
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FUZZ TESTING OF PROGRAM PERFORMANCE
FUZZ TESTOVÁNÍ VÝKONU PROGRAMU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MATÚŠ LIŠČINSKÝ
AUTOR PRÁCE

SUPERVISOR Doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav inteligentních systémů (UITS) Akademický rok 2018/2019

Zadání bakalářské práce lllllllllllllllllllllllll
19090

Student: Liščinský Matúš
Program: Informační technologie
Název: Fuzz testování výkonu programu

Fuzz Testing of Program Performance
Kategorie: Algoritmy a datové struktury
Zadání:

1. Seznamte se s projektem Perun (správcem výkonnostních profilů) a s metodami profilováním programů.
2. Prostudujte techniku fuzz testování se zaměřením na testování výkonu či odhalování výkonnostních chyb.

Seznamte se s existujícími fuzz testery (AFL, PerfFuzz, atd.).
3. Navrhněte a implementujte modul pro fuzz testování se zaměřením na testování výkonu aplikací v rámci

projektu Perun.
4. Navrhněte a implementujte modul pro interpretaci výsledků výkonnostních testování získané fuzz

testováním.
5. Demonstrujte řešení na alespoň 3 případových studiích.

Literatura:
• Caroline Lemieux, Rohan Padhye, Koushik Sen, Dawn Song.: PerfFuzz: Automatically Generating

Pathological Inputs
• Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, Renwei Zhang.: Fuzz testing in practice: Obstacles

and solutions
• Oficiální stránky projektu AFL: http://lcamtuf.coredump.cx/afl/
• Oficiální projektu Perun: https://github.com/tfiedor/perun

Pro udělení zápočtu za první semestr je požadováno:
• Body 1 a 2

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Rogalewicz Adam, doc. Mgr., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 1. listopadu 2018

Zadání bakalářské práce/19090/2018/xlisci02 Strana 1 z 1

http://lcamtuf.coredump.cx/afl/
https://github.com/tfiedor/perun
http://www.fit.vutbr.cz/info/szz/

Abstract
F i x i n g one issue sometimes brings another ten to the program. To detect these issues,
especially performance issues, we often have to supply the program w i t h input , that forces
its worst-case behaviour. A popular solution to automatic inputs generation is so called
fuzzing, however, its intention is to f ind functional bugs. In this work, we a i m to construct
an automatic generator of inputs whose task w i l l be to trigger performance fluctuations.
So we propose to tune fuzzing mutat ion rules and ways of processing the information about
program run , to part icular ly trigger the performance bugs. We integrate our solution into
a performance profile manager Perun , which stores information about every r u n as a profile
and is able to compare these profiles to check for performance change. Therefore we can
prove that executing w i t h certain input takes more t ime or memory. We tested our fuzzer
on several art i f ic ial projects, which shows its potential w i t h generated inputs that prolong
the runtime of the program. Such a solution would allow developers to regularly test every
version of a project for performance bugs and avoid them completely by automatical ly
f inding new exhausting inputs before release.

Abstrakt
Oprava jednej chyby niekedy prináša do programu ďalších desať. N a odhalenie týchto chýb,
na jmä výkonnostných, často musíme programu poskytnúť vstup, ktorý vynúti jeho sprá
vanie pre najhorší prípad. Populárnym riešením pre automatické generovanie vstupov je tzv .
fuzzing, avšak jeho cieľom je nájsť funkčné chyby programu. V tejto práci sa preto snažíme
vytvoriť automatický generátor vstupov, ktorého úlohou bude vyvolať výkonnostné výkyvy.
N a v r h l i sme preto vyladené fuzzing pravidlá pre mutáciu a spôsob spracovania informácií o
behu programu so zámerom zachytiť výkonnostnú degradáciu. Naše riešenie je integrované
do nástroja Perun , správcu výkonnostných profilov, ktorý uchováva informácie o každom
behu vo forme profi lu a je schopný porovnať tieto profily s cieľom detekovať zmenu vo
výkone. Takýmto spôsobom môžeme dokázať, že beh programu s určitým vs tupom zaberie
viac času alebo pamäte. Náš fuzzer sme testovali na niekoľkých umelo vytvorených projek
toch, kde ukazuje svoj potenciál generovanými vs tupmi , ktoré markantne predlžujú dobu
behu programu. Prínosom takéhoto riešenia je možnosť pre vývojárov pravidelne otesto
vať každú verziu projektu na výskyt výkonnostných chýb a vyhýbať sa i m automatickým
vyhľadávaním nečakaných vstupov.

Keywords
performance bugs, fuzz testing, workload mutat ion , worst-case, algorithmic vulnerabil i ty,
denial of service

Kľúčové slová
výkonnostné chyby, fuzz testovanie, mutácia vs tupu, najhorší prípad, algoritmická zran
iteľnosť, denial of service

Reference
L I S C I N S K Ý , Matúš. Fuzz Testing of Program Performance. B r n o , 2019. Bachelor's thesis.
B r n o Univers i ty of Technology, Facul ty of Information Technology. Supervisor D o c . M g r .
A d a m Rogalewicz, P h . D .

Rozšírený abstrakt
Prítomnosť chýb spôsobujúcich neočakávané správanie programov je nepochybné nepríjem
nou a neodvratnou súčasťou ich vývoja. N a riešenie tohto problému sa v priebehu rokov
objavi l i rôzne typy nástrojov a metodík, ktorých hlavným cieľom bolo eliminovať (alebo
aspoň znížiť) výskyt týchto chýb a poskytnúť podporu programátorom p r i vývoji kom
plexnejších a rozsiahlejších programov.

Z hľadiska požiadavok na aspekty dnešného softvéru sa vývojáři čoraz viac zameriavajú
na výkonnosť programov, na jmä v prípade kritických aplikácií, ako sú tie, ktoré sú nasadené
v leteckom, vojenskom, zdravotníckom alebo finančnom sektore. Preto pred nasadením
akéhokoľvek p r o d u k t u do reálneho sveta je prirodzené a nevyhnutné zabezpečiť, aby bol
dostatočne stabilný a zvládol očakávanú záťaž.

Výkonnostné chyby nie sú hlásené až tak často ako funkčné chyby a to z toho dôvodu,
že zvyčajne nespôsobujú pády programov, preto je ich odhalenie náročnejšie. Navyše sa
zvyknú prejavovať iba p r i velkých alebo špecifických vstupoch. Následná oprava však
nebýva zložitá, a tak skutočnosť, že niekoľko riadkov kódu môže výrazne zlepšiť výkonnosť
nás motivuje k tomu, aby sme venovali väčšiu pozornosť práve výkonnostným chybám už
na začiatku procesu vývoja. Keďže sa počas vývoja často vydávajú nové verzie, pravidelné
testovanie výkonnosti tých najnovších verzií by malo byť tým vhodným spôsobom pre včasné
nájdenie problému s výkonom.

Projekt P E R U N je open-source nástroj , ktorý slúži na automatizovanú analýzu výkon
nostných zmien na základe nazbieraného výkonnostného prof i lu . O k r e m toho spravuje tieto
profily, kde kadžý profi l zodpovedá jednej verzii pro jektu. To pomáha používateľovi identi
fikovať konkrétne zmeny kódu, ktoré mohl i priniesť problémy s výkonom alebo kontrolovať
rôzne verzie kódu v prípade zhoršenia výkonnosti z dlhodobého hľadiska.

Neočakávané problémy s výkonom môžu viesť k vážnym z lyhaniam či k bezpečnostným
problémom. Avšak manuálne testovanie výkonu nie je triviálny proces a očakáva od testerov
povedomie o použitých štruktúrach a logike testovanej jednotky. N a rozdiel od toho au
tomatizované testovanie prináša efektívnejší spôsob vytvárania testovacích prípadov, ktoré
môžu spôsobiť neočakávané výkyvy výkonu v cieľovom programe. N a tento účel je vhodné
prispôsobiť pokročilejšie techniky generovania testovacích dát, ako je fuzzing.

Fuzzing je testovacia technika používaná na nájdenie zraniteľností v aplikáciách ponúka
ním zdeformovaných vstupných údajov a následným monitorovaním správania aplikácie.
Táto agresívna technika je impozantné účinná p r i hľadaní chýb a zažíva veľký úspech p r i
objavovaní bezpečnostných chýb. T u vzniká myšlienka použiť fuzzing na hľadanie imple-
mentačných defektov ovplyvňujúcich výkon.

V súčasnosti existuje mnoho projektov implementujúcich techniku fuzz testovania, ale
nanešťastie žiadna z nich neumožňuje pridávať vlastné stratégie mutovania, ktoré by mo hl i
byť viac prispôsobené na cieľový program a hlavne na odhaľovanie výkonnostých slabín.

V tejto práci navrhujeme modifikáciu jednotky fuzz testovania, ktorá bude špecializo
vaná na generovanie vstupov chamtivých na výpočtové zdroje. Navrhujeme nové mutačné
stratégie inšpirované príčinami výkonnostných chýb v reálnych projektoch a ich integrá
cia do Perunu predstavuje novú techniku fuzzingu. Veríme, že kombinácia výkonnostného
testovania a fuzzingu by mohla zvýšiť podie l úspešne nájdených chýb počas procesu vývoja.

Naše riešenie odhali lo slabiny vo viacerých vytvorených projektoch pracujúcich s rôznymi
dátovými štruktúrami a škodlivými regulárnymi výrazmi, ktorých výkon markantne de
gradoval p r i spracovaní zmutovaných vstupov. Metodológia a výsledky tejto práce bol i
prezentované aj na študentskej konferencii E X C E L @ F I T ' 1 9 kde bol i anotované ako ino-
vatívne so silným aplikačným potenciálom.

Fuzz Testing of Program Performance

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of D o c . M g r . A d a m Rogalewicz, P h . D . The supplementary information
was provided by Ing. Tomas F iedor and M g r . Be. H a n a Pluhackova. A l l the relevant
information sources, which were used dur ing preparation of this thesis, are properly cited
and included i n the list of references.

Matüs Lisc insky
M a y 15, 2019

Acknowledgements
I would like to thank A d a m Rogalewicz for supervising this thesis, for his relaxed and
constructive approach, and for willingness to help me. Furthermore, I would like to thank
Tomas Fiedor for his patience, willingness to introduce me into Perun , friendliness and
readiness to answer a l l m y questions. I must not forget to thank H a n a Pluhackova for
advice f rom statistics and Tomas Vojnar for inspirat ional ideas.

Contents

1 Introduction 3

2 Fuzz testing 5
2.1 The Phases of the Fuzzing 6

2.1.1 Identify Target 6
2.1.2 Identify Inputs 7
2.1.3 Generate Fuzzed D a t a 7
2.1.4 Execute Fuzzed D a t a 9
2.1.5 M o n i t o r for Exceptions 9
2.1.6 Determine E x p l o i t a b i l i t y 9

2.2 The Advantages of Fuzzing 10
2.3 Fuzz Testing and Performance 11
2.4 E x i s t i n g and Related Fuzzers 11

2.4.1 A m e r i c a n Fuzzy L o p 11
2.4.2 PerfFuzz 12

3 Performance testing 14
3.1 The Importance of Performance Testing 14
3.2 Funct ional vs Performance Testing 15
3.3 Perun : Performance Version System 15

3.3.1 Architecture 16
3.3.2 A u t o m a t i c R u n of Job 16
3.3.3 Performance Profi le 17
3.3.4 D a t a Col lect ing and Profi le Generat ing 19
3.3.5 Postprocessing 19
3.3.6 A u t o m a t i c Detect ion of Performance Changes 20

4 Analysis and Design 21
4.1 P r o b l e m Analys is 22
4.2 Requirements for Fuzz U n i t 22
4.3 Design of Performance Fuzzer 23

4.3.1 General Descr ipt ion of the A l g o r i t h m 23
4.3.2 Absence of Source Files 25

4.4 M u t a t i o n Strategies 26
4.4.1 Text F i l e Strategies 26
4.4.2 B i n a r y F i l e Strategies 28
4.4.3 Domain-Specif ic Strategies 29

1

5 Implementation 31
5.1 Fuzzer Implementation Structure 31
5.2 A c q u i r i n g Ini t ia l Seeds 32
5.3 M u t a t i o n Methods Selection 32
5.4 Ini t ia l P r o g r a m Testing 33

5.4.1 Coverage-Guided Testing 33
5.4.2 Prof i le -Guided Testing 35

5.5 Parents R a t i n g 35
5.6 Fuzzing L o o p 36

5.6.1 Parent W o r k l o a d Selection 36
5.6.2 D a t a M u t a t i n g 37
5.6.3 Gather ing Interesting Mutat ions 38

5.7 Interpretation of Fuzz ing Results 39
5.8 Fuzzer Interface 42
5.9 Testing the Fuzz U n i t 42

6 Experimental Evaluation 43
6.1 Sorting Vulnerabil i t ies 43
6.2 Regular Expression Denia l of Service (ReDoS) 45

6.3 Hash Coll is ions 48

7 Conclusion 49

Bibliography 50

A Example O u t p u t of the Fuzzing 53

B Storage M e d i u m 54

2

Chapter 1

Introduction

'Only conducting performance testing at the conclusion of system or func
tional testing is like conducting a diagnostic blood test on a patient who is already
dead.'

— Scott Barber

The presence of errors causing unexpected behaviour of programs is undoubtedly an un
pleasant and unavoidable part of their development. To tackle this problem, various types
of tools and methodologies have emerged over the years and their pr imary goal was to
eliminate (or at least reduce) the occurrence of these defects and to provide support for
programmers dur ing development of more complex and extensive programs.

Nowadays, when ta lk ing about software aspects, developers are slowly shift ing their
focus more on program performance, part icular ly i n the case of mission-cri t ical applications
such as those deployed w i t h i n aerospace, mil i tary, medical or f inancial sectors. Natura l ly ,
before deploying anything to the real wor ld , it is essential to make sure that it is stable
enough to handle the expected load.

Performance bugs are not reported as often as functional bugs, because they usually do
not cause crashes, hence detecting them is more difficult . Moreover, they tend to manifest
w i t h big inputs only. B u t , performance patches are usually not that complex. So the fact
that a few lines of code can significantly improve performance motivates us to pay more
attention to catching performance bugs early in the development process. In development,
new versions are frequently released, and regular performance testing of the latest releases
can be a proper way of f inding performance issues early.

Perun: Performance Under Control [8], is a lightweight open-source tool which includes
automated performance degradation analysis based on collected performance profile. More
over, it manages performance profiles corresponding to different versions of projects, which
helps a user i n identifying part icular code changes that could introduce performance prob
lems into the project's codebase or checking different code versions for subtle, long term
performance degradation scenarios.

Unexpected performance issues usually arise when programs are provided w i t h inputs
(often called workloads) that exhibit worst-case behaviour. Th is can lead to serious project
failures and even create security issues. The reason is, that precisely composed inputs
send to a program may, e.g., lead to exhaustion of computing resources (Denial-of-Service
attack) if the input is constructed to force the worst case.

3

Unfortunately, manual ly created test cases might not detect hidden performance bugs,
because it does not have to cover a l l cases of inputs . So in order to avoid this, it is
appropriate to adapt more advanced techniques such as the fuzzing.

Fuzzing is a testing technique used to f ind vulnerabilit ies i n applications by sending
garbled data as an input and then moni tor ing the applicat ion for crashes. E v e n just an ag
gressive random testing is impressively effective at f inding faults and has enjoyed great
success at discovering security-crit ical bugs as well . Us ing fuzz testing, developers and
testers can 'hack' their systems to detect potential security threats before attackers can. So
why should not we use fuzzing to discover implementat ion faults affecting performance?

Currently, there are many projects implementing fuzz testing technique, but unfortu
nately, none of them allows to add custom mutat ion strategies which could be more adapted
for the target program and main ly for triggering performance bugs.

In this work, we propose a modif icat ion of fuzz testing unit that w i l l be specialised for
producing inputs greedy for resources. We propose new mutat ion strategies inspired by
causes of performance bugs found i n real projects and integrating them w i t h i n the P E R U N
as a new performance fuzzing technique. We believe that combining performance versioning
and fuzzing could raise the ratio of successfully found performance bugs early in the process.
The methodology and the results of this thesis were also presented in students conference
E X C E L @ F I T ' 1 9 [11], and annotated as innovative w i t h strong applicable potential .

Document structure. Chapter 2 contains a theoretical basis of fuzz testing principles,
along w i t h overview of the existing fuzz testers that inspired this work. Subsequently,
Chapter 3 describes performance testing i n collaboration w i t h continuous integration and
the P E R U N tool , which implements this principle and for which needs this work has been
developed. The Chapter 4 then provides an analysis of the problem this work deals w i t h ,
together w i t h a complete draft of our solution. The breakdown of the proposed a lgor i thm
and the implementat ion details on which its parts are based includes Chapter 5. F ina l ly ,
the Chapter 6 summarises experimental testing together w i t h the achieved results and their
analysis.

4

Chapter 2

Fuzz testing

Fuzzing (fuzz testing) is a form of fault injection stress testing, where a range of malformed
inputs are fed to a software appl icat ion while moni tor ing for failures [5].

The earliest reference to fuzzing dates back to 1989 when professor B a r t o n M i l l e r and
his class developed and used a pr imit ive fuzzer that tested the U N I X applications [22].
These roots of fuzzing are captured i n the article An Empirical Study of the Reliability of
UNIX Utilities by M i l l e r , Fredriksen and So [14].

Fuzzing was discovered almost accidentally when one of the authors of the mentioned
paper experienced electromagnetic interference when using a computer terminal during
a heavy storm. This caused random characters to be inserted into the command line as
the user typed, which caused a number of applications to crash. The failure of many
applications to robustly handle this randomly corrupted input led professor M i l l e r and his
colleagues to develop two tools: fuzz and ptyjig1, specifically to test appl icat ion robustness
to random input .

In general, fuzz is a random character str ing generator. It allows users to define the l imit
of generated output such as the m a x i m u m amount of characters, or by using only printable
characters, etc. Too l ptyjig is used to supply the random input to the target ut i l i ty , which
input files must have the characteristics of a terminal device (e.g., the v i editor and the m a i l
program) [14]. Af ter each test fuzz inspects the file system looking for a core file to determine
if an error has occurred. If such a file was found, it was saved together w i t h the input that
caused the error.

W h i l s t such a simple black-box approach may sound naive, history has shown fuzzing to
be surprisingly useful at uncovering faults in a wide range of software systems [13]. Nowa
days, many software development teams and companies like Cisco, Microsoft , or A T & T
fuzz their software on a dai ly basis w i t h a purpose to find memory corruption bugs and
vulnerabilit ies automatical ly [7].

Unl ike , e.g. static analysis tools, it is not necessary for a fuzzer to have access to
the source code of a target appl icat ion in order to work. However, access to the source
code may help a fuzzing framework to improve its observational capability. For example,
by providing a feedback loop which drives the coverage of the different fuzzed inputs [6].

Fuzzing is a technique belonging to the group of negative testing (i.e. testing that
the system does not do things that it is not supposed to do), as opposed to positive testing
(i.e. testing that features work as specified). Software programs created for fuzz testing are

1 Clone of fuzz and ptyjig — https: / /github.com/alipourm/fuzz
2 Testing without peering into the internal structure of the component or system

5

https://github.com/alipourm/fuzz

commonly called fuzzers. Sometimes we may encounter terms used to describe tests s im
ilar to fuzzing, for example: robustness testing, protocol mutat ion, fault injection, syntax
testing, d i r ty testing, or rainy-day testing [23].

2.1 T h e Phases of the F u z z i n g

B y creating fuzz, M i l l e r et a l . also without intent defined a model of a general fuzzer.
Despite the fact that fuzzing has admit tedly moved forward in the last years, a l l fuzzers
work i n the following steps:

1. identify target, choosing the target appl icat ion which w i l l be tested:

2. identify inputs, determining what inputs the target appl icat ion accepts:

3. generate fuzzed data, basically creating new input data:

4. execute fuzzed data, feeding the target appl icat ion w i t h newly generated input :

5. monitor for exceptions, watching the target appl icat ion for interesting behaviour:

6. determine exploitability, analysing the behaviour and classifying the input .

These phases can be performed by one unit or by various independent units and imple
mented using techniques w i t h varying levels of sophistication. E a c h of the stages is briefly
described below.

2.1.1 Ident i fy Target

In order to maximise the effect of fuzzing it is first necessary to analyse the target software
under test (S U T) . The need for fuzz testing of a software depends main ly on possible risks,
accessibility for an attacker or impact of the user on a system. A good example of what
applications is l i teral ly essential to test are those that:

• work w i t h valuable, personal or sensitive information:

• r u n i n a privileged mode, higher than for common user:

• receive input over a network:

• has a specific file or l ibrary w i t h i n , which are shared across mult iple applications.

E . g . when a service is receiving some input f rom the network and is running w i t h
W i n d o w s system level privileges, it is certainly tempt ing for an attacker. System services
and default components of operating systems represent b ig risk since potential successful
attacks can endanger a wide range of user populat ion [5].

Domain-specific knowledge of the target program, such as used data structures or opera
tions provided on the input data, allows to better adjust the fuzzer for the target appl icat ion,
for example, by more specific and efficient methods for generating fuzz data.

G

2.1.2 Ident i fy Inputs

The m a i n reason why fuzz testing experienced such a big success is that exploitable vulner
abilities are caused mostly because the appl icat ion is processing the input data vector w i t h
insufficient val idat ion. Authors of a book Fuzzing: Brute Force Vulnerability Discovery [22]
lists classes of inputs as follows:

• command line arguments,

• environment variables,

• web applications,

• file formats,

• network protocols,

• memory,

. C O M objects,

• inter process communicat ion.

Fuzzers can be adapted to many software areas, and help to uncover unexpected be
haviour local ly or even remotely. Since fuzz testing proved its quality, companies invest in
the developing of specific fuzzers on a different abstraction levels and w i t h sundry function
alities.

2.1.3 G e n e r a t e F u z z e d D a t a

Once we identify the suitable inputs and analyse the S U T , we can generate new inputs.
Fuzzers can be div ided w i t h respect to how those inputs are generated. Fuzz data can
be generated using predetermined values, mutat ing existing data or generating data from
scratch. N e w test cases are generated as a whole before testing, or more often iteratively
generated on demand at the beginning of each test series. There exist two major categories
of fuzzers: generational and mutational.

Generational Fuzzer

Sometimes called grammar-based fuzzer. Generat ional fuzzer generates new inputs from
scratch based on a template or a grammar specification. The template defines precisely
the structure of the input file that is consumed by the target program.

A template should be accurate, detailed and include a l l possible options for every field
of the structure. T h i s ensures that fuzzer generates val id data for control fields such as
checksums or challenge-response messages and thereby achieve a high level of coverage.
However, creating a bulletproof template tends to be t ime-consuming and complex process.

The generative method is usually used for simple models or protocols where construction
of a template has no significant cost. A l t h o u g h many of the applications works w i t h defined
file formats or protocols (e.g. data serialisation formats, R F C standardised protocols, etc.),
there is no given standard specification for templates. Hence every fuzz generator has its
own design and methods for implementing the template [6].

7

M u t a t i o n a l Fuzzer

M u t a t i o n a l fuzzer does not require any specification of input file format. Instead it is
init ial ised by a set of sample inputs (even one single sample file suffices). N e w workloads
are generated by apply ing of mutat ion strategies on these in i t i a l so called seeds.

Mutat ional -based fuzzers are typical ly less sophisticated, however, they also require less
domain knowledge such as used protocols, templates, etc. C o m p u t a t i o n a l work substitutes
a human effort i n program understanding which makes this approach cheaper.

It is worthwhile to use mutat ional fuzzers, e.g. when the target program uses highly
structured inputs . Us ing mutations we do not have to accurate the entire complex structure
from the beginning, but use the existing one and modify it .

A decision, whether the input (either seed or mutation) is valuable and should be reused
for further work or discarded depends on several factors and it is not the functionali ty of
fuzzer itself but of fuzzing framework.

Unfortunately, the S U T may reject the mutated input at the beginning of processing
the data dur ing val idat ion since mutations can generate inval id format. Nevertheless, even
inval id inputs can sometimes lead to an interesting response from S U T . Consider the ex
ample program i n L i s t i n g 1, that reads a value from standard input and checks if the value
is three times smaller than a magic number, and only then continues.

#define MAGIC_NUM 42
i n t main(void) {

i n t value = read();
i f (value *3 == MAGIC_NUM) {

doWorkO ;
}
else {

e r r (" I n v a l i d i n p u t ") ;
}

}

Listing 1: E x a m p l e of a C program that w i l l not do any work u n t i l correct magic number
is given.

If we work on an architecture where integers are stored on 4 bytes (32bits), the variable
value can store 2 3 2 different values, so the probabi l i ty that it stores the correct magic
number and we hence execute the body of the function doWorkO is 1 : 2 3 2 .

Instead we could exploit the coverage information, and determine what code segments
were performed dur ing testing. Discovering new paths w i l l cause that the input would be
stored, so further mutat ion derived from it w i l l have stronger potential .

Al ternat ive ly we could exploit the symbolic execution, a software testing technique that
analyse which inputs cause each part of a program to execute. O n the other hand, the m a i n
reason why symbolic execution does not outperform fuzzing is its high resource require
ments, and most of the approaches do not scale on large applications.

2.1.4 E x e c u t e F u z z e d D a t a

After we generate new inputs we have to execute the S U T again w i t h them. The delivery
mechanism sends the generated data to the S U T input . Th is mechanism is closely related
to a nature of the input that appl icat ion is consuming, since, e.g, the system which accepts
input from a file requires a different delivery mechanism than a system which accepts mouse
interaction events [13]. Execut ion is automated and can involve opening files, sending
packets, or running processes [22]. Note that the execution may take longer than previous
runs w i t h seed inputs.

2.1.5 M o n i t o r for E x c e p t i o n s

W h a t do we acquire when we send thousands of generated requests to a server and after
that, we f ind out that server crashed? N o t h i n g . We do not know either which request
caused the crash nor why. Hence we must monitor the program constantly, after each new
test r u n . T h e monitor ing system has to observe the S U T , while it processes each input
into the system and tries to detect anomalies, such as errors, deadlocks or performance
degradations.

The simplest method is to check the return code when the program terminates or stops
for some reason. The return code may explain the cause of the system crash as each standard
s i g n a l 3 has its own signal number associated w i t h i t . However, these signal numbers may
vary on rare architectures.

More advanced methods of observation include more intrusive forms of monitor ing ap
plications, typica l ly realised by attaching a debugger to the process [23]. One of these
debugging tools is ptrace 1 (system call) , that allows a process to inspect and control
the execution of other processes. Funct ional i ty of ptrace relies on several tools and one
of them is s t r a c e 5 which monitors and manipulates interactions between processes and
the L i n u x kernel, inc luding system calls, signal deliveries, or changes of process state. B y
tracking the outputs of s imilar tools, we can detect anomalies for different types of inputs
either when opening or w r i t i n g to files. For testing the memory we can list , e.g., Va lgr ind ,
G u a r d M a l l o c , Insure++, etc. Al ternat ive ly we can use clang 6 compiler sanitizers (A S a n ,
T S a n , M S a n , and U B S a n) to detect memory errors, data races, undefined behaviour, or
overflows [20].

2.1.6 D e t e r m i n e E x p l o i t a b i l i t y

The f inal part of fuzz testing is to analyse the potential vulnerabilit ies or anomalies and
thorough interpretation of results. The analysis typical ly requires a h u m a n to determine
whether the anomaly is really a vulnerabi l i ty or if it is spurious. To facilitate developers
work, flaws may be collected and clustered together w i t h a report. Errors , exceptions, and
their variations can be grouped into classes, which significantly reduces the total amount
of vulnerabilit ies that the developer has to investigate.

3 signal — http://man7.org/linux/man-pages/man7/signal. 7.html
4 ptrace — http:/ /man7.org/l iniK/man-pages/man2/ptrace.2.html
5strace — http:/ /man7.Org/l inux/man-pages/manl/strace. l .html
6 clang — https: / /c lang. l lvm.org/

9

http://man7.org/linux/man-pages/man7/signal
http://man7.org/liniK/man-pages/man2/ptrace
http://man7.Org/linux/man-pages/manl/strace.l.html
https://clang.llvm.org/

2.2 T h e Advantages of F u z z i n g

Fuzzing is just one of plenty of techniques that can discover defects in a software, so why
should one use i t? Considering many existing approaches, we list several reasons why fuzzers
have been widely accepted in the last years and under what terms is fuzzing the best applied.

A v a i l a b i l i t y

In order to fuzz the S U T one needs only the runnable and does not need e.g. the source
codes or deep knowledge of S U T architecture. Since fuzzing does not require access to
the source code, it is also an open way to fuzz commercial products. The absence of source
code usually exclude the use of static analysis, model checking, etc [13]. However, even
though the source code is not needed for fuzzing, the analysis of the sources before actual
fuzzing may yield better results, and sooner.

S i m p l i c i t y

The difficulty of the fuzzing mostly depends on the character of the S U T and the level of
the structure of input data . The elementary variant of fuzzing is the random data passed
to the target system, which is simple to develop, especially if the program is consuming less
complex inputs where the mutative approach is acceptable.

L o w cost

Software engineering history has shown that test cases are more efficient when wri t ten by
someone other than the original programmer since a b l i n d spot i n implementat ion is l ikely
to also be repeated i n testing [16]. Testers are expected to understand the implemented
system and its boundary cases i n order to construct effective test cases. B u t this approach is
quite t ime expensive, and moreover, testers may overlook some aspects. To rely pr imar i ly
only on sets of manual ly developed test cases is deprecated and often the test suite can
be enhanced by results of performed fuzzing. R a n d o m data generation part ia l ly replaces
the tester's work and w i l l also cover cases that the tester and programmer would never
consider significant [13].

Effect iveness

We finish w i t h the most important advantage: it works. For instance, the S D L (Security
Development Lifecycle) outlines fuzz testing for software verification, a mandatory pol
icy established by Microsoft . Another example of successful fuzzing dates i n A p r i l 2014,
when was disclosed the Heartbleed vulnerabi l i ty i n the O p e n S S L l ibrary, which is used by
the majori ty of web servers. One of the most famous fuzzers A F L [25] found bugs in many
tools which are l isted on A F L ' s official website, inc luding security-crit ical software such as
OpenSSL ; O p e n S S H and nginx; M o z i l l a Firefox, Internet Explorer and A p p l e Safari; and
other well -known software such as L ibre Office or Adobe F l a s h [24].

10

2.3 Fuzz Test ing and Performance

The fuzzing approach seems to be the right choice for testing, thus we could also use it for
testing, where we won't expect an error, but that the performance of the appl icat ion w i l l
deteriorate. To realise this idea, we need to modify some of the fuzz testing phases.

Generating input data should be fine-tuned to achieve better results, bearing i n m i n d ,
that the problem often causes processing amount volume of a data. W h i l e monitor ing
the program, we are interested in the data of consumed memory, t ime, etc.; therefore it
is necessary to select a tool able to measure them, i.e. do profi l ing. It w i l l also be differ
ent to decide whether we have detected a performance issue, hence we need to compare
the measured values w i t h some baseline expected values. A f t e r comparing, we get the re
sult, and another problem is to decide whether the comparison result shows a decrease in
performance or not.

Obviously, besides fuzz testing, we can also encounter funct ional bugs i n the tested
program. A l t h o u g h they are not essential from the performance view, if they do not cause
performance f luctuation, the output report should contain information about them as well .

2.4 E x i s t i n g and Re la ted Fuzzers

We w i l l only list several selected fuzzers. In part icular , the A F L which is the first widely
used fuzzer, and PerfFuzz, which is the first attempt to tune fuzzers for f inding performance
bugs.

2.4.1 A m e r i c a n F u z z y L o p

A F L (american fuzzy lop) is an open source mutat ional fuzzer developed by M i c h a l Za-
lewski. A F L features a colourful C L I that displays real-time statistics about the fuzzing
process such as the number of found faults, hangs, average program execution speed, tota l
A F L r u n t ime or how much t ime has elapsed since its most recent finds [25]. The simplified
a lgori thm is as follows:

1. L o a d a queue w i t h i n i t i a l seeds.

2. Take the next input from the queue.

3. T r i m the input without affecting the target's behaviour.

4. M u t a t e the input using selected fuzzing strategies.

5. A d d the mutations deemed interesting to the queue.

6. G o to 2.

A F L can be used for both whi te -box 7 fuzzing (supported languages are C , C + + , and
Object ive-C) and black-box fuzzing. Furthermore, other variations of A F L allow fuzzing
projects wri t ten , e.g., in P y t h o n , G o , G C J Java or Rust .

7 Testing with knowledge about the internal structure of the component or system

11

af1-gcc af1-as a f l - fuzz af1-analy ze af1-gcc af1-as a f l - fuzz af1-analy ze

>

Figure 2.1: F lowchart of A F L . Redrawn from the source: [24].

Before the fuzzing, an appl icat ion must be first recompiled w i t h af 1-gcc, a drop- in
replacement for G C C or clang. Compi ler output is passed to af 1-as, a wrapper over as 8,
that instruments the compiled target by injecting assembly code which captures branch
coverage. T h e output of af 1-as is an executable binary that is passed to af 1-fuzz which
fuzzes the input w i t h the assistance of afl-analyze. The af 1-fuzz element is also in
charge of pr int ing the information about current fuzzing process on user interface. The final
part afl-analyze uses the instrumentat ion from a f l - a s (if provided), and observes if
the execution path of the C F G was changed. It communicates only w i t h af 1-fuzz to
improve further mutat ion [24] [25].

A F L looks at each input file as a binary and modifies it using binary fuzzing strategies.
These strategies include:

• sequential or random b i t / b y t e flips,

• sequential or random incrementing or decrementing integer values,

• sequential or random overwrit ing existing data w i t h known integers (e.g., -1 , 256,
1024, M A X _ I N T) ,

• deletion, dupl icat ion and memset of data blocks,

• splicing two distinct input files at a random location.

Successful fuzzers live and die by their fuzzing strategies. Some of A F L ' s strategies tend
to be more successful some less, but rare feedback loop is t ry ing to increase their efficiency,
as the author of A F L , M i c h a l Zalewski , narrates on his personal blog [26]. The feedback pro
vided by the instrumentat ion injected into compiled program helps to optimise parameters
of fuzzing strategies. Together w i t h its evolutionary design of the queue provide a feed
back mechanism to dist inguish between insignificant mutations and those that trigger new
behaviour.

This too l is precisely set to look for a variety of funct ional bugs and therefore can be
proud of its collection of detected funct ional bugs. However, A F L is not adapted to looking
for performance issues, neither by its mutat ion rules nor by program monitor ing and related
feedback information that affects the evolutionary design of the queue.

2.4.2 P e r f F u z z

State-of-the-art mutat ional fuzzers are pr imar i ly focused on finding functional bugs. Nev
ertheless, recently a performance-oriented A F L variant called PerfFuzz was proposed.

PerfFuzz [10] is a coverage-guided mutat ional feedback-directed fuzzing engine that uses
mult i -dimensional feedback i n the A F L ' s C F G graph method and addit ional ly creates a per
formance map to improve future usabil i ty est imation of tested input . The PerfFuzz authors

8 A S — the portable G N U assembler — http: / /man7.Org/ l inux/man-pages/manl/as . l .html

12

http://man7.Org/linux/man-pages/manl/as.l.html

defined the performance map as a funct ion per f map : K —>• V, where K is a set of keys
corresponding to program components (C F G edges) and V is a set of ordered values (exe
cution counts of C F G edges). This enables PerfFuzz to f ind inputs that exercise noticeable
hot spots i n a program and generate inputs w i t h higher to ta l execution path length than
previous approaches by escaping local m a x i m a . Experiments on sorting a lgor i thm Insertion
Sort, P C R E U R L regular expression and others show the method is effective at generating
inputs that demonstrate algorithmic complexity vulnerabilit ies.

Results of comparison w i t h A F L show, that A F L in i t ia l ly finds a hot spot w i t h higher
execution count, but it d i d not grow more. O n the other hand, PerfFuzz finds a hot spots
w i t h over 2 x - 18 x higher execution counts after 6 hours of lasting experiments [10].

13

Chapter 3

Performance testing

In this thesis, we a i m to switch the focus of fuzzing from detecting funct ional bugs to
uncovering performance bugs. We wish to apply the fuzzing i n the performance testing —
technique for determining how well has the system been designed from a performance point
of view. In this chapter, we describe the basics of performance testing and its importance
in the software development life cycle.

The performance testing is the process of measuring the efficiency of a software program,
system or a device. Th is procedure usually includes quantitat ive tests, such as measuring
the response t ime or the number of M I P S (millions of instructions per second) at which
a system operates, and qualitative tests determining system attributes such as reliabil ity,
scalability, or interoperability. In general, performance testing verifies whether a system
meets the specifications claimed by its manufacturer or vendor [17].

3.1 T h e Importance of Performance Test ing

F r o m the business perspective, poorly performing software programs do not commonly br ing
the planned benefit to an organisation, and therefore cannot be considered as a reliable asset.
Regardless of causalities, this makes a bad reputat ion on the designers, coders, testers, and
other people involved i n its development process.

One can ask, when is an applicat ion considered to be performing badly or well? There
does not exist any guide from generic industry standard which determines good or bad
performance. Nevertheless, various informal attempts to define a standard was proposed
defining e.g. minimum page refresh time w i t h i n browser-based applications [15].

Performance testing should detect what needs to be improved before the product is
released. W i t h o u t i t , software is probably going to suffer from problems such as poor us
abil i ty, slow response when a higher number of users use it at the same t ime, or discrepancies
across different operating systems. B u t , the resulting system crash can be really expensive.
In August 2013, only a 5-minute downtime of Google .com was estimated to cost the search
giant as much as $545 000. A t the same summer, companies lost sales worth $1100 per
second because of A m a z o n Web Service outage [12].

14

http://Google.com

3.2 Func t iona l vs Performance Test ing

Over the past decades, most of the research teams' attention has been part icular ly focused
on the development of tools for automatical ly detecting functional bugs.

Similar tools for performance area have been developed, however, considerably less
frequently, thus performance deficiencies have been perceived as less cr i t ica l and often
difficult to detect. B u t , especially in recent years, it has been shown that the severity
of performance errors is in general almost comparable to funct ional errors, and in extreme
cases, these errors can lead to pract ical unusabil i ty of programs, for example, when working
w i t h larger amounts of input data.

Nowadays, there are many tools that are able to detect these errors more or less satisfac
tori ly. Usual ly we are ta lk ing about profi l ing tools, whose success depends on appropriately
selected inputs . Performance bugs have the unpleasant character that their manifestation
often occurs only when working w i t h a larger volume of data, or only w i t h specifically
constructed input data . Nevertheless, if we choose too large data it can on the other hand
significantly prolong the t ime of testing. In addi t ion , it is often difficult to estimate the fu
ture overhead of real deployment of the product , and the errors can occur i n the later phase
of software life.

Conduct ing performance testing simultaneously w i t h functional testing is more favou
rable and w i l l add more benefits to the overall software quality. Adequate planning for
conducting functional and performance testing should be done i n order to keep a strong
relationship among the involved parties of the project [4].

However, what if a develop company wants to sidestep the planning but s t i l l carry
out the performance testing on a regular basis? Perfect solution would be to automatise
this process and perform the performance testing whenever a developed project registers
a significant change, e.g. when releasing a new version. In the next Chapter , we w i l l
introduce to the solutions for managing performance testing.

3.3 P e r u n : Performance Vers ion System

P E R U N (Performance Under Control) is an open-source project founded by T . Fiedor , w i t h i n
the V e r i F I T research group. Its m a i n objective is to automate management of program's
performance profiles. It basically builds on a version control systems1 (VCS) that are ex
tended w i t h the performance records (such as t ime or memory consumption) for each ver
sion.

Its m a i n idea is to capture performance changes dur ing the development by comparing
performance profiles that are bound to the part icular program versions. P E R U N can be
integrated into an already used versioning system to ensure that for each new version of
the project there w i l l be created performance profile (for example, w i t h every commit in
the versioning system).

In short, P E R U N is a wrapper over existing version systems and manages profiles for
different versions of part icular projects. Besides that, it offers a tool suite al lowing one to
automate the performance regression test runs, postprocess existing profiles or interpret
the results [8].

1systems that records changes of source code files over the time so that one can recall specific version
later

15

3.3.1 A r c h i t e c t u r e

The implementat ion of P E R U N consists of
three logically part i t ioned units: data,
l o g i c and view. The data part is respon
sible for persistent storing and managing
generated performance profiles, and also for
interface to supported V C S .

The importance of the l o g i c part con
sists of management, manipulat ion , and au
tomat ion of profile creation. It includes set
of data collectors (trace, memory, time) for
profile generation, and set of postprocessors
used for profile transformation.

The view is a stand-alone package that
provides interaction w i t h the user using Figure 3.1: V i e w , logic, and data together
the input-output interface. This can be re- form the P E R U N too l architecture, adopted
alised by the graphical [9] (not merged i n f rom [8].
master branch) or command line interface. A t the end, the results of profi l ing data analysis
are visualised by one of the visualisat ion techniques. A n i l lustrat ion of described architec
ture and selected P E R U N modules is i n F igure 3.1.

3.3.2 A u t o m a t i c R u n of J o b

Using P E R U N ' S runner infrastructure, one can r u n a series of steps run-collect-postprocess
w i t h defined parameters i n order to generate a profile. D u r i n g the profi l ing of appl icat ion,
we first collect the data by the means of profi l ing data collector, and further augment
the collected data by ordered postprocessing steps (e.g. for f i l tering out unwanted data ,
normalising or scaling the amounts, etc.). A s results we generate one profile for each
applicat ion configuration and each profi l ing job.

Configurat ion of appl icat ion for profi l ing is part i t ioned into three parts:

• command: the actual command that is being profiled, e.g. Is

• arguments: set of arguments for command, e.g. - a l

• workloads: input workloads, e.g. /usr/share

P E R U N allows automatic collection of profi l ing data based on a pre-stored local or shared
configuration, which is main ly used for regular performance analysis of project versions.
The base of automation in P E R U N are job matrices, which are determined by a commands,
arguments, workloads, collectors and postprocessors (and their internal configurations).
The user can define custom matrices i n the local settings (file l o c a l .yml), thus summarise
the whole profi l ing process w i t h one command perun run matrix. The job matr ix format
is shown in L i s t i n g 2. In case of irregular or specific creation of performance profiles, P E R U N
offers the possibil i ty to define a single job specification w i t h i n options of perun run job
command, as shown i n L i s t i n g 3.

I M e m o r y

Regex

| Fil ter

I Norma l i ze r

J GENERATES .

COLLECTORS | (•

i
i POSTPROCESS

I I LOGIC!

' 1 VIEW [

HEAP
GUI CLI

FLAME
GUI CLI

MAP
GUI CLI

GRAPH

16

cmds:
- . /my_bin

args:
- —less

workloads:
- workload.txt

c o l l e c t o r s :
- name: memory

params:
- sampling: 1

postprocessors:
- name: normalizer
- name: regression_analysis

params:
- method: f u l l
- steps: 10

Listing 2: A n example of local .yaml file containing a simple job matr ix w i t h required
information about the selected collector, the command that w i l l be profiled, and the other
specifications such as arguments, workloads, and addit ional parameters for collector and
postprocessor.

perun run job —cmd ./my_bin —args —less —workload workload.txt \
— c o l l e c t o r memory —collector-params memory memory-params.yaml \
—postprocessor normalizer —postprocessor regression-analysis \
—postprocessor-params regression-analysis ra-params.yaml

Listing 3: R u n n i n g the job w i t h the same configuration as i n L i s t i n g 2, but using perun
run job command. A d d i t i o n a l parameters for collector and postprocessor are included in
files memory-params.yaml and ra-params .yaml.

3.3.3 P e r f o r m a n c e Prof i le

Profiles store performance records collected by one of the collectors. Generated profile can
be then postprocessed mult iple times by any of the postprocessing units, i n order to e.g.
normalise or filter the values [8]. In persistent storage each generated profile is assigned
to appropriate so called minor version origin (e.g. concrete commit i n git V C S) . A profile
can be further visualised, since even a simple interpretation of outcome may be oftentimes
more descriptive and lead to better understanding of program's performance. A l l these
operations over a performance profile together symbolise the lifetime of the profile, captured
in F igure 3.2.

17

Heap map
Regression Scatter

analysis Plot

Visualizers

Figure 3.2: Li fet ime of performance profile. Taken f rom [8].

Collected data are stored as a profile w i t h format based on J S O N 2 . The motivat ion
is, that J S O N - l i k e structured data are easy to read and understandable for human and for
computers which is reflected in wide support of programming languages offering an interface
for operations over J S O N formatted files.

Profile format requires several restrictions regarding the keys (or regions) that needs to
be defined inside. L i s t i n g 4 displays the topmost structure of the profile format. P E R U N
project documentat ion [8] describes format i n details, we briefly outline each topmost region:

• o r i g i n : a hash key specifying concrete minor version of project, to which profile
corresponds to. O r i g i n l inks the performance records to funct ional changes.

• header: dict ionary containing basic specification of the profile, like e.g. the actual
command which was profiled, its parameters and input workload.

• c o l l e c t o r _ i n f o: configuration of collector, which was used to capture resources and
generate the profile.

• postprocessors: list of configurations of postprocessors i n order they were applied
to the profile.

• snapshots: list of resources that were actual ly collected by the specified collector.

2 JavaScript Object Notation — https:/ /www.json.org/

18

https://www.json.org/

" o r i g i n " : " " ,
"header": {},
" c o l l e c t o r _ i n f o " : - Q ,
"postprocessors": [] ,
"snapshots": [] ,

List ing 4: The generic scheme of profile format, adopted from

3.3.4 D a t a C o l l e c t i n g a n d P r o f i l e G e n e r a t i n g

Prof i l ing data are collected by collection which generate performance profiles (i.e. the set of
performance records). P E R U N framework currently includes these implemented collectors:

• Trace: based on S y s t e m T a p 3 , collects running times of C / C + + functions. It is
suitable to postprocess the collected data using the regression analysis, since they
capture dependency of t ime consumption depending on the size of the structure.
T h e n , we can plot i n d i v i d u a l points along w i t h regression models using scatter plot
visualisation technique.

• M e m o r y : collects allocations of C / C + + functions, target addresses of allocations,
type of allocations, etc. These collected data are suitable to visualise by the heap
map1.

• T i m e : a simple wrapper over the time u t i l i ty that captures overall running t ime of
a program.

3.3.5 P o s t p r o c e s s i n g

Once a profile is created, we can apply a sequence of postprocessing steps i n order to
transform its data . P E R U N framework currently offers five postprocessors:

• normaliser: normalises the resources of the same type to the interval (0, 1), where 1
corresponds to the m a x i m a l value of the given type.

• regression analysis: attempts to find the fitting model (linear, quadratic , logarith
mic, etc.) for a dependent variable based on another independent one. E . g . the de
pendency of funct ion runtime depending on the size of the under lying structure.

• clusteriser: tries to classify resources to uniquely identified clusters or to group
similar amounts of resources.

• regressogram: non-parametric method, which tries to fit models through data by
d iv id ing the interval into N equal buckets, where a bucket value is a result of selected
statistical aggregation funct ion (mean/median) .

3 SystemTap — https://sourceware.org/systemtap/documentation.html
4 graphical representation of data which values contained in a matrix are represented by colours

19

https://sourceware.org/systemtap/documentation.html

• moving average: non-parametric approach, which uses the analysis of data points
by creating a series of values based on the specific aggregation function; values are
derived from different subsets of the ful l data set.

• kernel regression: non-parametric technique that estimates the condit ional expecta
t ion of a random variable by placing a weighting funct ion (kernel) over each estimated
data point .

3.3.6 A u t o m a t i c D e t e c t i o n of P e r f o r m a n c e C h a n g e s

P E R U N offers an automatic check for performance changes between two isolate profiles
(so called baseline and target profile), w i t h the same configuration (i.e. collected by same
collectors, postprocessed using same postprocessors, and collected for the same combination
of command, arguments and workload). These profiles may be registered in index (i.e.
assigned to the concrete minor version), stored i n pending profiles or s imply stored in
the filesystem. Usual ly the baseline corresponds to previous stable version (e.g. the previous
head) and target to new untested version (e.g. new head or commit) .

For such a pair of target and baseline profiles, we can use several methods, which
can then report mult iple performance changes. Potent ia l changes of performance are then
reported for these pairs of profiles, together w i t h more precise information. Th is information
then helps a developer to evaluate whether the detected changes are real or spurious.

P E R U N framework currently supports the following strategies for detection of the per
formance changes:

• Average A m o u n t Threshold: computes averages for each unique group of re
sources, and consider them as a representation of the performance. E a c h average of
the target is then compared w i t h the average of the baseline and if their ratio ex
ceeds a certain threshold interval , the method reports the change (optimisation or
degradation).

• Best M o d e l Order Equality : checks for each unique group of resources, whether
the best performance (or prediction) model has changed. The result can be e.g. that
the best model changed from linear to quadratic .

• Fast Check: simple method, based on the subtract ion of best-fit models and subse
quently interleaving of these data by newer models.

• Linear Regression: heuristic based on the results of linear regression models, which
models the relationship between independent variables x and dependent variables y
as funct ion y = bo + b\ • x. The heuristic compares the coefficients 60 (y-intercept)
and 61 (slope).

• Polynomial Regression: represents the change in a form of nth degree polyno
m i a l function [21]. Th is heuristic tries to f ind the best fit nth degree po lynomia l for
subtraction of best baseline and target models.

To summarise, P E R U N allows automatic detecting of performance changes between var
ious minor versions w i t h i n the history w i t h the a i m to protect the project from potential
performance degradation.

20

Chapter 4

Analysis and Design

The underdeveloped field of performance fuzz testing has inspired us to explore this issue
more and extend the P E R U N too l w i t h fuzzing module that w i l l t ry to f ind new workloads
(or inputs) that w i l l l ikely cause a change i n program performance. We w i l l start w i t h
a mot ivat ional example as an introduct ion to the problem, then we analyse the problem
and f inally we w i l l propose the solution together w i t h a short explanation of the principles.

Often, the overall performance of a program highly depends on its input data (if it
consumes any). A l t h o u g h manual ly wri t ten tests can cover even 100% of the code, test
cases may not reveal hidden vulnerabilit ies u n t i l the unusual input data are provided.

#include <stdio.h>
#include <stdlib.h>
#define DIGITS 2

void doSomething(void){ return; }

i n t main(void){

FILE * fp = fopen("workload.txt","r");
char array [DIGITS];
f o r (i n t i= 0 ; KDIGITS; i++)

array [i] = f g e t c (f p) ;

unsigned number = a t o i (a r r a y) ;
for(unsigned i= 0 ; Knumber; i++)

doSomethingO ;
}

Listing 5: E x a m p l e C program that shows a vulnerabi l i ty when signed integer is assigned
to unsigned integer variable.

In L i s t i n g 5 one can see an example program, which reads two characters f rom an input
file (expecting it contains numerical values), stores them in an array and then converts
the array to an integer using standard a t o i 1 (array to integer) funct ion. T h e original i n -

x atoi — https://en.cppreference.com/w/cpp/string/byte/atoi

21

https://en.cppreference.com/w/cpp/string/byte/atoi

tention was to avoid large numbers and only take two digits into account, so the number
should be out of interval < 0,99 >. B u t , this solution contains hidden vulnerabil i ty. O n
the highlighted line, the result of converting is assigned to unsigned integer variable, but
the return value of a t o i function is a signed integer. In case that the input file w i l l con
ta in for example str ing a t o i w i l l successfully convert the str ing to an integer -1 , which
is represented as OxFFFFFFFF in hexadecimal (on architecture where integers are stored
on 4 bytes). Considering that the variable number is defined as unsigned integer, the fol
lowing loop w i l l cal l doSomething function UINT_MAX(232-1) times leading to performance
degradation.

4.1 P r o b l e m A n a l y s i s

Basically, the goal of this work is to generate new input data that could possibly exercise
(i.e. consume as many resources or t ime as possible) the target program the most. We
believe that employing the fuzz technique could help create such new input data. We
propose that for the purpose of lightweight fuzz testing mutat ional methodology is more
preferable. M u t a t i o n a l strategies should be more oriented and tuned for performance.
A l t h o u g h t radi t ional mutat ion strategies were bui l t rather for finding funct ional faults,
certainly it is good to combine them w i t h the performance tuned ones.

In conjunction w i t h P E R U N tool , the approach of regular performance testing, the user
could find w i t h each new version new workloads that cause a problem and keep track
of the progress of project performance power over t ime. Af ter fixing the bug of certain
performance issue revealed by the fuzzer, the user is able to test the target appl icat ion
performance again either w i t h the worst-case workloads assigned to earlier versions or by
repeatedly performing the fuzz testing. Because fixing one bug may sometimes create new
ones.

4.2 Requirements for Fuzz U n i t

In this section we briefly summarise the funct ional requirements and specifications of the re
sult ing product .

1. N e w mutation rules. The product must offer new, reasonably designed and perfor
mance affectable rules. The group of rules need to be general, not focusing on the only one
type of potential performance problem.

2. Classic rules. The existing fuzzers have implemented them, and they have achieved
the success, therefore it is advisable to add some classic generally used mutat ion rules to
our collection of rules.

3. Perun influence. This means selecting inputs for mutat ion main ly according to
the P E R U N results, because it is the m a i n difference from the existing performance fuzzers.

4. Workload picking based on coverage. Since the fuzzing is a brute-force technique,
we do not want to test w i t h P E R U N every workload, just interested i n terms of amount
of executed code. Note that P E R U N testing would be often unnecessary and process of
collecting, postprocessing and detection brings a considerable overhead.

22

5. Interpretation of workloads. We think that after finishing the fuzz testing, testers
pr imar i ly want to know what workloads are making the troubles to applicat ion and how
they differ from the original files.

6. Interpretation of fuzzing. For better imaginat ion of the finished fuzzing process,
fuzzer should offer visualised information about it that can be helpful for future fuzzing.

4.3 Des ign of Performance Fuzzer

We have already described the general fuzz testing i n Section 2.1. The described steps
must be implemented accordingly to what the unit should be focused on. In this work
we construct a lightweight Mutation Based Fuzzing Tool tuned for detecting performance
changes, i.e. performance optimisations and degradations.

The proposed solution w i l l be modi fy ing files (one of the most common format of pro
gram workload). We believe that the mutational approach is more suitable in order to create
new workloads. E x i s t i n g projects inspired us to implement the feedback loop w i t h coverage
information, for the purpose of increasing the efficiency and chances to f ind the worst-case
workloads. Another feedback w i l l be obtained f rom P E R U N , which automatical ly detects
performance changes based on the data collected w i t h i n the program runtime.

4.3.1 G e n e r a l D e s c r i p t i o n of the A l g o r i t h m

In this section we w i l l describe design of performance fuzz tester. Its m a i n loop is depicted
in L i s t i n g 6.

A n inevitable element for start ing the fuzzing is to collect suitable set of sample seed
inputs (or workloads), also called input corpus. In classical fuzzing methods we work w i t h
so called inputs , however, i n this work we w i l l adapt the terminology of P E R U N , which calls
the input of programs the workloads. The seeds should be val id workloads for the target
applicat ion, so the appl icat ion terminates on them and yields expected performance. C o l
lecting workloads into the corpus is done by pseudo funct ion ge t_ ini t ia l_corpus w i t h i n
the overall performance fuzzing a lgor i thm captured i n L i s t i n g 6. In our fuzzer, the seeds
w i l l be provided by the user.

For different file types (or those of s imilar characteristics) we want to use different groups
of mutat ion methods (function choose_rules_according_to_f i letype) as described in
Section 4.4. The knowledge that seeds are text files, not binaries, allows fuzzer to avoid
binary-tuned fuzz methods (e.g. random removing zero bytes, ...). So, we apply domain-
specific knowledge for certain types of files to trigger the performance change or f ind unique
errors more quickly.

Before running the target appl icat ion w i t h newly generated malformed workloads, it
is necessary to first determine the performance baseline, i.e. the expected performance of
the program, to which future results (so called targets) w i l l be compared. In in i t i a l testing
we first measure code coverage (number of executed lines of code) while executing each
in i t i a l seed. The median of measured coverage data is then considered as the baseline for
coverage testing (base_cov variable). Second, P E R U N is r u n to collected memory, t ime
or trace resource records w i t h in i t i a l seeds resulting into baseline profiles (base_prof i l e) .
Pract ica l ly performance baseline is a profile describing the performance of the program on
the given workload corpus. A f t e r the i n i t i a l testing, the seeds i n the corpus are considered
as parents for future mutations and rated by the evaluation function.

23

Once we assemble in i t i a l seeds, we can start the actual fuzzing. The fuzzing loop itself
starts w i t h choosing one i n d i v i d u a l file f rom corpus (function choose_parent) using heuris
tic described in Section 5.6.1. Th is file is then transformed into mutations (function fuzz)
and their quanti ty is calculated using dynamica l ly collected fuzz stats (see Section 5.6.2
for more details). We test every mutat ion file w i t h the goal to achieve m a x i m u m possi
ble code coverage. We first focus on gathering the interesting workloads, which increase
the number of executed lines. We argue that coverage based testing is fast and can yield
satisfying results. Later we w i l l combine these results w i t h the performance check, which is
slower. In case that , code coverage exceeds the certain threshold, responsible mutat ion file
joins the corpus and therefore can be fuzzed i n future to intentionally trigger more serious
performance issue. E a c h parent jo ining the corpus gets rated, i n this phase only according
to reached coverage.

resul ts = []
corpus = get_ ini t ia l_corpus()
mutation_rules = choose_rules_according_to_filetype(corpus)
base_cov = init_cov_test(corpus)
base_profile = init_performance_test(corpus)
rate_parents(corpus)
Fuzzing loop
while timeout not reached:

interes t ing workloads = []
Coverage-guided testing
while execs_limit not reached and c o l l e c t e d _ f i l e s _ l i m i t not reached:

candidate = choose_parent(corpus)
muts = fuzz(candidate, mutation_rules, fuzz_stats)
Gathering interesting mutations
interesting_workloads += test_for_cov(muts, base_cov, i covr_rat io)
corpus += interesting_workloads
rate_parents(interesting_workloads)
update_stats(fuzz_stats, interesting_workloads)

adapt_icovr_rat io(icovr_rat io)
Profile-guided testing
resul ts += test_with_perun(interesting_workloads, base_profile)
update_rates(results)
update_stats(fuzz_stats, results)

List ing 6: Pseudocode of Performance Fuzz ing A l g o r i t h m .

24

After gathering the interesting workloads, the fuzzer collects run-t ime data (memory,
trace, t ime), transforms the data to a so called target profile and checks for performance
changes by comparing newly generated target profile w i t h baseline performance profile
(see [18] for more details about degradation checks). T h e n the tested workloads rates
have to be recomputed to include the performance change result (function update_rates).
The intui t ion is, that running coverage testing is faster than collecting performance data
(since it introduces certain overhead) and collecting performance data only for possibly
newly covered paths could result into more interesting workloads. Accord ing to the number
of gathered workloads we adapt the coverage increase ratio, w i t h an a i m to either mitigate
or t ighten the condit ion for classification a workload as an interesting one.

Lis t of results of each testing i teration i n the m a i n loop contains successful mutations
and the history of the used rules, that led to their current form. This information is up
dated after each test r u n to make the best decisions at any t ime. Moreover, collecting
interesting workloads is l imi ted by two variables: the current number of program execu
tions (execs_limit) and the current number of collected files (collected_f i l e s _ l i m i t) .
The first l imi t guarantees that the loop w i l l terminate. O n the other hand, this l imi t of
executions could be set to excessively high value, which would lead to a long durat ion of this
phase, especially if the test program itself is used to r u n for a longer t ime. The second l imit
ensures the loop w i l l end i n reasonable t ime and collects reasonable number of workloads.

4.3.2 A b s e n c e of Source Fi les

We can collect line coverage only i n the presence of source files. Nevertheless, the fuzzer
should provide fuzz testing even without them. In that case we skip the first (and fast)
testing phase and only checks for possible performance changes. In L i s t i n g 7 is captured
an a lgor i thm i n pseudocode, relying only on results of P E R U N ' S detection of performance
change.

resul ts = []
corpus = get_ ini t ia l_corpus()
mutation_rules = choose_rules_according_to_filetype(corpus)
base_profile = init_performance_test(corpus)
rate_parents(corpus)
Fuzzing loop
while timeout not reached:

candidate = choose_parent(corpus)
muts = fuzz(candidate, mutation_rules, fuzz_stats)
Profile-guided testing
resul ts += test_with_perun(muts, base_profile)
corpus += resul ts
rate_parents(results)
update_stats(fuzz_stats, results)

Listing 7: Var ia t ion of pseudocode of Performance Fuzzing A l g o r i t h m without the access
to source files.

25

4.4 M u t a t i o n Strategies

In general, the goal of mutat ional strategies is to randomly modify a workload to create
a new one. We w i l l present a series of rules inspired by performance bugs found in real
projects, and general knowledge about used data structures, sorting algorithms, or regular
expressions.

B o t h the types of workloads and the rules for their modif icat ion are d iv ided into two
basic groups: text and binary. In addi t ion , we added specific rules for X M L format based
files. E a c h rule has its own label name (T stands for text, B for binary and D for domain-
specific) , w i t h a brief description of what it concentrates on and the demonstrat ion result
of its appl icat ion on some sample data.

4.4.1 T e x t F i l e Strategies

The following rules are constructed str ict ly for text files. Suppose the seed workload for
fuzzing is the file w i t h the string:

'the quick brown fox jumps over the lazy dog*.

Rule T . l : Double the size of a line. This rule focuses on possible performance issues
associated w i t h long lines appearing i n files. The inspirat ion comes from the gedit 2 text
editor, which shows signs of performance issues when working w i t h too long lines even in
small text files. Another potential performance issue that this rule could force is a poorly
validated regular expression that could be forced into lengthy backtracking while t r y i n g to
match the whole line.

'the quick brown fox jumps over the lazy dogthe quick brown fox jumps over
the lazy dog'

Rule T . 2 : Duplicate a line. S imi lar to the previous rule, but instead extends the file
vertically. Suppose that there is a line in a file that represents a performance vulnerabi l i ty
but does not manifest i n smal l sizes, therefore the degradation would not be detected. B y
m u l t i p l y i n g the line we can likely trigger the vulnerabi l i ty and this could lead to a decline
in performance.

'the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog'

Rule T . 3 : Div ide a line. S imi lar ly to Rule T .2 , the rule may pose a threat to programs,
whose performance does not depends so much on the length of the line as the number of
lines in the workload file. Moreover, the rule can be effective for regular expressions match
ing whole lines. T h e line w i l l be cut, which means it w i l l not contain what the regular
expression would expect, and could force backtracking.

'the quick brown fox jumps o
ver the lazy dog'

2gedit — https : / /wiki .gnome.org/Apps/Gedit

26

https://wiki.gnome.org/Apps/Gedit

Rule T . 4 : Change random character. Th is is t radi t ional fuzzing method since the emer
gence of fuzzing, which can trigger unexpected behaviour for various reasons. W h i l e this
is not a specific rule for performance, i n PerfFuzz [10] authors found interesting workloads
even w i t h basic mutat ion rules.

'the q u i c k brown fox jumps over the lazy dog'

Rule T . 5 : Repeat random word of a line. O n vulnerabil it ies, e.g., i n a handler when
a program is t ry ing to store what has been read and the record already exists (hash table, or
user registration to a database). Further , in situations where the program expects unique
input data, e.g. sorting a lgor i thm QuickSort reaches its worst-case when a l l the elements
are the same [3].

'the q u i c k brown fox jumps over the lazy dog dog dog dog dog dog dog dog'

This pair belongs to the rules that focus main ly on sorting algorithms and searches i n data
structures. Accord ing to [3], QuickSort exhibits worst-case 0 (n 2) behaviour also when
the elements are sorted or reversely sorted. We expect that s imilar behaviour could hold
for the other sorting algorithms, searching algorithms (and their heuristics), and others
which assume randomly sorted workload. T h e result is showing which words change their
posit ion w i t h i n the line and which not when sorting i n ascended and descended order.
Rule T . 6 : Sort words or numbers of a line.

'brown dog fox jumps lazy over q u i c k the the'

Rule T . 7 : (Reversely) sort words or numbers of a line.

'the the q u i c k over lazy jumps fox dog brown'

The following rules are focused on the efficiency of the program white character handl ing.
The inspirat ion lies i n the well -known StackOverflow outage on J u l y 20, 2016. The reason of
the outage was regular expression " [\s\u200c] + | [\s\u200c]+$ intended to t r i m Unicode
space from start and end of a l ine. If the str ing to be matched against contains e.g. 20 000
space characters i n a row, but after the last one there is a different character, Regex engine
expected a space or the end of the str ing. Real is ing it cannot match like this it backtracks,
and tries matching start ing f rom the second space, checking 19,999 characters, then from
t h i r d space and so on [2]. S imilar deployment of the seemingly harmless regular expression
could be detected w i t h the help of these rules.

Rule T . 8 : A p p e n d whitespaces. Sometimes we want to t r i m a line, i.e. remove
the white characters from the front or back. Th is rule s imply adds 100 to 1 000 whitespaces
at the end of the line. The amount of whitespaces is chosen from the same interval for
every rule i n this group.

'the q u i c k brown fox jumps over the lazy d o g u u u u u u u u u u u u . . - u u u u u u u u u u u u '

Rule T . 9 : Prepend whitespaces. A follow-up rule that adds white characters to the be
ginning of a line.

'uuuuuuuuuuuu-•-uuuuuuuuuuuuthe q u i c k brown fox jumps over the lazy dog'

27

Rule T.10 : Insert whitespaces on a random place. Th is mutat ion can split data into
mult iple parts. For applications relying on C P U caching this rule could force load of gaps
in the memory (which are often useless data) , and therefore appl icat ion may slow down.

'the quick brown fox j u m u u u u u u u u u u u u . . . u u u u u u u u u u u u p s over the lazy dog'

Rule T . l l : Repeat whitespaces. Follows the same principle as the previous rule, w i t h
the difference that spaces w i l l be in the same place only larger. If the input has a more strict
format, then the previous rule w i l l not succeed because it breaks the input data format. In
this case the spaces w i l l be mul t ip l ied and the structure may not necessarily be corrupted.

'the quick brown fox jumps over t h e u u u u u u u u u u u u . . . u u u u u u u u u u u u l a z y dog'

Rule T.12: Remove whitespaces of a line. Th is method removes any white spacing of
a line, and thereby creates continuous data. W h e n using a hash table, two complications
can occur: (a) the hash funct ion could calculate the index for a long t ime, (b) always new
unique data could quickly fill the table, and thereby enlarging the hash table. A similar
case is when a program expects a space after e.g. 10 characters and it is missing i n the file.

'thequickbrownfoxjumpsoverthelazydog)

The t radi t ional rules that deletes random parts of the data are inspired by fuzz testing
cores. Removing of some elements may lead to, e.g., the parser wait ing for some character
or str ing or number. T h i s rule could also be effective i n the case of regular expression
backtracking, again.

Rule T.13 : Remove random line.

'tho quick brown fox jumps ovor tho lazy dog'

Rule T.14: Remove random word.

'the quick brown fox jumps over the lazy dog'

Rule T.15 : Remove random character.

'the quick brown fex jumps over the lazy dog'

4.4.2 B i n a r y F i l e Strategies

We propose the following rules for binary files. In case of b inary files we cannot apply
specific domain knowledge nor can we be inspired by existing performance issues instead
we mostly adapt the classical fuzzing rules. Let us assume binary file w i t h the following
content:

'This i s !binary! f i l e A O ' .

The following two rules are based on the fact, that in C language, the str ing is considered
to be a series of characters terminated w i t h a N U L L character ' \ 0 ' . Thus , a str ing cannot
contain a N U L L character and by adding it and then reading can terminate the program
t h i n k i n g it reached the end of a s tr ing and the read data w i l l be incomplete. Removing
the zero byte could lead to program non-termination or crash reading the whole memory.

28

Rule B . l : Remove random zero byte.

'This i s Ibinary! f i l e . \ 0 '

Rule B . 2 : A d d zero byte to random position.

'This i s ! \0binary! f i l e A O '

The inspirat ion for the last binary fuzzing rules is their deployment and success i n existing
fuzzing tools. A l t h o u g h they do not have a specific focus on performance, they can often
trigger unexpected behaviour.

Rule B.3 : Insert random byte.

'This i s !binar$y! f i l e A O '

Rule B.4: Remove random byte.

'This i s Ibinary! f i l e A O ^

Rule B.5 : Byte swap.

'This i s ebinary! f i l ! . \ 0 '

Rule B.6 : Bite flip.

'This i s "/.binary! f i l e . \ 0 '

4.4.3 D o m a i n - S p e c i f i c Strategies

If we have more domain-specific knowledge about the workload format we can devise spe
cific rules. For the purpose of finding potential vulnerabi l i ty more quickly, we want to avoid
workload discarding at the potential i n i t i a l check. We propose rules for removing tags, at
tributes, names or values of attributes used i n X M L based files (i.e. .xml, .svg, .xhtml,
.xul). For example, we can assume a si tuation, when fuzzer removes closing tag, which w i l l
increase the nesting. T h e n a recursively implemented parser w i l l fai l to find one or more of
closing brackets (representing recursion stop condition) and may hit a stack overflow error.
Let us assume a sample line of X M L file:

< book i d ^ b k l O e ' pages='457' >

Rule D . l : Remove an attribute.

< book i d ^ b k l O e ' pages=-M£7- j >

Rule D . 2 : Remove only attribute name.

< book i d ^ b k l O e ' pages='457' >

Rule D . 3 : Remove only attribute value.

< book i d ^ b k l O e ' p a g e s = ; , 4 § 7 ' >

Rule D.4 : Remove a tag.

< book id= , bkl06 > psLgQE=><15T >

29

We can adapt s imilar rules for e.g. H T M L files or J S O N - f o r m a t . In this work we l imit
ourselves to X M L only. The concept of how the i n d i v i d u a l rules are selected, when the rule
is preferred and the other is neglected (or total ly rejected) is described i n Section 5.3.

Fuzzer also offers the possibil i ty of adding custom rules. For adding the rules to a m u
tat ion strategy set, one has to launch the fuzzer w i t h a special file i n Y A M L file format
containing the description of these rules. Y A M L is chosen because the P E R U N too l already
includes anci l lary functions for basic work w i t h Y A M L files. E a c h rule is represented as
an associative array i n a form key: value, where both are regular expressions but key is
a pattern which should be replaced, and value is the replacement. A n example of how such
a file might look like is shown i n L i s t i n g 8.

Back: Front
d e l : add
remove: create
([0-9]{6}),([0-9]{2}): \ \ 1 . \ \ 2
(\\w+)=(\\w+): \\2=\\1

Listing 8: A file containing five custom rules defined by regular expressions. E a c h rule
is then implemented i n a separate function, where occurrences are substituted by standard
regular expression replacing.

30

Chapter 5

Implementation

In previous chapter we proposed a fuzzer w i t h focus on triggering performance bugs. This
work w i l l be integrated i n the P E R U N i n P y t h o n 3.5. In this chapter, we w i l l describe
the options of fuzz unit incorporat ing i n the P E R U N , and reveal selected implementat ion
details of the Performance Fuzzing A l g o r i t h m from L i s t i n g 6 and 7, respectively, and some
other heuristics and features.

5.1 Fuzzer Implementat ion Structure

The proposed solution required to split the implementat ion part into several logical units.
We have broken the funct ional i ty of the fuzzer into the following nine modules:

• coverage. py: implements functions for coverage-guided testing,

• f actory .py: m a i n module of the project, contains the fuzzing loop, controls mutat ing ,
rat ing the parents and so on,

• fi lesystem.py: contains functions dedicated for various operations over files and
directories in file system which are helpful for fuzzing process,

• f i l e t y p e . p y : module for automatic recognising the file type and choosing appropri
ate fuzzing rules, and handl ing w i t h user defined rules,

• interpret .py: contains a set of functions for interpretation the results of fuzzing,

• methods /binary .py: collects general fuzzing rules for b inary files,

• methods / textf i l e .py: collects general fuzzing rules for text files,

• methods /xml.py: collects fuzzing rules specific for X M L files.

If a user wants his custom rules to become a part of the default set of rules (for certain
type of file), it is necessary to implement them and modify the script f i l e t y p e . p y , which
is responsible for selecting the rules. To add, for example, specific rules for J S O N file type,
one just has to create a new script, say json.py, and modify the rules selection. Note that
every rule should contain a brief description, which w i l l be displayed after fuzzing.

31

Integration within Perun. The task of proposed fuzzer, as part of the P E R U N tool , is
to find the potential harmful workloads dur ing continuous performance testing. Integration
of fuzz unit w i t h i n P E R U N is captured i n Figure 5.1.

Working Directory Perun-fuzz
| Phase | Development

|Result | Seed Workloads t

Perun-runners
Collection >» Postprocessing ' Change Detection

- • Runnable — - • Profile Postprocessed Profile Performance Changes

_ Performance
Ss' Degradation

. Performance
Optimization

g-H3-Q-HI}-D- -D-

ORA
CLE

• J ^ N o Change

Figure 5.1: Fuzzer incorporated into the P E R U N , adopted from [8]. Fuzzer unit takes
the seed workloads (e.g. problematic workloads for previous version of project) and starts its
loop. In order to evaluate new mutations, uses the results of analyses yielded from P E R U N
performance testing. If the fuzzer generates the workload which triggers a performance
degradation, and so P E R U N detects i t , workload is stored, therefore developers can fix this
performance issue and keep the workload for future testing.

5.2 A c q u i r i n g In i t ia l Seeds
We first have to get the set of user-provided i n i t i a l sample workloads (i.e. workload corpus):
a crucial aspect of mutat ional fuzzing. Workloads can be passed to fuzzer comfortably as
an arbi trary m i x of files or directories. Directories are then iteratively walked for a l l files
w i t h reading permissions and optional ly name matching user specified regular expression.
For example, consider an applicat ion that works w i t h text files (in format of T X T , X M L ,
H T M L) and user has one large directory w i t h various collection of workloads. We can fuzz
w i t h X M L files just w i t h simple regular expression " . * . xml$. If we want to skip a l l the files
w i t h the name containing str ing „error" we can use " ((?! error) .) *$. Note that the fuzzer
should always be launched w i t h just one type of i n i t i a l files even if the target appl icat ion
supports more types, since we tune the rules according to workload file format.

5.3 M u t a t i o n M e t h o d s Selection

The resulting fuzzer distinguishes between text and binary files and for each format defines
a set of concrete mutat ion strategies. It can be further extended by other strategies based
on file mime-type as well . We select corresponding strategies on the beginning, based on
the first loaded workload file. Basically, if this file is a binary, a l l the rules specific to
binaries are added to the set of rules, otherwise we add a l l the basic text rules. If the mime
type of a file is supported by the fuzzer, we add to the set of rules mime-specific rules as
well as any user-defined rules. Note that the group of currently supported specific methods
for certain types can be further expanded by other file types.

We argue the advantage of fuzzing w i t h one file type rests i n its code covering feature.
To be more precise, we are not observing at the overall percentage of code coverage, but how
many lines of code has been executed i n tota l dur ing the run , w i t h an a i m to maximise i t .
Consider an applicat ion that extracts meta-data f rom different media files, such as W A V ,

32

J P E G , P N G , etc. If a P N G image file is used as a seed to this appl icat ion, only the parts
related to P N G files w i l l be tested. T h e n testing w i t h W A V w i l l cause, that completely
different parts of the program w i l l be executed [6], hence tota l executed code lines of these
two runs cannot compare w i t h each other because reaching higher line coverage w i t h W A V
files would lead to preferring them for fuzzing, and P N G files would be neglected (see
Section 5.6.1 for more information about file preference). Moreover, we are aware that this
strategy may miss some performance bugs. Fuzz ing mult iple mime-types is current feature
work.

5.4 In i t i a l P r o g r a m Test ing
Baseline results (i.e. results and measurements of workload corpus) are essential for detec
t ing performance changes because newly mutated results have to be compared against some
expected behaviour, performance or value. Hence, in i t i a l seeds become test cases and they
are used to collect performance baselines. B y default, our i n i t i a l program testing as well
as testing w i t h i n the fuzzing loop (Section 5.6) interleaves two phases described in more
details below: coverage and performance-guided testing.

5.4.1 C o v e r a g e - G u i d e d T e s t i n g

If one wants to achieve good results i n triggering performance changes it is generally re
commended to monitor the code coverage dur ing the testing especially tracking coverage
of unique paths. The intui t ion is that by moni tor ing how many paths are covered and how
often they are executed, we can more l ikely encounter a new performance bug.

In our fuzzer, we use Gcov tool to measure the coverage. The program has to be b u i l d
for coverage analysis w i t h G N U Compi ler Col lect ion (G C C) w i t h the opt ion —coverage
(or alternatively a pair of options - f p r o f i l e - a r c s -ftest-coverage). The resulting file
w i t h the extension .gcno contains the information about basic block graphs and assigns
source line numbers to blocks. If we execute the target appl icat ion a separate .gcda files
are created for each object file i n the project. These files contain arc transi t ion counts,
value profile counts, and addi t ional summary information [1].

Gcov uses these files for actual profi l ing which results into the output . gcov file. Version
4.9 supports easy-to-parse intermediate text format using the opt ion - i when launching
the tool . However, older versions does not support this option, hence before the r u n , we
have to dynamical ly check the version and accordingly parse the output files. The difference
between intermediate and standard format of output file is shown i n List ings 9 and 10.

Tota l count of executed code lines through a l l source files represents the coverage (and
part ly also a performance) indicator for the first testing phase. A n increase of the value
means that more instructions have been executed (for example, some loop has been repeated
more times) so we hope that performance degradation was l ikely triggered as well . Note
that the l imi ta t ion of this approach is that it does not track uniquely covered paths, which
could trigger performance change as well . Support of more precise coverage metrics is
a future work.

So first the target program is executed w i t h a l l files f rom workload corpus. A f t e r each
single execution, .gcda files are filled w i t h coverage information, which Gcov tool parses
and generates output files. We parse coverage data from the output .gcov file, sum up line
executions, compare w i t h the current m a x i m u m , update the m a x i m u m if new coverage is
greater and iterate again. It follows that base coverage is the m a x i m u m count of executed
lines reached dur ing testing w i t h seeds.

33

file:motivation-example.c
function:6,10,doSomething
function:8,1,main
lcount:6,10
lcount:8,1
lcount:10,1
lcount:12,3
lcount:13,2
lcount:15,1
lcount:16,11
lcount:17,10

Listing 9: The resulting gcov file in intermediate text format w i t h information about r u n
of mot ivat ion example f rom L i s t i n g 5. We parse the lines start ing w i t h lcount, where
the first value means the number of the line and the second how many times was the line
executed. The program was launched w i t h an input str ing '10', which led to 39 executed
lines in total .

—

0:Source:motivation-example.c
0:Graph:motivation-example.gcno
0:Data:motivation-example.gcda
0:Runs:1
0:Programs:1
l:#include <stdio.h>
2:#include <stdlib.h>
3:
4:#define DIGITS 2
5:

10 6:void doSomething(){ return; }
- 7:
1 8:int main(int argc, char ** argv){
- 9 :
1 10: FILE * fp = fopen("workload.txt","r");
- 11: char array [DIGITS];
3
2

12: f o r (i n t i=0; i<DIGITS; i++)
13: a r r a y [i] = f g e t c (f p) ;

- 14:
1

11
10

15: unsigned number = a t o i (a r r a y) ;
16: for(unsigned i=0; i<number; i++)
17: doSomething();

- 18:}

Listing 10: The resulting gcov file i n standard format w i t h information about r u n of
the same program w i t h the same input as in the previous case. One can see, that parser
w i l l have to process twice as many lines i n comparison w i t h the intermediate format, be
cause of addi t ional information and code, which are currently unnecessary for our analysis.
Therefore the parser has to go through 23 lines but only 8 of them contained wanted infor
mation.

34

5.4.2 P r o f i l e - G u i d e d T e s t i n g

W h i l e coverage-based testing w i t h i n fuzzing can give us fast feedback, it does not serve as
an accurate performance indicator . We hence want to exploit results from P E R U N . P E R U N
runs the target appl icat ion w i t h a given workload, collects performance data about the r u n
(such as runtime or consumed memory) and stores them as a persistent profile (i.e. the set
of performance records). Analogica l ly to the previous section, we w i l l need a performance
baseline, which w i l l be compared w i t h newly generated mutations. Profiles measured on
fuzzed workloads (so called target profiles) are then compared w i t h a profile describing
the performance of the program on the in i t i a l corpus (so c&lledbaseline profiles). In order to
compare the pair of baseline and target profiles, we use sets of calculated regression models,
which represents the performance using mathematical functions computed by the least-
squares method. We then use the P E R U N internal degradation methods [18] which work
as follows. F r o m both of these sets we select for each funct ion models w i t h the highest
value of coefficient of determination R2. This coefficient represents how well the model fits
the data, and also its corresponding linear models. For both pairs of best models and linear
models, we compute a set of data points by simple subtract ion of these models. T h e n we
use regression analysis to obtain a set of models for these subtracted data points. Moreover,
for the first set of data points, corresponding to the best-fit models, we compute the relative
error, which serves as a pretty accurate check of performance change. A l l of these regressed
models are then given to the concrete classifiers, which returns detected degradations for
each function.

5.5 Parents R a t i n g

Initially, the workload corpus is filled w i t h seeds (given by user), which w i l l be parents
to newly generated mutations (we can also ca l l these seeds parent workloads). W h i l e we
fuzz, we extend the corpus w i t h successful mutations which become parent workloads too.
The success of every workload is represented by the fitness score: a numeric value indicat ing
workload's point rat ing. The better rat ing of workload leads either to better code coverage
(and possibly new explored paths or iterations) or to newly found performance changes.
We calculate the tota l score by the following evaluation function:

scoreworkioad = icovrwovuoa,d * (1 + p c r w o r k i o a d) -

Increase coverage rate (icovr): Th is value indicates how much coverage changed if we
r u n the program w i t h the workload, compared to the base coverage measured for in i t i a l
corpus. Basically, it is a ratio between coverage measured w i t h the mutated workload and
the base coverage:

iC(Wr w o r k l o a d = C (W w o r k l o a d/c (W b a s e -

Performance change rate (per): In general, we compare the newly created profile
w i t h the baseline profile (for details see Section 5.4.2) and the result is a list of located
performance changes (namely degradations, optimisations and no changes). Performance
change rate is then computed as ratio number of degradations i n the result list:

per workload = cnt(degradation, result) /len(result)

This value plays a large role i n the overall ranking of workload, because it is based on the real
data collected from the r u n . A n d so workloads that report performance degradations and

35

not just increases coverage have better ranking. The computat ion of per workload

could
further be extended by the rate of degradations, i.e. if two workloads found the same
number of degradations, the workload which contains more serious change would be ranked
better. Optimisat ions of ranking a lgor i thm is another future work. Th is evaluation serves
for informed candidate selection for fuzzing from the parents, described i n the Section 5.6.1.

5.6 F u z z i n g L o o p

This m a i n loop runs for a l imi ted t ime specified the user. One, however must take take
into account that testing and especially performance analysis has some overhead and so it
may sometimes take longer. O n the other hand, the program can catch S I G I N T signal to
terminate the fuzz test when a user decides to quit earlier. Fuzz unit is ready to receive
this signal, however, other P E R U N units (collectors, postprocessors) have not implemented
handlers for interrupt ion signal, hence it is not recommended to interrupt dur ing perfor
mance testing, but only in the coverage-guided testing phase. In this section, we described
the m a i n loop of the whole fuzzing process and some of its most significant parts.

5.6.1 P a r e n t W o r k l o a d Select ion

The first task at the beginning of every i teration is to select the workloads from parents
which w i l l be further mutated. A l l parents are kept sorted by their scores, and the selection
for mutat ion consists of d i v i d i n g the seeds into five intervals such that the seeds w i t h
similar value are grouped together. F ive intervals seem to be appropriate because w i t h
fewer intervals parents are i n too big groups and i n case of more intervals, parents w i t h
similar score are pointlessly scattered. F i r s t , we assign a weight to each interval using
linear dis tr ibut ion. T h e n we perform a weighted random choice of interval . F ina l ly , we
randomly choose a parent from this interval , whereas differences between parent's scores in
the same interval are not very notable. The process of selecting is i l lustrated in F igure 5.2.
The in tu i t ion behind this strategy is to select the workload for mutat ion from the best
rated parents. F r o m our experience, selecting only the best rated parent i n every i teration
does not led to better results, and other parents are ignored. Hence we do selection from
al l the parents, but the parent w i t h better score has a greater chance to be selected.

w = 1 w = 2 w = 3 w = 4 w = 5

I — i > < i • j '

o

parent input

weighted interval selection

• randomly chosen parent from selected interval

Figure 5.2: Parents are d iv ided to intervals according to their fitness score. Weighted
choice of interval determines the chunk of seeds, f rom which final candidate is randomly
chosen.

fitness
score

36

5.6.2 D a t a M u t a t i n g

Once we have baseline data for workload corpus and choose appropriate mutat ion rules
for concrete file type, we use fuzzer to gradually apply the mutations and generate new
workloads. However, it is necessary to determine how many new files (N) to generate by
rule / i n the current i teration of fuzzing loop. If iV is too big and we generate mutations for
each rule / f rom the set of rules, the corpus w i l l bloat. O n the other hand, if iV is too low,
we might not trigger any change. Instead we propose to dynamica l ly calculate the value of
N according to the statistics of fuzzing rules dur ing the process. Stat ist ical value of rule /
is a function:

statsf = (degsf + icovrf)

where degsf represents the number of detected degradations by applying the rule / , and
icovrf stands for how many times the coverage was increased by apply ing rule / . Fuzzer
then calculates the number of new mutations for every rule to be applied i n four possible
ways:

1. T h e case when N = 1, the fuzzer w i l l generate one mutat ion per each rule. Th is is
a simple heuristic without the usage of statist ical data and where a l l the rules are
equivalent.

2. The case when N = min(statsf + 1, FLPR), the fuzzer w i l l generate mutations pro
port ional ly to the statist ical value of function (i.e. statsf). More mutat ion workloads
are generated for more successful rules. In case the rule / has not caused any change
in coverage or performance (i.e. statf = 0) yet, the funct ion w i l l ensure the same re
sult as in the first strategy. F i l e L i m i t Per Rule (F L P R) serves to l imi t the m a x i m u m
number of created mutations per rule and is set to value 100.

3. Heurist ic that depends on the tota l number of degradation or coverage increases
(total). The ratio between statsf and total determines the probabi l i ty probf, i.e.
the probabi l i ty whether the rule / should be applied, as follows:

(1 if total = 0

0.1 if statsf /total < 0.1

stats f /total otherwise and we choose N as:
1 if random < = probf

0 otherwise

U n t i l some change i n coverage or performance occurs, (i.e. while total = 0), one new
workload is generated by each rule. A f t e r some iterations, more successful rules have
higher probabil i ty, and so they are applied more often. O n contrary rules w i t h a poor
ratio w i l l be highly ignored. However, since they s t i l l may trigger some changes we
round them to the probabi l i ty of 10%.

4. T h e last heuristic is a modified t h i r d strategy combined w i t h the second one. W h e n
the probabi l i ty is high enough that the rule should be applied, the amount of gener
ated workloads is appropriate to the statist ical value. Probab i l i ty probf is calculated

37

equally, but the equation for choosing N is modif ied to:

N =
[min(statsf + 1, FLPR) if random <= probj

I 0 otherwise

O u r fuzzer uses this method by default because in our experience it guarantees that
it w i l l generate enough new workloads and w i l l filter out unsuccessful rules without
total ly discarding them. In case that target program is prone to workload change and
the user wants better interleaving of testing phases, it is recommended to use the th i rd
method because the m a x i m u m number of a l l created mutations i n one i teration is
l imited by the number of selected mutat ion rules.

5.6.3 G a t h e r i n g Interest ing M u t a t i o n s

We usually r u n fuzzing for a longer period of t ime t ry ing to trigger as many changes or
faults as possible. To maximise the number of found changes we t ry to avoid running
the target appl icat ion w i t h workloads w i t h a poor chance to succeed.

In the s i tuation, when the workload does not exceed the coverage threshold, it is not
significant, because the estimated instruct ion path length is not satisfactory, hence we
discard this workload. The threshold for discarding mutations is mult iple of base coverage,
set to 1.5 by default, but it can also be specified by the user. A mutat ion is classified as
an interesting workload i n case two criteria are met:

COVmut > COVthreshold & COVmut > COVparent

i.e. it has to exceed the given threshold and achieve a higher number of executed lines than
its predecessor.

In addi t ion , we feel that the user may not know the ideal threshold and the default value
may be too high or too low. Therefore, the constant which multiplies the base coverage
(and thus determines the threshold) changes dynamica l ly dur ing fuzzing. In case it is
problematic to reach the specified coverage threshold, the value of the constant decreases
and thus gives more chance for further mutations to succeed. V i c e versa, if the mutations
have no problem to exceed the threshold, the value of the constant is probably too low, and
hence we increase it .

D u r i n g the testing, fuzzed workload can cause that target program terminates w i t h
an error (e.g. S I G S E G V , S I G B U S , S I G I L L , . . .) or it hangs (runs too long). E v e n though
we are not pr imar i ly focused on faults, they can be interesting for us as well because
an incorrect internal program state can contain some degradation and i n case of error,
handlers can also contain degradation.

T h e F i n a l Phase of Iteration

After the mutat ion, a l l the interested workloads are collected and ready for real testing to
detect performance changes. Testing is done s imilar ly to the in i t i a l profile-guided testing
(Section 5.4.2), but instead we test w i t h fuzzed interesting workloads. If the P E R U N detect
some performance degradation, the part icular mutation's rate is recalculated, fuzzer update
its statistics of mutat ion rules, and one i teration is at the end.

38

f u z z i n g

F^
user

workloads
• • •

F^

r

F^
parent

workloads
• • •

F^

performance testing

Figure 5.3: Li fet ime of workloads, for better understanding. User workloads become
parents, we are applying a set of rules on them in order to create their mutations, and
the ones w i t h good coverage jo in the parent set. These workloads may also jo in the final
results set, if they incur a performance degradation.

5.7 Interpretat ion of F u z z i n g Results
D u r i n g the fuzzing, every file executed w i t h the target program, where the collected runtime
data showed a performance drop, joins the set of final results. A tester can then analyse
these workloads manually. In addi t ion , fuzzer also produces files by which program termi
nated w i t h an error, or ran too long and these files are stored i n specific folders. Other
mutations that have been created while running fuzz testing are removed. A n example of
the structure and content of an output directory is shown in L i s t i n g 12.

In order to interpret the results of fuzzing we propose two visualisation techniques:
t ime series and workload difference. The t ime series graphs show the number of found
mutations causing degradation and the m a x i m u m recorded number of lines executed per one
run. F r o m these graphs, one can e.g. read the t ime needed to achieve sufficient results and
estimate orientation t ime for future testing. In both graphs are denoted three statist ically
significant values: first quarti le, second quartile (median) and t h i r d quarti le from the y-axis
values. The intention is to i l lustrate at what point i n t ime we have achieved the i n d i v i d u a l
port ion of the result.

For p lot t ing t ime series graphs we used m a t p l o t l i b 1 l ibrary and di f f l ib 2 module helps to
calculate deltas between files. Examples of results interpretation are shown i n Figures 5.4
and 5.5.

1 matplot l ib — https: / /matplot l ib .org/
2 diff l ib — li t tps: / /docs.pytl ion.org/3/ l ibrary/diff l ib . l i tml

39

https://matplotlib.org/

Fuzzing in time

60

0

- J
7 2 j ^ r

47
/ \

--

23 1 S

|

i , 1 1 - i 1 1 1 1 1 1 r -

0 10 20 30 40 50 60
time (s)

Figure 5.4: E x a m p l e t ime series graph, that demonstrates the growth of the detected
degradations dur ing the fuzz testing. We can see when the first degradation was detected,
when a quarter of the tota l number of degradations was reached (first quarti le, t ime: 22 s),
when approximately half of the total degradations (second quartile, t ime: 35 s) and three
quarters of the tota l degradations (third quarti le, t ime: 50 s). In the end, the curve stabilised
slightly because we found such mutations w i t h which the r u n of the program took longer.

Max path during fuzing
30-

25 •

20 •

• 30-

25 •

20 •

1
2 6 ' , | 30-

25 •

20 •

30-

25 •

20 • 19

• j

15 •

10-

5 -

0-

15 •

10-

5 -

0-

15 •

10-

5 -

0-

6

15 •

10-

5 -

0-

6 1

15 •

10-

5 -

0-
100 200 300

time (s)
400 500 600

Figure 5.5: E x a m p l e t ime series graph, that shows the growth of a m a x i m u m number of
executed L O C dur ing fuzzing. In first seconds of fuzzing we found a mutat ion that force
target program to execute 16 times more L O C in comparison w i t h the in i t i a l seed, and
the ratio gradually increases to 29. Three quartiles denote t ime when 25%, 50% and 75%
of the ratios are less than quartile value. User can find raw data of graphs w i t h the exact
values i n logs directory.

40

Besides visualisat ion, we create diff file for every output file. It shows the differences
between files and the original seed, from which the file was created by mutat ion . The file
is in H T M L format, and the differences are color-coded for better orientation. E x a m p l e of
diff file is shown i n L i s t i n g 11.

+++

@@ -1 +1 @@
-spselpoOgmail.com
+spsepogma.cospsepogma.com

Listing 11: Di f f file (in uniffied format) shows the differences between the mutated work
load and a seed file. Green lines are fuzzed lines that replaced the original content, which
is i n red color.

output/
I— d i f f s

I medium_words-02000b239d024dbe933684b6c740512e-•di f f html
I medium_words-389d4162ad6641dl87dc405000b8d50a-•di f f html
I medium_words-39b5d7aa55fd404aa4d31422c6513e2c-•di f f html

I f a u l t s
I medium_words-389d4162ad6641dl87dc405000b8d50a. t x t

I graphs
I coverage_ts.pdf
I degradations_ts.pdf

I hangs
I medium_words-39b5d7aa55fd404aa4d31422c6513e2c. t x t

1 logs
I coverage_plot_data.txt
I degradation_plot_data.txt
I r e s u l t s _ d a t a . t x t

I medium_words-02000b239d024dbe933684b6c740512e.txt

Listing 12: A n example structure of output directory, which is hierarchically d iv ided into
five subdirectories: d i f f s contains diff files of the workloads, f a u l t s includes workloads
that led to a fault or crash of the target appl icat ion, graphs contains t ime series graphs
in P D F format, hangs contains workloads which forced the program to reach the t imeout,
and logs where are stored raw data used for p lot t ing the graphs and results of fuzzing in
plain-text format. O n the same level are the workloads denoted as final results, i.e. causing
performance degradation.

41

5.8 Fuzzer Interface
Fuzz unit offers a command line interface (CLI) for interaction w i t h user. To start the fuzzing,
one uses command perun fuzz w i t h the specification of the tested command, along w i t h
arguments, in i t i a l workloads, selected collector and possibly postprocessors (with their ad
di t ional parameters), s imilar to L i s t i n g 3. Moreover, the user can customise the fuzzing
process by using addi t ional options, e.g. w i t h a goal to:

• determine the t ime l imit for fuzz testing,

• set the m a x i m u m size of generated mutat ion,

• define the paths to source and . gcno files (inevitable for coverage testing),

• set the values of the l imitat ions for coverage-guided testing (line 11 in L i s t i n g 6),

• determine the i n i t i a l value of coverage increase ratio,

• define the m a x i m u m time for execution w i t h one workload (timeout for hangs),

• determine the strategy for choosing the number of generated mutations for the rules,

• filter the in i t i a l set of workloads by regular expression,

• define custom rules by attaching the Y A M L file w i t h their specifications.

The user also has to specify the path to the directory where the results of fuzzing w i l l be
stored i n a hierarchic structure as i l lustrated i n L i s t i n g 12. R u n n i n g perun fuzz — h e l p
w i l l list a l l available options that user can specify i n order to customise the fuzzing. Af ter
fuzzing, summary information about the testing w i l l appear on the standard output as
demonstrates A p p e n d i x A .

Proper ly tested code w i t h sufficient coverage is also one of the conditions for incorporat ing
into the P E R U N tool . The test coverage of fuzz unit is l isted i n L i s t i n g 13.

5.9 Test ing the Fuzz U n i t

Name Cover

perun/fuzz/ i n i t .py
perun/fuzz/coverage.py
perun/fuzz/factory.py
perun/fuzz/filesystem.py
perun/fuzz/filetype.py
perun/fuzz/interpret.py
perun/fuzz/methods/binary.py
perun/fuzz/methods/textfile.py
perun/fuzz/methods/xml.py
perun/fuzz/perun_based.py

1007.
937.
90%

1007.
1007.
1007.
1007.
1007.
1007.

967.

List ing 13: Results of unit testing w i t h coverage of i n d i v i d u a l modules.

42

Chapter 6

Experimental Evaluation
We tested our performance fuzzer on several case studies to measure its efficiency of gen
erating exhausting mutations. Th is chapter explores several performance issues i n data
structures such as hash table or unbalanced binary tree, and a group of regular expressions
that have been confirmed as harmful . A l l the tests ran on a reference machine Lenovo G580
using 4 cores processor Intel Core i3-3110M w i t h m a x i m u m frequency 2 .40GHz, 4 G i B mem
ory, and U b u n t u 18.04.2 L T S operating system.

6.1 Sor t ing Vulnerabi l i t ies

Unbalanced B i n a r y Tree (U B T) . T i m e consumption of inserting to an unbalanced
binary tree highly depends on the order of insertion. E v e n though it is expected to consume
0(n.log(n)) t ime when inserting n elements, if the elements are sorted beforehand, the tree
w i l l degenerate to a l inked list , and so it w i l l take 0 (n 2) t ime to insert a l l n elements.

F i rs t , we constructed files w i t h randomly generated 1 000 integers in the range of <0,
1000> and 10 000 integers in the range of <0, 10 000>, and we used them as i n i t i a l seeds
(seedi, seecfo) to a program that creates an U B T , iteratively inserts elements, and at the end
prints the created U B T . We expected that the program performance w i l l highly depend on
the amount of workload data, so w i t h the a i m to avoid large files we l imi ted the m a x i m u m
size of mutations.

Table 6.1: The worst-case mutations as workloads for program that manipulates w i t h
an U B T . A l t h o u g h our first testing found some workloads reporting degradation, the change
was not that impressive. W i t h i n the second testing, even a workload about half the size
of the i n i t i a l seed could force the program to create over 125 times deeper b inary tree.
The worst-case mutat ion that is as big as original seed, but w i t h sorted elements, pro
long the program r u n more than 100 times (two orders of magnitude degradation). Note
that though the worst-case height of U B T when inserting 10 000 elements should be 9 999,
the numbers of the in i t i a l seed were randomly chosen al lowing repeat.

size [B] runtime [s] executed L O C ratio tree height
seed\ 3 879 0.011 1.00 21

worst-casen 1939 0.033 5.94 309
worst-case\2 3 879 0.110 24.46 625

seed2 48 913 0.109 1.00 26

worst-case2i 24456 2.927 49.34 3 253

worst-case22 48 912 11.014 187.36 6 346

43

Analys is of worst-case mutations confirmed that unbalanced binary tree degenerates to
a l inked list when a sorted list is inserted. Table 6.1 presents the results of the program r u n
w i t h the worst-case workloads from each testing. The rules applied on the most exhausting
workloads are listed in Table 6.2.

Table 6.2: Table shows the sequence of mutat ion rules that transformed the seeds into
worst-case workloads. E a c h rule is identified by a label , as defined in Section 4.4. One can
see that rules for sorting were more frequently used and thus more successful in mutat ion.

used mutation rules

worst-casen [T.7, T .6 , T .3 , T .6 , T .2 , T.6]
worst-case\2 [T.7, T .6 , T . l , T .7 , T.4]
worst-case2i [T.6]
worst-case22 [T.7]

std::list + std:find. In our second experiment, we tested the standard l ibrary list
(std: :11st 1) which is usually implemented as a doubly- l inked list, and we performed
a search w i t h s td : : f i n d 2 funct ion. The tested program reads strings from a file, saves
them to list and subsequently performs a search for each of them. F i rs t i n i t i a l seed con
tained 5 000 random english words (seedi), and i n the second set of tests the i n i t i a l seed
contained 10 000 random english words (seea^)- For each seed the program r u n for 266 m i l
liseconds, and 524 milliseconds respectively in average to fill the list and then find every
word. In first experiments, we set the m a x i m u m size of generated workload to the value of
in i t i a l seed and i n the second one to double of the value. A f t e r testing we collect the worst-
case workloads and their impact on program is shown i n Table 6.3. The rules that led to
transformation of the seeds into the worst-case workloads are listed i n Table 6.4.

Table 6.3: T h e most greedy generated workloads compared to i n i t i a l workload. Processing
the worst-case workload, which was the same size as the seed, took program slightly more
t ime to process, roughly in similar proport ion as executed L O C ratio. B y inspection of
these workloads we noticed, that the parts of them are sorted. A s one can see, the greater
performance change was discovered when the seed containing around 10 000 words, which
was expected. Note that worst-case file is two times bigger, contains two times more words,
but incur one order of magnitude degradation. In comparison, the execution w i t h a file
contained the same words as worst-case22, but randomly shuffled, took only 2.102 seconds
in average.

size [B] runtime [s] executed L O C ratio words
seed\ 37459 0.266 1.00 5 000

worst-caseu 37458 0.485 1.88 5 003
worst-case\2 74 918 1.860 7.53 10 011

seed2 74 915 0.524 1.00 10 000

worst-case2i 74 897 1.876 3.78 10 041

worst-case22 149 830 7.278 15.05 20 024

1 std::l ist — https://en.cppreference.com/w/cpp/container/list
2 std: : f ind — https://en.cppreference.eom/w/cpp/algorithm/find

44

https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.eom/w/cpp/algorithm/find

Table 6.4: Table lists history of applied rules for worst-case mutations. Notice , that rules
providing sort of the elements (T.6 and T.7) appear in the history of every mutat ion.

used mutation rules
worst-casen [T.3, T .7 , T .6 , T .2 , T .6 , T.6]
worst-case\2 [T.2, T .7 , T . l , T .8 , T . l , T .6 , T . l]
worst-case2i [T.7, T .3 , T .3 , T .3 , T .3 , T .3 , T .3 , T .3 , T.3]
worst-case22 [T.7, T . l , T.6]

6.2 Regular Express ion D e n i a l of Service (R e D o S) .

In this case study, we tested art i f ic ial programs which use s td : : regex_search 3 w i t h regular
expressions inspired by existing R e D o S attacks. R e D o S is an attack based on algorithmic
complexity where regular expression are forced to take long t ime to evaluate, mostly because
of backtracking a lgori thm, and leads to the denial of service.

StackOverfiow t r i m regex. The first experiment is the regular expression that caused
an outage of StackOverfiow i n July, 2016 [2]. A n art i f ic ial program reads every line and
search for match w i t h the regular expression. We used simple source code i n C perform
ing paral lel grep as an in i t i a l seed, wr i t ten i n 150 lines. W i t h only two tests, we could
force the vulnerabil i ty, as we show i n Table 6.5. W h i c h rule is responsible for revealing
the weakness can be found in Table 6.6.

Table 6.5: The results from two testings w i t h size l i m i t a t i o n set to 5 000 and 10 000 bytes.
Analys is of worst-case mutations showed that long sequences of whitespaces not ending w i t h
the end of line caused the regex engine to backtrack repeatedly. A s one can see, the worst-
casei mutat ion achieved over 16 times longer runtime (one order of magnitude) w i t h only
5 lines of code where whitespaces take 97% of a space. Since we used dynamical ly collected
statistics, fuzzing gave the advantage to whitespace mutat ion rules, because of their success
and therefore they were applied more often. It is more visible i n the worst-case2, where
fuzzer could s imply enlarge the file by increasing the number of lines, but instead focused
on white characters.

size [B] runtime [s] executed L O C ratio lines whitespaces
seed 3 535 0.096 1.00 150 306

worst-casei 5 000 1.566 24.32 5 4881
worst-case2 10 000 2.611 41.38 17 9603

3std::regex_search — https://en.cppreference.eom/w/cpp/regex/regex_search

45

https://en.cppreference.eom/w/cpp/regex/regex_search

Table 6.6: M u l t i p l e uses of rule that inserts whitespaces to random posit ion result into
big gaps not ending w i t h end of line: the weakness of tested regular expression.

used mutation rules
worst-casei [T.10, T.10, T.10, T.10]
worst-case2 [T.10, T.10, T.10, T.10, T.10]

E m a i l validation regex. Th is regular expression is part of the Regular Expression L i b
rary' 1 and is marked as malicious and triggering R e D o S . We constructed a program that
takes an emai l address from a file and tries to find a match w i t h this regular expression. A s
an i n i t i a l seed we used a file containing val id emai l address 'spselpo@gmail.com'. We ran
two tests, i n the first case w i t h an email that must contain the same count of characters
as the seed, and i n the second case it can contain twice the size. We present the results in
Table 6.7 and rules that were used on these mutations are listed in Table 6.8.

Table 6.7: Worst-case mutations for email val idat ion regex. The longer lines not containing
'<§>' sign cause catastrophic backtracking and were terminated (i.e. the r u n w i t h them take
too much t ime). E v e n that the size l imi t for the second test was set to double of the seed
(i.e. 36 bytes), the best result was 25 bytes long malformed workload. The reason is that
bigger workloads were: (1) not that properly constructed, or (2) too greedy so program
reached the set t imeout. Because of that, the fuzzer also reported another 8 mutations
classified as hangs, and w i t h one of them (worst-case2hang) the program terminated after
more than 5 hours of running.

size [B] runtime [s] executed L O C ratio
seed 18 0.016 1.00

worst-casei 18 0.176 70.83
worst-case2 25 10.098 4470.72

worst-case2hang 36 >5 hours oc

Table 6.8: Two rules, namely removing random character and extending a size of line,
were mostly encouraged i n the generation of the presented workloads.

used mutation rules
worst-casei [T.15, T .8 , T.15, T . l]
worst-case2 [T.15, T.15, T . l]

worst-case2hang [T.15, T.15, T . l]

In the following we list the most greedy workloads from each testing and their content:

• worst-casei: spselpogailcspselp

• worst-case2'- spselpoailcospselpoailco

• worst-case2hang- spselpoailcospselpoailcospselpoailco

4 ht tp : / / regexlib.com/REDetails.aspx?regexp_id=1757

46

mailto:'spselpo@gmail.com'
http://regexlib.com/REDetails

Java Classname validation regex. Th is vulnerable regular expression for val idat ion of
Java class names appeared in O W A S P Val ida t ion Regex Repository"' . The testing program
was similar to the previous one: reads a class name from a file and tries to find a match
w i t h this regular expression. In i t ia l file had one line w i t h str ing 'myAwesomeClassName' .
To avoid the large lines, first we set a size l imi t for mutations to the size of the i n i t i a l seed
(19 bytes), then to double and finally to quadruple of the size. We present the results of
these three tests i n Table 6.9. In addi t ion , Table 6.10 shows the order of rules used to
mutate the in i t i a l seeds.

Table 6.9: We detected two orders of magnitude degradation w i t h i n r u n of program
w i t h the worst-case from the last test case (worst-cases). The fuzzer generates and stores
another 26 files that was classified as hangs. B y addi t ional testing we found the worst-
case^hang workload which had enormous impact on program performance, and program d i d
not terminate even after 13 hours lasting run .

size [B] runtime [s] executed L O C ratio
seed 19 0.005 1.00

worst-casei 19 0.016 14.31
worst-case2 36 1.587 2 383.99
worst-case^ 78 3.344 5 056.67
worst-case3hang 78 oo oc

Table 6.10: Table lists the rules in order they was applied on the i n i t i a l seeds and cre
ated malicious workloads. Removing characters together w i t h data dupl icat ing, appending
whitespaces and other rules collaborated on generation of the worst-case mutations for this
case study.

worst-casei [T.8, T.15, T .8 , T.15, T.15, T . l , T.12, T .8 , T . l]
worst-case2 [T.8, T.15, T.15, T .2 , T .8 , T.15]
worst-case^ [T.8, T.15, T . l , T .4 , T.2]
worst-case3hang [T.8, T .15 , T . l , T .15 , T.2]

We again list the content of generated mutations:

• worst-casei: mywesomelassamemywm

• worst-case2'- mywesomelassamemywesomelassam u u u u u u u

• worst-case^'- ssammyAwesomelassammyAweiomelassaVmyAwesxmelassammmyAwesome
1as s ammyAwe ome1

• worst-case^hang'- l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a
a l a a l a a l a a l a a l a a l a a l

We also tested other regular expressions, which can be forced to an unlucky backtrack
ing, e.g., expressions to validate a H T M L file, search for a specific expression in C S V files
or val idat ion of a person name from O W A S P V a l i d a t i o n Regex Repository. Some of them
are part of the evaluation in an article presented at E x c e l @ F I T T 9 conference [11].

5 https : / /www.owasp.org/ index .php/OWASP_Val idat ion_Regex_Reposi tory

47

https://www.owasp.org/index.php/OWASP_Validation_Regex_Repository

6.3 H a s h Col l is ions

Final ly , we tr ied our fuzzer on a simple word frequency counting program, which uses
hash table w i t h a fixed number of buckets (12 289 exactly) and the m a x i m u m length of
the word l imi ted to 127. The dis t r ibut ion of the words in the table is ensured by the hash
function. It computes a hash, which is then used as an index to the table. Java 1.1 str ing
l ibrary used a hash function that only examined 8-9 evenly spaced characters, which can
result into collisions for long strings [19]. We have implemented this behaviour into an
art i f ic ial program. The likely intention of the developers was to save the function from
going through the whole str ing if it is longer. Therefore, for fuzzing, we in i t ia l ly generated
a seed w i t h 10 000 words of 20 characters and started fuzzing. To compare the results we
chose the D J B hash f u n c t i o n 6 , as one of the most efficient hash functions. Tables 6.11
and 6.12 show the result of this last experiment.

Table 6.11: A f t e r only 10 minutes of fuzzing each test case was able to find interesting
mutations. We then compared the r u n by replacing the hash function i n early Java version
w i t h D J B hash function, which computes hash f rom every character of a str ing. Table
shows, that worst-case workloads have much more impact on performance of the hash table
and less stable times using Java hash function, compared to D J B . W i t h such a simple fuzz
testing developers could avoid similar implementat ion bugs.

Java 1.1 hash function D J B hash function
size [kB] runtime [ms] L O C ratio runtime [ms] L O C ratio

seed 210 26 1.0 13 1.0

worst-casei 458 115 3.48 27 2.19
worst-case2 979 187 7.88 43 4.12

Table 6.12: Table shows the sequence of mutat ion rules that transformed the seed into
worst-case workloads. In this experiment the rules that duplicates data (T.2) , increases
number of lines (T.3) , changes and removes random characters (T.4 and T.15) were the most
frequent.

used mutation rules
worst-casei [T.2, T .3 , T.15, T.15, T . l l , T.15]
worst-case2 [T.2, T . 3 , T .4 , T.15, T .9 , T .4 , T .2 , T . 3 , T .15, T.15]

We also tr ied our solution on projects that worked w i t h b inary and X M L files. Since they
d i d not incur any changes i n performance, they are not part of the experimental evaluation.
Therefore, improving the existing binary and domain-specific rules together w i t h designing
new ones is one of our future goals.

http: / / www.partow.net / programming/hashfunctions / # D JBHashFunction

18

http://www.partow.net

Chapter 7

Conclusion

In this thesis, we introduced a fuzzing machine generating malicious inputs focusing on
performance weaknesses. We use specific methods to mutate the files, dynamica l ly analyse
their efficiency, collect coverage information and use the P E R U N tool to measure informa
t ion of program r u n . Moreover, after fuzzing we provide information about testing in raw
and graphical form, and store the worst-case inputs along w i t h their deltas against the orig
ina l file. O u r solution revealed weaknesses in art i f ic ial projects working w i t h various data
structures and harmful regular expressions, and their performance extremely degraded w i t h
processing mutated inputs.

In desing of mutat ion rules we s t i l l main ly focus on text files, hence our future work
w i l l focus main ly on proposing more performance tuned rules for, e.g., b inary files or other
domain-specific types of files. Moreover, we want to add support for fuzzing w i t h mult iple
file types, and also improve parent rat ing and selection by deeper analysis of program run.
A t last, we p lan to evaluate our solution on real-world projects and potential ly report new
unique performance bugs.

49

Bibliography

[1] gcov—a Test Coverage P r o g r a m . [Online; visi ted 4.5.2019].
Retrieved from: https://gcc .gnu.org/onlinedocs/gcc/Gcov.html

[2] Outage Pos tmortem - J u l y 20, 2016. [Online; visi ted 4.5.2019].
Retrieved from: https:
//stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

[3] W h e n does the worst case of Quicksort occur? [Online; visi ted 4.5.2019].
Retrieved from: https:
//www. geeksforgeeks.org/when-does-the-worst-case-of-quicksort-occur/

[4] Funct ional Testing Vs Performance Testing: Should It Be Done Simultaneously?
A p r i l 2019. [Online; visi ted 4.5.2019].
Retrieved from: https: //www.softwaretestinghelp.com/functional-testing-
and-performance-testing/

[5] Clarke , T . : Fuzz ing for software vulnerabi l i ty discovery. Technical Report
R H U L - M A - 2 0 0 9 - 0 4 . Department of Mathematics , R o y a l Holloway, Univers i ty of
L o n d o n . E g h a m , Surrey T W 2 0 O E X , E n g l a n d . February 2009.
Retrieved from:
https://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-04.pdf

[6] E d h o l m , E . ; Goransson, D . : Escaping the Fuzz - Evaluating Fuzzing Techniques and
Fooling them with Anti-Fuzzing. Master 's Thesis. Department of Computer Science
and Engineering, Chalmers Univers i ty of Technology. 2016.
Retrieved from:
http: / /publications.lib.chalmers.se/records/fulltext/238600/238600.pdf

[7] E v r o n , C : Fuzzing i n the Corporate W o r l d . December 2006. presentation, 23rd
Chaos C o m m u n i c a t i o n Congress.
Retrieved from: https: //fahrplan.events.ccc.de/congress/2006/Fahrplan/
attachments/1248-FuzzingtheCorporateWorld.pdf

[8] F iedor , T . : Perun : Performance Version System. [Online; visi ted 4.5.2019].
Retrieved from: https : / / g i t h u b.com/tfiedor/perun

[9] Grzybowska , M . : Graphical User Interface for Performance Control System.
Bachelor's thesis. B r n o Univers i ty of Technology, Facul ty of Information Technology.
2018.
Retrieved from: http: //www.f it.vutbr.cz/study/DP/BP.php?id=19093

50

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://geeksforgeeks.org/when-does-the-worst-case-of-quicksort-occur/
http://www.softwaretestinghelp.com/functional-testing-
https://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-04.pdf
http://chalmers.se/records/fulltext/238600/238600.pdf
http://fahrplan.events.ccc.de/
https://github.com/tfiedor/perun
http://www.f

[10] Lemieux, C ; Padhye, R. ; Sen, K . ; et a l . : PerfFuzz: A u t o m a t i c a l l y Generat ing
Pathological Inputs. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. I S S T A 2018. N e w Y o r k , N Y , U S A :
A C M . 2018. I S B N 978-1-4503-5699-2. pp. 254-265. doi:10.1145/3213846.3213874.
Retrieved from: http://doi.acm.org/10.1145/3213846.3213874

[11] Liscinsky, M . : Fuzz testing of program performance. In Excel@FIT'19. B r n o , Czech
Republ ic . 2019.

[12] M a c h i r a j u , S.; Gaurav , S.: Hardening Azure Applications: Techniques and Principles
for Building Large-Scale, Mission-Critical Applications. Apress. 2018. I S B N
9781484241882.

[13] M c N a l l y , R . ; Y i u , K . ; Grove, D . ; et a l . : Fuzz ing : The State of the A r t . Technical
Report D S T O - T N-1043. Defence Science and Technology Organisat ion. E d i n b u r g h ,
South A u s t r a l i a 5111, A u s t r a l i a . 2012.
Retrieved from: http: //www.dtic.mil/dtic/tr/fulltext/u2/a558209.pdf

[14] M i l l e r , B . P. ; Fredriksen, L . ; So, B . : A n E m p i r i c a l S tudy of the Re l iab i l i ty of U N I X
Ut i l i t ies . Commun. ACM. vo l . 33, no. 12. December 1990: pp. 32-44. I S S N
0001-0782. doi:10.1145/96267.96279.
Retrieved from: http://doi.acm.org/10.1145/96267.96279

[15] Molyneaux , I.: The Art of Application Performance Testing, 2nd Edition. O ' R e i l l y
M e d i a , Inc.. 2014. I S B N 9781491900536.

[16] Myers , G . J . ; Sandler, C : The Art of Software Testing, Second Edition. John W i l e y
& Sons, Inc.. second edit ion. 2004. I S B N 0471469122.

[17] Nadgi r , P . : Performance Testing : A n Overview.
Retrieved from:
http: / /hisolve.com/images/Perf ormance_Testing_White_Paper.pdf

[18] Pavela , J . ; Stupinsky, S.: Towards the detection of performance degradation. In
Excel@FIT'18. B r n o , Czech Republ ic . 2018.

[19] Sedgewick, R . W . K . : Hashing. 2006. presentation, Computer Science Department at
Pr inceton University.
Retrieved from: https:
/ / www.cs.princeton.edu/courses/archive/f all06/cos226/lectures/hash.pdf

[20] Serebryany, P . , K . ; Col l ingbourne: Beyond Sanitizers: G u i d e d fuzzing and security
hardening. October 2015. presentation, L L V M Developer's Meet ing.
Retrieved from: https://llvm.org/devmtg/2015-10/slides/
SerebryanyCollingbourne-BeyondSanitizers.pdf

[21] Stupinsky, S.: Automatic Detection of Performance Degradation. Project practise.
B r n o Universi ty of Technology, Facul ty of Information Technology. 2018.

[22] Sut ton, M . ; Greene, A . ; A m i n i , P . : Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional. 2007. I S B N 0321446119.

51

http://doi.acm.org/10.1145/3213846.3213874
http://www.dtic.mil/dtic/tr/fulltext/u2/a558209.pdf
http://doi.acm.org/10.1145/96267.96279
http://www.cs.princeton.edu/
https://llvm.org/devmtg/2015-10/slides/

[23] Takanen, A . ; D e M o t t , J . ; M i l l e r , C : Fuzzing for Software Security Testing and
Quality Assurance. N o r w o o d , M A , U S A : A r t e c h House, Inc.. first edit ion. 2008. I S B N
1596932147, 9781596932142.

[24] West, B . ; Wengelin, M . : Effectiveness of fuzz testing high-security applications. P h D .
Thesis. K T H , School of Computer Science and C o m m u n i c a t i o n (C S C) . 2017.
Retrieved from:
http://www.diva-portal.se/smash/get/diva2:1105827/FULLTEXTOl.pdf

[25] Zalewski , M . : A m e r i c a n Fuzzy L o p . [Online; visi ted 4.5.2019].
Retrieved from: http://lcamtuf.coredump.cx/afl/

[26] Zalewski , M . : B i n a r y fuzzing strategies: what works, what doesn't. August 2014.
[Online; visi ted 4.5.2019].
Retrieved from: https:
//lcamtuf .blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

52

http://www.diva-portal.se/smash/get/diva2
http://lcamtuf.coredump.cx/afl/
http://blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

Appendix A

Example Output of the Fuzzing

Fuzzing s u c c e s s f u l l y f i n i s h e d .
P l o t t i n g graphs ...
Computing deltas ...
Saving log f i l e s ...
Removing remaining mutations ...
================================ RESULTS ================================
Fuzzing time: 611.35s
Coverage t e s t i n g : True
Program executions f o r coverage t e s t i n g : 870
Program executions f o r performance t e s t i n g : 300
Total program t e s t s : 1170
Maximum coverage r a t i o : 3.4898473442156073
Founded degradation mutations: 299
Hangs: 0
Faults: 0
Worst-case mutation: /home/matus/long_words-e99eed7fe20ef2e4e717676a2.txt
============================= MUTATION RULES ============================
i d Caused deg cov i n c r Desription
0 92 times Change random characters at random places
1 66 times Insert whitespaces at random places
2 114 times Divide random l i n e
3 6 times Double the si z e of random l i n e
4 72 times Append WS at the end of the l i n e
5 0 times Remove WS of random l i n e
6 76 times M u l t i p l i c a t e WS of random l i n e
7 64 times Prepend WS to random l i n e
8 12 times Duplicate random l i n e
9 8 times Sort words of random l i n e
10 7 times Reversely sort words of random l i n e
11 0 times M u l t i p l i c a t e word of random l i n e
12 0 times Remove random l i n e
13 0 times Remove random word of l i n e
14 82 times Remove random character of l i n e

53

Appendix B

Storage M e d i u m

/perun/* — source code of P E R U N containing fuzz unit

/README.txt—useful information about the storage m e d i u m content

/ t e x t / * — source code of this thesis

/ x l i s c i 0 2 .pdf — final version of this thesis

/experiments/* — source code of experimental projects

54

