIN1250,
   BREED VARCHAR (16) CHARACTER SET WIN1250 COLLATE WIN1250,
   REC_DATE DATE,
   DATE_OF_TEST DATE,
   SAMPLE TYPE VARCHAR (8) CHARACTER SET WIN1250 COLLATE WIN1250,
   PROTOCOL_ISSUED VARCHAR (1) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_ID VARCHAR (25) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_REGISTRY VARCHAR (7) CHARACTER SET WIN1250 COLLATE WIN1250,
   MOTHER_ID VARCHAR (25) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_OF_MOTHER_ID VARCHAR (25) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_OF_MOTHER_REGISTRY VARCHAR (7) CHARACTER SET WIN1250 COLLATE WIN1250,
   NAME_MOTHER VARCHAR (35) CHARACTER SET WIN1250 COLLATE WIN1250,
   NOTE VARCHAR (100) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_NAME VARCHAR (35) CHARACTER SET WIN1250 COLLATE WIN1250,
   FATHER_OF_MOTHER_NAME VARCHAR (35) CHARACTER SET WIN1250 COLLATE WIN1250,
   BM1824_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   BM1824_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   BM2113_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   BM2113_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH3_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH3_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH10_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH10_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH225_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   ETH225_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   INRA023_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   INRA023_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   SPS115_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   SPS115_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA122_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA122_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA126_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA126_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA227_1 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TGLA227_2 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   DGAT1 VARCHAR (10) CHARACTER SET WIN1250 COLLATE WIN1250,
   KAPPA_CN VARCHAR (10) CHARACTER SET WIN1250 COLLATE WIN1250,
   BETA_CN VARCHAR (10) CHARACTER SET WIN1250 COLLATE WIN1250,
   CVM VARCHAR (10) CHARACTER SET WIN1250 COLLATE WIN1250,
   RED VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   TG5 VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   BETA_LG VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   MSTN VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250,
   PRNP VARCHAR (3) CHARACTER SET WIN1250 COLLATE WIN1250

Data operations and SQL queries5.3.5 

This chapter describes key SQL queries used in database interface. As SQL can significantly 
reduce programming effort, we can demonstrate its power in genetic data as well on fol-
lowing examples. As the system stores data about thousands of individuals and for all of 
processes described in chapter 5.3.3 selections must be used, searching engine is presented 
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in software. User can define search criteria by given numbers, text variables or intervals.  
Also, there is input field which allows to input SQL query defined by user over tables in the 
system, so for selecting particular goups of animals the whole SQL syntax can be used. For 
example, when we need to know actual numbers of individuals from all of breeds included 
in database, where at least half of microsattelite data are entered, we can use SQL query 
like:

select count(*), plemeno  from skot where CHAR_LENGTH (bm1824_1
||bm1824_2||bm2113_1||bm2113_2||eth3_1||eth3_2||ETH10_1||ETH10_
2||ETH225_1||ETH225_2||INRA023_1||INRA023_2||SPS115_1||SPS115_2
||TGLA122_1||TGLA122_2||TGLA126_1||TGLA126_2||TGLA227_1||TGLA22
7_2)>10 and plemeno!=’’ and plemeno!=’ ’ group by plemeno;

As one would need to operate over the selected group of individuals (e.g. during manual 
selection of possible parents among individuals 1) from one farm and/or 2) born before 
2010, etc.), the whole system works in two modes:

whole database mode - the whole database of all individuals is used. This mode  –
is basic one. User can do all of things - searching animals in table manually, issu-
ing protocols, creates parents sets, etc. Also, user can define search conditions in 
searching engine, type in SQL query and run it.
selection mode - when selection is performed, number of selected animals is  –
changed and selected group is displayed in table bellow search engine. User can 
go back to whole database mode using button. All of interface functionality is en-
able as well in this mode.

Figure 5.19 Search engine of database interface.

When search conditions are specified, dynamic SQL view is created by database interface. 
E.g. when user specifies that he wants to select all of bulls with breed declared as pure 
Czech Fleckvieh from database, interface then runs following SQL query:

CREATE VIEW SELECT_VIEW AS select * from SKOT where POHLAVI 
like ‘%M%’ and PLEMENO like ‘%C100%’;

Following query can be used to obtain table with all of alleles from microsattelite BM1824, 
which are defined and are not unknown.

CREATE VIEW SATELIT (SAT) AS SELECT BM1824_1 FROM SKOT where 
BM1824_1 !=’?’ UNION ALL SELECT BM1824_2 FROM SKOT where 
BM1824_2 !=’?’;
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When we apply next query to previously created dynamic view SATELIT, when bulls from 
Czech Fleckvieh are selected previously by search engine, table with different alleles, their 
counts and frequencies will be created for selected group of animals as:

select SATELIT.SAT, count(SATELIT.SAT), cast(count(SATELIT.SAT)
as float)/(select count(*) from SATELIT) from SATELIT group by 
SAT;

This query will output table:
Allele Count Frequency

178 98 0.200000
180 122 0.248979
182 154 0.314286
186 1 0.002041
188 114 0.232665
190 1 0.002041

SQL output of query to calculate frequencies and counts of different alleles in Table 5.19 
defined loci.

Given example is necessary for calculations needed to panel evaluation (CEP, PIC, etc.) as 
it is described in section 5.3.6.

Algorithms5.3.6 

Main algorithms of software implementation of the system are presented in this section. 

Parsing of SQL selection query, enabling selection operational mode.
 s:=’’;
  flag:=[rfReplaceAll];

  if edit1.Text<>’’ then s:=s+’JMENO like ‘+’’’’+’%’+edit1.Text+’%’+’’’’+’,’;
   if (edit3.Text<>’’)and(combobox1.Text<>’vyberte’) then s:=s+’DATUM_
NAROZENI’+combobox1.Text+’’’’+edit3.Text+’’’’+’,’;
  if edit4.Text<>’’ then s:=s+’CHOV like ‘+’’’’+’%’+edit4.Text+’%’+’’’’+’,’;
  if edit5.Text<>’’ then s:=s+’OTEC_CISLO like ‘+’’’’+’%’+edit5.Text+’%’+’’’’+’,’;
  if edit7.Text<>’’ then s:=s+’LAB_CISLO like ‘+’’’’+’%’+edit7.Text+’%’+’’’’+’,’;
  if edit6.Text<>’’ then s:=s+’POHLAVI like ‘+’’’’+’%’+edit6.Text+’%’+’’’’+’,’;
  if edit2.Text<>’’ then s:=s+’PLEMENO like ‘+’’’’+’%’+edit2.Text+’%’+’’’’+’,’;
  if edit9.Text<>’’ then s:=s+’CISLO like ‘+’’’’+’%’+edit9.Text+’%’+’’’’+’,’;
  if s[length(s)]=’,’ then setlength(s,length(s)-1);
  s:=stringreplace(s,’,’,’ and ‘,flag);

  if edit8.Text<>’’ then s:=edit8.Text;

  ShowMessage(s);

  ibquery1.SQL.Clear;
  ss:=’DROP VIEW ‘+ipaddr+’SATELIT’;
  ibquery1.SQL.Add(ss);
  try begin ibquery1.open;
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      ibquery1.Active; end except end;

  ibquery1.SQL.Clear;
  ss:=’DROP VIEW ‘+ipaddr+’SELECT_VIEW’;
  ibquery1.SQL.Add(ss);
  try begin ibquery1.open;
      ibquery1.Active; end except end;

  ibquery1.SQL.Clear;
  ss:=’CREATE VIEW ‘+ipaddr+’SELECT_VIEW AS ‘+’select * from SKOT where ‘+s+’;’;

  ibquery1.SQL.Add(ss);
  ibquery1.open;
  ibquery1.Active;

  label16.Caption:=’aktualne vybrano zvirat:’+inttostr(ibtable3.recordcount);
  ibtable3.first;
  view:=true;
  end;

Calculation of alleles frequencies for all of loci - stored in hash table with Allele lenght and 
its frequency.

var pole_h: array [1..10] of tdihash;
    i,ii,sat,length,pom: integer;
    iii: ^real;
    i1,i2: real;
    ss: string;
    f: textfile;
begin
  for i:=1 to 10 do begin
    pole_h[i]:=tdihash.Create(realhandler,getdicardinalkeyhandler);
  end;
  for i:=1 to 10 do begin
    ss:=’DROP VIEW ‘+ipaddr+’SATELIT’;
    ss:=’CREATE VIEW ‘+ipaddr+’SATELIT (SAT) AS SELECT ‘+form1.combobox3.Items.
Strings[i-1]+’_1 FROM SKOT WHERE ‘+form1.combobox3.Items.Strings[i-1]+’_1 != ‘’?’’ 
UNION ALL SELECT ‘+form1.combobox3.Items.Strings[i-1]+’_2 FROM SKOT WHERE ‘+form1.com-
bobox3.Items.Strings[i-1]+’_2 != ‘’?’’;’; 
    form1.ibquery2.SQL.Add(‘select ‘+ipaddr+’SATELIT.SAT, count(‘+ipaddr+’SATELIT.SAT), 
cast(count(‘+ipaddr+’SATELIT.SAT)as float)/(select count(*) from ‘+ipaddr+’SATELIT) from 
‘+ipaddr+’SATELIT group by SAT;’); 
    for ii:=1 to form1.ibquery2.RecordCount do begin
      length:=form1.IBQuery2.Fields[0].asinteger;
      iii:=pole_h[i].InsertItemByKey(length);
      iii^:=form1.IBQuery2.Fields[2].AsFloat;
      form1.ibquery2.Next;
    end;
  end;

Calculation of Combined Exclusion Probabilities
function CEP(cislo,sat: integer): real;
var ss: string;
    x2,x3,x4,x5,x6: real;
    i: integer;
begin
  if view=true then begin
      form1.ibquery1.SQL.Clear;
      ss:=’DROP VIEW ‘+ipaddr+’SATELIT’;
      form1.ibquery1.SQL.Clear;
      ss:=’CREATE VIEW ‘+ipaddr+’SATELIT (SAT) AS SELECT ‘+form1.combobox3.Items.
Strings[sat-1]+’_1 FROM ‘+ipaddr+’SELECT_VIEW WHERE ‘+form1.combobox3.Items.
Strings[sat-1]+’_1 != ‘’?’’ UNION ALL SELECT ‘+form1.combobox3.Items.Strings[sat-1]+’_2 



5 Results and Discussion

99

FROM ‘+ipaddr+’SELECT_VIEW WHERE ‘+form1.combobox3.Items.Strings[sat-1]+’_2 != ‘’?’’;’; 
     form1.ibquery2.SQL.Add(‘select ‘+ipaddr+’SATELIT.SAT, count(‘+ipaddr+’SATELIT.
SAT), cast(count(‘+ipaddr+’SATELIT.SAT)as float)/(select count(*) from 
‘+ipaddr+’SATELIT) from ‘+ipaddr+’SATELIT group by SAT;’);
      x2:=0; x3:=0; x4:=0; x5:=0; x6:=0;
      for i:=1 to form1.ibquery2.RecordCount do begin
        x2:=x2+sqr(form1.ibquery2.Fields[2].AsFloat);
        x3:=x3+power(form1.ibquery2.Fields[2].AsFloat,3);
        x4:=x4+power(form1.ibquery2.Fields[2].AsFloat,4);
        x5:=x5+power(form1.ibquery2.Fields[2].AsFloat,5);
        x6:=x6+power(form1.ibquery2.Fields[2].AsFloat,6);
        form1.ibquery2.Next;
      end;

      case cislo of
      1: CEP:=(1-2*x2-(sqr(x2))+x4);
      2: CEP:=(1-4*x2+2*(sqr(x2))+4*x3-3*x4);
      3: CEP:=(1+4*x4-4*x5-3*x6-8*(sqr(x2))+8*x2*x3+2*(sqr(x3)));
      end;

Paternity testing condition for one loci
if not((((dbgrid3.Fields[23].AsString=dbgrid1.Fields[23].asstring) or (dbgrid3.
Fields[23].AsString=dbgrid1.Fields[24].asstring)) and ((dbgrid3.Fields[24].
AsString=dbgrid2.Fields[23].asstring) or (dbgrid3.Fields[24].AsString=dbgrid2.
Fields[24].asstring)) )
            or
            (((dbgrid3.Fields[23].AsString=dbgrid2.Fields[23].asstring) or (db-
grid3.Fields[23].AsString=dbgrid2.Fields[24].asstring)) and ((dbgrid3.Fields[24].
AsString=dbgrid1.Fields[23].asstring) or (dbgrid3.Fields[24].AsString=dbgrid1.
Fields[24].asstring)) )  )
    then begin
      dbgrid3.Columns.Items[23].Color:=clred;
      dbgrid3.Columns.Items[24].Color:=clred;
      label69.Color:=clred;
      label70.Color:=clred;
      test:=false;
    end;

Sorting by allele frequency for one loci
   if (ibtable1.Fields[25].Asstring=’?’) or (ibtable1.Fields[26].Asstring=’?’) then 
write(f,’?’+#9+’?’+#9) else begin
      pom:=ibtable1.Fields[25].AsInteger;
      i1:=real(pole_h[2].pitemofkey(pom)^);
      pom:=ibtable1.Fields[26].AsInteger;
      i2:=real(pole_h[2].pitemofkey(pom)^);
      if i1<=i2 then begin
        write(f,ibtable1.fields[25].asstring+#9+ibtable1.fields[26].asstring+#9);
       end else begin
         write(f,ibtable1.fields[26].asstring+#9+ibtable1.fields[25].asstring+#9);
       end;
   end;
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  Security5.3.7 

As security and safety of data, security of operations and their traceability can be significant 
in accredited laboratory, several functions in software interface are created. For security and 
traceability  purposes, there is implementation in software of getting IP address from com-
puter which wants to connect database. This procedure is implemented in following code:

IP address catch up.
 flag:=[rfReplaceAll];
    WSAStartup($101, GInitData);
    IPaddr:= ‘’;
    GetHostName(Buffer, SizeOf(Buffer));
    phe :=GetHostByName(buffer);
    if phe = nil then Exit;
    pptr := PaPInAddr(Phe^.h_addr_list);
    i := 0;
    while pptr^[i] <> nil do
    begin
      ipaddr:=stringreplace(StrPas(inet_ntoa(pptr^[i]^)),’.’,’’,flag);
      Inc(i);
    end;
    WSACleanup;
    ipaddr:=stringreplace(ipaddr,’.’,’’,flag);
    ipaddr:=stringreplace(ipaddr,’0’,’a’,flag);
    ipaddr:=stringreplace(ipaddr,’1’,’b’,flag);
    ipaddr:=stringreplace(ipaddr,’2’,’c’,flag);
    ipaddr:=stringreplace(ipaddr,’3’,’d’,flag);
    ipaddr:=stringreplace(ipaddr,’4’,’e’,flag);
    ipaddr:=stringreplace(ipaddr,’5’,’f’,flag);
    ipaddr:=stringreplace(ipaddr,’6’,’g’,flag);
    ipaddr:=stringreplace(ipaddr,’7’,’h’,flag);
    ipaddr:=stringreplace(ipaddr,’8’,’i’,flag);
    ipaddr:=stringreplace(ipaddr,’9’,’j’,flag);
    ipaddr:=uppercase(ipaddr);
end;

Then, obtained IP address is used as identifier in all of operations which are done with data-
base like dynamic views creations, SQL queries executions etc. With all operations, address 
is logged like:

ss:=’CREATE VIEW ‘+ipaddr+’SELECT_VIEW AS ‘+’select * from SKOT where ‘+s+’;’;

so, IP address of machine is logged in database everytime when dynamic view (searching 
over database) is involved. Administrator can easily control, who operates with, searches 
and views data plus which data he selected for operations. As well, blocking of operations 
for undefined IP addresses can be implemented in Firebird SQL server as a trigger and can 
not allow non-granted users to access database.

Another security issues are connected with network design proposed in section 5.3.1. 
Open and closed zones plus firewalls offer great security for the system as protection against 
DoS, external access etc. are. Design respects fully open internal network zone and closed 
one way link to the Internet. 

Database is daily backuped on dedicated server in internal network as files when Work-
station 1 belonging to lab manager is started. As well every day it is backuped in database 
server internally which is treated by Firebird SQL Server, so the rollback on database can be 
done in daily steps, what can prevent huge data lost.
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GUI5.3.8 

Following text describes GUI (Graphical User Interface) during usage of database interface. 
GUI is designed with respect to needings of operational staff in laboratory as well as small 
time-saving functions (detailed Tab orders etc.).

Selection engine G-metrics panel

Protocols
Paternity tests

Database table interface

Input forms

Frequencies&
counts results

Panel evaluation results for
whole DB/selection

Figure 5.20 Basic user interface of database system.

When user wants to input data (e.g. animal ID data) following GUI is appeared. Form al-
lows to input data for new individual as well as partly for new sample delivered. When <- 
sign is appeared, the button allows user to search data previously enetered to the database 
to avoid mistyping etc. When OK button is pressed, new item is stored into the database.

Figure 5.21 Inserting of new sample.

When new sample is inserted, MS data can be inputed manually as well or they can be cor-
rected after automatical pairing with raw data from genetic analyser.
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Figure 5.22 Editation of genotype data.

Also, genotyped data can be edited in Tab order mode, so user can just press Tab key be-
tween each field. Corrections can be done in this way really easily.

Charts button shows G-metric classification results on chosen idividual started by Clas-
sify indiv button. Classify TT button runs classification performs on the whole database, 
when classification is validated on the the whole dataset as well - training set equals test 
set. Classifify 10 CV button runs 10 fold cross validation accross the whole dataset using 
G-metric algorithm. Both of button lead to save model to ‘trainset’ and classification results 
to ‘output’ files. ‘Trainset’ represents saving of dynamic containers used for fast calculation 
of classification results, ‘output’ represents tab separated text file contains all of results. 
Frekvence button outputs AlleleFrequencyDS based on displayed selection.
Protocols button group is used to issue, printing and exporting (to PDF) selected protocols 
described bellow.
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Figure 5.23 Fully used GUI of DB interface.

Figure 5.24 Paternity verification screen.

Protocols5.3.9 

On request, following protocols can be issued from SW database interface. All of protocols 
can be exported to PDF files or printed on Windows installed printer. Dates etc. are filled 
automaticaly as well as data from database (whole or selection mode). Fast Reports engine 
is used to produce protocols. Issues are mainly parentage exclusion protocols, parentage 
verificatin protocols, non-exclusion protocols and genetic profile protocols in Czech as well 
as English versions. Current laws and accreditation prescribtions are accepted in protocols. 
Also, they can be issued for 10 or 17 MS panels.
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Proving of usability of machine learning 5.4 
methods in cattle breed discrimination task

This chapter shows and discuss results of usage of machine learning algorithms and their 
modifications for cattle breed discrimination task. Also, three types of data representations 
are used to explore which of them is most suitable for described issue, so chapter is divided 
according this point of view to the whole problem. Latest, usage of the results for genetic 
diversity description of breeds is discussed in this part of thesis. 

Usability of machine learning algortihms for cattle breed discrimination can be evalu-
ated by many criteria. As results of methods are highly depent on dataset, parameters used 
for classification algorithm and many parameters are calculated then as the results of final 
model classification, it is not easy to compare results. Imagine that e.g. one badly classified 
class (breed in our case, genetically non uniform) can signifacantly influence results of the 
whole classification. In this case, results need to be discussed from many points of view. In 
this section, there are presented all of results obtained for each chosen method and each al-
gorithm. Only best results are presented for each method with parameters set accordingly. 
As the main parameter of good-of-fitness of classification model, we can assume percent-
age of correctly classified instances (calculated accross 10 folds as average results for all of 
classes) and Kappa statistic as indicator, how better model is in comparison with random 
classification based only on dataset character - observed probabilities. Also, overall results 
as FP Rate (which can express mistakes done by model important for breed discrimination), 
Precision and F-Measure as overall good-of-fitness parameter should be discussed. Then, 
we need to discuss how classes are classified by particular method according to whole re-
sults as well.
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ZeroR5.4.1 

Parameters used
Scheme:       weka.classifiers.rules.ZeroR

Results of classification
Correctly Classified Instances         730             21.9219 %
Incorrectly Classified Instances      2600             78.0781 %
Kappa statistic                          0     
Mean absolute error                      0.1678
Root mean squared error                  0.2896
Relative absolute error                100%
Root relative squared error            100%
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

   TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
   0         0          0         0         0          0.495    Y100
   0         0          0         0         0          0.481    W100
   0         0          0         0         0          0.492    U100
   0         0          0         0         0          0.498    T100
   1         1          0.219     1         0.36       0.5      SM100
   0         0          0         0         0          0.485    Q100
   0         0          0         0         0          0.49     P100
   0         0          0         0         0          0.495    H100
   0         0          0         0         0          0.5      G100
   0         0          0         0         0          0.497    C100
Weighted Avg.   0.219     0.219      0.048     0.219     0.079      0.497

a b c d e f g h i j

0 0 0 0 188 0 0 0 0 0 Y100

0 0 0 0 66 0 0 0 0 0 W100

0 0 0 0 137 0 0 0 0 0 U100

0 0 0 0 705 0 0 0 0 0 T100

0 0 0 0 730 0 0 0 0 0 SM100

0 0 0 0 73 0 0 0 0 0 Q100

0 0 0 0 125 0 0 0 0 0 P100

0 0 0 0 243 0 0 0 0 0 H100

0 0 0 0 700 0 0 0 0 0 G100

0 0 0 0 363 0 0 0 0 0 C100

Confusion matrix of ZeroR classifier.Table 5.20 

ZeroR algorithm is choosing the most frequent class in dataset and then classifies all of 
instances to the chosen class. It is mainly used as a basis for comparison of efficiency of the 
other methods (Witten et al., 2011; Berka, 2001), so we can see how results of other classi-
fication results are changed and infuenced by basis dataset frequency. For sure, increasing 
of overall calculated measures of model fitting can show, how the particular algorithm is 
useable in comparison with ZeroR basis.
Table 5.20 and section 5.4.1 show results of ZeroR classifier on general dataset. The same 
results should be obtained for all of dataset used in this work (as probabilities of classes ob-
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served are the same in them), so only results for general dataset are presented. From results, 
it is evident that ZeroR classifier classified all of instances of dataset as a class SM100 which 
is the most frequent in dataset (n=730). In this case, when all of unknown distances will be 
classified as the most frequent class in the training set we can obtain model with 21.9219 % 
of correctly classified instances. So, any increase of this basis can show that the model with 
better parameter of correctly classified instances is more usable for classification. Regarding 
to this, Kappa statistics calculated for ZeroR model equals 0 and all of other parameters of 
classification power of the method are calculated accordingly.
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J485.4.2 

General Dataset5.4.2.1 

Parameters used
Scheme:       weka.classifiers.trees.J48 -U -M 2

Results of classification
Correctly Classified Instances        1776               53.3333 %
Correctly Classified Instances        1776               53.3333 %
Incorrectly Classified Instances      1554               46.6667 %
Kappa statistic                          0.4357
Mean absolute error                      0.1017
Root mean squared error                  0.2718
Relative absolute error                 60.6031 %
Root relative squared error             93.8604 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.277     0.039      0.297     0.277     0.287      0.732    Y100
                 0.439     0.009      0.509     0.439     0.472      0.839    W100
                 0.518     0.023      0.49      0.518     0.504      0.813    U100
                 0.711     0.101      0.655     0.711     0.682      0.847    T100
                 0.61      0.161      0.516     0.61      0.559      0.785    SM100
                 0.11      0.008      0.242     0.11      0.151      0.697    Q100
                 0.072     0.014      0.167     0.072     0.101      0.604    P100
                 0.527     0.036      0.538     0.527     0.532      0.797    H100
                 0.634     0.127      0.57      0.634     0.6        0.818    G100
                 0.245     0.044      0.403     0.245     0.305      0.674    C100
Weighted Avg.    0.533     0.095      0.513     0.533     0.518      0.785

a b c d e f g h i j

52 3 15 11 26 2 8 15 42 14 Y100

3 29 0 10 1 0 2 4 17 0 W100

8 2 71 6 13 1 1 4 28 3 U100

12 6 6 501 90 2 5 11 63 9 T100

19 0 12 93 445 8 9 16 66 62 SM100

4 1 1 6 23 8 0 6 16 8 Q100

15 3 7 12 25 1 9 13 31 9 P100

10 1 4 16 27 5 6 128 32 14 H100

27 11 23 77 75 3 5 22 444 13 G100

25 1 6 33 138 3 9 19 40 89 C100

Confusion matrix of J48 classifier for Table 5.21  generalDS dataset.

Graph of predicted probabilities by J48 classifier on the training Figure 5.29  generalDS set.
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Allele Length Dataset5.4.2.2 

Parameters used
Scheme:       weka.classifiers.trees.J48 -U -M 2

Results of classification
Correctly Classified Instances        1963               58.9489 %
Incorrectly Classified Instances      1367               41.0511 %
Kappa statistic                          0.5056
Mean absolute error                      0.0898
Root mean squared error                  0.2609
Relative absolute error                 53.5139 %
Root relative squared error             90.0824 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.367     0.038      0.367     0.367     0.367      0.753    Y100
                 0.394     0.009      0.481     0.394     0.433      0.73     W100
                 0.62      0.013      0.68      0.62      0.649      0.873    U100
                 0.695     0.088      0.679     0.695     0.687      0.845    T100
                 0.655     0.14       0.568     0.655     0.609      0.806    SM100
                 0.178     0.012      0.245     0.178     0.206      0.595    Q100
                 0.184     0.021      0.258     0.184     0.215      0.655    P100
                 0.519     0.027      0.603     0.519     0.558      0.796    H100
                 0.773     0.083      0.713     0.773     0.742      0.887    G100
                 0.309     0.06       0.386     0.309     0.343      0.683    C100
Weighted Avg.    0.589     0.079      0.578     0.589     0.581      0.805

a b c d e f g h i j

52 3 15 11 26 2 8 15 42 14 Y100

3 29 0 10 1 0 2 4 17 0 W100

8 2 71 6 13 1 1 4 28 3 U100

12 6 6 501 90 2 5 11 63 9 T100

19 0 12 93 445 8 9 16 66 62 SM100

4 1 1 6 23 8 0 6 16 8 Q100

15 3 7 12 25 1 9 13 31 9 P100

10 1 4 16 27 5 6 128 32 14 H100

27 11 23 77 75 3 5 22 444 13 G100

25 1 6 33 138 3 9 19 40 89 C100

Confusion matrix for J48 classifier for Table 5.22  allelelenghtDS.
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Figure 5.30 Graph of predictions by J48 classifier on the training allelelengthDS set.



5 Results and Discussion

111

Allele Frequency Dataset5.4.2.3 

Parameters used
Scheme:       weka.classifiers.trees.J48 -U -M 2

Results of classification
Correctly Classified Instances        1890               56.7568 %
Incorrectly Classified Instances      1440               43.2432 %
Kappa statistic                          0.4813
Mean absolute error                      0.093 
Root mean squared error                  0.2669
Relative absolute error                 55.454  %
Root relative squared error             92.1533 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.351     0.038      0.357     0.351     0.354      0.746    Y100
                 0.47      0.011      0.47      0.47      0.47       0.786    W100
                 0.613     0.017      0.604     0.613     0.609      0.857    U100
                 0.661     0.094      0.653     0.661     0.657      0.838    T100
                 0.638     0.134      0.572     0.638     0.603      0.788    SM100
                 0.247     0.015      0.265     0.247     0.255      0.731    Q100
                 0.216     0.024      0.262     0.216     0.237      0.632    P100
                 0.486     0.031      0.551     0.486     0.516      0.782    H100
                 0.739     0.08       0.711     0.739     0.725      0.877    G100
                 0.267     0.068      0.324     0.267     0.293      0.63     C100
Weighted Avg.    0.568     0.08       0.559     0.568     0.562      0.793

a b c d e f g h i j

66 1 3 12 34 3 6 9 36 18 Y100

4 31 3 8 6 1 0 1 12 0 W100

5 1 84 5 15 1 4 6 11 5 U100

7 9 7 466 102 8 9 7 53 37 T100

22 1 12 86 466 11 11 20 22 79 SM100

4 1 1 8 11 18 3 6 10 11 Q100

9 0 4 11 18 7 27 16 12 21 P100

6 5 11 13 30 5 18 118 22 15 H100

32 13 8 64 20 9 6 15 517 16 G100

30 4 6 41 113 5 19 16 32 97 C100

Confusion matrix for J48 classifier for Table 5.23  allelefrequencyDS.
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Figure 5.31  Graph of predictions by J48 classifier on the training allelefrequencyDS set.
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Discussion of J48 results5.4.2.4 

Best results for J48 algorithm used for decission trees induction were obatined for its pa-
rameters set as unprunned tree with minimum 2 instances in each tree leaf as section 5.4.2 
shows.

For general dataset, algorithm outputs results of classification as it is shown in section 
5.4.2.1, table 5.21  and figure 5.29. Over all 10 folds cross validation, model has 53.33 % of 
correctly classified instances and Kappa statistic equals to 0.4357. Overall FP Rate calculat-
ed across all of classes as a weighted average equals 0.095, so with regard to table 5.21 and 
number of correctly classified instances, it is evident that model at all predicts false nega-
tives rather than false positives values. So, it is better at all because of results predicted are 
reliable with 53.33 % probability, but there is smaller chance to obtain false positive result 
than false negative one. 

Overall weighted precision is calculated as 0.513, F-measure as overall indicator of 
model fitting equals 0.518.

The best classified class according to number of correctly classified instances is G100 
one with TP Rate=0.634, the worst one is P100 with TP Rate=0.072. FP rate is calculated 
as the smallest one for W100 class, as biggest for SM100 as 0.161. The most precise clas-
sified class is T100 with Precision=0.655 and F-Measure=0.682, the worst one is P100 with 
Precision=0.167, F-Measure=0.101.

Figure 5.29 shows prediction of model on the whole dataset. It is evident, that Q100, 
P100, G100 and C100 are not genetically uniform as the other classes in given dataset what 
corresponds with results above. We can see as well mixture between SM100 and C100 as 
C100 class is under big influence of portions of probabilities predicted for SM100 class. 

For allele length dataset, better overall results were obtained (Section 5.4.2.2). Correctly 
classified instances percentage calculated for 10 fold cross validation is 58.95 %. Kappa 
statistic equals 0.5056. Overall FP Rate=0.079. Weighted precission for the whole model is 
calculated as 0.578, F-measure as 0.581.

The best classified class according to TP Rate is G100 (0.773), the worst is Q100 (0.178). 
Best FP Rate was calculated for W100 (0.009), the worst one for SM100 (0.14). G100 with 
Precision=0.713, F-Measure=0.742 is seemed to be as best classified class, in opposite, Q100 
with Precision=0.245 and F-Measure=0.206 as the worst one.

Figure 5.30 shows the similar results as were calculated for general dataset. Big admix-
ture of predicted probabilities on training set could be observed mainly in P100 and C100 
classes as well as in SM100, G100 and Q100 ones.

For allele frequency dataset (Section 5.4.2.3), overall results were obtained as follows. 
Correctly classified instances percentage calculated for 10 fold cross validation is 56.76 %. 
Kappa statistic equals 0.4813. Overall FP Rate=0.08. Weighted precission for the whole mod-
el is calculated as 0.559, F-measure=0.562.

The best classified class in TP Rate parameter is G100 (0.739), the worst is P100 (0.216). 
Best FP Rate was calculated for W100 (0.011), the worst one for SM100 (0.134). G100 
with Precision=0.711, F-Measure=0.725 is the best classified class, in opposite, P100 with 
Precision=0.262 and F-Measure=0.237 as the worst one.

Figure 5.31 shows bigger portion of admixture calculated over all of classes that was 
produced in general and allele length datasets. Anyway, it corresponds with more balanced 
spread of admixture for all of classes, so from robustness point of view, this model should 
be recommended for breed discrimination by J48 as the best one.
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JRip5.4.3 

General Dataset5.4.3.1 

Parameters used
Scheme:       weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1

Results of classification
Correctly Classified Instances        1758               52.7928 %
Incorrectly Classified Instances      1572               47.2072 %
Kappa statistic                          0.4174
Mean absolute error                      0.1195
Root mean squared error                  0.2569
Relative absolute error                 71.2514 %
Root relative squared error             88.7228 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.096     0.01       0.367     0.096     0.152      0.75     Y100
                 0.379     0.005      0.61      0.379     0.467      0.806    W100
                 0.569     0.014      0.639     0.569     0.602      0.854    U100
                 0.687     0.087      0.679     0.687     0.683      0.841    T100
                 0.652     0.342      0.349     0.652     0.455      0.704    SM100
                 0.192     0.004      0.5       0.192     0.277      0.723    Q100
                 0.136     0.005      0.531     0.136     0.217      0.732    P100
                 0.502     0.018      0.689     0.502     0.581      0.816    H100
                 0.696     0.082      0.694     0.696     0.695      0.845    G100
                 0.102     0.022      0.363     0.102     0.159      0.684    C100
Weighted Avg.    0.528     0.116      0.546     0.528     0.507      0.781

a b c d e f g h i j

18 1 1 7 125 2 2 6 22 4 Y100

0 25 0 1 15 0 1 1 23 0 W100

0 4 78 5 42 0 0 1 7 0 U100

6 4 2 484 128 1 3 3 66 8 T100

4 0 13 121 476 5 3 28 42 38 SM100

1 0 4 2 42 14 0 1 4 5 Q100

3 0 0 9 79 1 17 4 10 2 P100

3 1 7 12 81 1 1 122 12 3 H100

7 6 5 29 153 2 1 5 487 5 G100

7 0 12 43 223 2 4 6 29 37 C100

Confusion matrix for JRip classifier for Table 5.24  generalDS.
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Figure 5.32  Graph of predictions by JRip classifier on the training generalDS set.
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Allele Length Dataset5.4.3.2 

Parameters used
Scheme:       weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1

Results of classification
Correctly Classified Instances        2054               61.6817 %
Incorrectly Classified Instances      1276               38.3183 %
Kappa statistic                          0.5361
Mean absolute error                      0.0987
Root mean squared error                  0.2421
Relative absolute error                 58.8129 %
Root relative squared error             83.6095 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.399     0.028      0.457     0.399     0.426      0.779    Y100
                 0.47      0.005      0.66      0.47      0.549      0.799    W100
                 0.73      0.014      0.685     0.73      0.707      0.877    U100
                 0.681     0.068      0.729     0.681     0.704      0.871    T100
                 0.708     0.214      0.481     0.708     0.573      0.797    SM100
                 0.425     0.007      0.574     0.425     0.488      0.761    Q100
                 0.328     0.012      0.506     0.328     0.398      0.713    P100
                 0.638     0.017      0.749     0.638     0.689      0.843    H100
                 0.743     0.068      0.743     0.743     0.743      0.881    G100
                 0.287     0.032      0.523     0.287     0.37       0.75     C100
Weighted Avg.    0.617     0.083      0.626     0.617     0.611      0.827

a b c d e f g h i j

75 1 5 15 58 3 8 4 12 7 Y100

1 31 0 3 17 0 0 2 11 1 W100

5 2 100 3 16 1 0 0 9 1 U100

1 7 8 480 117 2 9 4 69 8 T100

13 1 9 75 517 8 4 16 32 55 SM100

6 0 3 6 19 31 0 1 6 1 Q100

10 1 4 7 36 2 41 10 4 10 P100

6 0 5 5 41 1 4 155 18 8 H100

26 4 3 30 92 5 9 7 520 4 G100

21 0 9 34 161 1 6 8 19 104 C100

Confusion matrix for JRip classifier for Table 5.25  allelelenghtDS.
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Figure 5.33  Graph of predictions by JRip classifier on the training allelelengthDS set.
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Allele Frequency Dataset5.4.3.3 

Parameters used
weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1

Results of classification
Correctly Classified Instances        2053               61.6517 %
Incorrectly Classified Instances      1277               38.3483 %
Kappa statistic                          0.5363
Mean absolute error                      0.0973
Root mean squared error                  0.2448
Relative absolute error                 58.0066 %
Root relative squared error             84.5522 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.356     0.023      0.482     0.356     0.41       0.765    Y100
                 0.485     0.011      0.478     0.485     0.481      0.776    W100
                 0.664     0.018      0.607     0.664     0.634      0.887    U100
                 0.691     0.071      0.724     0.691     0.707      0.867    T100
                 0.712     0.202      0.498     0.712     0.586      0.795    SM100
                 0.384     0.008      0.519     0.384     0.441      0.755    Q100
                 0.288     0.013      0.456     0.288     0.353      0.721    P100
                 0.584     0.019      0.703     0.584     0.638      0.824    H100
                 0.766     0.059      0.776     0.766     0.771      0.895    G100
                 0.314     0.039      0.496     0.314     0.384      0.728    C100
Weighted Avg.    0.617     0.08       0.621     0.617     0.61       0.824

a b c d e f g h i j

67 2 6 15 51 7 6 5 19 10 Y100

1 32 0 6 12 0 2 1 10 2 W100

0 2 91 6 23 1 0 4 10 0 U100

1 10 10 487 115 5 5 3 56 13 T100

14 8 15 73 520 4 7 15 19 55 SM100

3 0 3 7 21 28 4 2 3 2 Q100

8 2 1 9 44 4 36 8 3 10 P100

2 1 9 12 39 0 7 142 18 13 H100

19 7 7 24 83 2 4 7 536 11 G100

24 3 8 34 137 3 8 15 17 114 C100

Confusion matrix for JRip classifier for Table 5.26  allelefrequencyDS.
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Figure 5.34  Graph of predictions by JRip classifier on the training allelefrequencyDS set.
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Discussion of JRip results5.4.3.4 

JRip algorithm with parameters set as is described in section 5.4.3 was used to induce de-
cision rules on given three datasets. Number of folds was set to 3, prunning of rules was 
allowed, minimal number of instances covered by rule was set to 2, two optimizations were 
performed for each set of rules, and seed number was set to 1.

On the general dataset, 52.79 % of correctly classified instances and Kappa statistic=0.4174 
were reached. Average FP Rate was calculated as 0.116.  Overall weighed precision equals 
0.546 and F-measure equals 0.507.

The best classified class in the meaning of TP Rate is G100 (0.696), the one with the 
worst TP Rate is Y100 (0.096). Best FP rate was calculated for Q100 (0.004), the worst one for 
SM100 class (0.342). Precision equals to 0.694 was reached for G100 (F-Measure=0.695) and 
in opposite, Precision=0.363 (F-Measure=0.159) were reached for C100 class.

From results available in previous paragraph, we can see that the most well predicted 
classes are W100, U100, T100, H100, G100. Also, Y100, SM100 and C100 are not well pre-
dicted, how table 5.24 and figure 5.32 show with respect of evidence that SM100, Y100 and 
C100 classes have big admixture, especially C100 and Y100 are mainly classified as SM100 
individuals.
For the allele length dataset, following parameters were calculated. Number of correctly 
classified instances is 61.68 %, Kappa statistic=0.5361, FP Rate=0.083. So, the overall results 
seems to be better than for genereal dataset. Overall precision of the model is evaluated as 
0.626, F-Measure calculated as 0.611.

The best TP Rate was calculated for G100 class (0.743), the worst result was obtained 
for C100 class (0.287). FP Rate ranges from 0.005 (W100) to 0.214 (SM100). Class with the 
best precision calculated is H100 in this case (0.749, F-Measure=0.689), the worst results 
(Precision=0.457, F-Measure=0.426) were obtained for Y100 class.  

The graph 5.33 shows big admixture of SM100 class according to results of classifica-
tion to classes Q100, P100, W100, G100 and C100 as well. In this case, model is significantly 
influenced by most frequent class as well as SM100 breed genetic definition.

Results which were obtained for allele frequency dataset for JRip classification algo-
rithm shows 61.65 % of correctly classified instances and Kappa statistic equals 0.5363. 
Overall FP Rate=0.08, Precision=0.621, F-Measure=0.61. So, overall results on all of three 
datasets are very similar, and there is no significant difference between all of dataset as in 
J48 method in previous chapter.

Best classified breed according TP Rate is G100 (0.766) as the opposite of 0.288 in P100. 
FP Rate ranges from 0.008 for Q100 to 0.202 in SM100. Best precision was calculated for G100 
class (0.776, F-Measure=0.771), the worst one as 0.482 for Y100 class (F-Measure=0.41).

The same results could been concluded from graph 5.34 as for allele lenght dataset. Big 
admixture between SM100, Q100, P100, H100, G100 and C100 classes is displayed on the 
graph and fully respects results in confusion matrix for this prediction model.
Based on results, we can conclude that JRip model for allele lenght dataset shoul be recom-
mended as the most usable one for breed discrimination task from decision rules models 
and datasets proved by this work as it is the most robust, with the acceptable FP Rate. Any-
way, obtained results are not suitable for general purposes as 61.68 % of correctly classified 
instances do not fullfil needings for robust prediction on unknown samples.
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Naive Bayes Classifier5.4.4 

General Dataset5.4.4.1 

Parameters used
Scheme:       weka.classifiers.bayes.NaiveBayes

Results of classification
Correctly Classified Instances        2749               82.5526 %
Incorrectly Classified Instances       581               17.4474 %
Kappa statistic                          0.7893
Mean absolute error                      0.046 
Root mean squared error                  0.1605
Relative absolute error                 27.3989 %
Root relative squared error             55.414  %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.771     0.012      0.797     0.771     0.784      0.984    Y100
                 0.682     0.001      0.918     0.682     0.783      0.997    W100
                 0.905     0.007      0.855     0.905     0.879      0.98     U100
                 0.916     0.036      0.872     0.916     0.893      0.985    T100
                 0.892     0.09       0.736     0.892     0.807      0.965    SM100
                 0.397     0.001      0.879     0.397     0.547      0.971    Q100
                 0.408     0.002      0.879     0.408     0.557      0.961    P100
                 0.79      0.006      0.914     0.79      0.848      0.919    H100
                 0.959     0.022      0.919     0.959     0.938      0.992    G100
                 0.537     0.035      0.654     0.537     0.59       0.921    C100
Weighted Avg.    0.826     0.037      0.828     0.826     0.818      0.969

a b c d e f g h i j

145 0 0 7 17 0 1 1 3 14 Y100

0 45 1 5 1 0 0 0 11 3 W100

0 0 124 3 3 0 1 0 3 3 U100

3 1 4 646 33 0 0 0 14 4 T100

2 0 0 33 651 0 1 4 4 35 SM100

8 1 4 4 10 29 1 2 3 11 Q100

13 1 3 9 17 1 51 4 5 21 P100

3 0 7 7 21 1 0 192 7 5 H100

3 0 1 9 7 1 0 1 671 7 G100

5 1 1 18 124 1 3 6 9 195 C100

Confusion matrix for Naive Bayes classifier for Table 5.27  generalDS.
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Figure 5.35 Graph of predictions by Naive Bayes classifier on the training generalDS set.



5 Results and Discussion

118

Allele Length Dataset5.4.4.2 

Parameters used
Scheme:       weka.classifiers.bayes.NaiveBayes

Results of classification
Correctly Classified Instances        1869               56.1261 %
Incorrectly Classified Instances      1461               43.8739 %
Kappa statistic                          0.4748
Mean absolute error                      0.1057
Root mean squared error                  0.247 
Relative absolute error                 63.0086 %
Root relative squared error             85.2994 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.431     0.029      0.474     0.431     0.451      0.899    Y100
                 0.47      0.019      0.337     0.47      0.392      0.94     W100
                 0.788     0.03       0.527     0.788     0.632      0.951    U100
                 0.715     0.112      0.632     0.715     0.671      0.897    T100
                 0.536     0.134      0.528     0.536     0.532      0.795    SM100
                 0.274     0.013      0.328     0.274     0.299      0.882    Q100
                 0.16      0.011      0.364     0.16      0.222      0.816    P100
                 0.539     0.046      0.478     0.539     0.507      0.846    H100
                 0.679     0.089      0.671     0.679     0.675      0.898    G100
                 0.298     0.04       0.478     0.298     0.367      0.776    C100
Weighted Avg.    0.561     0.083      0.553     0.561     0.552      0.858

a b c d e f g h i j

81 5 3 8 23 6 5 6 37 14 Y100

0 31 2 7 11 0 0 5 10 0 W100

1 0 108 4 12 0 1 4 5 2 U100

13 16 7 504 80 11 9 9 43 13 T100

6 12 29 143 391 6 3 40 54 46 SM100

6 1 7 9 9 20 2 4 11 4 Q100

10 0 6 12 28 9 20 15 18 7 P100

6 7 11 15 28 3 5 131 20 17 H100

29 15 19 58 57 4 4 24 475 15 G100

19 5 13 38 101 2 6 36 35 108 C100

Confusion matrix for Naive Bayes classifier for Table 5.28  allelelenghtDS.
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Figure 5.36 Graph of predictions by Naive Bayes classifier on the training allelelengthDS 
set.
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Allele Frequency Dataset5.4.4.3 

Parameters used
Scheme:       weka.classifiers.bayes.NaiveBayes

Results of classification
Correctly Classified Instances        1944               58.3784 %
Incorrectly Classified Instances      1386               41.6216 %
Kappa statistic                          0.498 
Mean absolute error                      0.1011
Root mean squared error                  0.2405
Relative absolute error                 60.2626 %
Root relative squared error             83.052  %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.399     0.021      0.528     0.399     0.455      0.905    Y100
                 0.348     0.009      0.426     0.348     0.383      0.898    W100
                 0.774     0.022      0.602     0.774     0.677      0.961    U100
                 0.746     0.125      0.615     0.746     0.674      0.901    T100
                 0.614     0.138      0.554     0.614     0.583      0.826    SM100
                 0.288     0.011      0.368     0.288     0.323      0.889    Q100
                 0.208     0.011      0.426     0.208     0.28       0.854    P100
                 0.535     0.031      0.575     0.535     0.554      0.851    H100
                 0.7       0.08       0.699     0.7       0.7        0.902    G100
                 0.273     0.051      0.396     0.273     0.323      0.757    C100
Weighted Avg.    0.584     0.085      0.571     0.584     0.572      0.866

a b c d e f g h i j

75 2 4 7 27 2 7 10 31 23 Y100

3 23 1 12 10 0 1 2 14 0 W100

1 0 106 7 11 0 2 2 2 6 U100

2 7 8 526 84 9 3 3 50 13 T100

14 7 16 144 448 2 2 15 39 43 SM100

2 1 6 9 8 21 4 4 13 5 Q100

11 0 4 16 21 7 26 11 10 19 P100

4 3 14 19 21 0 11 130 21 20 H100

17 6 8 70 57 11 0 19 490 22 G100

13 5 9 45 121 5 5 30 31 99 C100

Confusion matrix for Naive Bayes classifier for Table 5.29  allelefrequencyDS.
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Figure 5.37 Graph of predictions by Naive Bayes classifier on the training allelefrequen-
cyDS set.
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Discussion of Naive Bayes results5.4.4.4 

Naive Bayes algorithm was examined for breed discrimination task on all of three data-
sets as well. For the general dataset, 82.55 % of correctly classified instances and Kappa 
statistic=0.7893 parameters were obtained. Averall FP Rate calculated as weighted mean 
accross all of classes equlas 0.037, overall precision is 0.828 and F-Measure=0.818.

Best precision was reached for G100 class (0.919, F-Measure=0.938), the worst one for 
C100 class (0.654, F-measure=0.59). FP Rate ranges from 0.001 (Q100, W100) to 0.09 (SM100). 
TP Rate ranges from 0.959 (G100) to 0.397 (Q100).

In accordance with results described above, figure 5.35 shows, that there is admixture 
of class probabilities present mainly between SM100 and C100 classes, and G100 and SM100 
classes as well. Naive Bayes classifier performed on general dataset has one of the best re-
sults reached for breed classification task among all of tested algorithms.
Usability of Naive Bayes classifier was not proved by the results for allele length and allele 
frequency datasets. For allele length dataset, 56.13 % of instances were classified correctly 
by model, Kappa statistic equals 0.4748 and average FP Rate is 0.083, overall precision is 
0.5536 and F-Measure equals 0.552. Similar results were obtained for classes themselves. 
The best TP Rate was obtained for G100 class (0.679), the worst for P100 one (0.16). FT Rate 
ranges from 0.011 for P100 to 0.134 for SM100 class. It is quite interesting result, TP Rate and 
FP Rate calculated for P100 class. Small TP Rate value shows that P100 individuals can not 
be classified correctly (they are classified as another breed), but on the other hand small FP 
Rate shows, there are not misclassification from another breeds individuals. So, we can say 
that P100 can not create valid breed but is is different that the others under the Naive Bayes 
classification on allele length dataset. 

As graph 5.36 shows, Naive Bayes classifier on allele length dataset is not suitable for 
good breed definition as in SM100, Q100, P100, H100, G100 and C100 groups, there is big 
portion of probabilities of other breeds equally spread for all of noticed breeds.
In the section 5.4.4.3 there are results obtained for Naive Bayes classifier on allele frequency 
dataset. 58.38 % of instances were classified correctly by this model. Kappa statistic for the 
whole 10 fold cross validation equals 0.498. Overall weighted FP Rate is 0.085, precision 
equlas 0.571 and F-Measure=0.572.

The best TP Rate=0.774 was reached for U100 class, the wors one (0.273) for C100 class. 
FP Rate ranges from 0.009 (W100) to 0.138 in SM100. The best precision was reached for 
G100 class (0.699, F-Measure=0.7), the worst one for Q100 class (0.368, F-Measure=0.323).

Graph of predictions on the training set shows better results than in case of allele length 
dataset, anyway results for SM100 and C100 breeds are not satisfactionary. Also, big mix-
ture of predicted probabilities is evident for T100 (however this class is predicted clearly) 
and SM100 and G100 classes.
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Bayes Net5.4.5 

General Dataset5.4.5.1 

Parameters used
Scheme:       weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.lo-
cal.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

Results of classification
Correctly Classified Instances        2786               83.6637 %
Incorrectly Classified Instances       544               16.3363 %
Kappa statistic                          0.8035
Mean absolute error                      0.043 
Root mean squared error                  0.1558
Relative absolute error                 25.6494 %
Root relative squared error             53.7972 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.809     0.011      0.822     0.809     0.815      0.985    Y100
                 0.758     0.002      0.909     0.758     0.826      0.998    W100
                 0.92      0.006      0.869     0.92      0.894      0.982    U100
                 0.915     0.032      0.885     0.915     0.9        0.986    T100
                 0.87      0.077      0.761     0.87      0.812      0.966    SM100
                 0.562     0.002      0.891     0.562     0.689      0.974    Q100
                 0.48      0.004      0.811     0.48      0.603      0.962    P100
                 0.802     0.006      0.915     0.802     0.855      0.921    H100
                 0.96      0.019      0.929     0.96      0.944      0.993    G100
                 0.579     0.039      0.644     0.579     0.61       0.925    C100
Weighted Avg.    0.837     0.033      0.837     0.837     0.833      0.97

a b c d e f g h i j

152 0 0 6 12 0 1 1 2 14 Y100

0 50 1 4 0 0 0 0 9 2 W100

0 0 126 3 3 0 1 0 1 3 U100

3 1 4 645 31 0 1 1 13 6 T100

4 0 0 32 635 0 3 4 4 48 SM100

5 1 3 0 7 41 1 1 1 13 Q100

10 1 2 9 13 2 60 4 5 19 P100

3 0 7 7 17 1 1 195 7 5 H100

2 1 1 8 7 1 1 1 672 6 G100

6 1 1 15 109 1 5 6 9 210 C100

Confusion matrix for Bayes Net classifier for Table 5.30  generalDS.

Graph of predictions by Bayes Net classifier on the training Figure 5.38  generalDS set. 
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Allele Length Dataset5.4.5.2 

Parameters used
Scheme:       weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.lo-
cal.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

Results of classification
Correctly Classified Instances        2809               84.3544 %
Incorrectly Classified Instances       521               15.6456 %
Kappa statistic                          0.8128
Mean absolute error                      0.0399
Root mean squared error                  0.1523
Relative absolute error                 23.7714 %
Root relative squared error             52.6101 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.809     0.013      0.792     0.809     0.8        0.984    Y100
                 0.924     0.002      0.897     0.924     0.91       0.999    W100
                 0.905     0.006      0.867     0.905     0.886      0.979    U100
                 0.919     0.032      0.886     0.919     0.903      0.985    T100
                 0.829     0.064      0.784     0.829     0.806      0.965    SM100
                 0.658     0.006      0.716     0.658     0.686      0.972    Q100
                 0.632     0.007      0.782     0.632     0.699      0.971    P100
                 0.798     0.008      0.886     0.798     0.84       0.921    H100
                 0.954     0.013      0.952     0.954     0.953      0.994    G100
                 0.634     0.035      0.687     0.634     0.659      0.936    C100
Weighted Avg.    0.844     0.029      0.842     0.844     0.842      0.972

a b c d e f g h i j

152 2 2 5 14 1 2 1 1 8 Y100

0 61 0 2 1 0 0 0 2 0 W100

2 0 124 2 4 0 1 2 1 1 U100

4 2 4 648 29 2 1 0 11 4 T100

6 0 1 34 605 9 3 6 4 62 SM100

4 1 3 4 3 48 2 1 0 7 Q100

6 0 2 6 8 1 79 8 3 12 P100

4 1 6 7 13 2 4 194 5 7 H100

6 0 1 7 10 0 3 1 668 4 G100

8 1 0 16 85 4 6 6 7 230 C100

Confusion matrix for Bayes Net classifier for Table 5.31  allelelenghtDS.
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Figure 5.39 Graph of predictions by Bayes Net classifier on the training allelelengtDS set.
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Allele Frequency Dataset5.4.5.3 

Parameters used
Scheme:       weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.lo-
cal.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.BMAEstimator -- -A 0.5

Results of classification
Correctly Classified Instances        2824               84.8048 %
Incorrectly Classified Instances       506               15.1952 %
Kappa statistic                          0.8181
Mean absolute error                      0.0392
Root mean squared error                  0.1509
Relative absolute error                 23.3925 %
Root relative squared error             52.1192 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.814     0.011      0.814     0.814     0.814      0.987    Y100
                 0.894     0.002      0.908     0.894     0.901      0.999    W100
                 0.912     0.005      0.893     0.912     0.903      0.976    U100
                 0.928     0.033      0.883     0.928     0.905      0.986    T100
                 0.837     0.057      0.805     0.837     0.821      0.967    SM100
                 0.685     0.005      0.769     0.685     0.725      0.975    Q100
                 0.704     0.006      0.815     0.704     0.755      0.972    P100
                 0.79      0.007      0.893     0.79      0.838      0.921    H100
                 0.951     0.016      0.941     0.951     0.946      0.994    G100
                 0.623     0.039      0.663     0.623     0.642      0.934    C100
Weighted Avg.    0.848     0.029      0.847     0.848     0.847      0.972

a b c d e f g h i j

153 0 0 7 8 3 2 1 3 11 Y100

0 59 0 3 0 0 0 0 4 0 W100

1 0 125 2 4 0 0 1 2 2 U100

2 1 3 654 24 2 2 1 13 3 T100

4 0 0 31 611 3 3 3 4 71 SM100

6 1 3 3 1 50 1 1 0 7 Q100

3 0 1 6 7 1 88 8 2 9 P100

5 1 6 7 14 2 4 192 5 7 H100

3 2 2 9 8 0 4 1 666 5 G100

11 1 0 19 82 4 4 7 9 226 C100

Confusion matrix for Bayes Net classifier for Table 5.32  allelefrequencyDS.
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Figure 5.40  Graph of predictions by Bayes Net classifier on the training allelefrequencyDS 
set.
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Discussion of Bayes Net results5.4.5.4 

Bayes Net classifier was examined in the same way as was previously described for other 
classifiers. Parameters set were: estimator  - Simple Estimator with alpha=0.5, search algo-
rithm as K2 (hill climbing one) with maximum 1 parent and initial state as Naive Bayes 
classifier. On the genaral dataset, we reached 83.66 % of correctly classified instances and 
Kappa statistic=0.8035. Overall calculated FP Rate equals 0.033, Precision=0.837 and F-Mea-
sure 0.833. 
The best TP Rate was reached for G100 class (0.960), the worst one for P100 class (0.480). 
FP ranges from 0.002 (Q100) to 0.077 (SM100).  Best precision was calculated for G100 class 
(0.929, F-Measure=0.944) and the worts one for C100 (0.644, F-Measure=0.610). When we 
examined confusion matrix for this classifier (table 5.30) we can observe the main misclassi-
fied individuals in C100 and SM100 classes. 48 individuals of SM100 breed were classified 
as C100 ones, and 109 individuals from C100 were classified as SM100 respectively. In this 
case, model is not able to divide these two breeds effectively, what should reflect breeding 
strategy of Czech Fleckvieh and similar genetic basis of both breeds.

On the figure 5.38 there are displayed results of predictions of Bayes Net on the train-
ing set. Graph shows clearly very good level of prediction as well as described similarities 
between C100 and SM100 groups of individuals.

Results available for Bayes Net classifier ran on the allele length dataset show very 
good classification power as Bayes Net on general dataset has. Number of correctly classi-
fied instances is 84.35 % and Kappa statistic equals to 0.8128, FP Rate=0.029, Precision=0.842 
and F-Measure=0.842. 

The best classified class according to TP Rate is G100 with TP Rate=0.954, the worst 
classified is P100 with 0.632 TP Rate. FP Rate obtained ranges from 0.02 for W100 to 0.064 
in SM100 group of individuals. Best precision was reached for G100 breed (0.952, F-
Measure=0.953), the lowest one for C100 (0.687, F-Measure=0.659).
Also, graph of predictions on dataset shows very clearly predicted probablities of individu-
als breed (with exception of C100 breed).

Bayes Net classifier reached on allele frequency dataset 84.81 % of correctly classified 
instances what is the best results all over the classifiers and datasets combinations. Kappa 
statistic equals 0.8181 in this case. Overall calculated FP Rate is 0.029, Precision=0.847 and F-
Measure=0.847. The best TP Rate (0.951) was reached for G100 class, the worst one (0.623) for 
C100.  FP Rate ranges from 0.002 in W100 to 0.057 in SM100. Best precision was calculated 
for G100 class (0.941, F-Measure=0.946), the worst one for C100 as 0.663, F-Measure=0.642.
As results obtained for Bayes Net classifier for allele frequency dataset are the best obtained 
from all of classifiers, graph of predictions (figure 5.40) gives one of the most reliable pic-
ture of classification methods limits in cattle breeds calculated on given dataset. As well, 
when the model is 10 fold cross validated, the similar results can be expected on unknown 
samples as well. Suprisingly, results are comparamble to horse breed discrimintaion ones 
presented in (Burocziova, Riha; 2009). As the horses breeding strategies as well as parent-
age and pedigree control is completely different (more strict), we can expect better results of 
discrimination as well. On the other hand, Bayes Net classifier result show, that we can find 
good performed classifier suitable for cattle breeds discrimination as well. Additionally, 
results obtained for Naive Bayes Classifier, Bayes Net allows to reach very good results of 
classification on all of three datasets (and the best results for allele frequency dataset). 
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IB15.4.6 

General Dataset5.4.6.1 

Parameters used
Scheme:       weka.classifiers.lazy.IB1

Results of classification
Correctly Classified Instances        1999               60.03   %
Incorrectly Classified Instances      1331               39.97   %
Kappa statistic                          0.5155
Mean absolute error                      0.0799
Root mean squared error                  0.2827
Relative absolute error                 47.6532 %
Root relative squared error             97.6367 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.33      0.021      0.488     0.33      0.394      0.655    Y100
                 0.5       0.006      0.647     0.5       0.564      0.747    W100
                 0.708     0.012      0.719     0.708     0.713      0.848    U100
                 0.748     0.116      0.634     0.748     0.686      0.816    T100
                 0.659     0.149      0.554     0.659     0.602      0.755    SM100
                 0.274     0.007      0.455     0.274     0.342      0.633    Q100
                 0.192     0.013      0.358     0.192     0.25       0.589    P100
                 0.444     0.027      0.568     0.444     0.499      0.709    H100
                 0.756     0.079      0.718     0.756     0.736      0.838    G100
                 0.325     0.054      0.423     0.325     0.368      0.635    C100
Weighted Avg.    0.6       0.084      0.587     0.6       0.588      0.758

a b c d e f g h i j

62 2 4 34 35 3 4 13 14 17 Y100

1 33 0 10 1 0 0 1 19 1 W100

1 1 97 7 13 1 1 7 5 4 U100

6 2 6 527 86 2 2 5 45 24 T100

6 1 5 97 481 5 11 18 39 67 SM100

2 1 2 3 25 20 5 1 8 6 Q100

13 0 3 20 25 4 24 4 20 12 P100

7 3 6 27 39 4 7 108 27 15 H100

15 8 6 52 48 3 6 18 529 15 G100

14 0 6 54 116 2 7 15 31 118 C100

Confusion matrix for IB1 classifier for Table 5.33  generalDS.
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Figure 5.41  Graph of predictions by IB1 classifier on the training generalDS set.
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Allele Length Dataset5.4.6.2 

Parameters used
Scheme:       weka.classifiers.lazy.IB1

Results of classification
Correctly Classified Instances        1588               47.6877 %
Incorrectly Classified Instances      1742               52.3123 %
Kappa statistic                          0.3669
Mean absolute error                      0.1046
Root mean squared error                  0.3235
Relative absolute error                 62.368  %
Root relative squared error            111.6987 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.346     0.028      0.428     0.346     0.382      0.659    Y100
                 0.152     0.008      0.27      0.152     0.194      0.572    W100
                 0.672     0.012      0.702     0.672     0.687      0.83     U100
                 0.603     0.142      0.533     0.603     0.566      0.73     T100
                 0.508     0.179      0.444     0.508     0.474      0.665    SM100
                 0.096     0.007      0.241     0.096     0.137      0.545    Q100
                 0.136     0.024      0.183     0.136     0.156      0.556    P100
                 0.317     0.027      0.478     0.317     0.381      0.645    H100
                 0.611     0.124      0.567     0.611     0.588      0.744    G100
                 0.264     0.082      0.284     0.264     0.274      0.591    C100
Weighted Avg.    0.477     0.11       0.466     0.477     0.467      0.684

a b c d e f g h i j

65 1 2 20 22 4 9 5 42 18 Y100

2 10 0 18 10 2 0 3 18 3 W100

3 1 92 11 15 3 0 3 5 4 U100

11 8 7 425 121 4 11 16 63 39 T100

15 2 9 125 371 1 11 19 85 92 SM100

4 0 6 14 15 7 9 1 11 6 Q100

11 0 1 29 24 1 17 6 20 16 P100

4 5 10 24 45 2 12 77 38 26 H100

21 6 1 70 98 2 15 21 428 38 G100

16 4 3 62 115 3 9 10 45 96 C100

Confusion matrix for IB1 classifier for Table 5.34  allelelengthtDS.
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Figure 5.42  Graph of predictions by IB1 classifier on the training allelelengthDS set.
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Allele Frequency Dataset5.4.6.3 

Parameters used
Scheme:       weka.classifiers.lazy.IB1

Results of classification
Correctly Classified Instances        1458               43.7838 %
Incorrectly Classified Instances      1872               56.2162 %
Kappa statistic                          0.3183
Mean absolute error                      0.1124
Root mean squared error                  0.3353
Relative absolute error                 67.0223 %
Root relative squared error            115.7916 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.191     0.025      0.31      0.191     0.237      0.583    Y100
                 0.227     0.016      0.227     0.227     0.227      0.606    W100
                 0.65      0.013      0.685     0.65      0.667      0.818    U100
                 0.55      0.166      0.47      0.55      0.507      0.692    T100
                 0.46      0.146      0.469     0.46      0.465      0.657    SM100
                 0.027     0.005      0.111     0.027     0.044      0.511    Q100
                 0.144     0.02       0.22      0.144     0.174      0.562    P100
                 0.263     0.034      0.376     0.263     0.31       0.615    H100
                 0.611     0.181      0.473     0.611     0.534      0.715    G100
                 0.226     0.074      0.271     0.226     0.246      0.576    C100
Weighted Avg.    0.438     0.119      0.42      0.438     0.424      0.659

a b c d e f g h i j

36 4 2 25 20 4 10 15 57 15 Y100

1 15 0 20 6 0 1 1 19 3 W100

1 1 89 13 7 1 2 7 11 5 U100

14 11 5 388 114 3 3 14 100 53 T100

10 9 9 149 336 1 15 26 99 76 SM100

4 1 6 13 10 2 3 2 29 3 Q100

10 0 4 16 26 2 18 12 29 8 P100

6 8 7 28 47 2 10 64 55 16 H100

24 14 4 91 65 3 12 17 428 42 G100

10 3 4 82 85 0 8 12 77 82 C100

Confusion matrix for IB1 classifier for Table 5.35  allelefrequencyDS.

 C100
 G100
 H100
 P100
 Q100
 SM100
 T100
 U100
 W100
 Y100

Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.43  Graph of predictions by IB1 classifier on the training allelefrequencyDS set.
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Discussion of IB1 results5.4.6.4 

Percentage of correctly classified instances for IB1 classifier from Weka-3-6-6 obtained for 
general dataset was 60.03 % and Kappa statistic=0.5155. Average FP Rate is set on 0.084, 
Precision=0.587 and F-Measure=0.588. 

The best TP Rate among all of classes was reached for G100 (0.756), the worst one for 
P100 (0.192) class. FP Rate ranges from 0.006 for W100 to 0.149 for SM100 breed. Best pre-
cision was reached for U100 class (0.719, F-Measure=0.713), 0.358 (F-Measure=0.25) as the 
worst result for P100 was obtained.

As TP Rate for all of clasess individually as well as for the whole dataset is quite low, 
we can see quite a lot of misclassified instances in confusion matrix of cross validation (table 
5.33). 

Otherwise, results of 10 fold cross validation are not good enough, graph of predictions 
on training set seems to offer very good results (figure 5.41). Anyway, it shows typical prob-
lem of lazy classifiers with their robustness. On the training set, we can always obtain re-
sults with precision near 1.0, when results are validated by cross validation they are usually 
much worse. Only when huge datasets are provided with repetitions, the results obtained 
from both 10 fold cross validation and validation on the whole dataset becomes similar. In 
our case, it is evident that given database is not big enough to build a robus model based 
on IB1 classifier. In fact described, we also can obtain better results on more frequent classes 
than less frequent ones, besides less frequent ones could be better specified (uniform) than 
more frequent ones.

In case of allele lenght dataset, where information about individual is doubled, the 
problem is more evident also for the whole dataset evaluation where misclassification is 
present as well (figure 5.42).

Correctly classified instances in this case represent 47.69 %, Kappa statistic is 0.3669, 
overall FP Rate is 0.11, Precision equals 0.466 and F-Measure=0.467.

The best results among classes for TP Rate was obtained for U100 (0.672), the worst one 
was obtained for Q100 (0.096), what corresponds with less freqency of Q100 individuals in 
dataset, so classifier can not create sufficant database which can classifiy unknown instanc-
es properly. Best precision was reached for U100 class as well (0.702, F-Measure=0.687), the 
worst one for P100 class (0.183, F-Measure=0.156).

The worst results were obtained for IB1 classifier and allele frequency dataset, where 
doubled information for individual is sorted additionally. In this case, it seems that da-
tabase supplied is significantly not big enough to build good classification model by IB1 
algorithm. Correctly classified instances represent only 43.78 %, Kappa statistic is 0.3183, 
overall FP Rate 0.119, Precision=0.42 and F-Measure equals 0.424.

U100 class has the best TP Rate (0.650) and Q100 represents the one with lowest TP Rate 
value (0.027). FP Rate ranges from 0.005 in Q100 (so, there are minimum instances misclas-
sified as Q100) otherwise the most of Q100 instances are misclassified as the others (table 
5.35) to 0.181 in G100. Best precision was reached for U100 class (0.685, F-Measure=0.667), 
the worst one for Q100 (0.111, F-Measure=0.044). 

Especially, there are a lot of false negative results and false positives in all of three data-
sets results, so the classifier tends to misclassify instances in the way of badly voted prob-
abilities. We need to note at this place that IB1 sets probabilities to 0 or 1 only depending on 
the voting performed by 1-NN algorithm. In this case, IB1 classifier can not be recomended 
as the one which is suitable for breed discrimination in cattle.
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IB55.4.7 

General Dataset5.4.7.1 

Parameters used
Scheme:       weka.classifiers.lazy.IBk -K 5 -W 0 -A “weka.core.neighboursearch.Lin-
earNNSearch -A \”weka.core.EuclideanDistance -R first-last\””

Results of classification
Correctly Classified Instances        2177               65.3754 %
Incorrectly Classified Instances      1153               34.6246 %
Kappa statistic                          0.5701
Mean absolute error                      0.1018
Root mean squared error                  0.2209
Relative absolute error                 60.6705 %
Root relative squared error             76.2933 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.287     0.007      0.701     0.287     0.408      0.916    Y100
                 0.288     0          0.95      0.288     0.442      0.963    W100
                 0.766     0.009      0.778     0.766     0.772      0.975    U100
                 0.901     0.142      0.631     0.901     0.742      0.951    T100
                 0.838     0.195      0.547     0.838     0.662      0.907    SM100
                 0.014     0          0.5       0.014     0.027      0.829    Q100
                 0.048     0.001      0.6       0.048     0.089      0.795    P100
                 0.428     0.004      0.897     0.428     0.579      0.897    H100
                 0.847     0.07       0.764     0.847     0.804      0.962    G100
                 0.132     0.007      0.706     0.132     0.223      0.8      C100
Weighted Avg.    0.654     0.089      0.68      0.654     0.605      0.914

a b c d e f g h i j

54 0 2 38 60 0 0 2 28 4 Y100

2 19 1 15 8 0 0 1 20 0 W100

1 0 105 7 14 0 0 0 9 1 U100

5 0 5 635 42 0 0 0 17 1 T100

0 1 2 91 612 0 0 1 21 2 SM100

2 0 3 16 40 1 1 0 7 3 Q100

5 0 2 30 52 1 6 5 23 1 P100

2 0 7 40 59 0 2 104 23 6 H100

3 0 4 64 33 0 0 1 593 2 G100

3 0 4 71 199 0 1 2 35 48 C100

Confusion matrix for IB5 classifier for Table 5.36  generalDS.
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Figure 5.44  Graph of predictions by IB5 classifier on the training generalDS set.
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Allele Length Dataset5.4.7.2 

Parameters used
Scheme:       weka.classifiers.lazy.IBk -K 5 -W 0 -A “weka.core.neighboursearch.Lin-
earNNSearch -A \”weka.core.EuclideanDistance -R first-last\””

Results of classification
Correctly Classified Instances        1661               49.8799 %
Incorrectly Classified Instances      1669               50.1201 %
Kappa statistic                          0.3849
Mean absolute error                      0.1202
Root mean squared error                  0.2618
Relative absolute error                 71.6336 %
Root relative squared error             90.4197 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.41      0.039      0.385     0.41      0.397      0.781    Y100
                 0.152     0.005      0.37      0.152     0.215      0.682    W100
                 0.708     0.012      0.713     0.708     0.711      0.902    U100
                 0.695     0.192      0.493     0.695     0.577      0.822    T100
                 0.558     0.198      0.442     0.558     0.493      0.764    SM100
                 0.027     0.002      0.286     0.027     0.05       0.598    Q100
                 0.072     0.007      0.3       0.072     0.116      0.629    P100
                 0.272     0.014      0.606     0.272     0.375      0.739    H100
                 0.639     0.126      0.574     0.639     0.604      0.85     G100
                 0.154     0.024      0.438     0.154     0.228      0.633    C100
Weighted Avg.    0.499     0.117      0.49      0.499     0.471      0.775

a b c d e f g h i j

77 2 2 26 29 2 4 5 40 1 Y100

1 10 1 20 10 0 0 3 21 0 W100

3 0 97 9 18 0 2 0 5 3 U100

12 3 5 490 115 0 2 6 62 10 T100

18 3 14 181 407 0 1 7 74 25 SM100

15 0 3 17 18 2 1 0 16 1 Q100

18 0 0 31 27 2 9 4 22 12 P100

15 5 8 25 65 0 5 66 45 9 H100

25 4 2 107 91 1 5 7 447 11 G100

16 0 4 87 141 0 1 11 47 56 C100

Confusion matrix for IB5 classifier for Table 5.37  allelelenghtDS.
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Figure 5.45  Graph of predictions by IB5 classifier on the training allelelengthDS set.
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Allele Frequency Dataset5.4.7.3 

Parameters used
Scheme:       weka.classifiers.lazy.IBk -K 5 -W 0 -A “weka.core.neighboursearch.Lin-
earNNSearch -A \”weka.core.EuclideanDistance -R first-last\””

Results of classification
Correctly Classified Instances        1512               45.4054 %
Incorrectly Classified Instances      1818               54.5946 %
Kappa statistic                          0.3291
Mean absolute error                      0.1256
Root mean squared error                  0.2716
Relative absolute error                 74.8573 %
Root relative squared error             93.7769 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.234     0.031      0.314     0.234     0.268      0.691    Y100
                 0.258     0.014      0.266     0.258     0.262      0.766    W100
                 0.657     0.021      0.573     0.657     0.612      0.895    U100
                 0.633     0.219      0.437     0.633     0.517      0.773    T100
                 0.515     0.16       0.475     0.515     0.494      0.744    SM100
                 0         0.001      0         0         0          0.568    Q100
                 0.064     0.009      0.216     0.064     0.099      0.658    P100
                 0.206     0.012      0.568     0.206     0.302      0.725    H100
                 0.647     0.185      0.482     0.647     0.553      0.814    G100
                 0.077     0.02       0.318     0.077     0.124      0.624    C100
Weighted Avg.    0.454     0.127      0.429     0.454     0.419      0.747

a b c d e f g h i j

44 3 5 38 15 0 6 4 68 5 Y100

1 17 0 19 5 0 1 1 21 1 W100

4 0 90 14 13 0 1 1 12 2 U100

14 12 11 446 108 2 1 3 100 8 T100

13 14 17 185 376 0 3 6 99 17 SM100

5 0 5 17 14 0 2 2 26 2 Q100

15 2 3 34 24 1 8 7 28 3 P100

10 5 12 38 50 0 5 50 60 13 H100

22 7 5 119 70 1 6 8 453 9 G100

12 4 9 111 117 0 4 6 72 28 C100

Confusion matrix for IB5 classifier for Table 5.38  allelefrequencyDS.
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Figure 5.46  Graph of predictions by IB5 classifier on the training allelefrequencyDS set.



5 Results and Discussion

132

Discussion of IB5 results5.4.7.4 

Instead of 0 or 1 probability set by IB1 classifier, IB5 classifier set the probabilities of predic-
tion according to voting 5 nearest neigbour instances (according to Euclidean distance) and 
their classes. So, there is better chance to predict proper class on the smaller database. 

On general dataset, IB5 classifier classified correctly 65.38 % of instances with Kappa 
statistic equals to 0.5701. Overall FP Rate is calculated as 0.089, Precision equals 0.68 and 
F-Measure is 0.605 as weigheted means accross all of classes based on cross validation re-
sults.

Surprisingly, well defined class according to TP Rate is T100 in this case with TP 
Rate=0.901, the worst defined one is Q100 with TP Rate=0.014 when small frequency of Q100 
in dataset plays a role rather than its similarity to other classes. FP Rate ranges from 0.00 
(W100, Q100) to 0.195 for SM100. Anyway, small FP Rates can be useful for specific tasks in 
breed discrimination problem. When model classifies with small FP Rate for predicted class, 
we can say that predicted class is mostly sure well predicted. Best precision was reached for 
W100 class (0.950, F-Measure=0.442), the worst one for Q100 (0.500, F-Measure=0.027)

Graph 5.44 displays better portions of predicted probabilities done by IB5 than IB1 clas-
sifier on the whole training set. Anyway, huge admixture is present between T100 and G100 
classes as well as between SM100 and C100 classes. We need to imagine that in case of IB5 
classifier, when we can find three similar individuals in class which is not actual class of 
classified individual, it will be misclassified with 3/5 probablity.

This fact is evident on results calculated on allele length and allele frequency datasets 
(figure 5.45 and 5.46). Graphs of predictions are equally divided according to portions pre-
dicted by similar individuals from different classes, what is caused (as in case of IB1) by 
double and sorting of information which define individual in those two datasets. 

Only 49.88 % and 45.41 % of correctly classified instances were reached for allele lenght 
and allele frequency dataset with Kappa statistic equals 0.3849 resp. 0.3291, overall FP Rate 
0.117 resp. 0.127, Precision=0.49 resp. 0.429, F-Measure=0.471 resp. 0.419.

Best TP Rate was calculated for U100 class (0.708) in allele lenght dataset, 0.657 for 
U100 in allele freuency dataset. Worst results are - 0.27 for Q100, resp. 0.00 in Q100. FP Rate 
ranges from 0.002 (Q100) to 0.198 (SM100) in allele lenght and from 0.001 in Q100 to 0.219 
in SM100 in allele frequency dataset.

Best precision was reached for U100 class in both of datasets (0.713, F-Measure=0.711; 
0.573, F-Measure=0.612) the worst for Q100 class (0.3, F-Measure=0.116; 0.00, F-
Measure=0.00). 

When one of all classes is misclassified completely, we can not recommend IB5 as a clas-
sifier for breed discrimination task. Anyway, IBk concept of classifiers offers quite a lot of 
possibilities for modifications (as metrics used for similarity calculations, voting modifica-
tions on classes etc.), so we can not reject the whole concept how is shown bellow in case of 
G-metric classification based on this concept as well.
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Support Vector Machines5.4.8 

General Dataset5.4.8.1 

Parameters used
Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 
-K “weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0”

Results of classification
Correctly Classified Instances        2609               78.3483 %
Incorrectly Classified Instances       721               21.6517 %
Kappa statistic                          0.7403
Mean absolute error                      0.1621
Root mean squared error                  0.2754
Relative absolute error                 96.6255 %
Root relative squared error             95.0954 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.723     0.025      0.638     0.723     0.678      0.947    Y100
                 0.742     0.002      0.875     0.742     0.803      0.994    W100
                 0.854     0.012      0.76      0.854     0.804      0.969    U100
                 0.887     0.047      0.836     0.887     0.86       0.958    T100
                 0.811     0.076      0.75      0.811     0.779      0.928    SM100
                 0.562     0.005      0.732     0.562     0.636      0.91     Q100
                 0.456     0.01       0.633     0.456     0.53       0.872    P100
                 0.654     0.014      0.791     0.654     0.716      0.902    H100
                 0.92      0.027      0.902     0.92      0.911      0.976    G100
                 0.521     0.04       0.612     0.521     0.563      0.846    C100
Weighted Avg.    0.783     0.04       0.78      0.783     0.779      0.935

a b c d e f g h i j

136 0 3 3 10 2 5 6 7 16 Y100

2 49 1 5 0 1 0 1 7 0 W100

3 1 117 2 4 0 1 2 4 3 U100

9 1 5 625 38 0 1 5 15 6 T100

7 0 7 44 592 3 3 4 7 63 SM100

5 1 4 5 8 41 5 0 0 4 Q100

12 0 2 10 16 2 57 5 7 14 P100

6 1 8 9 23 3 10 159 13 11 H100

11 3 3 19 8 1 2 6 644 3 G100

22 0 4 26 90 3 6 13 10 189 C100

Confusion matrix for SMO classifier for Table 5.39  generalDS.
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Figure 5.47  Graph of predictions by SMO classifier on the training generalDS set.
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Allele Length Dataset5.4.8.2 

Parameters used
Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 
-K “weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0”

Results of classification
Correctly Classified Instances        1690               50.7508 %
Incorrectly Classified Instances      1640               49.2492 %
Kappa statistic                          0.394 
Mean absolute error                      0.1656
Root mean squared error                  0.2821
Relative absolute error                 98.702  %
Root relative squared error             97.4057 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.346     0.026      0.442     0.346     0.388      0.853    Y100
                 0.015     0          1         0.015     0.03       0.849    W100
                 0.672     0.015      0.657     0.672     0.664      0.933    U100
                 0.682     0.163      0.529     0.682     0.596      0.828    T100
                 0.593     0.208      0.445     0.593     0.509      0.751    SM100
                 0.164     0.001      0.75      0.164     0.27       0.851    Q100
                 0.184     0.008      0.479     0.184     0.266      0.728    P100
                 0.358     0.017      0.621     0.358     0.454      0.802    H100
                 0.646     0.156      0.524     0.646     0.579      0.797    G100
                 0.121     0.017      0.473     0.121     0.193      0.692    C100
Weighted Avg.    0.508     0.118      0.523     0.508     0.479      0.791

a b c d e f g h i j

65 0 2 6 32 1 11 2 65 4 Y100

1 1 0 15 12 0 0 2 35 0 W100

4 0 92 13 23 0 0 2 3 0 U100

7 0 9 481 121 0 1 5 78 3 T100

12 0 10 168 433 0 1 8 85 13 SM100

9 0 4 13 11 12 4 3 15 2 Q100

10 0 4 24 37 2 23 4 17 4 P100

11 0 9 18 50 0 2 87 53 13 H100

15 0 6 102 100 0 2 13 452 10 G100

13 0 4 70 154 1 4 14 59 44 C100

Confusion matrix for SMO classifier for Table 5.40  allelelenghtDS.
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Figure 5.48  Graph of predictions by SMO classifier on the training allelelengthDS set.
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Allele Frequency Dataset5.4.8.3 

Parameters used
Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 
-K “weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0”

Results of classification
Correctly Classified Instances        1637               49.1592 %
Incorrectly Classified Instances      1693               50.8408 %
Kappa statistic                          0.3735
Mean absolute error                      0.1657
Root mean squared error                  0.2823
Relative absolute error                 98.7887 %
Root relative squared error             97.4948 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.309     0.021      0.464     0.309     0.371      0.841    Y100
                 0         0          0         0         0          0.82     W100
                 0.569     0.013      0.645     0.569     0.605      0.942    U100
                 0.645     0.177      0.495     0.645     0.56       0.806    T100
                 0.595     0.186      0.473     0.595     0.527      0.763    SM100
                 0.123     0.003      0.45      0.123     0.194      0.832    Q100
                 0.104     0.006      0.406     0.104     0.166      0.713    P100
                 0.395     0.019      0.623     0.395     0.484      0.828    H100
                 0.65      0.179      0.492     0.65      0.56       0.789    G100
                 0.107     0.026      0.333     0.107     0.163      0.644    C100
Weighted Avg.    0.492     0.122      0.472     0.492     0.461      0.782

a b c d e f g h i j

58 0 2 10 28 0 8 5 72 5 Y100

0 0 1 8 15 0 0 2 40 0 W100

4 0 78 14 27 1 1 1 6 5 U100

1 0 4 455 134 0 0 1 103 7 T100

11 0 6 170 434 0 0 7 86 16 SM100

5 0 4 16 11 9 5 1 20 2 Q100

13 0 8 25 28 4 13 3 27 4 P100

14 0 7 23 40 1 3 96 41 18 H100

10 0 4 102 88 3 0 17 455 21 G100

9 0 7 96 112 2 2 21 75 39 C100

Confusion matrix for SMO classifier for Table 5.41  allelefrequencyDS.
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Figure 5.49  Graph of predictions by SMO classifier on the training allelefrequencyDS set.
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Discussion of Supprot Vector Machine results5.4.8.4 

SMO implementation of Supprost Vector Machines principle in Weka was run with param-
eters displayed in section 5.4.8.1. On the general dataset, 78.35 % of instances were classi-
fied correctly by this method. Kappa statistic of the whole model verified by 10 fold cross 
validation was 0.7403. Overall weighted parameters of classification was calculated as FP 
Rate=0.04, Precision=0.78 and F-Measure=0.779.

The best classified class by the meaning of TP Rate was G100 (0.920), the worst one was 
P100 (0.456). FP Rate ranged from 0.002 in W100 to 0.076 in SM100. Precision and F-Measure 
results ranged from 0.902; 0.911 (G100) to 0.612; 0.563 for C100 class.

Figure 5.47 displays predictions of SMO model on the whole dataset. For this dataset, 
however predictions and derived hyperplanes (and support vectors) are very closed, model 
can predict class very accurate. Connected probabilities in each breed are concluded ac-
cording to proper breed.

Unfortunately, when we run the same method on allele length dataset, classification 
power is dropping significantly. It can be caused mainly by “weak” definition of indi-
vidual based on frequency data. Only 50.75 % of correctly classified instances is reported 
on allele length dataset with model Kappa statistic=0.3940. Overall FP Rate is then 0.118, 
Precision=0.523 and F-Measure=0.479. The best TP Rate was obtained for T100 class (0.682), 
the smallest value for W100 class (0.015). False positive rate ranges from 0 (W100) to 0.208 
for SM100 class. The best precision was obtained for W100 (1.00, F-Measure=0.03), the worst 
one for Y100 class (0.442, F-Measure=0.388).

Similar results were obtained for allele frequency dataset - 49.16 % of correctly classi-
fied instances, Kappa statistic equals to 0.3735, overall FP Rate=0.122, Precision=0.472, F-
Measure=0.461. 

G100 class has a best TP Rate (0.65), W100 a worst one equals 0. FP Rate was calculated 
as lowest in W100 class (0.00) and highest in SM100 (0.186). We can see that any instance of 
W100 was classified to its class. Precision ranges from 0.00 (W100, F-Measure=0.00) to 0.645 
(U100, F-Measure=0.56). 
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Voted classifier5.4.9 

General Dataset5.4.9.1 

Parameters used
weka.classifiers.meta.Vote -S 1 -B “weka.classifiers.bayes.BayesNet -D -Q weka.classi-
fiers.bayes.net.search.local.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.
SimpleEstimator -- -A 0.5” -B “weka.classifiers.bayes.NaiveBayes “ -B “weka.classifiers.
functions.SMO\”” -R AVG

Results of classification
Correctly Classified Instances        2764               83.003  %
Incorrectly Classified Instances       566               16.997  %
Kappa statistic                          0.7951
Mean absolute error                      0.0837
Root mean squared error                  0.1715
Relative absolute error                 49.8913 %
Root relative squared error             59.2282 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.787     0.011      0.809     0.787     0.798      0.981    Y100
                 0.727     0.001      0.923     0.727     0.814      0.998    W100
                 0.912     0.006      0.868     0.912     0.89       0.978    U100
                 0.915     0.034      0.878     0.915     0.896      0.984    T100
                 0.881     0.085      0.745     0.881     0.807      0.965    SM100
                 0.479     0.001      0.897     0.479     0.625      0.944    Q100
                 0.456     0.004      0.826     0.456     0.588      0.94     P100
                 0.79      0.006      0.914     0.79      0.848      0.933    H100
                 0.959     0.022      0.922     0.959     0.94       0.992    G100
                 0.551     0.036      0.651     0.551     0.597      0.917    C100
Weighted Avg.    0.83      0.036      0.831     0.83      0.825      0.968

a b c d e f g h i j

148 0 0 6 15 0 1 1 3 14 Y100

0 48 1 5 0 0 0 0 10 2 W100

0 0 125 3 3 0 1 0 2 3 U100

3 1 4 645 33 0 1 0 14 4 T100

4 0 0 33 643 0 2 3 4 41 SM100

6 1 3 2 10 35 1 2 3 10 Q100

11 1 2 9 13 1 57 5 5 21 P100

3 0 7 7 20 1 1 192 7 5 H100

2 0 1 9 7 1 1 1 671 7 G100

6 1 1 16 119 1 4 6 9 200 C100

Confusion matrix for Voted classifier for Table 5.42  generalDS.

 C100
 G100
 H100
 P100
 Q100
 SM100
 T100
 U100
 W100
 Y100

Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.50  Graph of predictions by Voted classifier on the training  
generalDS set.
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Allele Length Dataset5.4.9.2 

Parameters used
weka.classifiers.meta.Vote -S 1 -B “weka.classifiers.bayes.BayesNet -D -Q weka.classi-
fiers.bayes.net.search.local.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.
SimpleEstimator -- -A 0.5” -B “weka.classifiers.bayes.NaiveBayes “ -B “weka.classifiers.
functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \”weka.classifiers.func-
tions.supportVector.PolyKernel -C 250007 -E 1.0\”” -R AVG

Results of classification
Correctly Classified Instances        2709               81.3514 %
Incorrectly Classified Instances       621               18.6486 %
Kappa statistic                          0.7762
Mean absolute error                      0.1037
Root mean squared error                  0.198 
Relative absolute error                 61.8274 %
Root relative squared error             68.3803 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.761     0.013      0.781     0.761     0.771      0.96     Y100
                 0.833     0.003      0.859     0.833     0.846      0.993    W100
                 0.898     0.012      0.759     0.898     0.823      0.972    U100
                 0.921     0.043      0.851     0.921     0.884      0.976    T100
                 0.807     0.076      0.748     0.807     0.777      0.94     SM100
                 0.575     0.005      0.737     0.575     0.646      0.937    Q100
                 0.528     0.006      0.776     0.528     0.629      0.932    P100
                 0.786     0.016      0.799     0.786     0.793      0.91     H100
                 0.943     0.021      0.922     0.943     0.932      0.984    G100
                 0.526     0.028      0.697     0.526     0.6        0.91     C100
Weighted Avg.    0.814     0.036      0.81      0.814     0.808      0.954

a b c d e f g h i j

143 2 3 9 11 1 3 1 7 8 Y100

0 55 0 4 2 0 0 2 3 0 W100

2 0 123 3 6 0 1 2 0 0 U100

7 2 5 649 25 1 1 0 11 4 T100

5 2 6 45 589 6 3 16 8 50 SM100

5 1 5 5 4 42 1 1 3 6 Q100

3 0 2 8 16 4 66 11 6 9 P100

3 1 9 9 19 0 3 191 6 2 H100

6 1 3 8 14 1 1 2 660 4 G100

9 0 6 23 101 2 6 13 12 191 C100

Confusion matrix for Voted classifier for Table 5.43  allelelenghtDS.
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Figure 5.51  Graph of predictions by Voted classifier on the training allelelengthDS set.
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Allele Frequency Dataset5.4.9.3 

Parameters used
weka.classifiers.meta.Vote -S 1 -B “weka.classifiers.bayes.BayesNet -D -Q weka.classi-
fiers.bayes.net.search.local.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.
SimpleEstimator -- -A 0.5” -B “weka.classifiers.bayes.NaiveBayes “ -B “weka.classifiers.
functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \”weka.classifiers.func-
tions.supportVector.PolyKernel -C 250007 -E 1.0\”” -R AVG

Results of classification
Correctly Classified Instances        2730               81.982  %
Incorrectly Classified Instances       600               18.018  %
Kappa statistic                          0.7832
Mean absolute error                      0.102 
Root mean squared error                  0.1954
Relative absolute error                 60.8146 %
Root relative squared error             67.4764 %
Total Number of Instances             3330     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                 0.761     0.011      0.808     0.761     0.784      0.961    Y100
                 0.818     0.001      0.947     0.818     0.878      0.993    W100
                 0.905     0.008      0.827     0.905     0.864      0.978    U100
                 0.929     0.047      0.841     0.929     0.883      0.977    T100
                 0.822     0.077      0.749     0.822     0.784      0.941    SM100
                 0.548     0.002      0.851     0.548     0.667      0.954    Q100
                 0.568     0.004      0.845     0.568     0.679      0.947    P100
                 0.782     0.011      0.848     0.782     0.814      0.914    H100
                 0.947     0.024      0.912     0.947     0.929      0.986    G100
                 0.523     0.032      0.669     0.523     0.587      0.902    C100
Weighted Avg.    0.82      0.037      0.818     0.82      0.815      0.956

a b c d e f g h i j

143 0 0 8 14 1 2 2 5 13 Y100

0 54 0 5 1 0 0 1 5 0 W100

1 0 124 2 4 0 0 1 2 3 U100

2 0 4 655 27 1 1 1 12 2 T100

4 0 2 51 600 1 1 9 9 53 SM100

2 2 4 6 4 40 1 1 7 6 Q100

6 0 3 9 14 1 71 8 4 9 P100

4 1 7 8 17 0 2 190 8 6 H100

7 0 1 11 12 1 1 2 663 2 G100

8 0 5 24 108 2 5 9 12 190 C100

Confusion matrix for Voted classifier for Table 5.44  allelefrequencyDS.
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Figure 5.52  Graph of predictions by Voted classifier on the training allelefrequencyDS set.



5 Results and Discussion

140

Discussion of Voted classifier results5.4.9.4 

Voted classifier implementing average voting between its basic classifiers was used to ex-
plore how the combination of best performance classifier can influence results on all of 
three examined datasets. As a voted basic classifiers, Naive Baies, Bayes Net and SMO clas-
sifiers were selected with parameters described above in each section.

Voted classifier reached on deneral data set following results - 83.00 % of correctly 
classified instances, Kappa statistic equals 0.7951 and average FP Rate calculated accross 
folds of cross validation and classes equlas 0.036. Weighted average Precision was 0.831, 
F-Measure=0.825.

Class with assigned highest TP Rate was G100 (0.959), the lowest value appeared for 
P100 class (0.456). FP Rate ranged from 0.001 (W100, Q100) to 0.085 (SM100). Best Preci-
sion was reached for W100 class (0.923; F-Measure=0.814), the worst one for C100 (0.651; F-
Measure=0.597). Figure 5.50 displays predicted probabilities on the whole dataset. It shows 
how classifier works, so we can identify small portion of probabilities of each class pre-
dicted for individuals caused by averaging predictions of all three basis classifiers.

On the allele lenght dataset, similar results were obtained. Percantage of correctly clas-
sified instances equals to 81.35 % with Kappa statistic equals 0.7762, average FP Rate=0.036, 
Precision=0.81 and F-Measure=0.808. Best TP Rate was reached for G100 class (0.943), the 
worst one for C100 class (0.526). W100 is a class with a lowest FP Rate (0.003), SM100 one 
with the highest value of FP Rate (0.076). Precision ranged from 0.697 (F-Measure=0.60) for 
C100 class to 0.922 (F-Measure=0.932) for G100 class.

Within results on allele frequency dataset, we can identify that voted classifier output 
81.98 % of correctly classified instances, Kappa statistic equals 0.7832, average FP Rate=0.037, 
Precision=0.818 and F-Measure=0.815. TP Rate=0.947 was reached for G100 class as the best 
one, TP Rate=0.523 for C100 class as the lowest one. FP Rate=0.001 represents smallest value 
for W100 class, FP Rate=0.077 represent the highest one for SM100 class. Precision ranged 
from 0.669 (C100; F-Measure=0.587) to 0.947 for W100 (F-Measure=0.878).

Big admixture of predicted probabilities is displayed on figure 5.52, especially between 
T100 and G100 classes and SM100 and C100 classes what is in accordance with results in 
confusion matrix (table 5.44).
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G-metric classification5.4.10 

Implementation of G-metric classifier5.4.10.1 

Datatypes

genotype = packed record
  a1: string[3];
  a2: string[3];
end;

Key record datatype called genotype is used to store genotypes (allele pair) as two strings 
of length equals 3. Anyway, this solution is used as alleles are stored in SQL database as 
the same type, otherwise definition in range of integer values. As ‘?’ is present as sign for 
unknown value in particular dataset, when we are using string implementation, there is 
no needing for conversions in routine SW usage as printing protocols, inputation of data 
etc. Only when calculations on allele lenght are performed, we need to perform conversion 
between datatypes as is evident.

G-dis function

function Gdis(g1,g2: genotype; sat: integer): real;
var gg1, gg2: real;
begin
  if (g1.a1=’?’) or (g2.a1=’?’) then gg1:=1 else begin
    gg1:=(abs(strtoint(g1.a1)-strtoint(g2.a1))/maxdiff[sat]);
  end;
  if (g1.a2=’?’) or (g2.a2=’?’) then gg2:=1 else begin
    gg2:=(abs(strtoint(g1.a2)-strtoint(g2.a2))/maxdiff[sat]);
  end;
  gdis:=(gg1+gg2)/2;
end;

Function G-dis is implemented according mathematical definition described in section 
4.3.4.1. It has two sorted genotypes (alleles are sorted in genotypes according their length) 
as input at it’s output is defined as a distance between input genotypes based on their alleles 
lenghts in pairs sorted according their allele lenghts in particular loci. It means we calcu-
late distance between “shorter” alleles from each pair firstly, then “longer” ones are used 
to compute second part of distance between two genotypes. If one or both of alleles in pair 
which is used for calculation is unknown, then distance between them is consider as 1 - in-
finity. When calculation of distance is performed as absolute value from alllele lenght dif-
ferences, it is “normalized” according to maximum distance available from alleles lenght in 
particular loci pre-calculated for whole dataset accross all of individuals. So, on this place, 
whole dataset creates base for distance calculation and it can be said that results depend on 
the whole dataset or they are valid under the dataset conditions.

Then, the whole distance of two genotypes in one loci is calculated as average distance 
between two pairs. As function is defined as sub-function of the whole metric, their values 
range from 0..1 as well.
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G-measure

function Gmeasure(indiv1,indiv2: indiv):real;
var i: integer;
begin
 for i:=1 to n of loci
   Gmeasure:=Gmeasure + Gdis(Loci i);
 end;
 Gmeasure:=Gmeasure/10;
end;

Function called G-measure calculates distance between two individuals based on maxi-
mum distances in each loci pre-calculated for the whole dataset using G-dis function for 
each loci and pair of individuals.

The result is calculated as average value of distances calculated for each loci, so the 
results of G-measure function range between 0..1 also.

G-metric classification algorithm - IB1 implementation

Initialization
1. Pre-calculate alleles maximum differences for each loci

for each loci
  select all of alleles (their lengths)
  sort output
end   
MAXDIFF:= store maximal differences for each loci in list as 
MAX LENGHT - MIN LENGHT

2. Create WHOLESET as a set of individuals with their breed and 
alleles sorted in each loci (genotype) according their length
3. Create BREED SETS of individuals for each breed
4. Initialize confusion matrix of whole dataset

10 fold cross validation classification
for i:=1 to 10
 Initialize confusion matrix of fold n;
 for all of breeds
   TEST SET:=TEST SET+1/10 of BREED SET;
   TRAIN SET:=TRAIN SET+BREED SET-TEST SET;
 end;
 for each individual 1 from TEST SET
   for each individual 2 from TRAIN SET
      INDIVIDUAL DISTANCES:=Gmeasure(individual 1, individual 
2);
     for each BREED
  INDIVIDUAL REGRESSION:=regression on distances of indi- 
       vidual to all of individuals in breed
       INDIVIDUAL RESULTS:=minimum from INDIVIDUAL DISTANCES;
       
   end;
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   INDIVIDUAL RESULTS;
   select minimum from INDIVIDUAL RESULTS;
   output INDIVIDUAL RESULTS;
   actualize confusion matrix of fold n;
   actualize confusion matrix of whole dataset;
 end;
  output confusin matrix of fold n;     
  output results for fold n;
end;
output confusin matrix for whole dataset;     
output results for whole dataset;

Figure 5.53 Results of G-metric classification of individual by using IB1 implemantation.

Figure 5.54  Results of G-metric classification of individual by using Slope implementa-
tion.

Pseudo code above describes implementation of G-metric classifier. In fact, it is IB1 classi-
fier with usage of Gmeasure and Gdis functions as implementation of G-metric proposed 
in chapter 4.3.4.1. Algorithm described implements 10 fold cross validation priciple, in cre-
ated software, there is modification when the whole dataset is used as training  as well as 
test set. So, comparable results to algorithms implemented in Weka-3-6-6 framework can 
be derived.
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After pre-calculation done in case of usage Gmeasure function when maximum differences 
in allele lengths for all of loci are computed and initialization of global result variables, 
cycle implements n fold validation is performed. When actual training and test set are es-
tablished by equal parts of individuals from all of breeds, then for each individual from test 
set the whole classification model is built as a database of distances from individual to all of 
individuals in train set, when distance is calculated using Gmeasure function.

As we assume that unknown individual could belongs to each breed used for model 
building equally, the probability of breed of uknown sample is equal to 1/number of breeds 
considered. In this case, we just recalculate equal probabilities according to results of dis-
tances. As original IB1 classifier uses different strategy when only one instance (with mini-
mal distance) is considered as only one probable, this is a first modification of the whole 
priciple of IB1. IB1 classifier divide probabilities as 0/1, so the class when closest distance is 
present has probability of classification equals 1, others have 0. 

Then, linear regression is calculated by algorithm over all of computed distances (in-
dividual from test set to all of individuals in trainset) for each breed as an expression of 
summary results for each breed. This can allow to calculate final results of classification 
based on results of linear regression which can summarize distances of the whole breed to 
individual effectively as it is described bellow. For linear regression, slope, bias, coefficients 
of regression and determination plus covariance parameters are calculated based on all of 
distances sorted.
After that, results for each individual (as a normalized probability of belonging to particu-
lar breed) is reported by algorithm. 

As results of classification Number of correctly and incorrectly classified instances, 
Kappa statistics and Confusion matrix are calculated accross the whole validation and for 
each fold. For each class, for each fold and for the whole validation, TP Rate, FP Rate, Preci-
sion, Recall, F-Measure and their weighted averages are calculated as well.

The whole concept of implementation offers a lot of possible modifications and it al-
lows usage of a lot of modified priciples. When all of distances are computed for classified 
individual to all of individuals in trainset, we can classifiy according the whole dataset, or 
particular breeds datasets. When we choose, e.g. that minimum distance will be calculated 
thorough the whole training set, we can not conclude probabilities for each breed then. Any-
way, given example represent safisfactionary condition for implementation of IB1 classifier 
itself as well as for IB k classifiers with k-NN decision rule of classification. Calculations of 
classification results by breeds offer quite a lot modifications of basic k-NN algorithm as 
well as the others ones. We can illustrate it on calculation of INDIVIDUAL RESULTS vari-
able in code above. In this calculation, only minimum distance calculated for each breed can 
be selected, or we can perform e.g. average distance of k minimals, average distance to all 
of individuals in breed in training set, selection of best regression parameters for the whole 
breed etc. Also, normalization of probabilities calculated as corrected equal probablities of 
belonging of individual to particular breed can be modified by many ways - e.g. by number 
of individuals in each breed.

Based on text above, it is evident, that proposed implementation offers effective frame-
work with a lot of possible modifications to use lazy-kind of classification algorithms based 
on genetic distance measure, which can be subject of modifications as well.
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General Dataset - Criterion of minimum regression slope on whole breed 5.4.10.2 

distances

Results of classification - 10 CV
Correctly Classified Instances  1814  54.4745%   
Incorrectly Classified Instances  1516  45.5255%   
Kappa statistic     0.4571     
Total number of instances:  3330     

=== Detailed Accuracy By Class ===      
      
     TP Rate  FP Rate Precision  Recall F-Measure Class 
     0.830  0.227  0.243     0.830 0.376  Y100
     0.652  0.030  0.439     0.652 0.524  W100
     0.861  0.054  0.551     0.861 0.672  U100
     0.455  0.042  0.829     0.455 0.588  T100
     0.686  0.241  0.546     0.686 0.608  SM10
     0.370  0.029  0.333     0.370 0.351  Q100
     0.080  0.006  0.500     0.080 0.138  P100
     0.535  0.029  0.722     0.535 0.615  H100
     0.714  0.175  0.643     0.714 0.677  G100
     0.022  0.002  0.667     0.022 0.043  C100
Weighted Avg. 0.545  0.117  0.627     0.545 0.522 

a b c d e f g h i j

156 3 3 2 11 2 0 0 11 0 Y100

7 43 0 3 5 0 0 2 6 0 W100

8 0 118 2 6 0 0 3 0 0 U100

76 18 9 321 136 15 0 6 124 0 T100

104 7 21 31 501 8 1 8 46 3 SM100

24 1 10 1 4 27 0 1 5 0 Q100

46 2 6 2 22 13 10 7 16 1 P100

35 3 12 6 28 0 6 130 23 0 H100

111 15 18 8 28 4 2 14 500 0 G100

75 6 17 11 177 12 1 9 47 8 C100

Confusion matrix of G-metric classifier with minimum regression slope crite-Table 5.45 
rion.
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Results of classification - Training set
Correctly Classified Instances  2030  60.9610%   
Incorrectly Classified Instances  1300  39.0390%   
Kappa statistic     0.5345     
Total number of instances:  3330     
=== Detailed Accuracy By Class ===      
      
  TP Rate  FP Rate  Precision Recall   F-Measure Class  

     0.8617 0.1796  0.2837  0.8617   0.4269 Y100
     0.7727 0.0227  0.5258  0.7727   0.6258 W100
     0.8759 0.0402  0.6000  0.8759   0.7122 U100
     0.5489 0.0267  0.8958  0.5489   0.6807 T100
     0.7548 0.1979  0.6015  0.7548   0.6695 SM10
     0.4795 0.0221  0.4375  0.4795   0.4575 Q100
     0.1520 0.0020  0.8261  0.1520   0.2568 P100
     0.6132 0.0294  0.7233  0.6132   0.6637 H100
     0.7771 0.1435  0.6860  0.7771   0.7287 G100
     0.0331 0.0000  1.0000  0.0331   0.0640 C100
Weighted Avg. 0.6096 0.0942  0.7192  0.6096   0.5850 
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Figure 5.55  Graph of predictions by G-metric classifier with minimum regression slope 
criterion on the training generalDS set.

G-metric classifier run on general dataset as described in section 5.4.10 with voting criterion 
of minimal regression slope calculated across the whole breed groups in training dataset 
reported 54.48 % of correctly classified instances for 10 fold cross validation. Kappa statistic 
was calculated as 0.4571, overall FP Rate=0.117, Precision=0.627 and F-Measure=0.522.

Best classified class by the meaning of TP Rate was U100 (0.861), the worst results ob-
tained in TP Rate were reached for C100 class (0.022). FP Rate ranged from 0.002 (C100) 
to 0.241 in SM100 class. These results show that classifier is not able to divide C100 class 
against the others properly, or C100 class could not be defined by used classifier (table 
5.45). Precision ranged from 0.243 for Y100 class (F-Measure=0.376) to 0.829 for T100 class 
(F-Measure=0.588). 
As classifier uses different voting method (criterion) for choosing final class of prediction, 
it reached only 60.96 % of correctly classified instances on the training set. As well, becouse 
all of classes are the most probable (probability of belonging of unknown individual to all 
of classes is equal on the beginning of classification and it is changed in according to results 
of voting), graph of predictions on the whole training set (figure 5.55) shows, how classi-
fier decides about unknown classified instances. Only small changes then between classes 
probabilities can caused final decision about individual.
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General Dataset - IB1 implementation5.4.10.3 

Results of classification - 10 CV
Correctly Classified Instances  1768  53.0931%   
Incorrectly Classified Instances  1562  46.9069%   
Kappa statistic     0.4406     
Total number of instances:  3330     

=== Detailed Accuracy By Class ===      
      
     TP Rate FP Rate  Precision   Recall F-Measure Class 
     0.3989 0.0359  0.5435      0.3989 0.4601  Y100
     0.4242 0.0136  0.5385      0.4242 0.4746  W100
     0.7518 0.0280  0.6821      0.7518 0.7153  U100
     0.6652 0.2203  0.5610      0.6652 0.6087  T100
     0.5096 0.2166  0.4908      0.5096 0.5000  SM10
     0.1781 0.0107  0.4063      0.1781 0.2476  Q100
     0.2320 0.0355  0.3118      0.2320 0.2661  P100
     0.3868 0.0429  0.5562      0.3868 0.4563  H100
     0.6943 0.1824  0.6295      0.6943 0.6603  G100
     0.2727 0.1211  0.3009      0.2727 0.2861  C100
Weighted Avg. 0.5309 0.1538  0.5221      0.5309 0.5220 

a b c d e f g h i j

75 1 1 22 25 2 6 4 32 20 Y100

2 28 0 16 2 0 0 1 15 2 W100

1 1 103 10 10 0 0 4 8 0 U100

7 6 7 469 100 1 8 12 63 32 T100

11 2 10 148 372 3 13 15 49 107 SM100

7 0 6 11 14 13 6 1 7 8 Q100

10 0 2 19 22 6 29 8 19 10 P100

4 3 10 20 38 0 12 94 45 17 H100

11 8 6 66 55 2 11 21 486 34 G100

10 3 6 55 120 5 8 9 48 99 C100

Confusion matrix of G-metric classifier with IB1 implemetation of voting crite-Table 5.46 
rion.
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Results of classification - Training set
Correctly Classified Instances  3327  99.9099%   
Incorrectly Classified Instances  3  0.0901%    
Kappa statistic     0.9989     
Total number of instances:  3330     

=== Detailed Accuracy By Class ===      
      
     TP Rate FP Rate  Precision   Recall    F-Measure Class
     1.000 0.000  1.000      1.000 1.000  Y100
     1.000 0.000  1.000      1.000 1.000  W100
     1.000 0.000  1.000       1.000 1.000  U100
     1.000 0.001  0.997      1.000 0.999  T100
     1.000 0.000  0.999      1.000 0.999  SM10
     1.000 0.000  1.000      1.000 1.000  Q100
     1.000 0.000  1.000      1.000 1.000  P100
     0.996 0.000  1.000      0.996 0.998  H100
     0.999 0.000  1.000      0.999 0.999  G100
     0.997 0.000  1.000      0.997 0.999  C100
Weighted Avg. 0.999 0.000  0.999      0.999 0.999 
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Figure 5.56  Graph of predictions by G-metric classifier with IB1 voting criterion on the 
training generalDS set.

 C100
 G100
 H100
 P100
 Q100
 SM10
 T100
 U100
 W100
 Y100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.57  Graph of G-metric IB1 model prediction on unknown samples.

G-metric classifier implemented like IB1 classifier (with exception of 1-NN voting algorithm; 
all of classes of unknown individual has the same probabilities on the beginning) was run 
on the general dataset with following results of 10 fold cross validation - 53.09 % of cor-
rectly classified instances, Kappa statistic=0.4406, overall FP Rate=0.1536, Precision=0.5221, 
F-Measure=0.5220. 
The best TP rate was reached for U100 class (0.7518), the worst one for Q100 class (0.1781).  
FP Rate ranged from 0.0136 in W100 to 0.1824 in G100. The best Precision value was ob-
served for G100 class (0.6295; F-Measure=0.6603), the worst one for C100 class (0.3009; F-
Measure=0.2861).
Figure 5.56 shows predictions of probabilities for the whole data set done by G-metric IB1 
classifier. It is evident, that in this case, classifier is able to classify training set as classi-
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cal IB1 one, i.e. ~100 % of correctly classified instances. Only where genotype data were 
not available (3 cases) for particular breed, individuals were misclassified (probabilities 
equaled, so classifier could not classify them then). On the figure 5.57, it can be inspected 
deatailed, how probabilities are given to individuals.

Algorithms results summary5.4.11 

Correctly 
classified 
instances

%

Kappa 
statistic FP Rate Precision F-Measure

General dataset
ZeroR 21.922 0.000 0.219 0.048 0.079

J48 53.333 0.436 0.095 0.513 0.518
Jrip 52.793 0.417 0.116 0.546 0.507

Naive Bayes 82.553 0.789 0.037 0.828 0.818
Bayes Net 83.664 0.804 0.032 0.837 0.833

IB1 60.030 0.516 0.084 0.587 0.588
IB5 65.375 0.570 0.089 0.680 0.605

SMO 78.348 0.740 0.040 0.780 0.779
Vote 83.003 0.795 0.036 0.831 0.825

G-metric Slope 54.475 0.457 0.117 0.627 0.522
G-metric IB1 53.093 0.441 0.154 0.522 0.522

Allele length dataset
J48 58.949 0.506 0.079 0.578 0.581
Jrip 61.682 0.536 0.082 0.626 0.611

Naive Bayes 56.126 0.475 0.082 0.553 0.552
Bayes Net 84.354 0.813 0.029 0.842 0.842

IB1 47.688 0.367 0.110 0.466 0.467
IB5 49.880 0.385 0.117 0.490 0.471

SMO 50.751 0.394 0.118 0.523 0.479
Vote 81.351 0.776 0.036 0.810 0.808

Allele frequency dataset
J48 56.757 0.481 0.080 0.559 0.562
Jrip 61.652 0.536 0.080 0.621 0.610

Naive Bayes 58.378 0.499 0.085 0.571 0.572
Bayes Net 84.805 0.818 0.029 0.847 0.847

IB1 43.784 0.318 0.119 0.420 0.424
IB5 45.405 0.329 0.127 0.429 0.419
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Correctly 
classified 
instances

%

Kappa 
statistic FP Rate Precision F-Measure

SMO 49.159 0.374 0.122 0.472 0.461
Vote 81.982 0.783 0.037 0.818 0.815

Summary
General dataset

min 52.793 0.417 0.032 0.513 0.507
max 83.664 0.804 0.154 0.837 0.833

mean 66.667 0.596 0.080 0.675 0.652
Allele length daset
min 47.688 0.367 0.029 0.466 0.467
max 84.354 0.813 0.118 0.842 0.842

mean 61.348 0.531 0.082 0.611 0.601
Allele frequency dataset

min 43.784 0.318 0.029 0.420 0.419
max 84.805 0.818 0.127 0.847 0.847

mean 60.240 0.517 0.085 0.592 0.589
Overall

min 43.784 0.318 0.029 0.420 0.419
max 84.805 0.818 0.154 0.847 0.847

mean 63.053 0.552 0.082 0.630 0.617

Summary results of classification results.Table 5.47 

Summary results of classification algorithms displayed in table 5.47 are discussed in this 
chapter. Table 5.47 summarizes results obtained for the best reached parameters set for each 
classification method run on all of three datasets. Also, it contains summary average results 
for all of datasets as well as for all of algorithms across datasets and for all of observed clas-
sification parameters (Correctly classified instances, Kappa statistic, FP Rate, Precision and 
F-Measure) obtained by 10 fold cross validation.

As ZeroR as basic classifier usually used as a baseline for comparison of classification 
power of the others methods reported 21.922 % of correctly classified instances and related 
measures in accordance with this one, it can be said that none of the others classifiers do 
not show worse results as a basic one - ZeroR. So, all of classification methods are able to 
classify unknown individuals to their proper breed better than a random one based on the 
most frequent class.

At all, 63.053 % of correctly classified instances, Kappa-statistic=0.552, FP Rate=0.082, 
Precision=0.630 and F-Measure=0.617 were reached across all of classification method and 
across all of datasets examined. These results shows that classification method selected are 
able to classify unknown individuals (as results are based on 10 fold cross validation) to 
their breeds with the power better than basic classifier (which classify to the most frequent 
class) has.
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Bayes Net algorithm gave the best results in all of datasets examined. The best reached result 
was obtained for Bayes Net classifier in allele frequency dataset (84.805 % of correctly clas-
sified instances, Kappa statistic=0.818, FP Rate=0.029, Precision=0.847, F-Measure=0.847). 
Similar results were obtained for Bayes Net classifier in allele lenght and general dataset 
(84.354 and 83.664 percents of correctly classified instances, see other parameters reached 
in table 5.47). On the other hand, worst results were obtained in allele frequency dataset as 
well for IB1 classifier (43.784 % of correctly classified instances, Kappa statistic=0.318, FP 
Rate=0.119, Precision=0.420 and F-Measure=0.424). 

Lets choose percentage of correctly classified instances as a main attribute which says 
about classification power of particular method. Then, in general dataset results we can es-
tablish following ordering of classification method (from the best one to the worst) - Bayes 
Net, Voted classifier, Naive Bayes, SMO, IB5, IB1, G-metric Slope, J48, G-Metric IB1, JRip. 
For allele length dataset results, the order is following - Bayes Net, Voted classifier, JRip, 
J48, Naive Bayes, SMO, IB5, IB1. For allele frequency dataset, we can sort classifiers accord-
ing to percents of correctly classified instances as follows - Bayes Net, Voted classifier, JRip, 
Naive Bayes, J48, SMO, IB5, IB1.

Correctly 
classified in-

stances

Kappa sta-
tistic FP Rate Precision F-Measure

J48 56.346 0.474 0.085 0.550 0.554
Jrip 58.709 0.497 0.093 0.598 0.576

Naive Bayes 65.686 0.588 0.068 0.651 0.647
Bayes Net 84.274 0.811 0.030 0.842 0.841

IB1 50.501 0.400 0.104 0.491 0.493
IB5 53.554 0.428 0.111 0.533 0.498

SMO 59.419 0.503 0.093 0.592 0.573
Vote 82.112 0.785 0.036 0.820 0.816

G-metric 
Slope 54.475 0.457 0.117 0.627 0.522

G-metric IB1 53.093 0.441 0.154 0.522 0.522

Summary average results of classification power of selected classifiers calcu-Table 5.48 
lated as means across all of datasets.



5 Results and Discussion

152

In average, Bayes Net seems to be the most useful method for classification of cattle breeds 
based on microsatellite genotype data - Bayes Net reached average percentage of correct-
ly classified instances equals 84.274 across all of datasets (table 5.48, figure 5.58), Kappa 
statistic=0.811, FP Rate=0.030, Precision=0.842 and F-Measure=0.841. On the contrary, IB1, 
IB 5, JRip and J48 methods do not show acceptable results as well as G-metric Slope and 
G-metric IB1 algorithms (otherwise, their power will be shown later and they are not fully 
comparable to common classification methods as they are set up for genetic data mainly 
under SMM). Voted classifier has obtained very good results, later will be shown, it can be 
more robust than well-performed Bayes Net methods. 

 Correctly classify instances  Kappa statistic  FP Rate  Precision  F-Measure
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Figure 5.58 Graph of average results of classification power of selected classifiers calcu-
lated as means across all of datasets.

Table 5.47 and figure 5.58 show as well that results of classifiers can not be generalized 
across datasets. For example SMO classifier has good results (78.348 % of correctly clas-
sified instances) on general dataset, reduced significantly for allele lenght and frequency 
datasets (50.751 %, 49.159 %) as will be discussed later. 

Anyway, Bayes Net seems to be best performed classifier suitable to discriminate indi-
viduals on the base of their genotype data among all of algorithms examined.
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Datasets usability for breed discrimination5.4.12 

As we have results calculated as average values shown in table 5.47 for all of three datasets, 
and if we assume that all of classifiers reached better than ZeroR classification parameters, 
we can discuss usability of all datasets used. ZeroR results are not included in calculations 
performed across datasets. Average results reached as mean of all three datasets has shown, 
that all of selected classifiers at all has power better than basis one (ZeroR) to classify cattle 
breeds succesfully based on genotype microsatellite data - average percentage of correctly 
classified instances equals 63.053 - and they are not hardly depent on type of given dataset, 
but more depent on particular classification method.

When we take a look to results in table 5.47 reached in average for all of three datasets, 
best results for percentage of correctly classified instances calculated accros all of methods 
in each dataset were reached in general dataset (66.667 %), then in allele length dataset 
(61.348 %), then in allele frequency dataset (60.240 %). These results reflect fact, that all of 
algorithms except ZeroR are used for these calculations, so results are highly depent on 
algorithms selected. This can be easily seen, when the best classification results across all of 
datasets and algorithms were reached in allele frequency dataset. 

On the general dataset, in the meaning of percentage of correctly classified instances, 
best results were reached by Bayes Net classifier (83.664 %). Bayes Net classifier reached 
best results as well by using another datasets (84.354 % in allele lenght dataset, 84.805 % in 
allele frequency dataset).

The worst performing classifier in general dataset was JRip one with only 52.793 % of 
correctly classified instances. In allele length and allele frequency datasets, IB1 classifier 
showed the worst results of all examined methods (47.688 resp. 43.784 %). As was men-
tioned, the reason of not enough information provided for lazy based learning algorithms 
for succesful classification in case of the both datasets and number of individuals in training 
sets could caused these results.

At all, algorithms based on frequency and probability data (like Bayes Net, Vote clas-
sifier) seem to be robust and independant on genetic data type and can reach acceptable 
results on more detailed datasets (like allele frequency and allele lenghts ones are). In op-
posite, classification power of lazy based (IB1 and IB5) or data space dividing based (SMO, 
J48, JRip) algorithms are highly depent on amount of information to deal with (number 
of attributes) plus amount of individuals in training sets. As results reached on traning 
sets show, when we give enough information to these algorithm (in the meaning of size of 
dataset) needed to classify detailed datasets with many attributes, they can perform very 
well with good prediction results. This indicate the way of their usage on large genotype 
datasets obtained in routine labs, when this hypothesis will be proved.

Comparison with results in horses5.4.13 

As results of classification algorithms performed on 932 unrelated individuals of 8 breeds 
for 17 MS loci genotype data (similar to general dataset) were published by Burócziová and 
Říha (2009), we can discuss results obtained in this paper with results obtained in this the-
sis. We need just to note, that 10 MS loci genotype dataset was used for this purpose, as well 
as couple of classification methods were added for this work purposes. Only Naive Bayes, 
Bayes Net, IB1, IB5, J48 and JRip algorithms implemented in Weka-3-6-6 were examined in 
the given study.
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Bayes Net algorithm was also evaluated as the best one in the paper - 88 percents of correct-
ly classified instances, Kappa statistic=0.86 (in comparison with 83.664 % in cattle general 
dataset, Kappa statistic=0.804), then Naive Bayes with 87 % of correctly classified instances 
and Kappa statistic equals to 0.84 (82.553 % for cattle general dataset, Kappa statistic=0.84), 
then IB1 classifier with 87 % of correctly classified instances and Kappa statistic=0.84 (60.030 
% of correctly classified instances, Kappa statistic=0.516), JRip algorithm (67 % of correctly 
classified instances, Kappa statistic=0.59) in comparison with 52.793 % of correctly classified 
instances and Kappa statistic=0.417 in cattle, IB5 classifier with 65 % of correctly classified 
instances, Kappa statistic=0.56 reched in horses discrimination in comparison with 65.375 
% of correctly classified instances, Kappa statistic=0.570 in cattle, J48 with 59 % of correctly 
classified instances and Kappa statistic=0.51 in horse and 53.333 % of correctly classified 
instances, Kappa statistic=0.436 in cattle.

In the contrary, IB1 classifier failed in cattle breed discrimination in comparison with 
horses breed discrimination based on 17 loci genotype data. As we discuss previously, it is 
evident that 10 MS loci data are not enough within thousands of individual to find proper 
similar example in model database, which can classify properly unknown individual. This 
is more evident on significantly worse result of IB1 and IB5 methods when they are used for 
allele frequency and allele lenght datasets as was discussed above.

Anyway, results of classification algorithms are comparable in horse and cattle, and 
does not depend highly on number of individuals (932 in horses, 3300 in cattle) as well as 
on number of loci included in dataset (17 in horses, 10 in cattle). It is quite important that 
results compared showed that the same set of algorithms is usable for two different animal 
species and does not depend on different breeding strategies in both of animal species as 
well as on data type (10 vs. 17 MS genotype data). Also, Bayes Net as one of best performed 
classification algorithm gave best and comparable results for both of species and datasets.

Comments on Diversity5.4.14 

Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
General dataset

ZeroR 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
J48 0.277 0.439 0.518 0.711 0.610 0.110 0.072 0.527 0.634 0.245
Jrip 0.096 0.379 0.569 0.687 0.652 0.192 0.136 0.502 0.696 0.102

Naive Bayes 0.771 0.682 0.905 0.916 0.892 0.397 0.408 0.790 0.959 0.537
Bayes Net 0.809 0.758 0.920 0.915 0.870 0.562 0.480 0.802 0.960 0.579

IB1 0.330 0.500 0.708 0.748 0.659 0.274 0.192 0.444 0.756 0.325
IB5 0.287 0.288 0.766 0.901 0.838 0.014 0.048 0.428 0.847 0.132

SMO 0.723 0.742 0.854 0.887 0.811 0.562 0.456 0.654 0.920 0.521
Vote 0.787 0.727 0.912 0.915 0.881 0.479 0.456 0.790 0.959 0.551

G-metric Slope 0.830 0.652 0.961 0.455 0.686 0.370 0.080 0.535 0.714 0.022
G-metric IB1 0.862 0.773 0.876 0.549 0.755 0.480 0.152 0.613 0.771 0.033
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Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
Allele length dataset

J48 0.367 0.394 0.620 0.695 0.655 0.178 0.184 0.510 0.773 0.309
Jrip 0.399 0.470 0.730 0.681 0.708 0.425 0.328 0.638 0.743 0.287

Naive Bayes 0.431 0.470 0.788 0.715 0.536 0.274 0.160 0.539 0.679 0.298
Bayes Net 0.809 0.924 0.905 0.919 0.829 0.658 0.632 0.798 0.954 0.634

IB1 0.346 0.152 0.672 0.603 0.508 0.096 0.136 0.317 0.611 0.264
IB5 0.410 0.152 0.708 0.695 0.558 0.027 0.072 0.272 0.639 0.154

SMO 0.346 0.015 0.672 0.682 0.593 0.164 0.184 0.358 0.646 0.121
Vote 0.761 0.833 0.898 0.921 0.807 0.575 0.528 0.786 0.943 0.526

Allele frequency dataset
J48 0.351 0.470 0.613 0.661 0.638 0.247 0.216 0.486 0.739 0.267
Jrip 0.356 0.485 0.664 0.691 0.712 0.384 0.288 0.584 0.766 0.314

Naive Bayes 0.399 0.348 0.774 0.746 0.614 0.288 0.208 0.535 0.700 0.273
Bayes Net 0.814 0.894 0.912 0.928 0.837 0.685 0.704 0.790 0.951 0.623

IB1 0.191 0.227 0.650 0.550 0.460 0.027 0.144 0.263 0.611 0.226
IB5 0.234 0.258 0.657 0.633 0.515 0.000 0.064 0.206 0.647 0.077

SMO 0.309 0.000 0.569 0.645 0.595 0.123 0.104 0.395 0.650 0.107
Vote 0.761 0.818 0.905 0.929 0.822 0.548 0.568 0.782 0.947 0.523

Summary
General dataset

min 0.096 0.288 0.518 0.455 0.610 0.014 0.048 0.428 0.634 0.022
max 0.862 0.773 0.961 0.916 0.892 0.562 0.480 0.802 0.960 0.579

mean 0.577 0.594 0.799 0.768 0.765 0.344 0.248 0.609 0.822 0.305
Allele length daset

min 0.346 0.015 0.620 0.603 0.508 0.027 0.072 0.272 0.611 0.121
max 0.809 0.924 0.905 0.921 0.829 0.658 0.632 0.798 0.954 0.634

mean 0.484 0.426 0.749 0.739 0.649 0.300 0.278 0.527 0.749 0.324
Allele frequency dataset

min 0.191 0.000 0.569 0.550 0.460 0.000 0.064 0.206 0.611 0.077
max 0.814 0.894 0.912 0.929 0.837 0.685 0.704 0.790 0.951 0.623

mean 0.427 0.438 0.718 0.723 0.649 0.288 0.287 0.505 0.751 0.301
Overall

min 0.096 0.000 0.518 0.455 0.460 0.000 0.048 0.206 0.611 0.022
max 0.862 0.924 0.961 0.929 0.892 0.685 0.704 0.802 0.960 0.634

mean 0.502 0.494 0.759 0.745 0.694 0.313 0.269 0.552 0.778 0.310

Summary of classes TP rates.Table 5.49 
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Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
General dataset

ZeroR 0.000 0.000 0.000 0.000 0.219 0.000 0.000 0.000 0.000 0.000
J48 0.297 0.509 0.490 0.655 0.156 0.242 0.167 0.538 0.570 0.403
Jrip 0.367 0.610 0.639 0.679 0.349 0.500 0.531 0.689 0.694 0.363

Naive Bayes 0.797 0.918 0.655 0.672 0.736 0.879 0.879 0.914 0.919 0.654
Bayes Net 0.822 0.909 0.869 0.885 0.761 0.891 0.811 0.915 0.929 0.644

IB1 0.488 0.647 0.719 0.634 0.554 0.455 0.358 0.568 0.718 0.423
IB5 0.701 0.950 0.778 0.631 0.547 0.500 0.600 0.897 0.764 0.706

SMO 0.638 0.875 0.760 0.836 0.750 0.732 0.633 0.791 0.902 0.612
Vote 0.809 0.923 0.868 0.878 0.745 0.897 0.826 0.914 0.922 0.651

G-metric Slope 0.243 0.439 0.551 0.829 0.546 0.333 0.500 0.722 0.643 0.667
G-metric IB1 0.544 0.539 0.682 0.561 0.491 0.406 0.312 0.556 0.630 0.301
Allele length dataset

J48 0.367 0.481 0.680 0.679 0.568 0.245 0.258 0.603 0.713 0.386
Jrip 0.457 0.660 0.685 0.729 0.481 0.574 0.506 0.749 0.743 0.523

Naive Bayes 0.474 0.337 0.527 0.632 0.528 0.328 0.364 0.478 0.671 0.478
Bayes Net 0.792 0.897 0.867 0.886 0.784 0.716 0.782 0.886 0.952 0.687

IB1 0.428 0.270 0.702 0.533 0.444 0.241 0.183 0.478 0.567 0.284
IB5 0.385 0.370 0.713 0.493 0.442 0.286 0.300 0.606 0.574 0.438

SMO 0.442 1.000 0.657 0.529 0.445 0.750 0.479 0.621 0.524 0.473
Vote 0.781 0.859 0.759 0.851 0.748 0.737 0.776 0.799 0.922 0.697

Allele frequency dataset
J48 0.357 0.470 0.604 0.653 0.572 0.265 0.262 0.551 0.711 0.324
Jrip 0.482 0.478 0.607 0.724 0.498 0.519 0.456 0.703 0.776 0.496

Naive Bayes 0.528 0.426 0.602 0.615 0.554 0.368 0.426 0.575 0.699 0.396
Bayes Net 0.814 0.908 0.893 0.883 0.805 0.769 0.815 0.893 0.941 0.663

IB1 0.310 0.227 0.685 0.470 0.469 0.111 0.220 0.376 0.473 0.271
IB5 0.314 0.266 0.573 0.437 0.475 0.000 0.216 0.568 0.482 0.318

SMO 0.464 0.000 0.645 0.495 0.473 0.450 0.406 0.623 0.492 0.333
Vote 0.808 0.947 0.827 0.841 0.749 0.851 0.845 0.848 0.912 0.669

Summary
General dataset

min 0.243 0.439 0.490 0.561 0.156 0.242 0.167 0.538 0.570 0.301
max 0.822 0.950 0.869 0.885 0.761 0.897 0.879 0.915 0.929 0.706

mean 0.571 0.732 0.701 0.726 0.563 0.584 0.562 0.750 0.769 0.542
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Y100 W100 U100 T100 SM100 Q100 P100 H100 G100 C100
Allele length daset

min 0.367 0.270 0.527 0.493 0.442 0.241 0.183 0.478 0.524 0.284
max 0.792 1.000 0.867 0.886 0.784 0.750 0.782 0.886 0.952 0.697

mean 0.516 0.609 0.699 0.667 0.555 0.485 0.456 0.653 0.708 0.496
Allele frequency dataset

min 0.310 0.000 0.573 0.437 0.469 0.000 0.216 0.376 0.473 0.271
max 0.814 0.947 0.893 0.883 0.805 0.851 0.845 0.893 0.941 0.669

mean 0.510 0.465 0.680 0.640 0.574 0.417 0.456 0.642 0.686 0.434
Overall

min 0.243 0.000 0.490 0.437 0.156 0.000 0.167 0.376 0.473 0.271
max 0.822 1.000 0.893 0.886 0.805 0.897 0.879 0.915 0.952 0.706

mean 0.535 0.612 0.694 0.681 0.564 0.502 0.497 0.687 0.725 0.495

Summary of classes precision values.Table 5.50 

As classification method can define breed based on genotype data, we can assume that it is 
well defined by its genetic basis as well. From table 5.49 and table 5.50, it can be seen that TP 
rates and precision could be discussed as a parameters of genetic-well-definition of breeds 
within point of view of classification methods.

TP rate reflects portion of true positive classified individuals from true positive classi-
fied plus false negative classified number of individuals. So, if there are not a lot of indi-
viduals from actual class are classified as another breed and does not mean how many are 
classified as actual class (TP), TP rate has near 1 value. TP rate is then value which describes, 
how good is one class described by particular method. It does not reflect, another connec-
tions, like if and how many individuals from another classes (breeds) are classified into the 
actual one. As example - Czech Simmental breed has average TP Rate calculated across all 
of methods (except ZeroR), across all of datasets equals 0.694 and seems to be very well de-
fined (as it is from this point of view), however big portion of individuals with actual class 
set to Czech Fleckvieh was classified as Czech Simmental as well across all of methods and 
datasets (average TP Rate of Czech Flecvieh class equals 0.310). This really reflects the fact 
that quite a lot of crossbred individuals (SM100 x C100) were accepted in Czech Fleckvieh 
breed in past as purebreds and not so much in the opposite.

From this point of view, we can identify following order in TP Rates calculated across 
all of methods and datasets - Aberdeen Angus (0.778) > Hereford > Charolais > Czech Sim-
mental > Holstein > Limousin > Galloway > Blonde d´Aquitaine > Czech Fleckvieh > Pied-
montese (0.269). So, Aberdeen Angus breed can be identified in the best way without false 
positive results in average of all datasets and algorithms. 

When we inspect results in table 5.49, we can see that among all of TP Rates obtained 
for particular classes, datasets and algorithms, the best result was reached for Aberdeen 
Angus breed as well in general dataset, within Bayes Net classifier (0.960).

Best results which can describe, how all of breeds can be classified in the best way under 
TP Rate assumption are: Limousin (G-metric IB1, general dataset, TP Rate=0.862), Galloway 
(Bayes Net, allele length dataset, TP Rate=0.924), Hereford (G-metric Slope, general dataset, 
TP Rate=0.961), Charolais (Vote classifier, allele frequency dataset, TP-Rate=0.929), Czech 
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Simmental (Naive Bayes, general dataset, TP-Rate=0.892), Blonde d´Aquitaine (Bayes Net, 
allele frequency dataset, TP-Rate=0.685), Piedmontese (Bayes Net, allele frequency data-
set, TP-Rate=0.704), Holstein (Bayes Net, general dataset, TP-Rate=0.802), Aberdeen Angus 
(Bayes Net, general dataset, TP-Rate=0.960) and Czech Fleckvieh (Bayes Net, allele lenght 
dataset, TP-Rate=0.634). Results obtained for Limousin and Hereford breeds, when they 
were best classified by G-metric method shows, when we see how it is calculated, genetic 
similarities between individuals in each breed caused by close populations and not large 
imports and production of breeding animals instead of usage of AI in the past.

Table 5.50 summarizes results of precision obtained for each classes, each algortihm 
and each dataset. Precision is calculated as a portion of true positive classified instances on 
the sum of true positive plus false positive results of classification. It means it uses for calcu-
lation also individuals from another breeds than actual class which were classified as actual 
one. Another example can show how it works - as quite a big amount of individuals with 
actual class set to Czech Simmental are well indentified by classifications methods, there 
is still near the same amount of false possitive identified individuals with another class 
indentified by the same algorithms, as can be seen when confusion matrices and connected 
results are analyzed. That is the reason, why only 0.564 precision was reached as the mean 
value across all sets and algorithms for Czech Simmental class. So, the precision value des-
ribes better how the particular breed is defined in comparison with the other breeds present 
in dataset, when we want to describe probability with which is individual classified as right 
breed and another breeds individuals are not classifiy as this breed at one time. In compari-
son with TP-Rate, which only desribes, how good one breed is identify and is not classify as 
the other one for actual individual breed. So, precision seems to be better “purity” measure 
of breed, when we are talking about breed diversity.

Following order was obtained for breeds when average precision calculated across 
datasets and methods is used: Aberdeen Angus (0.725) > Hereford > Holstein > Charolais 
> Galloway > Czech Simmental > Limousin > Blonde d´Aquitaine > Piedmontese > Czech 
Fleckvieh (0.495).

Similar to TP-Rate, Aberdeen Angus breed has the best portion of true positive classi-
fied indivdiduals and sum of true positive plus false positive individuals (0.725). Also, the 
other results reflect quite good situation in each breed and breed practice applied in the 
Czech Republic for all of them.

Following results were obtained as the best ones for precision for each breed, algo-
rithm and dataset: Limousin (Bayes Net, general dataset, Precision=0.822), Galloway 
(SMO, allele length dataset, Precision=1.000), Hereford (Bayes Net, allele frequency data-
set, Precision=0.893), Charolais (Bayes Net, allele length dataset, Precision=0.886), Czech 
Simmental (Bayes Net, allele frequency dataset, Precision=0.805), Blonde d´Aquitaine (Vote 
classifier, general dataset, Precision=0.897), Piedmontese (Naive Bayes, general dataset, 
Precision=0.879), Holstein (Bayes Net, general dataset, Precision=0.915), Aberdeen Angus 
(Bayes Net, allele length dataset, Precision=0.952) and Czech Fleckvieh (IB5, general data-
set, Precision=0.706).
Results show, that all of breeds examined could be classified with very good precision  or/
and TP-Rate, however, these parameters are highly depent on algorithm and dataset used. 
For particular issues connected with breed classification of unknown sample, it can be rec-
ommended to build and combine classification models according results shown. As well, it 
is highly recommended to publish results of classification power of models used, so every-
body can calculate with probabilities assign to results and can check reliability of results. 
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Summary6 
Thesis describes usage of microsatelitte markers in cattle for specific tasks according to their 
usage for 

description of genetic diversity in cattle breeds sampled from subpopulations  –
kept in Czech Republic,
paternity testing - current state of usability within cattle population sampled by  –
routine genetic laboratory,
routine laboratory data handling by usage specific and new created software ap- –
plication what can resolve daily laboratory routines and specific issues connected,
disricimination on breed level with usage of machine learning algorithms, with a  –
new one created especially for microsatelitte data.

Set of microsatelitte markers recommended by ISAG/FAO routinely analyzed for proving 
of genetic type of breeding cattle is used in all of tasks mentioned above - BM1824, BM2113, 
ETH3, ETH10, ETH225, INRA023, SPS115, TGLA122, TGLA126, TGLA227. Daily routine test-
ing in Lamgen accredited laboratory in years 2002-2009 created following data sets used in 
thesis: 730 individuals of Czech Simmental, 705 individuals of Charolais, 700 individuals of 
Aberdeen Angus breed, 363 individuals of Czech Fleckvieh, 243 Holsteins, 188 of Limousin,  
137 individuals of Hereford, 125 of Piedmontese, 73 of Blonde d´Aquitaine and 66 indi-
viduals of Galloway breed. Also, set of 380 crossbreds randomly selected within the whole 
database (7776) to explore and characterize genetic diversity of crossbred cattle population 
in Czech republic and as a basis for comparison in particular thesis aims.

Regarding genetic diversity results calculated as average ones across all loci within 
breeds, Hereford with major allele frequency equals 0.500, observed and expected heterozy-
gosity as 0.646, 0.637, inbreeding coefficient equals -0.011 and PIC=0.589 was detected as the 
most uniform breed in set. In contrary, Piedmontese and crossbred dataset were evaluated 
as the most divergent breeds in set. 

When we analyse results of genetic diversity within breeds accros loci examined, we 
can point TGLA227 as the most divergent locus at all. Interesting results in beef breeds were 
explored as reduced variability in ETH3 (Blonde d´Aquitaine), ETH10 (Charolais, Galloway, 
Limousin) and INRA023 (Blonde d´Aquitaine, Hereford) loci in intensive kept beef breeds. 
This fact reflects selection strategies of breeders as couple of authors mentioned loci above 
as ones connected with beef yield as genetic markers. In opposite, with results comming 
from 90´s, we realized that intensive breeding breeds, previously alarming evaluated as 
uniform (or with reduced genetic diversity) like Holstein is, nowadays show very carefully 
performed breeding strategies in past years which has brought increase of genetic diversity 
in these breeds in Czech in comparison with older results.

Eight genetic distances (geometric, AIM and SMM based) were calculated between 
breeds and crossbred data sets. Both, UPGMA and NJ algoritmh then were used to show 
results of these calculations visually. Hereford on the one side and Aberdeen Angus on the 
other side appeared as the most distinct breeds under assumptions of all genetic distance 
calculation methods. Each method clustered together Czech Fleckvieh with crossbred data-
set what show large portion of Czech Fleckvieh breed used for producing of crossbred 
animals in both, dairy and beef cattle. As well, Czech Simmental seems to be very closely 
connected under assumptions of genetic drift, mutations and breeding strategies (which all 
are displayed compressed in genetic phylograms for particular distance method) to Czech 
Fleckvieh breed what is in accordance with real state as well.
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Generally, based on results of genetic diversity obtained in this work, we can say that large-
ly kept breeds in Czech or world-wide (like Czech Fleckvieh, Holstein, Limousin, Blonde 
d´Aquitaine are), genetically and evoluationary different kept in Czech (Piedmontese) and 
crossbreds are more divergent in comparison with minor kept ones, however genetically 
different (Galloway), and more uniform beef populations like Hereford, Czech Simmental, 
Charolais and Abredeen Angus are. These results reflect completely breeding strategies 
for beef and dairy or dual purpose breeds as well as historical development of all breeds 
included. Additionaly, it must be mentioned that by these facts, microsatelitte markers are 
proved as a good tool for exploring and controlling of genetic variability in cattle breeds by 
selected methods.
All of three paternity exclusion scenarios were calculated across all examined loci and 
across all of breeds as combined exclusion probabilitities as well as polymorphic informa-
tion content values. As well they were calculated for the whole dataset used in work (3300 
individuals of purebreds). For individual breeds, the worst values for all of probabilities 
calculated were reached for Hereford, the best for Piedmontese breed. This is in accordance 
with results previously mentioned for genetic variability. Anyway, we can only point on 
CEP1 calculated for Hereford with value equals 0.953371 what should be alarming when 
only of 95 percents of individuals in Czech Hereford subpopulation with given parents 
and known genotypes could be excluded properly. The same alarming results then was 
obtained for not so commonly tested CEP2 (0.948479).  The other values of calculated CEPs 
as ~ 1.000 can be fully accpeted for each breed as well as for the whole dataset. So, results 
proved that panel of microsatellite loci used for genotyping of dataset in this work fullfils 
recommendations on paternity exclusion as well as studies of genetic diversity of selected 
cattle breeds. 
Models description, algorithms and interface of the software application created in Borland 
Delphi 2005 programming environment for routine handling of large microsatelitte geno-
type datasets are proposed in thesis. Firstly, there are models describing typical usage of 
the system in the meaning of network environment, application design. Then key processes 
and users were identified and with usage of UML use case diagrams, they were modeled as 
the basis for implementation. 

As the large data sets should be handled by application, SQL database was created for 
this purpose with design and relationships described by ERD diagrams. Then, there are 
presented key SQL queries used in software application e.g. for selecting, sorting, filtering 
of individuals. Queries for specific issues connected with microsatelitte genotype data (e.g. 
calculation of allele or genotype frequencies in loci) also have to be created. This extends 
normal usage of SQL as database language handling normally with one value attributes.

Basic algorithms used for parsing SQL queries, calculation of allele frequencies and 
calculations of combined exclusion probabilities, paternity testing and sorting datasets ac-
cording allele frequencies present in the whole dataset were also created and presented. 
Security issues are resolved within network architecture and specific algorithms created for 
logging user and activities in database as well.

Finally, we can see graphical user interface of application with basic description of its 
usage. Engine which producing protocols in routine laboratory operation is also presented 
as well as protocols used nowadays. Also, G-metric algorithm for classifing individuals into 
their breeds with two modifications of final decision metrics which was implemented in the 
application.
Software application is used by Mendel University accredited genetic laboratory (with up-
dates) from 2009 till now in routine daily regime for automatic processes and dataflows, as 
well as for paternity testing, protocols issuing etc.
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Ten of machine learning algorithms (J48, JRip, Naive Bayes, Bayes Net, IB1, IB5, SMO, Vote 
classifier, new created and implemented G-metric classifier with Slope and IB1 decision 
methods) were examined across three different microsatelitte genotype datasets to show 
and discuss their classification power for breed discrimination of individuals in cattle by 
using microsatelitte data.

First of all, results of each algorithm and its classification results are presented and dis-
cussed detailed for each dataset. Percentage of correctly classified instances, Kappa statistic, 
false positive rate, precision and F-Measure are used and discussed as values which can ef-
fectively describe classification power of mentioned methods. Also, confusion matrices and 
graphs of classes probabilities predicted for individuals on training set by each model are 
used for this purposes. Especially, graphical overview of classification on the whole dataset 
offer more information about genetic admixture between breeds and can effectively visual-
ize it in comparison with dendrograms. As well, G-metric classifier is specially created for 
genotype data classification, so it is assuming SMM and can be used for genetic diversity 
purposes. The usage of these results for genetic diversity issues is described as well.

Results and discussion of usability of all of examined classification algorithms for breed 
discrimination with regard of datasets used represent following part of work done within 
thesis. This description shows and can be used in fact for optimal algorithm selection when 
this type of service should become as commercial one to choose best performing algorithm 
and data representation.

If we want to evaluate power of algorithms according to dataset used, we can note that 
algorithms based on frequency and probability principles (like Bayes Net, Vote classifier) 
seem to be robust and independant on genetic data type and can reach acceptable results on 
more detailed datasets (like allele frequency and allele lenghts ones are). In opposite, clas-
sification power of lazy based (IB1 and IB5) or data space dividing based (SMO, J48, JRip) 
algorithms are highly depent on amount of information to deal with (number of attributes) 
plus amount of individuals in training sets. 

In average, Bayes Net seems to be the most useful method for classification of cattle 
breeds based on microsatellite genotype data - Bayes Net reached average percentage of 
correctly classified instances equals 84.274 across all of datasets, Kappa statistic=0.811, FP 
Rate=0.030, Precision=0.842 and F-Measure=0.841. These results are highly comparable 
with results previously presented in horses where subset of algrithms was used to show 
their classification abilities in horses. Comparison of results show, that they do not depend 
highly on number of individuals (932 in horses, 3300 in cattle) as well as on number of loci 
included in dataset (17 in horses, 10 in cattle). It is also important that results that the same 
set of algorithms is usable for two different animal species and does not depend on differ-
ent breeding strategies in both of animal species as well as on data type (10 vs. 17 MS geno-
type data). Also, Bayes Net was evaluated as the best performed classification algorithm for 
both of species and datasets.

Finally, based on results above, it can be said that cattle breeds can be classified ef-
fectively by selected algorithms based on microsatelitte genotype data sets used in this 
work and with selection of proper method and dataset, examined methods can be used for 
breed disrimination in cattle, otherwise detailed inspection of results for particular breeds 
is needed and recommended when this issue should become e.g. commercial service.
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Souhrn7 
Práce popisuje využití mikrosatelitních markerů skotu v několika specifických úlohách:

popis genetické divezity vybraných subpopulací plemen skotu v České republice, –
testování paternity skotu a reálné možnosti jejich využití v současných pod- –
mínkách na základě dat získaných v servisní laboratoři,
získávání genotypových dat a manipulace s nimi v podmínkách rutinního labo- –
ratorního provozu pomocí nově vytvořené softwarové aplikace a možnosti pro 
jejich využití ve specifických provozních podmínkách,
diskriminace jedinců na základě genetického profilu mikrosatelitních markerů na  –
úrovni plemene za pomoci algoritmů strojového učení.

Ve všech zmíněných úlohách je využita sada mikrosatelitních markerů doporučených 
ISAG/FAO pro určení tzv. genetického typu skotu. Jedná se o markery BM1824, BM2113, 
ETH3, ETH10, ETH225, INRA023, SPS115, TGLA122, TGLA126, TGLA227. Použitá data byla 
získána v akreditované laboratoři (Lamgen, ÚMFGŽ, Mendlova Univerzita) v letech 2002-
2009. Data byla pořízena v rámci rutinního provozu laboratoře. Datový set tvoří 730 jedinců 
plemene Masný simentál, 705 jedinců plemene Charolais, 700 jedinců plemene Aberdeen 
Angus, 363 jedinců plemene České strakaté, 243 jedinců plemene Holstein, 188 jedinců 
plemene Limousin, 137 jedinců plemene Hereford, 125 jedinců plemene Piemontese, 73 
jedinců plemene Blonde d’Aquitaine a 66 jedinců plemene Galloway. Dále bylo z celkové 
databáze 7776 jedinců náhodně vybráno 380 nepříbuzných kříženců. Tato podmnožina 
slouží k popisu populace kříženců skotu v podmínkách ČR a jako srovnávací báze pro dis-
kuzi některých výsledků.

Jako nejvíce uniformní plemeno z hlediska genetické diverzity bylo na základě 
výsledků v práci vyhodnoceno plemeno Hereford s následujícími průměrnými výsledky 
počítanými přes všechny lokusy – nejvyšší alelická frekvence 0,500, pozorovaná a očekávaná 
heterozygotnost 0,646, resp. 0,637, koeficint inbreedingu -0,011 a PIC=0,589. Naopak, ple-
meno Piemontese bylo v práci vyhodnoceno jako nejvíce divergentní z hlediska zmíněných 
parametrů.
Pokud se zaměříme na genetickou diverzitu pozorovanou v jednotlivých zkoumaných 
lokusech, můžeme jako nejvíce divergentní označit lokus TGLA227. Zajímavých výsledků 
bylo dosaženo z hlediska nízké (redukované) genetické variablity v lokusech ETH3 (Blonde 
d’Aquitaine), ETH10 (Charolais, Galloway, Limousin) a INRA023 (Blonde d’Aquitaine, Her-
eford) především u masných plemen skotu s intenzivním šlechtěním. Vzhledem k tomu, 
že několik autorů zmiňuje výše uvedené lokusy jako genetické markery spojené s mas-
nou užitkovostí, pozorované výsledky reflektují šlechtitelský tlak v těchto populacích. V 
porovnání s výsledky uvedenými v pracech z 90. let minulého století, které uváděly, že 
intenzivně šlechtěná plemena vykazují alarmující výsledky zredukované genetické vari-
ability (např. Holstein), musíme na základě našich výsledků konstatovat, že se v současnoti 
díky pečlivě plánovaným šlechtitelským strategiím dokázala z tohoto stavu vrátit k akcep-
tovatelné úrovni genetické variability.

Ke zjištění specifických vztahů a stavu sledovaných subpopulací skotu bylo v práci 
určeno 8 genetických distancí založených na různých teoretických modelech (geometrické, 
SMM, AIM). K vizualizaci zmíněných distancí bylo využito UPGMA a NJ algoritmů k 
budování genetických stromů. Plemena Hereford na jedné straně a Aberdeen Angus na 
straně druhé byla identifikována jako nejvíce rozdílná v souladu se všemi metodami ka-
lkulace genetických distancí použitých v práci. Všechny metody také shodně určily do jed-
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né podmnožiny (větve) stromů jedince plemene České strakaté a množinu kříženců. Tyto 
výsledky ukazují ve shodě s reálným stavem populace skotu široké využití plemene České 
strakaté pro produkci kříženců pro masnou i mléčnou užitkovost. Plemeno Masný simentál 
bylo v souladu s výsledky a předpoklady všech kalkulovaných metod vyhodnoceno z hle-
diska genetických vzdáleností a jejich zobrazení jako velice blízké plemenu České strakaté. 
Také tato skutečnost reflektuje reálný stav a historický vývoj obou plemen.

Obecně můžeme na základě dosažených výsledků konstatovat, že plemena chovaná 
v širokém měřítku v České republice i celosvětově (České strakaté, Holstein, Limousin, 
Blonde d’Aquitaine atd.) a plemena geneticky i vývojově odlišná (Piemontese) vykazu-
jí větší genetickou variabilitu v našich podmínkách ve srovnání s okrajově chovanými 
(přestože geneticky odlišnými) (Galloway) a více uniformními populacemi v rámci ČR 
jako Hereford, Masný simentál, Charolais a Aberdeen Angus. Tyto výsledky odrážejí jak 
chovatelské strategie (včetně importů genetického materiálu do ČR), tak historický vývoj 
plemen. Na základě těchto výsledků je možno konstatovat, že mikrosatelitní markery stále 
představují efektivní nástroj k popisu, sledování a kontrole genetické variability skotu po-
mocí použitých metod.
V práci byly pomocí kombinovaných pravděpodobností a hodnoty polymorfního 
informačního obsahu (PIC) vyhodnoceny možnosti využití sledované sady mikrosatelitů k 
úlohám vyloučení paternity u jednotlivých plemen i pro celou datovou sadu. Pro jednotlivá 
plemena bylo nejnižších hodnot u všech tří kombinovaných pravděpodobností dosaženo 
u plemene Hereford, nejvyžších pak u plemene Piemontese. Tyto výsledky odpovídají 
zjištěním týkajících se parametrů genetické variability u obou plemen. Ze všech dosažených 
výsledků uvádíme CEP1=0,953371 u plemene Hereford, které je možno označit za alarmu-
jící (pouze u ~ 95 % jedinců plemene je možno jednoznačně vyloučit rodiče při znalosti 
všech 3 genotypů). Obdobné výsledky pak byly vykalkulovány pro scénář CEP2=0,948479. 
Ostatní hodnoty kombinovaných pravděpodobností pro jednotlivé způsoby vyloučení pa-
ternity se blíží hodnotě 1,000 pro všechna sledovaná plemena. Je tedy možné konstatovat, 
že sada použitých mikrosatelitních markerů je použitelná pro úlohu vyloučení rodičovství 
u sledovaných plemen.

V práci dále uvádíme popis návrhu, algoritmů a implementace softwarové aplikace 
pro práci s rozsáhlými datovými sadami genotypových dat, zejména pro účely využití v 
rutinní genetické laboratoři. V souladu s pravidly designu software uvádíme nejdříve mod-
ely aplikace popisující její typické úlohy ve smyslu použití, uživatelů, síťových technologií, 
bezpečnosti a uživatelského prostředí. K popisu a návrhu software byl použit modelovací 
jazyk UML jako podklad pro následnou implementaci v objektovém prostředí Borland Del-
phi 2005. 
Kvůli nutnosti práce s poměrně rozsáhlými datovými množinami byla jako úložiště zvo-
lena SQL databáze a k jejímu návrhu využito ERD diagramů. Dále jsou v práci uvedeny 
SQL příkazy a fronty typické pro úlohy spojené (vyhledávání, třídění, filtrování) s geno-
typovými daty mikrosatelitních markerů. Specifická povaha genotypových dat vyžaduje 
některé modifikace SQL přístupu k jednoatributovým datům. Proto je v práci uvedeno, 
jak se s těmito omezeními vyrovnat – jsou uváděny SQL fronty pro kalkulaci alelických a 
genotypových frekvencí atd.
Dále uvádíme základní algoritmy pro tvorbu a práci s výsledky SQL front v úlohách s 
genotypovými daty – kalkulace genotypových a alelických frekvencí, kalkulace kombino-
vaných pravděpodobností vyloučení paternity, testování paternity a vyhledání potenciál-
ních rodičů, manipulace s datovými sety na základě genotypových dat atd.
V práci je dále popsáno uživatelské rozhraní aplikace, která vznikla na základě popsaných 



7 Souhrn

164

metod, a popsána její funkcionalita. Byly vytvořeny protokoly a subsystém pro jejich gen-
erování. Ve výsledné aplikaci je také implementován algoritmus G-metric, jehož návrh 
je rovněž součástí této práce. Výsledná softwarová aplikace je využívána akreditovanou 
laboratoří od jejích prvotních implementací v roce 2009.

Pro účely zjištění možností plemenné diskriminace na základě mikrosatelitních markerů 
skotu bylo použito 10 algoritmů metod strojového učení (J48, JRip, Naive Bayes, Bayes Net, 
IB1, IB5, SMO, Vote classifier, nově navržený a implementovaný algoritmus G-metric se 
dvěma metodami pravděpodobnostního rozhodování - Slope a IB1). Parametry klasifikace 
byly zkoumány na třech různých sadách genotypových dat. Datovou sadu tvořilo 3300 
jedinců plemen skotu popsaných výše.

Pro každý druh datového setu a každý algoritmus jsou v práci popsány a diskutovány 
výsledky klasifikačních možností algoritmů z hlediska následujících parametrů: procento 
správně klasifikovaných instancí, Kappa statistika, procento falešně pozitivní klasifikace, 
přesnost a F-míra. Dále jsou prezentovány tvz. matice záměn a grafy pravděpodobnostních 
předpovědí pro celé datové sady. Především tyto grafy poskytují ve srovnání s klasickými 
dendrogramy efektivní nástroj pro vizuální prezentaci diverzity a příbuznosti jednotlivých 
plemen. V této souvislosti je třeba poznamenat, že algoritmus G-metric je speciálně vyvinut 
pro účely klasifikace genotypových dat a výsledky, které pomocí něj určíme mohou být 
využity právě v úlohách genetické diverzity, jak je v práci také prezentováno.

Další část práce je věnována výsledkům a diskuzi použitelnosti jednotlivých algoritmů 
a datových reprezentací k úloze plemenné diskriminace. Tato část práce poskytuje teo-
retický základ pro výběr vhodných algoritmů a datové reprezentace genotypových dat. 
Mohla by být využita i v praktických úlohách při tvorbě komerčních služeb laboratoří. 

Z hlediska robustnosti a nezávislosti na datové reprezentaci jsme vyhodnotili pro 
danou úlohu jako nejvhodnější algoritmy založené na pravděpodobnostních principech 
(např. Bayesovské sítě, Vote classifier). Tyto algoritmy mohou i při využití datových sad 
s vyšším množstvím informace (datový set s genotypovou informací uspořádanou podle 
alelických frekvencí, případně délek) dosahovat velmi dobrých výsledků i v případech, 
že pro tvorbu modelů je použita trénovací množina s relativně nízkým počtem případů. 
Naproti tomu metody založené na tzv. “učení instancí” (IB1, IB5) nebo na dělění datového 
prostoru (SMO, J48, JRip) jsou vysoce závislé na množství informace, podle které následně 
klasifikují nové případy (množství atributů) a množství dat v trénovací množině. 

Z hlediska využitelnosti pro úlohu plemenné diskriminace u skotu na základě geno-
typových dat mikrosatelitních markerů se jeví jako nejlepší algoritmus Bayesovských sítí 
(Bayes Net). V práci pro něj bylo dosaženo průměrných výsledků (přes všechny datové sady): 
84,274 % správně klasifikovaných případů, Kappa=0,811, FP Rate=0,030, Přesnost=0,842, 
F-míra=0,841. Tyto výsledky jsou plně srovnatelné s předchozími pracemi, ve kterých 
byla podmnožina algoritmů aplikována na mikrosatelitní genotypová data u koní pro vy-
hodnocení stejné úlohy. Srovnání výsledků ukazuje, že robustnost algoritmu není příliš 
ovlivněna počtem jedinců použitých pro tvorbu modelů (3300 u skotu, 932 u koní) ani 
počtem použitých mikrosatelitních markerů (10 u skotu, 17 u koní). Je vhodné zmínit, že 
algoritmus se jeví jako robustní i v případě odlišných živočišných druhů a naprosto jiných 
podmínkách jejich chovu a šlechtění.

Na základě uvedených výsledků je možno konstatovat, že za pomoci metod popsaných 
v práci je možno efektivně predikovat plemena skotu na základě genotypových dat mikro-
satelitních markerů.
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Practical Usage of Results8 
First of all, practical results are coming from the part aimed to evaluation of genetic diver-
sity. As used dataset of individuals was created within commercial accredited laboratory 
in three years, results reflect state of genetic diversity through Czech cattle subpopulations. 
For particular breeds, results can be compared with previous results and should be used by 
breeders associations in the Czech Republic as indicator of genetical changes in their breeds 
as well as control tool for evaluation of breeding strategies applied in Czech. It should be 
recommended to perform this evaluation periodicaly with regard to cattle populations evo-
lution. So, 3 years periods seem to be suitable for this issue as well as results coming from 
commercial laboratories. Used methods and their results in this part of thesis showed as 
well that they can be used for these purposes and reflect real state of genetic diversity in 
cattle.

Results about microsatelitte panel usability evaluation show if panel of loci can be used 
for commercial testing of paternity in cattle within and across tested breeds. Also, param-
eters and probabilities are shown for evaluated datesets. This offers to use probabilities as 
warning system as well when ever they are reduced significantly in particular scenario of 
paternity exclusion. Laboratories should use these type of results as was described, pub-
lished them periodically, include them to yearly accreditation parameters and report them 
to authorities like ISAG/FAO is. 

Software application created and described in thesis is practical result itself. Software 
application created based on proposed algorithms, models and methods is used by com-
mercial laboratory nowadays. It offers to control periodically parameters of microsatelitte 
set usability for genetic typing, paternity control and monitoring of genetic diversity. As 
data warehouse is built on SQL principles, all of evaluations could be done with usage of 
whole SQL power of selecting, sorting etc. Anyway, software application reduces human er-
ror factor in data processing as it offers automatic connection to sequencing instruments as 
well as semi-automated input of identification data and results. Software automates a lot of 
daily issues in normal laboratory operation as protocols creation, automated testing of pa-
ternity etc. It also deals with normal security and traceability conditions of operation done 
within network environment. As it is built as open system and all of development parts 
and algorithms are fully described, it represents good framework which can be extended 
by many functions requested in future as was thought during design.

The most recent practical outcome of thesis is represented by evaluated and proved 
possibilities of cattle breeds discrimination by using machine learning methods in micro-
satelitte genotype datasets. When possibilities are proved, proper algorithms and datasets 
are selected, results of classification power are shown, then there is open space to extend 
results reached in commercial type service. This service can be used to identify unknown 
samples on breed level and could be used e.g. in farming, phorensic issues, cattle diversity 
studies, traceability and security of beef cattle. Regarding to results, we can recommend to 
build classification models incrementaly on yearly basis and to report classification power 
results. Theoretical base for these purposes is proposed in the thesis.
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Theoretical Outcomes and Future 9 
work

Presented results of cattle subpopulations genetic diversity in the Czech Republic are fully 
comparable to studies done previously all over the world as common methods were used 
for this purpose. So, when results obtained are easily disscused with real state of breeding 
strategies applied in past, theoretical outcome which proves their usability for these pur-
poses is result of the thesis. Also, when 3300 individuals were inspected in work, we can 
say that results of genetic diversity reached and presented give state-of-art of Czech cattle 
subpopulations genetic aspects nowadays.
As results of evaluation of paternity testing scenarios plus results of genetic diversity in 
Hereford subpopulation show alarming reduction of genetic variability, we can recom-
mend more detailed inspection in Czech Hereford population. 

Regarding design of software application and its implementation, a lot of principles of 
theoretical computation science were applied. As large datasets are operated and thanks to 
different basis of genotype data, a lot of algorithms could be applied or developed espe-
cially in proposed tasks. Proposed design of software application gives a framework which 
can be extended by future work in the following topics:

searching database to find possible pairs of parents, –
creating interface independent on laboratory technology used, –
handling with genotype data in more effective ways, –
incorporating of clustering algorithms to find family relationships within data- –
bases,
implementing of machine learning classifiers for breed disrimination, –
extension of database providing yield traits data and algorithms for breeding  –
strategies selection based on them,
incorporating with national authorities systems for central evidence, –
functional genotypes storage and computations, –
direct web-based communication with breeders, –
fully automated solutions for data and samples flow, –
etc. –

Main theoretical outcome obtained by thesis in cattle breed discrimination task is that cattle 
breeds can be classified on breed level properly by machine learning methods based on 
microsatellite data. Then combination of principles and datasets with different data rep-
resentations were examined to show how task can be resolved and what expected results 
should be from many point of views (usage for genetic diversity exploration, choosing of 
datasets representation, robustness of methods with different datasets, classification power 
of algorithms themselfs, specific results reached within each breed etc.). This offers a large 
opportunities for future work. Also, these results offer manual for future work as well as for 
creating commercial applications based on used theory and obtained results.
Implementation of G-metric classifier and its theoretical base also opens a lot of future is-
sues:

usage of G-metric based classifiers in different species, –
inspection and extension of theoretical base in which G-metric classifier is de- –
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signed, as it is designed for usage with genotype data in comparison with com-
mon classification algorithms using one attribute principle,
design of metric functions suitable for usage with lazy based classifiers and their  –
theory in accordance with population like effects,
new implementations and design of voting functions in lazy based classifiers (and  –
extension of regression principle designed and proposed in this work),
design of new algorithms suitable for breed classification task. –

Concept of breed discrimination task itself opens interesting questions connected with the-
oretical base of machine learning and genetics together. Lets mention couple of the most 
interesting:

to extend results comming from this work and to inspect classification abilities of  –
algorithms on more levels of classification like subpopulations, large families etc.,
to inspect if and how precisely portions of breed for individual can be predicted, –

General concept proposed in this work - usage of machine learning classification methods 
for classification of genetic data can be extended in future mainly by:

development and application of new algorithms for classification of genotype  –
data,
application of normally used classification methods on genotype data for another  –
classification purposes (like evaluation or prediction of haplotypes, prediction 
based on genotype multi loci data, etc.),
creation of commercial based services using these methods and their implementa- –
tion in routinely used SW.

Finally, we need to mention that with usage of routine genotyping in commercial labora-
tory, material for large study can be extended easily in comparison with research projects 
and grants. In this case, general problem of funding in Czech research and no existence 
of relationships between R&D and commercial sphere must be mentioned. Results show, 
that, thanks to cooperation, useful results with positive outcome for both of spheres can be 
concluded.
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