
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

FUZZ TESTING OF PROGRAM PERFORMANCE 
FUZZ TESTOVÁNÍ VÝKONU PROGRAMU 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR MATÚŠ LIŠČINSKÝ 
AUTOR PRÁCE 

SUPERVISOR Doc. Mgr. ADAM ROGALEWICZ, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2019 



Vysoké učení technické v Brně 
Fakulta informačních technologií 

Ústav inteligentních systémů (UITS) Akademický rok 2018/2019 

Zadání bakalářské práce lllllllllllllllllllllllll 
19090 

Student: Liščinský Matúš 
Program: Informační technologie 
Název: Fuzz testování výkonu programu 

Fuzz Testing of Program Performance 
Kategorie: Algoritmy a datové struktury 
Zadání: 

1. Seznamte se s projektem Perun (správcem výkonnostních profilů) a s metodami profilováním programů. 
2. Prostudujte techniku fuzz testování se zaměřením na testování výkonu či odhalování výkonnostních chyb. 

Seznamte se s existujícími fuzz testery (AFL, PerfFuzz, atd.). 
3. Navrhněte a implementujte modul pro fuzz testování se zaměřením na testování výkonu aplikací v rámci 

projektu Perun. 
4. Navrhněte a implementujte modul pro interpretaci výsledků výkonnostních testování získané fuzz 

testováním. 
5. Demonstrujte řešení na alespoň 3 případových studiích. 

Literatura: 
• Caroline Lemieux, Rohan Padhye, Koushik Sen, Dawn Song.: PerfFuzz: Automatically Generating 

Pathological Inputs 
• Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, Renwei Zhang.: Fuzz testing in practice: Obstacles 

and solutions 
• Oficiální stránky projektu AFL: http://lcamtuf.coredump.cx/afl/ 
• Oficiální projektu Perun: https://github.com/tfiedor/perun  

Pro udělení zápočtu za první semestr je požadováno: 
• Body 1 a 2 

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/ 
Vedoucí práce: Rogalewicz Adam, doc. Mgr., Ph.D. 
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing. 
Datum zadání: 1. listopadu 2018 
Datum odevzdání: 15. května 2019 
Datum schválení: 1. listopadu 2018 

Zadání bakalářské práce/19090/2018/xlisci02 Strana 1 z 1 

http://lcamtuf.coredump.cx/afl/
https://github.com/tfiedor/perun
http://www.fit.vutbr.cz/info/szz/


Abstract 
F i x i n g one issue sometimes brings another ten to the program. To detect these issues, 
especially performance issues, we often have to supply the program w i t h input , that forces 
its worst-case behaviour. A popular solution to automatic inputs generation is so called 
fuzzing, however, its intention is to f ind functional bugs. In this work, we a i m to construct 
an automatic generator of inputs whose task w i l l be to trigger performance fluctuations. 
So we propose to tune fuzzing mutat ion rules and ways of processing the information about 
program run , to part icular ly trigger the performance bugs. We integrate our solution into 
a performance profile manager Perun , which stores information about every r u n as a profile 
and is able to compare these profiles to check for performance change. Therefore we can 
prove that executing w i t h certain input takes more t ime or memory. We tested our fuzzer 
on several art i f ic ial projects, which shows its potential w i t h generated inputs that prolong 
the runtime of the program. Such a solution would allow developers to regularly test every 
version of a project for performance bugs and avoid them completely by automatical ly 
f inding new exhausting inputs before release. 

Abstrakt 
Oprava jednej chyby niekedy prináša do programu ďalších desať. N a odhalenie týchto chýb, 
na jmä výkonnostných, často musíme programu poskytnúť vstup, ktorý vynúti jeho sprá
vanie pre najhorší prípad. Populárnym riešením pre automatické generovanie vstupov je tzv . 
fuzzing, avšak jeho cieľom je nájsť funkčné chyby programu. V tejto práci sa preto snažíme 
vytvoriť automatický generátor vstupov, ktorého úlohou bude vyvolať výkonnostné výkyvy. 
N a v r h l i sme preto vyladené fuzzing pravidlá pre mutáciu a spôsob spracovania informácií o 
behu programu so zámerom zachytiť výkonnostnú degradáciu. Naše riešenie je integrované 
do nástroja Perun , správcu výkonnostných profilov, ktorý uchováva informácie o každom 
behu vo forme profi lu a je schopný porovnať tieto profily s cieľom detekovať zmenu vo 
výkone. Takýmto spôsobom môžeme dokázať, že beh programu s určitým vs tupom zaberie 
viac času alebo pamäte. Náš fuzzer sme testovali na niekoľkých umelo vytvorených projek
toch, kde ukazuje svoj potenciál generovanými vs tupmi , ktoré markantne predlžujú dobu 
behu programu. Prínosom takéhoto riešenia je možnosť pre vývojárov pravidelne otesto
vať každú verziu projektu na výskyt výkonnostných chýb a vyhýbať sa i m automatickým 
vyhľadávaním nečakaných vstupov. 
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Rozšírený abstrakt 
Prítomnosť chýb spôsobujúcich neočakávané správanie programov je nepochybné nepríjem
nou a neodvratnou súčasťou ich vývoja. N a riešenie tohto problému sa v priebehu rokov 
objavi l i rôzne typy nástrojov a metodík, ktorých hlavným cieľom bolo eliminovať (alebo 
aspoň znížiť) výskyt týchto chýb a poskytnúť podporu programátorom p r i vývoji kom
plexnejších a rozsiahlejších programov. 

Z hľadiska požiadavok na aspekty dnešného softvéru sa vývojáři čoraz viac zameriavajú 
na výkonnosť programov, na jmä v prípade kritických aplikácií, ako sú tie, ktoré sú nasadené 
v leteckom, vojenskom, zdravotníckom alebo finančnom sektore. Preto pred nasadením 
akéhokoľvek p r o d u k t u do reálneho sveta je prirodzené a nevyhnutné zabezpečiť, aby bol 
dostatočne stabilný a zvládol očakávanú záťaž. 

Výkonnostné chyby nie sú hlásené až tak často ako funkčné chyby a to z toho dôvodu, 
že zvyčajne nespôsobujú pády programov, preto je ich odhalenie náročnejšie. Navyše sa 
zvyknú prejavovať iba p r i velkých alebo špecifických vstupoch. Následná oprava však 
nebýva zložitá, a tak skutočnosť, že niekoľko riadkov kódu môže výrazne zlepšiť výkonnosť 
nás motivuje k tomu, aby sme venovali väčšiu pozornosť práve výkonnostným chybám už 
na začiatku procesu vývoja. Keďže sa počas vývoja často vydávajú nové verzie, pravidelné 
testovanie výkonnosti tých najnovších verzií by malo byť tým vhodným spôsobom pre včasné 
nájdenie problému s výkonom. 

Projekt P E R U N je open-source nástroj , ktorý slúži na automatizovanú analýzu výkon
nostných zmien na základe nazbieraného výkonnostného prof i lu . O k r e m toho spravuje tieto 
profily, kde kadžý profi l zodpovedá jednej verzii pro jektu. To pomáha používateľovi identi
fikovať konkrétne zmeny kódu, ktoré mohl i priniesť problémy s výkonom alebo kontrolovať 
rôzne verzie kódu v prípade zhoršenia výkonnosti z dlhodobého hľadiska. 

Neočakávané problémy s výkonom môžu viesť k vážnym z lyhaniam či k bezpečnostným 
problémom. Avšak manuálne testovanie výkonu nie je triviálny proces a očakáva od testerov 
povedomie o použitých štruktúrach a logike testovanej jednotky. N a rozdiel od toho au
tomatizované testovanie prináša efektívnejší spôsob vytvárania testovacích prípadov, ktoré 
môžu spôsobiť neočakávané výkyvy výkonu v cieľovom programe. N a tento účel je vhodné 
prispôsobiť pokročilejšie techniky generovania testovacích dát, ako je fuzzing. 

Fuzzing je testovacia technika používaná na nájdenie zraniteľností v aplikáciách ponúka
ním zdeformovaných vstupných údajov a následným monitorovaním správania aplikácie. 
Táto agresívna technika je impozantné účinná p r i hľadaní chýb a zažíva veľký úspech p r i 
objavovaní bezpečnostných chýb. T u vzniká myšlienka použiť fuzzing na hľadanie imple-
mentačných defektov ovplyvňujúcich výkon. 

V súčasnosti existuje mnoho projektov implementujúcich techniku fuzz testovania, ale 
nanešťastie žiadna z nich neumožňuje pridávať vlastné stratégie mutovania, ktoré by mo hl i 
byť viac prispôsobené na cieľový program a hlavne na odhaľovanie výkonnostých slabín. 

V tejto práci navrhujeme modifikáciu jednotky fuzz testovania, ktorá bude špecializo
vaná na generovanie vstupov chamtivých na výpočtové zdroje. Navrhujeme nové mutačné 
stratégie inšpirované príčinami výkonnostných chýb v reálnych projektoch a ich integrá
cia do Perunu predstavuje novú techniku fuzzingu. Veríme, že kombinácia výkonnostného 
testovania a fuzzingu by mohla zvýšiť podie l úspešne nájdených chýb počas procesu vývoja. 

Naše riešenie odhali lo slabiny vo viacerých vytvorených projektoch pracujúcich s rôznymi 
dátovými štruktúrami a škodlivými regulárnymi výrazmi, ktorých výkon markantne de
gradoval p r i spracovaní zmutovaných vstupov. Metodológia a výsledky tejto práce bol i 
prezentované aj na študentskej konferencii E X C E L @ F I T ' 1 9 kde bol i anotované ako ino-
vatívne so silným aplikačným potenciálom. 
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Chapter 1 

Introduction 

'Only conducting performance testing at the conclusion of system or func
tional testing is like conducting a diagnostic blood test on a patient who is already 
dead.' 

— Scott Barber 

The presence of errors causing unexpected behaviour of programs is undoubtedly an un
pleasant and unavoidable part of their development. To tackle this problem, various types 
of tools and methodologies have emerged over the years and their pr imary goal was to 
eliminate (or at least reduce) the occurrence of these defects and to provide support for 
programmers dur ing development of more complex and extensive programs. 

Nowadays, when ta lk ing about software aspects, developers are slowly shift ing their 
focus more on program performance, part icular ly i n the case of mission-cri t ical applications 
such as those deployed w i t h i n aerospace, mil i tary, medical or f inancial sectors. Natura l ly , 
before deploying anything to the real wor ld , it is essential to make sure that it is stable 
enough to handle the expected load. 

Performance bugs are not reported as often as functional bugs, because they usually do 
not cause crashes, hence detecting them is more difficult . Moreover, they tend to manifest 
w i t h big inputs only. B u t , performance patches are usually not that complex. So the fact 
that a few lines of code can significantly improve performance motivates us to pay more 
attention to catching performance bugs early in the development process. In development, 
new versions are frequently released, and regular performance testing of the latest releases 
can be a proper way of f inding performance issues early. 

Perun: Performance Under Control [8], is a lightweight open-source tool which includes 
automated performance degradation analysis based on collected performance profile. More
over, it manages performance profiles corresponding to different versions of projects, which 
helps a user i n identifying part icular code changes that could introduce performance prob
lems into the project's codebase or checking different code versions for subtle, long term 
performance degradation scenarios. 

Unexpected performance issues usually arise when programs are provided w i t h inputs 
(often called workloads) that exhibit worst-case behaviour. Th is can lead to serious project 
failures and even create security issues. The reason is, that precisely composed inputs 
send to a program may, e.g., lead to exhaustion of computing resources (Denial-of-Service 
attack) if the input is constructed to force the worst case. 
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Unfortunately, manual ly created test cases might not detect hidden performance bugs, 
because it does not have to cover a l l cases of inputs . So in order to avoid this, it is 
appropriate to adapt more advanced techniques such as the fuzzing. 

Fuzzing is a testing technique used to f ind vulnerabilit ies i n applications by sending 
garbled data as an input and then moni tor ing the applicat ion for crashes. E v e n just an ag
gressive random testing is impressively effective at f inding faults and has enjoyed great 
success at discovering security-crit ical bugs as well . Us ing fuzz testing, developers and 
testers can 'hack' their systems to detect potential security threats before attackers can. So 
why should not we use fuzzing to discover implementat ion faults affecting performance? 

Currently, there are many projects implementing fuzz testing technique, but unfortu
nately, none of them allows to add custom mutat ion strategies which could be more adapted 
for the target program and main ly for triggering performance bugs. 

In this work, we propose a modif icat ion of fuzz testing unit that w i l l be specialised for 
producing inputs greedy for resources. We propose new mutat ion strategies inspired by 
causes of performance bugs found i n real projects and integrating them w i t h i n the P E R U N 
as a new performance fuzzing technique. We believe that combining performance versioning 
and fuzzing could raise the ratio of successfully found performance bugs early in the process. 
The methodology and the results of this thesis were also presented in students conference 
E X C E L @ F I T ' 1 9 [11], and annotated as innovative w i t h strong applicable potential . 

Document structure. Chapter 2 contains a theoretical basis of fuzz testing principles, 
along w i t h overview of the existing fuzz testers that inspired this work. Subsequently, 
Chapter 3 describes performance testing i n collaboration w i t h continuous integration and 
the P E R U N tool , which implements this principle and for which needs this work has been 
developed. The Chapter 4 then provides an analysis of the problem this work deals w i t h , 
together w i t h a complete draft of our solution. The breakdown of the proposed a lgor i thm 
and the implementat ion details on which its parts are based includes Chapter 5. F ina l ly , 
the Chapter 6 summarises experimental testing together w i t h the achieved results and their 
analysis. 
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Chapter 2 

Fuzz testing 

Fuzzing (fuzz testing) is a form of fault injection stress testing, where a range of malformed 
inputs are fed to a software appl icat ion while moni tor ing for failures [5]. 

The earliest reference to fuzzing dates back to 1989 when professor B a r t o n M i l l e r and 
his class developed and used a pr imit ive fuzzer that tested the U N I X applications [22]. 
These roots of fuzzing are captured i n the article An Empirical Study of the Reliability of 
UNIX Utilities by M i l l e r , Fredriksen and So [14]. 

Fuzzing was discovered almost accidentally when one of the authors of the mentioned 
paper experienced electromagnetic interference when using a computer terminal during 
a heavy storm. This caused random characters to be inserted into the command line as 
the user typed, which caused a number of applications to crash. The failure of many 
applications to robustly handle this randomly corrupted input led professor M i l l e r and his 
colleagues to develop two tools: fuzz and ptyjig1, specifically to test appl icat ion robustness 
to random input . 

In general, fuzz is a random character str ing generator. It allows users to define the l imit 
of generated output such as the m a x i m u m amount of characters, or by using only printable 
characters, etc. Too l ptyjig is used to supply the random input to the target ut i l i ty , which 
input files must have the characteristics of a terminal device (e.g., the v i editor and the m a i l 
program) [14]. Af ter each test fuzz inspects the file system looking for a core file to determine 
if an error has occurred. If such a file was found, it was saved together w i t h the input that 
caused the error. 

W h i l s t such a simple black-box approach may sound naive, history has shown fuzzing to 
be surprisingly useful at uncovering faults in a wide range of software systems [13]. Nowa
days, many software development teams and companies like Cisco, Microsoft , or A T & T 
fuzz their software on a dai ly basis w i t h a purpose to find memory corruption bugs and 
vulnerabilit ies automatical ly [7]. 

Unl ike , e.g. static analysis tools, it is not necessary for a fuzzer to have access to 
the source code of a target appl icat ion in order to work. However, access to the source 
code may help a fuzzing framework to improve its observational capability. For example, 
by providing a feedback loop which drives the coverage of the different fuzzed inputs [6]. 

Fuzzing is a technique belonging to the group of negative testing (i.e. testing that 
the system does not do things that it is not supposed to do), as opposed to positive testing 
(i.e. testing that features work as specified). Software programs created for fuzz testing are 

1 Clone of fuzz and ptyjig — https: / /github.com/alipourm/fuzz 
2 Testing without peering into the internal structure of the component or system 
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commonly called fuzzers. Sometimes we may encounter terms used to describe tests s im
ilar to fuzzing, for example: robustness testing, protocol mutat ion, fault injection, syntax 
testing, d i r ty testing, or rainy-day testing [23]. 

2.1 T h e Phases of the F u z z i n g 

B y creating fuzz, M i l l e r et a l . also without intent defined a model of a general fuzzer. 
Despite the fact that fuzzing has admit tedly moved forward in the last years, a l l fuzzers 
work i n the following steps: 

1. identify target, choosing the target appl icat ion which w i l l be tested: 

2. identify inputs, determining what inputs the target appl icat ion accepts: 

3. generate fuzzed data, basically creating new input data: 

4. execute fuzzed data, feeding the target appl icat ion w i t h newly generated input : 

5. monitor for exceptions, watching the target appl icat ion for interesting behaviour: 

6. determine exploitability, analysing the behaviour and classifying the input . 

These phases can be performed by one unit or by various independent units and imple
mented using techniques w i t h varying levels of sophistication. E a c h of the stages is briefly 
described below. 

2.1.1 Ident i fy Target 

In order to maximise the effect of fuzzing it is first necessary to analyse the target software 
under test ( S U T ) . The need for fuzz testing of a software depends main ly on possible risks, 
accessibility for an attacker or impact of the user on a system. A good example of what 
applications is l i teral ly essential to test are those that: 

• work w i t h valuable, personal or sensitive information: 

• r u n i n a privileged mode, higher than for common user: 

• receive input over a network: 

• has a specific file or l ibrary w i t h i n , which are shared across mult iple applications. 

E . g . when a service is receiving some input f rom the network and is running w i t h 
W i n d o w s system level privileges, it is certainly tempt ing for an attacker. System services 
and default components of operating systems represent b ig risk since potential successful 
attacks can endanger a wide range of user populat ion [5]. 

Domain-specific knowledge of the target program, such as used data structures or opera
tions provided on the input data, allows to better adjust the fuzzer for the target appl icat ion, 
for example, by more specific and efficient methods for generating fuzz data. 
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2.1.2 Ident i fy Inputs 

The m a i n reason why fuzz testing experienced such a big success is that exploitable vulner
abilities are caused mostly because the appl icat ion is processing the input data vector w i t h 
insufficient val idat ion. Authors of a book Fuzzing: Brute Force Vulnerability Discovery [22] 
lists classes of inputs as follows: 

• command line arguments, 

• environment variables, 

• web applications, 

• file formats, 

• network protocols, 

• memory, 

. C O M objects, 

• inter process communicat ion. 

Fuzzers can be adapted to many software areas, and help to uncover unexpected be
haviour local ly or even remotely. Since fuzz testing proved its quality, companies invest in 
the developing of specific fuzzers on a different abstraction levels and w i t h sundry function
alities. 

2.1.3 G e n e r a t e F u z z e d D a t a 

Once we identify the suitable inputs and analyse the S U T , we can generate new inputs. 
Fuzzers can be div ided w i t h respect to how those inputs are generated. Fuzz data can 
be generated using predetermined values, mutat ing existing data or generating data from 
scratch. N e w test cases are generated as a whole before testing, or more often iteratively 
generated on demand at the beginning of each test series. There exist two major categories 
of fuzzers: generational and mutational. 

Generational Fuzzer 

Sometimes called grammar-based fuzzer. Generat ional fuzzer generates new inputs from 
scratch based on a template or a grammar specification. The template defines precisely 
the structure of the input file that is consumed by the target program. 

A template should be accurate, detailed and include a l l possible options for every field 
of the structure. T h i s ensures that fuzzer generates val id data for control fields such as 
checksums or challenge-response messages and thereby achieve a high level of coverage. 
However, creating a bulletproof template tends to be t ime-consuming and complex process. 

The generative method is usually used for simple models or protocols where construction 
of a template has no significant cost. A l t h o u g h many of the applications works w i t h defined 
file formats or protocols (e.g. data serialisation formats, R F C standardised protocols, etc.), 
there is no given standard specification for templates. Hence every fuzz generator has its 
own design and methods for implementing the template [6]. 
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M u t a t i o n a l Fuzzer 

M u t a t i o n a l fuzzer does not require any specification of input file format. Instead it is 
init ial ised by a set of sample inputs (even one single sample file suffices). N e w workloads 
are generated by apply ing of mutat ion strategies on these in i t i a l so called seeds. 

Mutat ional -based fuzzers are typical ly less sophisticated, however, they also require less 
domain knowledge such as used protocols, templates, etc. C o m p u t a t i o n a l work substitutes 
a human effort i n program understanding which makes this approach cheaper. 

It is worthwhile to use mutat ional fuzzers, e.g. when the target program uses highly 
structured inputs . Us ing mutations we do not have to accurate the entire complex structure 
from the beginning, but use the existing one and modify it . 

A decision, whether the input (either seed or mutation) is valuable and should be reused 
for further work or discarded depends on several factors and it is not the functionali ty of 
fuzzer itself but of fuzzing framework. 

Unfortunately, the S U T may reject the mutated input at the beginning of processing 
the data dur ing val idat ion since mutations can generate inval id format. Nevertheless, even 
inval id inputs can sometimes lead to an interesting response from S U T . Consider the ex
ample program i n L i s t i n g 1, that reads a value from standard input and checks if the value 
is three times smaller than a magic number, and only then continues. 

#define MAGIC_NUM 42 
i n t main(void) { 

i n t value = read(); 
i f (value *3 == MAGIC_NUM) { 

doWorkO ; 
} 
else { 

e r r ( " I n v a l i d i n p u t " ) ; 
} 

} 

Listing 1: E x a m p l e of a C program that w i l l not do any work u n t i l correct magic number 
is given. 

If we work on an architecture where integers are stored on 4 bytes (32bits), the variable 
value can store 2 3 2 different values, so the probabi l i ty that it stores the correct magic 
number and we hence execute the body of the function doWorkO is 1 : 2 3 2 . 

Instead we could exploit the coverage information, and determine what code segments 
were performed dur ing testing. Discovering new paths w i l l cause that the input would be 
stored, so further mutat ion derived from it w i l l have stronger potential . 

Al ternat ive ly we could exploit the symbolic execution, a software testing technique that 
analyse which inputs cause each part of a program to execute. O n the other hand, the m a i n 
reason why symbolic execution does not outperform fuzzing is its high resource require
ments, and most of the approaches do not scale on large applications. 



2.1.4 E x e c u t e F u z z e d D a t a 

After we generate new inputs we have to execute the S U T again w i t h them. The delivery 
mechanism sends the generated data to the S U T input . Th is mechanism is closely related 
to a nature of the input that appl icat ion is consuming, since, e.g, the system which accepts 
input from a file requires a different delivery mechanism than a system which accepts mouse 
interaction events [13]. Execut ion is automated and can involve opening files, sending 
packets, or running processes [22]. Note that the execution may take longer than previous 
runs w i t h seed inputs. 

2.1.5 M o n i t o r for E x c e p t i o n s 

W h a t do we acquire when we send thousands of generated requests to a server and after 
that, we f ind out that server crashed? N o t h i n g . We do not know either which request 
caused the crash nor why. Hence we must monitor the program constantly, after each new 
test r u n . T h e monitor ing system has to observe the S U T , while it processes each input 
into the system and tries to detect anomalies, such as errors, deadlocks or performance 
degradations. 

The simplest method is to check the return code when the program terminates or stops 
for some reason. The return code may explain the cause of the system crash as each standard 
s i g n a l 3 has its own signal number associated w i t h i t . However, these signal numbers may 
vary on rare architectures. 

More advanced methods of observation include more intrusive forms of monitor ing ap
plications, typica l ly realised by attaching a debugger to the process [23]. One of these 
debugging tools is ptrace 1 (system call) , that allows a process to inspect and control 
the execution of other processes. Funct ional i ty of ptrace relies on several tools and one 
of them is s t r a c e 5 which monitors and manipulates interactions between processes and 
the L i n u x kernel, inc luding system calls, signal deliveries, or changes of process state. B y 
tracking the outputs of s imilar tools, we can detect anomalies for different types of inputs 
either when opening or w r i t i n g to files. For testing the memory we can list , e.g., Va lgr ind , 
G u a r d M a l l o c , Insure++, etc. Al ternat ive ly we can use clang 6 compiler sanitizers ( A S a n , 
T S a n , M S a n , and U B S a n ) to detect memory errors, data races, undefined behaviour, or 
overflows [20]. 

2.1.6 D e t e r m i n e E x p l o i t a b i l i t y 

The f inal part of fuzz testing is to analyse the potential vulnerabilit ies or anomalies and 
thorough interpretation of results. The analysis typical ly requires a h u m a n to determine 
whether the anomaly is really a vulnerabi l i ty or if it is spurious. To facilitate developers 
work, flaws may be collected and clustered together w i t h a report. Errors , exceptions, and 
their variations can be grouped into classes, which significantly reduces the total amount 
of vulnerabilit ies that the developer has to investigate. 

3 signal — http://man7.org/linux/man-pages/man7/signal. 7.html 
4 ptrace — http:/ /man7.org/l iniK/man-pages/man2/ptrace.2.html 
5strace — http:/ /man7.Org/l inux/man-pages/manl/strace. l .html  
6 clang — https: / /c lang. l lvm.org/ 
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2.2 T h e Advantages of F u z z i n g 

Fuzzing is just one of plenty of techniques that can discover defects in a software, so why 
should one use i t? Considering many existing approaches, we list several reasons why fuzzers 
have been widely accepted in the last years and under what terms is fuzzing the best applied. 

A v a i l a b i l i t y 

In order to fuzz the S U T one needs only the runnable and does not need e.g. the source 
codes or deep knowledge of S U T architecture. Since fuzzing does not require access to 
the source code, it is also an open way to fuzz commercial products. The absence of source 
code usually exclude the use of static analysis, model checking, etc [13]. However, even 
though the source code is not needed for fuzzing, the analysis of the sources before actual 
fuzzing may yield better results, and sooner. 

S i m p l i c i t y 

The difficulty of the fuzzing mostly depends on the character of the S U T and the level of 
the structure of input data . The elementary variant of fuzzing is the random data passed 
to the target system, which is simple to develop, especially if the program is consuming less 
complex inputs where the mutative approach is acceptable. 

L o w cost 

Software engineering history has shown that test cases are more efficient when wri t ten by 
someone other than the original programmer since a b l i n d spot i n implementat ion is l ikely 
to also be repeated i n testing [16]. Testers are expected to understand the implemented 
system and its boundary cases i n order to construct effective test cases. B u t this approach is 
quite t ime expensive, and moreover, testers may overlook some aspects. To rely pr imar i ly 
only on sets of manual ly developed test cases is deprecated and often the test suite can 
be enhanced by results of performed fuzzing. R a n d o m data generation part ia l ly replaces 
the tester's work and w i l l also cover cases that the tester and programmer would never 
consider significant [13]. 

Effect iveness 

We finish w i t h the most important advantage: it works. For instance, the S D L (Security 
Development Lifecycle) outlines fuzz testing for software verification, a mandatory pol 
icy established by Microsoft . Another example of successful fuzzing dates i n A p r i l 2014, 
when was disclosed the Heartbleed vulnerabi l i ty i n the O p e n S S L l ibrary, which is used by 
the majori ty of web servers. One of the most famous fuzzers A F L [25] found bugs in many 
tools which are l isted on A F L ' s official website, inc luding security-crit ical software such as 
OpenSSL ; O p e n S S H and nginx; M o z i l l a Firefox, Internet Explorer and A p p l e Safari; and 
other well -known software such as L ibre Office or Adobe F l a s h [24]. 

10 



2.3 Fuzz Test ing and Performance 

The fuzzing approach seems to be the right choice for testing, thus we could also use it for 
testing, where we won't expect an error, but that the performance of the appl icat ion w i l l 
deteriorate. To realise this idea, we need to modify some of the fuzz testing phases. 

Generating input data should be fine-tuned to achieve better results, bearing i n m i n d , 
that the problem often causes processing amount volume of a data. W h i l e monitor ing 
the program, we are interested in the data of consumed memory, t ime, etc.; therefore it 
is necessary to select a tool able to measure them, i.e. do profi l ing. It w i l l also be differ
ent to decide whether we have detected a performance issue, hence we need to compare 
the measured values w i t h some baseline expected values. A f t e r comparing, we get the re
sult, and another problem is to decide whether the comparison result shows a decrease in 
performance or not. 

Obviously, besides fuzz testing, we can also encounter funct ional bugs i n the tested 
program. A l t h o u g h they are not essential from the performance view, if they do not cause 
performance f luctuation, the output report should contain information about them as well . 

2.4 E x i s t i n g and Re la ted Fuzzers 

We w i l l only list several selected fuzzers. In part icular , the A F L which is the first widely 
used fuzzer, and PerfFuzz, which is the first attempt to tune fuzzers for f inding performance 
bugs. 

2.4.1 A m e r i c a n F u z z y L o p 

A F L (american fuzzy lop) is an open source mutat ional fuzzer developed by M i c h a l Za-
lewski. A F L features a colourful C L I that displays real-time statistics about the fuzzing 
process such as the number of found faults, hangs, average program execution speed, tota l 
A F L r u n t ime or how much t ime has elapsed since its most recent finds [25]. The simplified 
a lgori thm is as follows: 

1. L o a d a queue w i t h i n i t i a l seeds. 

2. Take the next input from the queue. 

3. T r i m the input without affecting the target's behaviour. 

4. M u t a t e the input using selected fuzzing strategies. 

5. A d d the mutations deemed interesting to the queue. 

6. G o to 2. 

A F L can be used for both whi te -box 7 fuzzing (supported languages are C , C + + , and 
Object ive-C) and black-box fuzzing. Furthermore, other variations of A F L allow fuzzing 
projects wri t ten , e.g., in P y t h o n , G o , G C J Java or Rust . 

7 Testing with knowledge about the internal structure of the component or system 
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af1-gcc af1-as a f l - fuzz af1-analy ze af1-gcc af1-as a f l - fuzz af1-analy ze 

> 

Figure 2.1: F lowchart of A F L . Redrawn from the source: [24]. 

Before the fuzzing, an appl icat ion must be first recompiled w i t h af 1-gcc, a drop- in 
replacement for G C C or clang. Compi ler output is passed to af 1-as, a wrapper over as 8, 
that instruments the compiled target by injecting assembly code which captures branch 
coverage. T h e output of af 1-as is an executable binary that is passed to af 1-fuzz which 
fuzzes the input w i t h the assistance of afl-analyze. The af 1-fuzz element is also in 
charge of pr int ing the information about current fuzzing process on user interface. The final 
part afl-analyze uses the instrumentat ion from a f l - a s (if provided), and observes if 
the execution path of the C F G was changed. It communicates only w i t h af 1-fuzz to 
improve further mutat ion [24] [25]. 

A F L looks at each input file as a binary and modifies it using binary fuzzing strategies. 
These strategies include: 

• sequential or random b i t / b y t e flips, 

• sequential or random incrementing or decrementing integer values, 

• sequential or random overwrit ing existing data w i t h known integers (e.g., -1 , 256, 
1024, M A X _ I N T ) , 

• deletion, dupl icat ion and memset of data blocks, 

• splicing two distinct input files at a random location. 

Successful fuzzers live and die by their fuzzing strategies. Some of A F L ' s strategies tend 
to be more successful some less, but rare feedback loop is t ry ing to increase their efficiency, 
as the author of A F L , M i c h a l Zalewski , narrates on his personal blog [26]. The feedback pro
vided by the instrumentat ion injected into compiled program helps to optimise parameters 
of fuzzing strategies. Together w i t h its evolutionary design of the queue provide a feed
back mechanism to dist inguish between insignificant mutations and those that trigger new 
behaviour. 

This too l is precisely set to look for a variety of funct ional bugs and therefore can be 
proud of its collection of detected funct ional bugs. However, A F L is not adapted to looking 
for performance issues, neither by its mutat ion rules nor by program monitor ing and related 
feedback information that affects the evolutionary design of the queue. 

2.4.2 P e r f F u z z 

State-of-the-art mutat ional fuzzers are pr imar i ly focused on finding functional bugs. Nev
ertheless, recently a performance-oriented A F L variant called PerfFuzz was proposed. 

PerfFuzz [10] is a coverage-guided mutat ional feedback-directed fuzzing engine that uses 
mult i -dimensional feedback i n the A F L ' s C F G graph method and addit ional ly creates a per
formance map to improve future usabil i ty est imation of tested input . The PerfFuzz authors 

8 A S — the portable G N U assembler — http: / /man7.Org/ l inux/man-pages/manl/as . l .html 
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defined the performance map as a funct ion per f map : K —>• V, where K is a set of keys 
corresponding to program components ( C F G edges) and V is a set of ordered values (exe
cution counts of C F G edges). This enables PerfFuzz to f ind inputs that exercise noticeable 
hot spots i n a program and generate inputs w i t h higher to ta l execution path length than 
previous approaches by escaping local m a x i m a . Experiments on sorting a lgor i thm Insertion 
Sort, P C R E U R L regular expression and others show the method is effective at generating 
inputs that demonstrate algorithmic complexity vulnerabilit ies. 

Results of comparison w i t h A F L show, that A F L in i t ia l ly finds a hot spot w i t h higher 
execution count, but it d i d not grow more. O n the other hand, PerfFuzz finds a hot spots 
w i t h over 2 x - 18 x higher execution counts after 6 hours of lasting experiments [10]. 
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Chapter 3 

Performance testing 

In this thesis, we a i m to switch the focus of fuzzing from detecting funct ional bugs to 
uncovering performance bugs. We wish to apply the fuzzing i n the performance testing — 
technique for determining how well has the system been designed from a performance point 
of view. In this chapter, we describe the basics of performance testing and its importance 
in the software development life cycle. 

The performance testing is the process of measuring the efficiency of a software program, 
system or a device. Th is procedure usually includes quantitat ive tests, such as measuring 
the response t ime or the number of M I P S (millions of instructions per second) at which 
a system operates, and qualitative tests determining system attributes such as reliabil ity, 
scalability, or interoperability. In general, performance testing verifies whether a system 
meets the specifications claimed by its manufacturer or vendor [17]. 

3.1 T h e Importance of Performance Test ing 

F r o m the business perspective, poorly performing software programs do not commonly br ing 
the planned benefit to an organisation, and therefore cannot be considered as a reliable asset. 
Regardless of causalities, this makes a bad reputat ion on the designers, coders, testers, and 
other people involved i n its development process. 

One can ask, when is an applicat ion considered to be performing badly or well? There 
does not exist any guide from generic industry standard which determines good or bad 
performance. Nevertheless, various informal attempts to define a standard was proposed 
defining e.g. minimum page refresh time w i t h i n browser-based applications [15]. 

Performance testing should detect what needs to be improved before the product is 
released. W i t h o u t i t , software is probably going to suffer from problems such as poor us
abil i ty, slow response when a higher number of users use it at the same t ime, or discrepancies 
across different operating systems. B u t , the resulting system crash can be really expensive. 
In August 2013, only a 5-minute downtime of Google .com was estimated to cost the search 
giant as much as $545 000. A t the same summer, companies lost sales worth $1100 per 
second because of A m a z o n Web Service outage [12]. 
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3.2 Func t iona l vs Performance Test ing 

Over the past decades, most of the research teams' attention has been part icular ly focused 
on the development of tools for automatical ly detecting functional bugs. 

Similar tools for performance area have been developed, however, considerably less 
frequently, thus performance deficiencies have been perceived as less cr i t ica l and often 
difficult to detect. B u t , especially in recent years, it has been shown that the severity 
of performance errors is in general almost comparable to funct ional errors, and in extreme 
cases, these errors can lead to pract ical unusabil i ty of programs, for example, when working 
w i t h larger amounts of input data. 

Nowadays, there are many tools that are able to detect these errors more or less satisfac
tori ly. Usual ly we are ta lk ing about profi l ing tools, whose success depends on appropriately 
selected inputs . Performance bugs have the unpleasant character that their manifestation 
often occurs only when working w i t h a larger volume of data, or only w i t h specifically 
constructed input data . Nevertheless, if we choose too large data it can on the other hand 
significantly prolong the t ime of testing. In addi t ion , it is often difficult to estimate the fu
ture overhead of real deployment of the product , and the errors can occur i n the later phase 
of software life. 

Conduct ing performance testing simultaneously w i t h functional testing is more favou
rable and w i l l add more benefits to the overall software quality. Adequate planning for 
conducting functional and performance testing should be done i n order to keep a strong 
relationship among the involved parties of the project [4]. 

However, what if a develop company wants to sidestep the planning but s t i l l carry 
out the performance testing on a regular basis? Perfect solution would be to automatise 
this process and perform the performance testing whenever a developed project registers 
a significant change, e.g. when releasing a new version. In the next Chapter , we w i l l 
introduce to the solutions for managing performance testing. 

3.3 P e r u n : Performance Vers ion System 

P E R U N (Performance Under Control) is an open-source project founded by T . Fiedor , w i t h i n 
the V e r i F I T research group. Its m a i n objective is to automate management of program's 
performance profiles. It basically builds on a version control systems1 (VCS) that are ex
tended w i t h the performance records (such as t ime or memory consumption) for each ver
sion. 

Its m a i n idea is to capture performance changes dur ing the development by comparing 
performance profiles that are bound to the part icular program versions. P E R U N can be 
integrated into an already used versioning system to ensure that for each new version of 
the project there w i l l be created performance profile (for example, w i t h every commit in 
the versioning system). 

In short, P E R U N is a wrapper over existing version systems and manages profiles for 
different versions of part icular projects. Besides that, it offers a tool suite al lowing one to 
automate the performance regression test runs, postprocess existing profiles or interpret 
the results [8]. 

1systems that records changes of source code files over the time so that one can recall specific version 
later 
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3.3.1 A r c h i t e c t u r e 

The implementat ion of P E R U N consists of 
three logically part i t ioned units: data, 
l o g i c and view. The data part is respon
sible for persistent storing and managing 
generated performance profiles, and also for 
interface to supported V C S . 

The importance of the l o g i c part con
sists of management, manipulat ion , and au
tomat ion of profile creation. It includes set 
of data collectors (trace, memory, time) for 
profile generation, and set of postprocessors 
used for profile transformation. 

The view is a stand-alone package that 
provides interaction w i t h the user using Figure 3.1: V i e w , logic, and data together 
the input-output interface. This can be re- form the P E R U N too l architecture, adopted 
alised by the graphical [9] (not merged i n f rom [8]. 
master branch) or command line interface. A t the end, the results of profi l ing data analysis 
are visualised by one of the visualisat ion techniques. A n i l lustrat ion of described architec
ture and selected P E R U N modules is i n F igure 3.1. 

3.3.2 A u t o m a t i c R u n of J o b 

Using P E R U N ' S runner infrastructure, one can r u n a series of steps run-collect-postprocess 
w i t h defined parameters i n order to generate a profile. D u r i n g the profi l ing of appl icat ion, 
we first collect the data by the means of profi l ing data collector, and further augment 
the collected data by ordered postprocessing steps (e.g. for f i l tering out unwanted data , 
normalising or scaling the amounts, etc.). A s results we generate one profile for each 
applicat ion configuration and each profi l ing job. 

Configurat ion of appl icat ion for profi l ing is part i t ioned into three parts: 

• command: the actual command that is being profiled, e.g. Is 

• arguments: set of arguments for command, e.g. - a l 

• workloads: input workloads, e.g. /usr/share 

P E R U N allows automatic collection of profi l ing data based on a pre-stored local or shared 
configuration, which is main ly used for regular performance analysis of project versions. 
The base of automation in P E R U N are job matrices, which are determined by a commands, 
arguments, workloads, collectors and postprocessors (and their internal configurations). 
The user can define custom matrices i n the local settings (file l o c a l .yml), thus summarise 
the whole profi l ing process w i t h one command perun run matrix. The job matr ix format 
is shown in L i s t i n g 2. In case of irregular or specific creation of performance profiles, P E R U N 
offers the possibil i ty to define a single job specification w i t h i n options of perun run job 
command, as shown i n L i s t i n g 3. 
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cmds: 
- . /my_bin 

args: 
- —less 

workloads: 
- workload.txt 

c o l l e c t o r s : 
- name: memory 

params: 
- sampling: 1 

postprocessors: 
- name: normalizer 
- name: regression_analysis 

params: 
- method: f u l l 
- steps: 10 

Listing 2: A n example of local .yaml file containing a simple job matr ix w i t h required 
information about the selected collector, the command that w i l l be profiled, and the other 
specifications such as arguments, workloads, and addit ional parameters for collector and 
postprocessor. 

perun run job —cmd ./my_bin —args —less —workload workload.txt \ 
— c o l l e c t o r memory —collector-params memory memory-params.yaml \ 
—postprocessor normalizer —postprocessor regression-analysis \ 
—postprocessor-params regression-analysis ra-params.yaml 

Listing 3: R u n n i n g the job w i t h the same configuration as i n L i s t i n g 2, but using perun 
run job command. A d d i t i o n a l parameters for collector and postprocessor are included in 
files memory-params.yaml and ra-params .yaml. 

3.3.3 P e r f o r m a n c e Prof i le 

Profiles store performance records collected by one of the collectors. Generated profile can 
be then postprocessed mult iple times by any of the postprocessing units, i n order to e.g. 
normalise or filter the values [8]. In persistent storage each generated profile is assigned 
to appropriate so called minor version origin (e.g. concrete commit i n git V C S ) . A profile 
can be further visualised, since even a simple interpretation of outcome may be oftentimes 
more descriptive and lead to better understanding of program's performance. A l l these 
operations over a performance profile together symbolise the lifetime of the profile, captured 
in F igure 3.2. 
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Figure 3.2: Li fet ime of performance profile. Taken f rom [8]. 

Collected data are stored as a profile w i t h format based on J S O N 2 . The motivat ion 
is, that J S O N - l i k e structured data are easy to read and understandable for human and for 
computers which is reflected in wide support of programming languages offering an interface 
for operations over J S O N formatted files. 

Profile format requires several restrictions regarding the keys (or regions) that needs to 
be defined inside. L i s t i n g 4 displays the topmost structure of the profile format. P E R U N 
project documentat ion [8] describes format i n details, we briefly outline each topmost region: 

• o r i g i n : a hash key specifying concrete minor version of project, to which profile 
corresponds to. O r i g i n l inks the performance records to funct ional changes. 

• header: dict ionary containing basic specification of the profile, like e.g. the actual 
command which was profiled, its parameters and input workload. 

• c o l l e c t o r _ i n f o: configuration of collector, which was used to capture resources and 
generate the profile. 

• postprocessors: list of configurations of postprocessors i n order they were applied 
to the profile. 

• snapshots: list of resources that were actual ly collected by the specified collector. 

2 JavaScript Object Notation — https:/ /www.json.org/ 
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" o r i g i n " : " " , 
"header": {}, 
" c o l l e c t o r _ i n f o " : - Q , 
"postprocessors": [] , 
"snapshots": [] , 

List ing 4: The generic scheme of profile format, adopted from 

3.3.4 D a t a C o l l e c t i n g a n d P r o f i l e G e n e r a t i n g 

Prof i l ing data are collected by collection which generate performance profiles (i.e. the set of 
performance records). P E R U N framework currently includes these implemented collectors: 

• Trace: based on S y s t e m T a p 3 , collects running times of C / C + + functions. It is 
suitable to postprocess the collected data using the regression analysis, since they 
capture dependency of t ime consumption depending on the size of the structure. 
T h e n , we can plot i n d i v i d u a l points along w i t h regression models using scatter plot 
visualisation technique. 

• M e m o r y : collects allocations of C / C + + functions, target addresses of allocations, 
type of allocations, etc. These collected data are suitable to visualise by the heap 
map1. 

• T i m e : a simple wrapper over the time u t i l i ty that captures overall running t ime of 
a program. 

3.3.5 P o s t p r o c e s s i n g 

Once a profile is created, we can apply a sequence of postprocessing steps i n order to 
transform its data . P E R U N framework currently offers five postprocessors: 

• normaliser: normalises the resources of the same type to the interval (0, 1), where 1 
corresponds to the m a x i m a l value of the given type. 

• regression analysis: attempts to find the fitting model (linear, quadratic , logarith
mic, etc.) for a dependent variable based on another independent one. E . g . the de
pendency of funct ion runtime depending on the size of the under lying structure. 

• clusteriser: tries to classify resources to uniquely identified clusters or to group 
similar amounts of resources. 

• regressogram: non-parametric method, which tries to fit models through data by 
d iv id ing the interval into N equal buckets, where a bucket value is a result of selected 
statistical aggregation funct ion (mean/median) . 

3 SystemTap — https://sourceware.org/systemtap/documentation.html 
4 graphical representation of data which values contained in a matrix are represented by colours 
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• moving average: non-parametric approach, which uses the analysis of data points 
by creating a series of values based on the specific aggregation function; values are 
derived from different subsets of the ful l data set. 

• kernel regression: non-parametric technique that estimates the condit ional expecta
t ion of a random variable by placing a weighting funct ion (kernel) over each estimated 
data point . 

3.3.6 A u t o m a t i c D e t e c t i o n of P e r f o r m a n c e C h a n g e s 

P E R U N offers an automatic check for performance changes between two isolate profiles 
(so called baseline and target profile), w i t h the same configuration (i.e. collected by same 
collectors, postprocessed using same postprocessors, and collected for the same combination 
of command, arguments and workload). These profiles may be registered in index (i.e. 
assigned to the concrete minor version), stored i n pending profiles or s imply stored in 
the filesystem. Usual ly the baseline corresponds to previous stable version (e.g. the previous 
head) and target to new untested version (e.g. new head or commit) . 

For such a pair of target and baseline profiles, we can use several methods, which 
can then report mult iple performance changes. Potent ia l changes of performance are then 
reported for these pairs of profiles, together w i t h more precise information. Th is information 
then helps a developer to evaluate whether the detected changes are real or spurious. 

P E R U N framework currently supports the following strategies for detection of the per
formance changes: 

• Average A m o u n t Threshold: computes averages for each unique group of re
sources, and consider them as a representation of the performance. E a c h average of 
the target is then compared w i t h the average of the baseline and if their ratio ex
ceeds a certain threshold interval , the method reports the change (optimisation or 
degradation). 

• Best M o d e l Order Equality : checks for each unique group of resources, whether 
the best performance (or prediction) model has changed. The result can be e.g. that 
the best model changed from linear to quadratic . 

• Fast Check: simple method, based on the subtract ion of best-fit models and subse
quently interleaving of these data by newer models. 

• Linear Regression: heuristic based on the results of linear regression models, which 
models the relationship between independent variables x and dependent variables y 
as funct ion y = bo + b\ • x. The heuristic compares the coefficients 60 (y-intercept) 
and 61 (slope). 

• Polynomial Regression: represents the change in a form of nth degree polyno
m i a l function [21]. Th is heuristic tries to f ind the best fit nth degree po lynomia l for 
subtraction of best baseline and target models. 

To summarise, P E R U N allows automatic detecting of performance changes between var
ious minor versions w i t h i n the history w i t h the a i m to protect the project from potential 
performance degradation. 
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Chapter 4 

Analysis and Design 

The underdeveloped field of performance fuzz testing has inspired us to explore this issue 
more and extend the P E R U N too l w i t h fuzzing module that w i l l t ry to f ind new workloads 
(or inputs) that w i l l l ikely cause a change i n program performance. We w i l l start w i t h 
a mot ivat ional example as an introduct ion to the problem, then we analyse the problem 
and f inally we w i l l propose the solution together w i t h a short explanation of the principles. 

Often, the overall performance of a program highly depends on its input data (if it 
consumes any). A l t h o u g h manual ly wri t ten tests can cover even 100% of the code, test 
cases may not reveal hidden vulnerabilit ies u n t i l the unusual input data are provided. 

#include <stdio.h> 
#include <stdlib.h> 
#define DIGITS 2 

void doSomething(void){ return; } 

i n t main(void){ 

FILE * fp = fopen("workload.txt","r"); 
char array [DIGITS]; 
f o r ( i n t i= 0 ; KDIGITS; i++) 

array [i ] = f g e t c ( f p ) ; 

unsigned number = a t o i ( a r r a y ) ; 
for(unsigned i= 0 ; Knumber; i++) 

doSomethingO ; 
} 

Listing 5: E x a m p l e C program that shows a vulnerabi l i ty when signed integer is assigned 
to unsigned integer variable. 

In L i s t i n g 5 one can see an example program, which reads two characters f rom an input 
file (expecting it contains numerical values), stores them in an array and then converts 
the array to an integer using standard a t o i 1 (array to integer) funct ion. T h e original i n -

x atoi — https://en.cppreference.com/w/cpp/string/byte/atoi 
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tention was to avoid large numbers and only take two digits into account, so the number 
should be out of interval < 0,99 >. B u t , this solution contains hidden vulnerabil i ty. O n 
the highlighted line, the result of converting is assigned to unsigned integer variable, but 
the return value of a t o i function is a signed integer. In case that the input file w i l l con
ta in for example str ing a t o i w i l l successfully convert the str ing to an integer -1 , which 
is represented as OxFFFFFFFF in hexadecimal (on architecture where integers are stored 
on 4 bytes). Considering that the variable number is defined as unsigned integer, the fol
lowing loop w i l l cal l doSomething function UINT_MAX(232-1) times leading to performance 
degradation. 

4.1 P r o b l e m A n a l y s i s 

Basically, the goal of this work is to generate new input data that could possibly exercise 
(i.e. consume as many resources or t ime as possible) the target program the most. We 
believe that employing the fuzz technique could help create such new input data. We 
propose that for the purpose of lightweight fuzz testing mutat ional methodology is more 
preferable. M u t a t i o n a l strategies should be more oriented and tuned for performance. 
A l t h o u g h t radi t ional mutat ion strategies were bui l t rather for finding funct ional faults, 
certainly it is good to combine them w i t h the performance tuned ones. 

In conjunction w i t h P E R U N tool , the approach of regular performance testing, the user 
could find w i t h each new version new workloads that cause a problem and keep track 
of the progress of project performance power over t ime. Af ter fixing the bug of certain 
performance issue revealed by the fuzzer, the user is able to test the target appl icat ion 
performance again either w i t h the worst-case workloads assigned to earlier versions or by 
repeatedly performing the fuzz testing. Because fixing one bug may sometimes create new 
ones. 

4.2 Requirements for Fuzz U n i t 

In this section we briefly summarise the funct ional requirements and specifications of the re
sult ing product . 

1. N e w mutation rules. The product must offer new, reasonably designed and perfor
mance affectable rules. The group of rules need to be general, not focusing on the only one 
type of potential performance problem. 

2. Classic rules. The existing fuzzers have implemented them, and they have achieved 
the success, therefore it is advisable to add some classic generally used mutat ion rules to 
our collection of rules. 

3. Perun influence. This means selecting inputs for mutat ion main ly according to 
the P E R U N results, because it is the m a i n difference from the existing performance fuzzers. 

4. Workload picking based on coverage. Since the fuzzing is a brute-force technique, 
we do not want to test w i t h P E R U N every workload, just interested i n terms of amount 
of executed code. Note that P E R U N testing would be often unnecessary and process of 
collecting, postprocessing and detection brings a considerable overhead. 
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5. Interpretation of workloads. We think that after finishing the fuzz testing, testers 
pr imar i ly want to know what workloads are making the troubles to applicat ion and how 
they differ from the original files. 

6. Interpretation of fuzzing. For better imaginat ion of the finished fuzzing process, 
fuzzer should offer visualised information about it that can be helpful for future fuzzing. 

4.3 Des ign of Performance Fuzzer 

We have already described the general fuzz testing i n Section 2.1. The described steps 
must be implemented accordingly to what the unit should be focused on. In this work 
we construct a lightweight Mutation Based Fuzzing Tool tuned for detecting performance 
changes, i.e. performance optimisations and degradations. 

The proposed solution w i l l be modi fy ing files (one of the most common format of pro
gram workload). We believe that the mutational approach is more suitable in order to create 
new workloads. E x i s t i n g projects inspired us to implement the feedback loop w i t h coverage 
information, for the purpose of increasing the efficiency and chances to f ind the worst-case 
workloads. Another feedback w i l l be obtained f rom P E R U N , which automatical ly detects 
performance changes based on the data collected w i t h i n the program runtime. 

4.3.1 G e n e r a l D e s c r i p t i o n of the A l g o r i t h m 

In this section we w i l l describe design of performance fuzz tester. Its m a i n loop is depicted 
in L i s t i n g 6. 

A n inevitable element for start ing the fuzzing is to collect suitable set of sample seed 
inputs (or workloads), also called input corpus. In classical fuzzing methods we work w i t h 
so called inputs , however, i n this work we w i l l adapt the terminology of P E R U N , which calls 
the input of programs the workloads. The seeds should be val id workloads for the target 
applicat ion, so the appl icat ion terminates on them and yields expected performance. C o l 
lecting workloads into the corpus is done by pseudo funct ion ge t_ ini t ia l_corpus w i t h i n 
the overall performance fuzzing a lgor i thm captured i n L i s t i n g 6. In our fuzzer, the seeds 
w i l l be provided by the user. 

For different file types (or those of s imilar characteristics) we want to use different groups 
of mutat ion methods (function choose_rules_according_to_f i letype) as described in 
Section 4.4. The knowledge that seeds are text files, not binaries, allows fuzzer to avoid 
binary-tuned fuzz methods (e.g. random removing zero bytes, ...). So, we apply domain-
specific knowledge for certain types of files to trigger the performance change or f ind unique 
errors more quickly. 

Before running the target appl icat ion w i t h newly generated malformed workloads, it 
is necessary to first determine the performance baseline, i.e. the expected performance of 
the program, to which future results (so called targets) w i l l be compared. In in i t i a l testing 
we first measure code coverage (number of executed lines of code) while executing each 
in i t i a l seed. The median of measured coverage data is then considered as the baseline for 
coverage testing (base_cov variable). Second, P E R U N is r u n to collected memory, t ime 
or trace resource records w i t h in i t i a l seeds resulting into baseline profiles (base_prof i l e ) . 
Pract ica l ly performance baseline is a profile describing the performance of the program on 
the given workload corpus. A f t e r the i n i t i a l testing, the seeds i n the corpus are considered 
as parents for future mutations and rated by the evaluation function. 
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Once we assemble in i t i a l seeds, we can start the actual fuzzing. The fuzzing loop itself 
starts w i t h choosing one i n d i v i d u a l file f rom corpus (function choose_parent) using heuris
tic described in Section 5.6.1. Th is file is then transformed into mutations (function fuzz) 
and their quanti ty is calculated using dynamica l ly collected fuzz stats (see Section 5.6.2 
for more details). We test every mutat ion file w i t h the goal to achieve m a x i m u m possi
ble code coverage. We first focus on gathering the interesting workloads, which increase 
the number of executed lines. We argue that coverage based testing is fast and can yield 
satisfying results. Later we w i l l combine these results w i t h the performance check, which is 
slower. In case that , code coverage exceeds the certain threshold, responsible mutat ion file 
joins the corpus and therefore can be fuzzed i n future to intentionally trigger more serious 
performance issue. E a c h parent jo ining the corpus gets rated, i n this phase only according 
to reached coverage. 

resul ts = [] 
corpus = get_ ini t ia l_corpus( ) 
mutation_rules = choose_rules_according_to_filetype(corpus) 
base_cov = init_cov_test(corpus) 
base_profile = init_performance_test(corpus) 
rate_parents(corpus) 
# Fuzzing loop 
while timeout not reached: 

interes t ing workloads = [] 
# Coverage-guided testing 
while execs_limit not reached and c o l l e c t e d _ f i l e s _ l i m i t not reached: 

candidate = choose_parent(corpus) 
muts = fuzz(candidate, mutation_rules, fuzz_stats) 
# Gathering interesting mutations 
interesting_workloads += test_for_cov(muts, base_cov, i covr_rat io) 
corpus += interesting_workloads 
rate_parents(interesting_workloads) 
update_stats(fuzz_stats, interesting_workloads) 

adapt_icovr_rat io( icovr_rat io) 
# Profile-guided testing 
resul ts += test_with_perun(interesting_workloads, base_profile) 
update_rates(results) 
update_stats(fuzz_stats, results ) 

List ing 6: Pseudocode of Performance Fuzz ing A l g o r i t h m . 
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After gathering the interesting workloads, the fuzzer collects run-t ime data (memory, 
trace, t ime), transforms the data to a so called target profile and checks for performance 
changes by comparing newly generated target profile w i t h baseline performance profile 
(see [18] for more details about degradation checks). T h e n the tested workloads rates 
have to be recomputed to include the performance change result (function update_rates). 
The intui t ion is, that running coverage testing is faster than collecting performance data 
(since it introduces certain overhead) and collecting performance data only for possibly 
newly covered paths could result into more interesting workloads. Accord ing to the number 
of gathered workloads we adapt the coverage increase ratio, w i t h an a i m to either mitigate 
or t ighten the condit ion for classification a workload as an interesting one. 

Lis t of results of each testing i teration i n the m a i n loop contains successful mutations 
and the history of the used rules, that led to their current form. This information is up
dated after each test r u n to make the best decisions at any t ime. Moreover, collecting 
interesting workloads is l imi ted by two variables: the current number of program execu
tions (execs_limit) and the current number of collected files (collected_f i l e s _ l i m i t ) . 
The first l imi t guarantees that the loop w i l l terminate. O n the other hand, this l imi t of 
executions could be set to excessively high value, which would lead to a long durat ion of this 
phase, especially if the test program itself is used to r u n for a longer t ime. The second l imit 
ensures the loop w i l l end i n reasonable t ime and collects reasonable number of workloads. 

4.3.2 A b s e n c e of Source Fi les 

We can collect line coverage only i n the presence of source files. Nevertheless, the fuzzer 
should provide fuzz testing even without them. In that case we skip the first (and fast) 
testing phase and only checks for possible performance changes. In L i s t i n g 7 is captured 
an a lgor i thm i n pseudocode, relying only on results of P E R U N ' S detection of performance 
change. 

resul ts = [] 
corpus = get_ ini t ia l_corpus( ) 
mutation_rules = choose_rules_according_to_filetype(corpus) 
base_profile = init_performance_test(corpus) 
rate_parents(corpus) 
# Fuzzing loop 
while timeout not reached: 

candidate = choose_parent(corpus) 
muts = fuzz(candidate, mutation_rules, fuzz_stats) 
# Profile-guided testing 
resul ts += test_with_perun(muts, base_profile) 
corpus += resul ts 
rate_parents(results) 
update_stats(fuzz_stats, results ) 

Listing 7: Var ia t ion of pseudocode of Performance Fuzzing A l g o r i t h m without the access 
to source files. 
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4.4 M u t a t i o n Strategies 

In general, the goal of mutat ional strategies is to randomly modify a workload to create 
a new one. We w i l l present a series of rules inspired by performance bugs found in real 
projects, and general knowledge about used data structures, sorting algorithms, or regular 
expressions. 

B o t h the types of workloads and the rules for their modif icat ion are d iv ided into two 
basic groups: text and binary. In addi t ion , we added specific rules for X M L format based 
files. E a c h rule has its own label name (T stands for text, B for binary and D for domain-
specific) , w i t h a brief description of what it concentrates on and the demonstrat ion result 
of its appl icat ion on some sample data. 

4.4.1 T e x t F i l e Strategies 

The following rules are constructed str ict ly for text files. Suppose the seed workload for 
fuzzing is the file w i t h the string: 

'the quick brown fox jumps over the lazy dog*. 

Rule T . l : Double the size of a line. This rule focuses on possible performance issues 
associated w i t h long lines appearing i n files. The inspirat ion comes from the gedit 2 text 
editor, which shows signs of performance issues when working w i t h too long lines even in 
small text files. Another potential performance issue that this rule could force is a poorly 
validated regular expression that could be forced into lengthy backtracking while t r y i n g to 
match the whole line. 

'the quick brown fox jumps over the lazy dogthe quick brown fox jumps over 
the lazy dog' 

Rule T . 2 : Duplicate a line. S imi lar to the previous rule, but instead extends the file 
vertically. Suppose that there is a line in a file that represents a performance vulnerabi l i ty 
but does not manifest i n smal l sizes, therefore the degradation would not be detected. B y 
m u l t i p l y i n g the line we can likely trigger the vulnerabi l i ty and this could lead to a decline 
in performance. 

'the quick brown fox jumps over the lazy dog 
the quick brown fox jumps over the lazy dog' 

Rule T . 3 : Div ide a line. S imi lar ly to Rule T .2 , the rule may pose a threat to programs, 
whose performance does not depends so much on the length of the line as the number of 
lines in the workload file. Moreover, the rule can be effective for regular expressions match
ing whole lines. T h e line w i l l be cut, which means it w i l l not contain what the regular 
expression would expect, and could force backtracking. 

'the quick brown fox jumps o 
ver the lazy dog' 

2gedit — https : / /wiki .gnome.org/Apps/Gedit 
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Rule T . 4 : Change random character. Th is is t radi t ional fuzzing method since the emer
gence of fuzzing, which can trigger unexpected behaviour for various reasons. W h i l e this 
is not a specific rule for performance, i n PerfFuzz [10] authors found interesting workloads 
even w i t h basic mutat ion rules. 

'the q u i c k brown fox jumps over the lazy dog' 

Rule T . 5 : Repeat random word of a line. O n vulnerabil it ies, e.g., i n a handler when 
a program is t ry ing to store what has been read and the record already exists (hash table, or 
user registration to a database). Further , in situations where the program expects unique 
input data, e.g. sorting a lgor i thm QuickSort reaches its worst-case when a l l the elements 
are the same [3]. 

'the q u i c k brown fox jumps over the lazy dog dog dog dog dog dog dog dog' 

This pair belongs to the rules that focus main ly on sorting algorithms and searches i n data 
structures. Accord ing to [3], QuickSort exhibits worst-case 0 ( n 2 ) behaviour also when 
the elements are sorted or reversely sorted. We expect that s imilar behaviour could hold 
for the other sorting algorithms, searching algorithms (and their heuristics), and others 
which assume randomly sorted workload. T h e result is showing which words change their 
posit ion w i t h i n the line and which not when sorting i n ascended and descended order. 
Rule T . 6 : Sort words or numbers of a line. 

'brown dog fox jumps lazy over q u i c k the the' 

Rule T . 7 : (Reversely) sort words or numbers of a line. 

'the the q u i c k over lazy jumps fox dog brown' 

The following rules are focused on the efficiency of the program white character handl ing. 
The inspirat ion lies i n the well -known StackOverflow outage on J u l y 20, 2016. The reason of 
the outage was regular expression " [\s\u200c] + | [\s\u200c]+$ intended to t r i m Unicode 
space from start and end of a l ine. If the str ing to be matched against contains e.g. 20 000 
space characters i n a row, but after the last one there is a different character, Regex engine 
expected a space or the end of the str ing. Real is ing it cannot match like this it backtracks, 
and tries matching start ing f rom the second space, checking 19,999 characters, then from 
t h i r d space and so on [2]. S imilar deployment of the seemingly harmless regular expression 
could be detected w i t h the help of these rules. 

Rule T . 8 : A p p e n d whitespaces. Sometimes we want to t r i m a line, i.e. remove 
the white characters from the front or back. Th is rule s imply adds 100 to 1 000 whitespaces 
at the end of the line. The amount of whitespaces is chosen from the same interval for 
every rule i n this group. 

'the q u i c k brown fox jumps over the lazy d o g u u u u u u u u u u u u . . - u u u u u u u u u u u u ' 

Rule T . 9 : Prepend whitespaces. A follow-up rule that adds white characters to the be
ginning of a line. 

'uuuuuuuuuuuu-•-uuuuuuuuuuuuthe q u i c k brown fox jumps over the lazy dog' 
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Rule T.10 : Insert whitespaces on a random place. Th is mutat ion can split data into 
mult iple parts. For applications relying on C P U caching this rule could force load of gaps 
in the memory (which are often useless data) , and therefore appl icat ion may slow down. 

'the quick brown fox j u m u u u u u u u u u u u u . . . u u u u u u u u u u u u p s over the lazy dog' 

Rule T . l l : Repeat whitespaces. Follows the same principle as the previous rule, w i t h 
the difference that spaces w i l l be in the same place only larger. If the input has a more strict 
format, then the previous rule w i l l not succeed because it breaks the input data format. In 
this case the spaces w i l l be mul t ip l ied and the structure may not necessarily be corrupted. 

'the quick brown fox jumps over t h e u u u u u u u u u u u u . . . u u u u u u u u u u u u l a z y dog' 

Rule T.12: Remove whitespaces of a line. Th is method removes any white spacing of 
a line, and thereby creates continuous data. W h e n using a hash table, two complications 
can occur: (a) the hash funct ion could calculate the index for a long t ime, (b) always new 
unique data could quickly fill the table, and thereby enlarging the hash table. A similar 
case is when a program expects a space after e.g. 10 characters and it is missing i n the file. 

'thequickbrownfoxjumpsoverthelazydog ) 

The t radi t ional rules that deletes random parts of the data are inspired by fuzz testing 
cores. Removing of some elements may lead to, e.g., the parser wait ing for some character 
or str ing or number. T h i s rule could also be effective i n the case of regular expression 
backtracking, again. 

Rule T.13 : Remove random line. 

'tho quick brown fox jumps ovor tho lazy dog' 

Rule T.14: Remove random word. 

'the quick brown fox jumps over the lazy dog' 

Rule T.15 : Remove random character. 

'the quick brown fex jumps over the lazy dog' 

4.4.2 B i n a r y F i l e Strategies 

We propose the following rules for binary files. In case of b inary files we cannot apply 
specific domain knowledge nor can we be inspired by existing performance issues instead 
we mostly adapt the classical fuzzing rules. Let us assume binary file w i t h the following 
content: 

'This i s !binary! f i l e A O ' . 

The following two rules are based on the fact, that in C language, the str ing is considered 
to be a series of characters terminated w i t h a N U L L character ' \ 0 ' . Thus , a str ing cannot 
contain a N U L L character and by adding it and then reading can terminate the program 
t h i n k i n g it reached the end of a s tr ing and the read data w i l l be incomplete. Removing 
the zero byte could lead to program non-termination or crash reading the whole memory. 
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Rule B . l : Remove random zero byte. 

'This i s Ibinary! f i l e . \ 0 ' 

Rule B . 2 : A d d zero byte to random position. 

'This i s ! \0binary! f i l e A O ' 

The inspirat ion for the last binary fuzzing rules is their deployment and success i n existing 
fuzzing tools. A l t h o u g h they do not have a specific focus on performance, they can often 
trigger unexpected behaviour. 

Rule B.3 : Insert random byte. 

'This i s !binar$y! f i l e A O ' 

Rule B.4: Remove random byte. 

'This i s Ibinary! f i l e A O ^ 

Rule B.5 : Byte swap. 

'This i s ebinary! f i l ! . \ 0 ' 

Rule B.6 : Bite flip. 

'This i s "/.binary! f i l e . \ 0 ' 

4.4.3 D o m a i n - S p e c i f i c Strategies 

If we have more domain-specific knowledge about the workload format we can devise spe
cific rules. For the purpose of finding potential vulnerabi l i ty more quickly, we want to avoid 
workload discarding at the potential i n i t i a l check. We propose rules for removing tags, at
tributes, names or values of attributes used i n X M L based files (i.e. .xml, .svg, .xhtml, 
.xul). For example, we can assume a si tuation, when fuzzer removes closing tag, which w i l l 
increase the nesting. T h e n a recursively implemented parser w i l l fai l to find one or more of 
closing brackets (representing recursion stop condition) and may hit a stack overflow error. 
Let us assume a sample line of X M L file: 

< book i d ^ b k l O e ' pages='457' > 

Rule D . l : Remove an attribute. 

< book i d ^ b k l O e ' pages=-M£7- j > 

Rule D . 2 : Remove only attribute name. 

< book i d ^ b k l O e ' pages='457' > 

Rule D . 3 : Remove only attribute value. 

< book i d ^ b k l O e ' p a g e s = ; , 4 § 7 ' > 

Rule D.4 : Remove a tag. 

< book id= , bkl06 > psLgQE=><15T > 
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We can adapt s imilar rules for e.g. H T M L files or J S O N - f o r m a t . In this work we l imit 
ourselves to X M L only. The concept of how the i n d i v i d u a l rules are selected, when the rule 
is preferred and the other is neglected (or total ly rejected) is described i n Section 5.3. 

Fuzzer also offers the possibil i ty of adding custom rules. For adding the rules to a m u 
tat ion strategy set, one has to launch the fuzzer w i t h a special file i n Y A M L file format 
containing the description of these rules. Y A M L is chosen because the P E R U N too l already 
includes anci l lary functions for basic work w i t h Y A M L files. E a c h rule is represented as 
an associative array i n a form key: value, where both are regular expressions but key is 
a pattern which should be replaced, and value is the replacement. A n example of how such 
a file might look like is shown i n L i s t i n g 8. 

Back: Front 
d e l : add 
remove: create 
([0-9]{6}),([0-9]{2}): \ \ 1 . \ \ 2 
(\\w+)=(\\w+): \\2=\\1 

Listing 8: A file containing five custom rules defined by regular expressions. E a c h rule 
is then implemented i n a separate function, where occurrences are substituted by standard 
regular expression replacing. 
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Chapter 5 

Implementation 

In previous chapter we proposed a fuzzer w i t h focus on triggering performance bugs. This 
work w i l l be integrated i n the P E R U N i n P y t h o n 3.5. In this chapter, we w i l l describe 
the options of fuzz unit incorporat ing i n the P E R U N , and reveal selected implementat ion 
details of the Performance Fuzzing A l g o r i t h m from L i s t i n g 6 and 7, respectively, and some 
other heuristics and features. 

5.1 Fuzzer Implementat ion Structure 

The proposed solution required to split the implementat ion part into several logical units. 
We have broken the funct ional i ty of the fuzzer into the following nine modules: 

• coverage. py: implements functions for coverage-guided testing, 

• f actory .py: m a i n module of the project, contains the fuzzing loop, controls mutat ing , 
rat ing the parents and so on, 

• fi lesystem.py: contains functions dedicated for various operations over files and 
directories in file system which are helpful for fuzzing process, 

• f i l e t y p e . p y : module for automatic recognising the file type and choosing appropri 
ate fuzzing rules, and handl ing w i t h user defined rules, 

• interpret .py: contains a set of functions for interpretation the results of fuzzing, 

• methods /binary .py: collects general fuzzing rules for b inary files, 

• methods / textf i l e .py: collects general fuzzing rules for text files, 

• methods /xml.py: collects fuzzing rules specific for X M L files. 

If a user wants his custom rules to become a part of the default set of rules (for certain 
type of file), it is necessary to implement them and modify the script f i l e t y p e . p y , which 
is responsible for selecting the rules. To add, for example, specific rules for J S O N file type, 
one just has to create a new script, say json.py, and modify the rules selection. Note that 
every rule should contain a brief description, which w i l l be displayed after fuzzing. 
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Integration within Perun. The task of proposed fuzzer, as part of the P E R U N tool , is 
to find the potential harmful workloads dur ing continuous performance testing. Integration 
of fuzz unit w i t h i n P E R U N is captured i n Figure 5.1. 

Working Directory Perun-fuzz 
| Phase | Development 

|Result | Seed Workloads t 

Perun-runners 
Collection >» Postprocessing ' Change Detection 

- • Runnable — - • Profile Postprocessed Profile Performance Changes 

_ Performance 
Ss' Degradation 

. Performance 
Optimization 

g-H3-Q-HI}-D- -D-

ORA 
CLE 

• J ^ N o Change 

Figure 5.1: Fuzzer incorporated into the P E R U N , adopted from [8]. Fuzzer unit takes 
the seed workloads (e.g. problematic workloads for previous version of project) and starts its 
loop. In order to evaluate new mutations, uses the results of analyses yielded from P E R U N 
performance testing. If the fuzzer generates the workload which triggers a performance 
degradation, and so P E R U N detects i t , workload is stored, therefore developers can fix this 
performance issue and keep the workload for future testing. 

5.2 A c q u i r i n g In i t ia l Seeds 
We first have to get the set of user-provided i n i t i a l sample workloads (i.e. workload corpus): 
a crucial aspect of mutat ional fuzzing. Workloads can be passed to fuzzer comfortably as 
an arbi trary m i x of files or directories. Directories are then iteratively walked for a l l files 
w i t h reading permissions and optional ly name matching user specified regular expression. 
For example, consider an applicat ion that works w i t h text files (in format of T X T , X M L , 
H T M L ) and user has one large directory w i t h various collection of workloads. We can fuzz 
w i t h X M L files just w i t h simple regular expression " . * . xml$. If we want to skip a l l the files 
w i t h the name containing str ing „error" we can use " ( (?! error) .) *$ . Note that the fuzzer 
should always be launched w i t h just one type of i n i t i a l files even if the target appl icat ion 
supports more types, since we tune the rules according to workload file format. 

5.3 M u t a t i o n M e t h o d s Selection 

The resulting fuzzer distinguishes between text and binary files and for each format defines 
a set of concrete mutat ion strategies. It can be further extended by other strategies based 
on file mime-type as well . We select corresponding strategies on the beginning, based on 
the first loaded workload file. Basically, if this file is a binary, a l l the rules specific to 
binaries are added to the set of rules, otherwise we add a l l the basic text rules. If the mime 
type of a file is supported by the fuzzer, we add to the set of rules mime-specific rules as 
well as any user-defined rules. Note that the group of currently supported specific methods 
for certain types can be further expanded by other file types. 

We argue the advantage of fuzzing w i t h one file type rests i n its code covering feature. 
To be more precise, we are not observing at the overall percentage of code coverage, but how 
many lines of code has been executed i n tota l dur ing the run , w i t h an a i m to maximise i t . 
Consider an applicat ion that extracts meta-data f rom different media files, such as W A V , 
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J P E G , P N G , etc. If a P N G image file is used as a seed to this appl icat ion, only the parts 
related to P N G files w i l l be tested. T h e n testing w i t h W A V w i l l cause, that completely 
different parts of the program w i l l be executed [6], hence tota l executed code lines of these 
two runs cannot compare w i t h each other because reaching higher line coverage w i t h W A V 
files would lead to preferring them for fuzzing, and P N G files would be neglected (see 
Section 5.6.1 for more information about file preference). Moreover, we are aware that this 
strategy may miss some performance bugs. Fuzz ing mult iple mime-types is current feature 
work. 

5.4 In i t i a l P r o g r a m Test ing 
Baseline results (i.e. results and measurements of workload corpus) are essential for detec
t ing performance changes because newly mutated results have to be compared against some 
expected behaviour, performance or value. Hence, in i t i a l seeds become test cases and they 
are used to collect performance baselines. B y default, our i n i t i a l program testing as well 
as testing w i t h i n the fuzzing loop (Section 5.6) interleaves two phases described in more 
details below: coverage and performance-guided testing. 

5.4.1 C o v e r a g e - G u i d e d T e s t i n g 

If one wants to achieve good results i n triggering performance changes it is generally re
commended to monitor the code coverage dur ing the testing especially tracking coverage 
of unique paths. The intui t ion is that by moni tor ing how many paths are covered and how 
often they are executed, we can more l ikely encounter a new performance bug. 

In our fuzzer, we use Gcov tool to measure the coverage. The program has to be b u i l d 
for coverage analysis w i t h G N U Compi ler Col lect ion ( G C C ) w i t h the opt ion —coverage 
(or alternatively a pair of options - f p r o f i l e - a r c s -ftest-coverage). The resulting file 
w i t h the extension .gcno contains the information about basic block graphs and assigns 
source line numbers to blocks. If we execute the target appl icat ion a separate .gcda files 
are created for each object file i n the project. These files contain arc transi t ion counts, 
value profile counts, and addi t ional summary information [1]. 

Gcov uses these files for actual profi l ing which results into the output . gcov file. Version 
4.9 supports easy-to-parse intermediate text format using the opt ion - i when launching 
the tool . However, older versions does not support this option, hence before the r u n , we 
have to dynamical ly check the version and accordingly parse the output files. The difference 
between intermediate and standard format of output file is shown i n List ings 9 and 10. 

Tota l count of executed code lines through a l l source files represents the coverage (and 
part ly also a performance) indicator for the first testing phase. A n increase of the value 
means that more instructions have been executed (for example, some loop has been repeated 
more times) so we hope that performance degradation was l ikely triggered as well . Note 
that the l imi ta t ion of this approach is that it does not track uniquely covered paths, which 
could trigger performance change as well . Support of more precise coverage metrics is 
a future work. 

So first the target program is executed w i t h a l l files f rom workload corpus. A f t e r each 
single execution, .gcda files are filled w i t h coverage information, which Gcov tool parses 
and generates output files. We parse coverage data from the output .gcov file, sum up line 
executions, compare w i t h the current m a x i m u m , update the m a x i m u m if new coverage is 
greater and iterate again. It follows that base coverage is the m a x i m u m count of executed 
lines reached dur ing testing w i t h seeds. 
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file:motivation-example.c 
function:6,10,doSomething 
function:8,1,main 
lcount:6,10 
lcount:8,1 
lcount:10,1 
lcount:12,3 
lcount:13,2 
lcount:15,1 
lcount:16,11 
lcount:17,10 

Listing 9: The resulting gcov file in intermediate text format w i t h information about r u n 
of mot ivat ion example f rom L i s t i n g 5. We parse the lines start ing w i t h lcount, where 
the first value means the number of the line and the second how many times was the line 
executed. The program was launched w i t h an input str ing '10', which led to 39 executed 
lines in total . 

— 

0:Source:motivation-example.c 
0:Graph:motivation-example.gcno 
0:Data:motivation-example.gcda 
0:Runs:1 
0:Programs:1 
l:#include <stdio.h> 
2:#include <stdlib.h> 
3: 
4:#define DIGITS 2 
5: 

10 6:void doSomething(){ return; } 
- 7: 
1 8:int main(int argc, char ** argv){ 
- 9 : 
1 10: FILE * fp = fopen("workload.txt","r"); 
- 11: char array [DIGITS]; 
3 
2 

12: f o r ( i n t i=0; i<DIGITS; i++) 
13: a r r a y [ i ] = f g e t c ( f p ) ; 

- 14: 
1 

11 
10 

15: unsigned number = a t o i ( a r r a y ) ; 
16: for(unsigned i=0; i<number; i++) 
17: doSomething(); 

- 18:} 

Listing 10: The resulting gcov file i n standard format w i t h information about r u n of 
the same program w i t h the same input as in the previous case. One can see, that parser 
w i l l have to process twice as many lines i n comparison w i t h the intermediate format, be
cause of addi t ional information and code, which are currently unnecessary for our analysis. 
Therefore the parser has to go through 23 lines but only 8 of them contained wanted infor
mation. 
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5.4.2 P r o f i l e - G u i d e d T e s t i n g 

W h i l e coverage-based testing w i t h i n fuzzing can give us fast feedback, it does not serve as 
an accurate performance indicator . We hence want to exploit results from P E R U N . P E R U N 
runs the target appl icat ion w i t h a given workload, collects performance data about the r u n 
(such as runtime or consumed memory) and stores them as a persistent profile (i.e. the set 
of performance records). Analogica l ly to the previous section, we w i l l need a performance 
baseline, which w i l l be compared w i t h newly generated mutations. Profiles measured on 
fuzzed workloads (so called target profiles) are then compared w i t h a profile describing 
the performance of the program on the in i t i a l corpus (so c&lledbaseline profiles). In order to 
compare the pair of baseline and target profiles, we use sets of calculated regression models, 
which represents the performance using mathematical functions computed by the least-
squares method. We then use the P E R U N internal degradation methods [18] which work 
as follows. F r o m both of these sets we select for each funct ion models w i t h the highest 
value of coefficient of determination R2. This coefficient represents how well the model fits 
the data, and also its corresponding linear models. For both pairs of best models and linear 
models, we compute a set of data points by simple subtract ion of these models. T h e n we 
use regression analysis to obtain a set of models for these subtracted data points. Moreover, 
for the first set of data points, corresponding to the best-fit models, we compute the relative 
error, which serves as a pretty accurate check of performance change. A l l of these regressed 
models are then given to the concrete classifiers, which returns detected degradations for 
each function. 

5.5 Parents R a t i n g 

Initially, the workload corpus is filled w i t h seeds (given by user), which w i l l be parents 
to newly generated mutations (we can also ca l l these seeds parent workloads). W h i l e we 
fuzz, we extend the corpus w i t h successful mutations which become parent workloads too. 
The success of every workload is represented by the fitness score: a numeric value indicat ing 
workload's point rat ing. The better rat ing of workload leads either to better code coverage 
(and possibly new explored paths or iterations) or to newly found performance changes. 
We calculate the tota l score by the following evaluation function: 

scoreworkioad = icovrwovuoa,d * (1 + p c r w o r k i o a d ) -

Increase coverage rate (icovr): Th is value indicates how much coverage changed if we 
r u n the program w i t h the workload, compared to the base coverage measured for in i t i a l 
corpus. Basically, it is a ratio between coverage measured w i t h the mutated workload and 
the base coverage: 

iC(Wr w o r k l o a d = C ( W w o r k l o a d/c ( W b a s e -

Performance change rate (per): In general, we compare the newly created profile 
w i t h the baseline profile (for details see Section 5.4.2) and the result is a list of located 
performance changes (namely degradations, optimisations and no changes). Performance 
change rate is then computed as ratio number of degradations i n the result list: 

per workload = cnt(degradation, result) /len(result) 

This value plays a large role i n the overall ranking of workload, because it is based on the real 
data collected from the r u n . A n d so workloads that report performance degradations and 
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not just increases coverage have better ranking. The computat ion of per workload 

could 
further be extended by the rate of degradations, i.e. if two workloads found the same 
number of degradations, the workload which contains more serious change would be ranked 
better. Optimisat ions of ranking a lgor i thm is another future work. Th is evaluation serves 
for informed candidate selection for fuzzing from the parents, described i n the Section 5.6.1. 

5.6 F u z z i n g L o o p 

This m a i n loop runs for a l imi ted t ime specified the user. One, however must take take 
into account that testing and especially performance analysis has some overhead and so it 
may sometimes take longer. O n the other hand, the program can catch S I G I N T signal to 
terminate the fuzz test when a user decides to quit earlier. Fuzz unit is ready to receive 
this signal, however, other P E R U N units (collectors, postprocessors) have not implemented 
handlers for interrupt ion signal, hence it is not recommended to interrupt dur ing perfor
mance testing, but only in the coverage-guided testing phase. In this section, we described 
the m a i n loop of the whole fuzzing process and some of its most significant parts. 

5.6.1 P a r e n t W o r k l o a d Select ion 

The first task at the beginning of every i teration is to select the workloads from parents 
which w i l l be further mutated. A l l parents are kept sorted by their scores, and the selection 
for mutat ion consists of d i v i d i n g the seeds into five intervals such that the seeds w i t h 
similar value are grouped together. F ive intervals seem to be appropriate because w i t h 
fewer intervals parents are i n too big groups and i n case of more intervals, parents w i t h 
similar score are pointlessly scattered. F i r s t , we assign a weight to each interval using 
linear dis tr ibut ion. T h e n we perform a weighted random choice of interval . F ina l ly , we 
randomly choose a parent from this interval , whereas differences between parent's scores in 
the same interval are not very notable. The process of selecting is i l lustrated in F igure 5.2. 
The in tu i t ion behind this strategy is to select the workload for mutat ion from the best 
rated parents. F r o m our experience, selecting only the best rated parent i n every i teration 
does not led to better results, and other parents are ignored. Hence we do selection from 
al l the parents, but the parent w i t h better score has a greater chance to be selected. 

w = 1 w = 2 w = 3 w = 4 w = 5 

I — i > < i • j ' 

o 

parent input 

weighted interval selection 

• randomly chosen parent from selected interval 

Figure 5.2: Parents are d iv ided to intervals according to their fitness score. Weighted 
choice of interval determines the chunk of seeds, f rom which final candidate is randomly 
chosen. 

fitness 
score 
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5.6.2 D a t a M u t a t i n g 

Once we have baseline data for workload corpus and choose appropriate mutat ion rules 
for concrete file type, we use fuzzer to gradually apply the mutations and generate new 
workloads. However, it is necessary to determine how many new files (N) to generate by 
rule / i n the current i teration of fuzzing loop. If iV is too big and we generate mutations for 
each rule / f rom the set of rules, the corpus w i l l bloat. O n the other hand, if iV is too low, 
we might not trigger any change. Instead we propose to dynamica l ly calculate the value of 
N according to the statistics of fuzzing rules dur ing the process. Stat ist ical value of rule / 
is a function: 

statsf = (degsf + icovrf) 

where degsf represents the number of detected degradations by applying the rule / , and 
icovrf stands for how many times the coverage was increased by apply ing rule / . Fuzzer 
then calculates the number of new mutations for every rule to be applied i n four possible 
ways: 

1. T h e case when N = 1, the fuzzer w i l l generate one mutat ion per each rule. Th is is 
a simple heuristic without the usage of statist ical data and where a l l the rules are 
equivalent. 

2. The case when N = min(statsf + 1, FLPR), the fuzzer w i l l generate mutations pro
port ional ly to the statist ical value of function (i.e. statsf). More mutat ion workloads 
are generated for more successful rules. In case the rule / has not caused any change 
in coverage or performance (i.e. statf = 0) yet, the funct ion w i l l ensure the same re
sult as in the first strategy. F i l e L i m i t Per Rule ( F L P R ) serves to l imi t the m a x i m u m 
number of created mutations per rule and is set to value 100. 

3. Heurist ic that depends on the tota l number of degradation or coverage increases 
(total). The ratio between statsf and total determines the probabi l i ty probf, i.e. 
the probabi l i ty whether the rule / should be applied, as follows: 

( 1 if total = 0 

0.1 if statsf /total < 0.1 

stats f /total otherwise and we choose N as: 
1 if random < = probf 

0 otherwise 

U n t i l some change i n coverage or performance occurs, (i.e. while total = 0), one new 
workload is generated by each rule. A f t e r some iterations, more successful rules have 
higher probabil i ty, and so they are applied more often. O n contrary rules w i t h a poor 
ratio w i l l be highly ignored. However, since they s t i l l may trigger some changes we 
round them to the probabi l i ty of 10%. 

4. T h e last heuristic is a modified t h i r d strategy combined w i t h the second one. W h e n 
the probabi l i ty is high enough that the rule should be applied, the amount of gener
ated workloads is appropriate to the statist ical value. Probab i l i ty probf is calculated 
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equally, but the equation for choosing N is modif ied to: 

N = 
[ min(statsf + 1, FLPR) if random <= probj 

I 0 otherwise 

O u r fuzzer uses this method by default because in our experience it guarantees that 
it w i l l generate enough new workloads and w i l l filter out unsuccessful rules without 
total ly discarding them. In case that target program is prone to workload change and 
the user wants better interleaving of testing phases, it is recommended to use the th i rd 
method because the m a x i m u m number of a l l created mutations i n one i teration is 
l imited by the number of selected mutat ion rules. 

5.6.3 G a t h e r i n g Interest ing M u t a t i o n s 

We usually r u n fuzzing for a longer period of t ime t ry ing to trigger as many changes or 
faults as possible. To maximise the number of found changes we t ry to avoid running 
the target appl icat ion w i t h workloads w i t h a poor chance to succeed. 

In the s i tuation, when the workload does not exceed the coverage threshold, it is not 
significant, because the estimated instruct ion path length is not satisfactory, hence we 
discard this workload. The threshold for discarding mutations is mult iple of base coverage, 
set to 1.5 by default, but it can also be specified by the user. A mutat ion is classified as 
an interesting workload i n case two criteria are met: 

COVmut > COVthreshold & COVmut > COVparent 

i.e. it has to exceed the given threshold and achieve a higher number of executed lines than 
its predecessor. 

In addi t ion , we feel that the user may not know the ideal threshold and the default value 
may be too high or too low. Therefore, the constant which multiplies the base coverage 
(and thus determines the threshold) changes dynamica l ly dur ing fuzzing. In case it is 
problematic to reach the specified coverage threshold, the value of the constant decreases 
and thus gives more chance for further mutations to succeed. V i c e versa, if the mutations 
have no problem to exceed the threshold, the value of the constant is probably too low, and 
hence we increase it . 

D u r i n g the testing, fuzzed workload can cause that target program terminates w i t h 
an error (e.g. S I G S E G V , S I G B U S , S I G I L L , . . . ) or it hangs (runs too long). E v e n though 
we are not pr imar i ly focused on faults, they can be interesting for us as well because 
an incorrect internal program state can contain some degradation and i n case of error, 
handlers can also contain degradation. 

T h e F i n a l Phase of Iteration 

After the mutat ion, a l l the interested workloads are collected and ready for real testing to 
detect performance changes. Testing is done s imilar ly to the in i t i a l profile-guided testing 
(Section 5.4.2), but instead we test w i t h fuzzed interesting workloads. If the P E R U N detect 
some performance degradation, the part icular mutation's rate is recalculated, fuzzer update 
its statistics of mutat ion rules, and one i teration is at the end. 
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f u z z i n g 

F^ 
user 

workloads 
• • • 

F^ 

r 

F^ 
parent 

workloads 
• • • 

F^ 

performance testing 

Figure 5.3: Li fet ime of workloads, for better understanding. User workloads become 
parents, we are applying a set of rules on them in order to create their mutations, and 
the ones w i t h good coverage jo in the parent set. These workloads may also jo in the final 
results set, if they incur a performance degradation. 

5.7 Interpretat ion of F u z z i n g Results 
D u r i n g the fuzzing, every file executed w i t h the target program, where the collected runtime 
data showed a performance drop, joins the set of final results. A tester can then analyse 
these workloads manually. In addi t ion , fuzzer also produces files by which program termi
nated w i t h an error, or ran too long and these files are stored i n specific folders. Other 
mutations that have been created while running fuzz testing are removed. A n example of 
the structure and content of an output directory is shown in L i s t i n g 12. 

In order to interpret the results of fuzzing we propose two visualisation techniques: 
t ime series and workload difference. The t ime series graphs show the number of found 
mutations causing degradation and the m a x i m u m recorded number of lines executed per one 
run. F r o m these graphs, one can e.g. read the t ime needed to achieve sufficient results and 
estimate orientation t ime for future testing. In both graphs are denoted three statist ically 
significant values: first quarti le, second quartile (median) and t h i r d quarti le from the y-axis 
values. The intention is to i l lustrate at what point i n t ime we have achieved the i n d i v i d u a l 
port ion of the result. 

For p lot t ing t ime series graphs we used m a t p l o t l i b 1 l ibrary and di f f l ib 2 module helps to 
calculate deltas between files. Examples of results interpretation are shown i n Figures 5.4 
and 5.5. 

1 matplot l ib — https: / /matplot l ib .org/ 
2 diff l ib — li t tps: / /docs.pytl ion.org/3/ l ibrary/diff l ib . l i tml 
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Fuzzing in time 
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Figure 5.4: E x a m p l e t ime series graph, that demonstrates the growth of the detected 
degradations dur ing the fuzz testing. We can see when the first degradation was detected, 
when a quarter of the tota l number of degradations was reached (first quarti le, t ime: 22 s), 
when approximately half of the total degradations (second quartile, t ime: 35 s) and three 
quarters of the tota l degradations ( third quarti le, t ime: 50 s). In the end, the curve stabilised 
slightly because we found such mutations w i t h which the r u n of the program took longer. 
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Figure 5.5: E x a m p l e t ime series graph, that shows the growth of a m a x i m u m number of 
executed L O C dur ing fuzzing. In first seconds of fuzzing we found a mutat ion that force 
target program to execute 16 times more L O C in comparison w i t h the in i t i a l seed, and 
the ratio gradually increases to 29. Three quartiles denote t ime when 25%, 50% and 75% 
of the ratios are less than quartile value. User can find raw data of graphs w i t h the exact 
values i n logs directory. 
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Besides visualisat ion, we create diff file for every output file. It shows the differences 
between files and the original seed, from which the file was created by mutat ion . The file 
is in H T M L format, and the differences are color-coded for better orientation. E x a m p l e of 
diff file is shown i n L i s t i n g 11. 

+++ 

@@ -1 +1 @@ 
-spselpoOgmail.com 
+spsepogma.cospsepogma.com 

Listing 11: Di f f file (in uniffied format) shows the differences between the mutated work
load and a seed file. Green lines are fuzzed lines that replaced the original content, which 
is i n red color. 

output/ 
I— d i f f s 

I medium_words-02000b239d024dbe933684b6c740512e-•di f f html 
I medium_words-389d4162ad6641dl87dc405000b8d50a-•di f f html 
I medium_words-39b5d7aa55fd404aa4d31422c6513e2c-•di f f html 

I f a u l t s 
I medium_words-389d4162ad6641dl87dc405000b8d50a. t x t 

I graphs 
I coverage_ts.pdf 
I degradations_ts.pdf 

I hangs 
I medium_words-39b5d7aa55fd404aa4d31422c6513e2c. t x t 

1 logs 
I coverage_plot_data.txt 
I degradation_plot_data.txt 
I r e s u l t s _ d a t a . t x t 

I medium_words-02000b239d024dbe933684b6c740512e.txt 

Listing 12: A n example structure of output directory, which is hierarchically d iv ided into 
five subdirectories: d i f f s contains diff files of the workloads, f a u l t s includes workloads 
that led to a fault or crash of the target appl icat ion, graphs contains t ime series graphs 
in P D F format, hangs contains workloads which forced the program to reach the t imeout, 
and logs where are stored raw data used for p lot t ing the graphs and results of fuzzing in 
plain-text format. O n the same level are the workloads denoted as final results, i.e. causing 
performance degradation. 
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5.8 Fuzzer Interface 
Fuzz unit offers a command line interface (CLI ) for interaction w i t h user. To start the fuzzing, 
one uses command perun fuzz w i t h the specification of the tested command, along w i t h 
arguments, in i t i a l workloads, selected collector and possibly postprocessors (with their ad
di t ional parameters), s imilar to L i s t i n g 3. Moreover, the user can customise the fuzzing 
process by using addi t ional options, e.g. w i t h a goal to: 

• determine the t ime l imit for fuzz testing, 

• set the m a x i m u m size of generated mutat ion, 

• define the paths to source and . gcno files (inevitable for coverage testing), 

• set the values of the l imitat ions for coverage-guided testing (line 11 in L i s t i n g 6), 

• determine the i n i t i a l value of coverage increase ratio, 

• define the m a x i m u m time for execution w i t h one workload (timeout for hangs), 

• determine the strategy for choosing the number of generated mutations for the rules, 

• filter the in i t i a l set of workloads by regular expression, 

• define custom rules by attaching the Y A M L file w i t h their specifications. 

The user also has to specify the path to the directory where the results of fuzzing w i l l be 
stored i n a hierarchic structure as i l lustrated i n L i s t i n g 12. R u n n i n g perun fuzz — h e l p 
w i l l list a l l available options that user can specify i n order to customise the fuzzing. Af ter 
fuzzing, summary information about the testing w i l l appear on the standard output as 
demonstrates A p p e n d i x A . 

Proper ly tested code w i t h sufficient coverage is also one of the conditions for incorporat ing 
into the P E R U N tool . The test coverage of fuzz unit is l isted i n L i s t i n g 13. 

5.9 Test ing the Fuzz U n i t 

Name Cover 

perun/fuzz/ i n i t .py 
perun/fuzz/coverage.py 
perun/fuzz/factory.py 
perun/fuzz/filesystem.py 
perun/fuzz/filetype.py 
perun/fuzz/interpret.py 
perun/fuzz/methods/binary.py 
perun/fuzz/methods/textfile.py 
perun/fuzz/methods/xml.py 
perun/fuzz/perun_based.py 

1007. 
937. 
90% 

1007. 
1007. 
1007. 
1007. 
1007. 
1007. 

967. 

List ing 13: Results of unit testing w i t h coverage of i n d i v i d u a l modules. 
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Chapter 6 

Experimental Evaluation 
We tested our performance fuzzer on several case studies to measure its efficiency of gen
erating exhausting mutations. Th is chapter explores several performance issues i n data 
structures such as hash table or unbalanced binary tree, and a group of regular expressions 
that have been confirmed as harmful . A l l the tests ran on a reference machine Lenovo G580 
using 4 cores processor Intel Core i3-3110M w i t h m a x i m u m frequency 2 .40GHz, 4 G i B mem
ory, and U b u n t u 18.04.2 L T S operating system. 

6.1 Sor t ing Vulnerabi l i t ies 

Unbalanced B i n a r y Tree ( U B T ) . T i m e consumption of inserting to an unbalanced 
binary tree highly depends on the order of insertion. E v e n though it is expected to consume 
0(n.log(n)) t ime when inserting n elements, if the elements are sorted beforehand, the tree 
w i l l degenerate to a l inked list , and so it w i l l take 0 ( n 2 ) t ime to insert a l l n elements. 

F i rs t , we constructed files w i t h randomly generated 1 000 integers in the range of <0, 
1000> and 10 000 integers in the range of <0, 10 000>, and we used them as i n i t i a l seeds 
(seedi, seecfo) to a program that creates an U B T , iteratively inserts elements, and at the end 
prints the created U B T . We expected that the program performance w i l l highly depend on 
the amount of workload data, so w i t h the a i m to avoid large files we l imi ted the m a x i m u m 
size of mutations. 

Table 6.1: The worst-case mutations as workloads for program that manipulates w i t h 
an U B T . A l t h o u g h our first testing found some workloads reporting degradation, the change 
was not that impressive. W i t h i n the second testing, even a workload about half the size 
of the i n i t i a l seed could force the program to create over 125 times deeper b inary tree. 
The worst-case mutat ion that is as big as original seed, but w i t h sorted elements, pro
long the program r u n more than 100 times (two orders of magnitude degradation). Note 
that though the worst-case height of U B T when inserting 10 000 elements should be 9 999, 
the numbers of the in i t i a l seed were randomly chosen al lowing repeat. 

size [B] runtime [s] executed L O C ratio tree height 
seed\ 3 879 0.011 1.00 21 

worst-casen 1939 0.033 5.94 309 
worst-case\2 3 879 0.110 24.46 625 

seed2 48 913 0.109 1.00 26 

worst-case2i 24456 2.927 49.34 3 253 

worst-case22 48 912 11.014 187.36 6 346 
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Analys is of worst-case mutations confirmed that unbalanced binary tree degenerates to 
a l inked list when a sorted list is inserted. Table 6.1 presents the results of the program r u n 
w i t h the worst-case workloads from each testing. The rules applied on the most exhausting 
workloads are listed in Table 6.2. 

Table 6.2: Table shows the sequence of mutat ion rules that transformed the seeds into 
worst-case workloads. E a c h rule is identified by a label , as defined in Section 4.4. One can 
see that rules for sorting were more frequently used and thus more successful in mutat ion. 

used mutation rules 

worst-casen [T.7, T .6 , T .3 , T .6 , T .2 , T.6] 
worst-case\2 [T.7, T .6 , T . l , T .7 , T.4] 
worst-case2i [T.6] 
worst-case22 [T.7] 

std::list + std:find. In our second experiment, we tested the standard l ibrary list 
(std: :11st 1) which is usually implemented as a doubly- l inked list, and we performed 
a search w i t h s td : : f i n d 2 funct ion. The tested program reads strings from a file, saves 
them to list and subsequently performs a search for each of them. F i rs t i n i t i a l seed con
tained 5 000 random english words (seedi), and i n the second set of tests the i n i t i a l seed 
contained 10 000 random english words (seea^)- For each seed the program r u n for 266 m i l 
liseconds, and 524 milliseconds respectively in average to fill the list and then find every 
word. In first experiments, we set the m a x i m u m size of generated workload to the value of 
in i t i a l seed and i n the second one to double of the value. A f t e r testing we collect the worst-
case workloads and their impact on program is shown i n Table 6.3. The rules that led to 
transformation of the seeds into the worst-case workloads are listed i n Table 6.4. 

Table 6.3: T h e most greedy generated workloads compared to i n i t i a l workload. Processing 
the worst-case workload, which was the same size as the seed, took program slightly more 
t ime to process, roughly in similar proport ion as executed L O C ratio. B y inspection of 
these workloads we noticed, that the parts of them are sorted. A s one can see, the greater 
performance change was discovered when the seed containing around 10 000 words, which 
was expected. Note that worst-case file is two times bigger, contains two times more words, 
but incur one order of magnitude degradation. In comparison, the execution w i t h a file 
contained the same words as worst-case22, but randomly shuffled, took only 2.102 seconds 
in average. 

size [B] runtime [s] executed L O C ratio words 
seed\ 37459 0.266 1.00 5 000 

worst-caseu 37458 0.485 1.88 5 003 
worst-case\2 74 918 1.860 7.53 10 011 

seed2 74 915 0.524 1.00 10 000 

worst-case2i 74 897 1.876 3.78 10 041 

worst-case22 149 830 7.278 15.05 20 024 

1 std::l ist — https://en.cppreference.com/w/cpp/container/list  
2 std: : f ind — https://en.cppreference.eom/w/cpp/algorithm/find 
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Table 6.4: Table lists history of applied rules for worst-case mutations. Notice , that rules 
providing sort of the elements (T.6 and T.7) appear in the history of every mutat ion. 

used mutation rules 
worst-casen [T.3, T .7 , T .6 , T .2 , T .6 , T.6] 
worst-case\2 [T.2, T .7 , T . l , T .8 , T . l , T .6 , T . l ] 
worst-case2i [T.7, T .3 , T .3 , T .3 , T .3 , T .3 , T .3 , T .3 , T.3] 
worst-case22 [T.7, T . l , T.6] 

6.2 Regular Express ion D e n i a l of Service ( R e D o S ) . 

In this case study, we tested art i f ic ial programs which use s td : : regex_search 3 w i t h regular 
expressions inspired by existing R e D o S attacks. R e D o S is an attack based on algorithmic 
complexity where regular expression are forced to take long t ime to evaluate, mostly because 
of backtracking a lgori thm, and leads to the denial of service. 

StackOverfiow t r i m regex. The first experiment is the regular expression that caused 
an outage of StackOverfiow i n July, 2016 [2]. A n art i f ic ial program reads every line and 
search for match w i t h the regular expression. We used simple source code i n C perform
ing paral lel grep as an in i t i a l seed, wr i t ten i n 150 lines. W i t h only two tests, we could 
force the vulnerabil i ty, as we show i n Table 6.5. W h i c h rule is responsible for revealing 
the weakness can be found in Table 6.6. 

Table 6.5: The results from two testings w i t h size l i m i t a t i o n set to 5 000 and 10 000 bytes. 
Analys is of worst-case mutations showed that long sequences of whitespaces not ending w i t h 
the end of line caused the regex engine to backtrack repeatedly. A s one can see, the worst-
casei mutat ion achieved over 16 times longer runtime (one order of magnitude) w i t h only 
5 lines of code where whitespaces take 97% of a space. Since we used dynamical ly collected 
statistics, fuzzing gave the advantage to whitespace mutat ion rules, because of their success 
and therefore they were applied more often. It is more visible i n the worst-case2, where 
fuzzer could s imply enlarge the file by increasing the number of lines, but instead focused 
on white characters. 

size [B] runtime [s] executed L O C ratio lines whitespaces 
seed 3 535 0.096 1.00 150 306 

worst-casei 5 000 1.566 24.32 5 4881 
worst-case2 10 000 2.611 41.38 17 9603 

3std::regex_search — https://en.cppreference.eom/w/cpp/regex/regex_search 
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Table 6.6: M u l t i p l e uses of rule that inserts whitespaces to random posit ion result into 
big gaps not ending w i t h end of line: the weakness of tested regular expression. 

used mutation rules 
worst-casei [T.10, T.10, T.10, T.10] 
worst-case2 [T.10, T.10, T.10, T.10, T.10] 

E m a i l validation regex. Th is regular expression is part of the Regular Expression L i b 
rary' 1 and is marked as malicious and triggering R e D o S . We constructed a program that 
takes an emai l address from a file and tries to find a match w i t h this regular expression. A s 
an i n i t i a l seed we used a file containing val id emai l address 'spselpo@gmail.com'. We ran 
two tests, i n the first case w i t h an email that must contain the same count of characters 
as the seed, and i n the second case it can contain twice the size. We present the results in 
Table 6.7 and rules that were used on these mutations are listed in Table 6.8. 

Table 6.7: Worst-case mutations for email val idat ion regex. The longer lines not containing 
'<§>' sign cause catastrophic backtracking and were terminated (i.e. the r u n w i t h them take 
too much t ime). E v e n that the size l imi t for the second test was set to double of the seed 
(i.e. 36 bytes), the best result was 25 bytes long malformed workload. The reason is that 
bigger workloads were: (1) not that properly constructed, or (2) too greedy so program 
reached the set t imeout. Because of that, the fuzzer also reported another 8 mutations 
classified as hangs, and w i t h one of them (worst-case2hang) the program terminated after 
more than 5 hours of running. 

size [B] runtime [s] executed L O C ratio 
seed 18 0.016 1.00 

worst-casei 18 0.176 70.83 
worst-case2 25 10.098 4470.72 

worst-case2hang 36 >5 hours oc 

Table 6.8: Two rules, namely removing random character and extending a size of line, 
were mostly encouraged i n the generation of the presented workloads. 

used mutation rules 
worst-casei [T.15, T .8 , T.15, T . l ] 
worst-case2 [T.15, T.15, T . l ] 

worst-case2hang [T.15, T.15, T . l ] 

In the following we list the most greedy workloads from each testing and their content: 

• worst-casei: spselpogailcspselp 

• worst-case2'- spselpoailcospselpoailco 

• worst-case2hang- spselpoailcospselpoailcospselpoailco 

4 ht tp : / / regexlib.com/REDetails.aspx?regexp_id=1757 
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Java Classname validation regex. Th is vulnerable regular expression for val idat ion of 
Java class names appeared in O W A S P Val ida t ion Regex Repository"' . The testing program 
was similar to the previous one: reads a class name from a file and tries to find a match 
w i t h this regular expression. In i t ia l file had one line w i t h str ing 'myAwesomeClassName' . 
To avoid the large lines, first we set a size l imi t for mutations to the size of the i n i t i a l seed 
(19 bytes), then to double and finally to quadruple of the size. We present the results of 
these three tests i n Table 6.9. In addi t ion , Table 6.10 shows the order of rules used to 
mutate the in i t i a l seeds. 

Table 6.9: We detected two orders of magnitude degradation w i t h i n r u n of program 
w i t h the worst-case from the last test case (worst-cases). The fuzzer generates and stores 
another 26 files that was classified as hangs. B y addi t ional testing we found the worst-
case^hang workload which had enormous impact on program performance, and program d i d 
not terminate even after 13 hours lasting run . 

size [B] runtime [s] executed L O C ratio 
seed 19 0.005 1.00 

worst-casei 19 0.016 14.31 
worst-case2 36 1.587 2 383.99 
worst-case^ 78 3.344 5 056.67 
worst-case3hang 78 oo oc 

Table 6.10: Table lists the rules in order they was applied on the i n i t i a l seeds and cre
ated malicious workloads. Removing characters together w i t h data dupl icat ing, appending 
whitespaces and other rules collaborated on generation of the worst-case mutations for this 
case study. 

worst-casei [T.8, T.15, T .8 , T.15, T.15, T . l , T.12, T .8 , T . l ] 
worst-case2 [T.8, T.15, T.15, T .2 , T .8 , T.15] 
worst-case^ [T.8, T.15, T . l , T .4 , T.2] 
worst-case3hang [T.8, T .15 , T . l , T .15 , T.2] 

We again list the content of generated mutations: 

• worst-casei: mywesomelassamemywm 

• worst-case2'- mywesomelassamemywesomelassam u u u u u u u 

• worst-case^'- ssammyAwesomelassammyAweiomelassaVmyAwesxmelassammmyAwesome 
1as s ammyAwe ome1 

• worst-case^hang'- l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a a l a 
a l a a l a a l a a l a a l a a l a a l 

We also tested other regular expressions, which can be forced to an unlucky backtrack
ing, e.g., expressions to validate a H T M L file, search for a specific expression in C S V files 
or val idat ion of a person name from O W A S P V a l i d a t i o n Regex Repository. Some of them 
are part of the evaluation in an article presented at E x c e l @ F I T T 9 conference [11]. 

5 https : / /www.owasp.org/ index .php/OWASP_Val idat ion_Regex_Reposi tory 
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6.3 H a s h Col l is ions 

Final ly , we tr ied our fuzzer on a simple word frequency counting program, which uses 
hash table w i t h a fixed number of buckets (12 289 exactly) and the m a x i m u m length of 
the word l imi ted to 127. The dis t r ibut ion of the words in the table is ensured by the hash 
function. It computes a hash, which is then used as an index to the table. Java 1.1 str ing 
l ibrary used a hash function that only examined 8-9 evenly spaced characters, which can 
result into collisions for long strings [19]. We have implemented this behaviour into an 
art i f ic ial program. The likely intention of the developers was to save the function from 
going through the whole str ing if it is longer. Therefore, for fuzzing, we in i t ia l ly generated 
a seed w i t h 10 000 words of 20 characters and started fuzzing. To compare the results we 
chose the D J B hash f u n c t i o n 6 , as one of the most efficient hash functions. Tables 6.11 
and 6.12 show the result of this last experiment. 

Table 6.11: A f t e r only 10 minutes of fuzzing each test case was able to find interesting 
mutations. We then compared the r u n by replacing the hash function i n early Java version 
w i t h D J B hash function, which computes hash f rom every character of a str ing. Table 
shows, that worst-case workloads have much more impact on performance of the hash table 
and less stable times using Java hash function, compared to D J B . W i t h such a simple fuzz 
testing developers could avoid similar implementat ion bugs. 

Java 1.1 hash function D J B hash function 
size [kB] runtime [ms] L O C ratio runtime [ms] L O C ratio 

seed 210 26 1.0 13 1.0 

worst-casei 458 115 3.48 27 2.19 
worst-case2 979 187 7.88 43 4.12 

Table 6.12: Table shows the sequence of mutat ion rules that transformed the seed into 
worst-case workloads. In this experiment the rules that duplicates data (T.2) , increases 
number of lines (T.3) , changes and removes random characters (T.4 and T.15) were the most 
frequent. 

used mutation rules 
worst-casei [T.2, T .3 , T.15, T.15, T . l l , T.15] 
worst-case2 [T.2, T . 3 , T .4 , T.15, T .9 , T .4 , T .2 , T . 3 , T .15, T.15] 

We also tr ied our solution on projects that worked w i t h b inary and X M L files. Since they 
d i d not incur any changes i n performance, they are not part of the experimental evaluation. 
Therefore, improving the existing binary and domain-specific rules together w i t h designing 
new ones is one of our future goals. 

http: / / www.partow.net / programming/hashfunctions / # D JBHashFunction 
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Chapter 7 

Conclusion 

In this thesis, we introduced a fuzzing machine generating malicious inputs focusing on 
performance weaknesses. We use specific methods to mutate the files, dynamica l ly analyse 
their efficiency, collect coverage information and use the P E R U N tool to measure informa
t ion of program r u n . Moreover, after fuzzing we provide information about testing in raw 
and graphical form, and store the worst-case inputs along w i t h their deltas against the orig
ina l file. O u r solution revealed weaknesses in art i f ic ial projects working w i t h various data 
structures and harmful regular expressions, and their performance extremely degraded w i t h 
processing mutated inputs. 

In desing of mutat ion rules we s t i l l main ly focus on text files, hence our future work 
w i l l focus main ly on proposing more performance tuned rules for, e.g., b inary files or other 
domain-specific types of files. Moreover, we want to add support for fuzzing w i t h mult iple 
file types, and also improve parent rat ing and selection by deeper analysis of program run. 
A t last, we p lan to evaluate our solution on real-world projects and potential ly report new 
unique performance bugs. 
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Appendix A 

Example Output of the Fuzzing 

Fuzzing s u c c e s s f u l l y f i n i s h e d . 
P l o t t i n g graphs ... 
Computing deltas ... 
Saving log f i l e s ... 
Removing remaining mutations ... 
================================ RESULTS ================================ 
Fuzzing time: 611.35s 
Coverage t e s t i n g : True 
Program executions f o r coverage t e s t i n g : 870 
Program executions f o r performance t e s t i n g : 300 
Total program t e s t s : 1170 
Maximum coverage r a t i o : 3.4898473442156073 
Founded degradation mutations: 299 
Hangs: 0 
Faults: 0 
Worst-case mutation: /home/matus/long_words-e99eed7fe20ef2e4e717676a2.txt 
============================= MUTATION RULES ============================ 
i d Caused deg cov i n c r Desription 
0 92 times Change random characters at random places 
1 66 times Insert whitespaces at random places 
2 114 times Divide random l i n e 
3 6 times Double the si z e of random l i n e 
4 72 times Append WS at the end of the l i n e 
5 0 times Remove WS of random l i n e 
6 76 times M u l t i p l i c a t e WS of random l i n e 
7 64 times Prepend WS to random l i n e 
8 12 times Duplicate random l i n e 
9 8 times Sort words of random l i n e 
10 7 times Reversely sort words of random l i n e 
11 0 times M u l t i p l i c a t e word of random l i n e 
12 0 times Remove random l i n e 
13 0 times Remove random word of l i n e 
14 82 times Remove random character of l i n e 
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Appendix B 

Storage M e d i u m 

/perun/* — source code of P E R U N containing fuzz unit 

/README.txt—useful information about the storage m e d i u m content 

/ t e x t / * — source code of this thesis 

/ x l i s c i 0 2 .pdf — final version of this thesis 

/experiments/* — source code of experimental projects 
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