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Abstract 
This thesis proposes an algorithm for multi-exposure ghost-free H D R video acquisition for 
embedded devices. The Ghost-free H D R acquisition was evaluated on the state-of-the-art 
F P G A architecture and achieved more than real-time performance of 96FPS on FullHD 
resolution. The proposed Ghost-free algorithm produces output visually comparable to the 
state-of-the-art algorithms which are considerably more demanding or not implementable 
on embedded devices at all. 

Abstrakt 
Tato práce navrhuje algoritmus pro pořizování ghost-free H D R videa ze sekvence expozic, 
který je určený pro implementaci ve vestavěných zařízeních. Vlastnosti algoritmu byly 
ověřeny implementací ve state-of-the-art architektuře H D R kamery, kde je schopen zpra
covávat H D R video s potlačením tzv. ghosting efektu rychlostí až 96 snímků za sekundu na 
FullHD rozlišení, což více než dostačuje pro zpracování v reálném čase. Navrhovaný ghost-
free algoritmus produkuje výstup vizuálně srovnatelný s nejmodernějšími algoritmy, které 
jsou výpočetně řádově složitější a často je nelze na embedded zařízeních ani implementovat. 
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Chapter 1 

Introduction 

In the real world, our human vision is capable of seeing and recognising objects in various 
light conditions, even when they mix in one scene, such as a view from dark room outside 
to the sunny street. In the contemporary digital world, we are also trying to get this real-
looking images into digital form as photography, video etc. One of the current problem 
in digital image acquisition is very limited dynamic contrast that can be captured from 
the scene, because the current camera sensors have only limited and linear response to the 
light, unlike the human eye. This often leads to photos with some white (overexposed) and 
black (underexposed) sections. 

A n effort still exists to remove this bottleneck and capture a high dynamic range image 
(HDR). The first possible way is to assemble a chip with a non-linear response to lightning. 
They are currently available, but they are still in the early age of development and suffers 
from some bugs, they have small resolutions, etc. Currently, most spread way how to obtain 
an H D R image is by merging a sequence of low dynamic range images (LDR) captured by 
the ordinary camera into one HDR. 

The algorithms that merge LDRs into H D R image are known for a quite long time, but 
they produce a good visual result only with static scenes. In case of any motion, either 
in the scene or by the camera itself, the ghosting artefacts occur in resulting H D R image. 
Quite many papers about deghosting techniques were proposed; however, it is still a chal
lenge and a quite open problem, no universal method with reference „deghosted" result 
exists. 

This dissertation is motivated by a need of many surveillance, security, traffic monitor
ing systems, and industrial applications that can benefit from H D R video capture. These 
applications are typically cost-sensitive and so multi-exposure H D R acquisition is often the 
only feasible option. In these use-cases, the motion in the scene is inevitable and „ghosting" 
in such systems, caused by the nature of image acquisition, troubles the applications. There
fore, I decided to develop a method of fast de-ghosting for such applications. 

Applications in surveillance, security and industry require high performance in general 
- we cannot afford slow and demanding offline processing that the best state-of-the-art 
algorithms require. The essential goal is to capture H D R image fast, to be able to react to 
a certain situation very fast and or in a given time frame. 

Image acquisition systems of this type are still being built on P C based systems; however, 
this approach is on the decline, since the PCs are expensive, they have large dimensions, and 
they consume a lot of power. Nowadays, the interest is turning towards compact embedded 
systems, which are breaking such limits. They often contain low power CPUs accompa-
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nied by powerful, task tailored accelerators which require a fraction of power consumption 
comparing to C P U based systems, while they can deliver even much more performance. 

The most efficient circuits are generally considered to be ASICs, which means Application-
Specific Integrated Circuits. It is a collective name for single-purpose circuits/accelerators, 
tailored to provide specific functionality only. However, the manufacturing cost of such 
circuits is enormous; its manufacturing pays off only with high volumes of chips. The de
velopment processes of ASICs are taking place on large F P G A s (Field-programmable Gate 
Array), which are a completely customisable array of logic gates and registers, which can be 
interconnected in any desired way; therefore, they offer quite the same flexibility in design 
as ASICs, but with diametrically lower cost. Nowadays, F P G A s are very popular even 
in consumer electronics for their computing power, reliability, reprogrammability, low cost, 
and also low power consumption. These benefits are outweighed by designing time, which is 
still quite high. Also, not every task is implementable or convenient to accelerate on F P G A . 

Some class of image processing algorithms are quite suitable for F P G A acceleration, at 
least when they uniformly process the image by pixels or blocks. For example, the H D R 
acquisition, as it was proposed by Debevec and Malik[4] is a typical example of a suitable 
algorithm. Unfortunately, this algorithm requires static images to produce a good-looking 
visual output. In case of motion in the scene, the ghost effects appear. As it is summarised 
later in this dissertation work, deghosting algorithms producing good visual output are very 
computationally demanding and quite often not even implementable on F P G A . The simpler 
algorithms are, on the other way, not very successful in deghosting and therefore, they are 
not suitable for applications in security, traffic monitoring, or industrial applications. 

These circumstances led me to set the scientific contribution of this thesis to prove that 
a multi-exposure ghost-free H D R acquisition algorithm comparable to the state-of-the-art 
algorithms in quality can be designed for an embedded hardware device and achieves a 
real-time performance at high resolution. 

The dissertation thesis begins with Chapter 2, which contains an overview of state-
of-the-art algorithms related to the H D R acquisition and tonemapping. Chapter 2 further 
contains an overview of state-of-the-art deghosting algorithms, followed by selected deghost
ing algorithms feasible to be implemented in embedded devices. The thesis continues with 
Chapter 3 that contains an overview of hardware platforms suitable for implementation 
of deghosting algorithms, including an overview of embedded system-on-chip solutions. 
Chapter 3 is further focused on embedded platforms of for H D R acquisition, followed by 
an overview of existing embedded H D R deghosting solutions. 

The proposal of ghost-free merging algorithm, which I developed to fulfil the goal stated 
in this thesis, is located in Chapter 4, which also contains algorithm evaluation, comparison 
to related algorithms, and also to the state-of-the-art. The chapter contains an evaluation 
of performance and power consumption, which demonstrates the engineering contributions 
of the proposed solution. The chapter ends with an evaluation of scientific contribution 
and by a summary of possible applications of the proposed algorithm. 
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Chapter 2 

H D R acquisition and deghosting 

This chapter contains an overview of state-of-the-art algorithms related to H D R acquisition 
and tonemapping. The chapter further contains an overview of state-of-the-art deghosting 
algorithms and also an overview of selected deghosting algorithms feasible to be imple
mented in embedded devices. 

2.1 H D R acquisition 

Two main approaches to H D R (High Dynamic Range) image capture exist. First of them is 
to build special cameras with H D R sensor. Some commercial products start to be available, 
such as SpheroCam H D R 1 , or Panoscan M K 3 2 In the academic world, Sakakibara et al. [37] 
introduced a High-Sensitivity C M O S sensor with gain adaptive column amplifiers and 14 
bit analogue-digital converters. Zhao et al. [57] capture H D R using the modulo camera. A l l 
the above approaches require the availability of special H D R sensors or generally expensive 
and technologically demanding equipment. Regarding the H D R sensors, it is questionable 
whether some physical limit in a dynamic range will eventually be reached and what it will 
be. 

The second and more frequently used approach is based on standard sensors/cameras 
which captures the high luminance range in the scene sequentially, by the acquisition of 
multiple images typically with varying exposure times [4, 28, 36, 25]; such sequence is then 
merged into one H D R image. The individual images can be captured simultaneously, e.g. 
using a beam splitter with several C C D / C M O S sensors [45], or, more often are gathered 
sequentially using a single image sensor which causes ghost effects by a motion of objects 
during the sequence acquisition. This approach is technologically less demanding and results 
in cheaper systems. 

H D R acquisition algorithms 

Two main approaches how to merge differently exposed standard images into an H D R 
image exist, the first and more efficient approach involves a combination of pixels in the 
image domain (direct merging of pixels). As an example, a method presented by Mertens et 
al. [25] combines multiple exposures directly without any knowledge of the camera response 
function(CRF). In this approach, only the best parts of frames from each exposure are 
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exploited. A resulting H D R image is obtained as a weighted average of pixel values across 
the exposures: 

N 
Ic = Y,w(Zk)Zk (2.1) 

k=l 
where Ic is a composite image, Zk is a pixel value and w (Zk) is a weight of a pixel. 

This approach produces the H D R images which can be directly displayed on L D R (Low 
Dynamic Range) monitors. 

The second approach is based on merging in the radiance domain, in the meaning of 
real illumination in the given scene. Algorithms using this approach are attempting to 
calculate the exact value of luminance in the scene. These methods require knowledge 
of the camera response function [4, 36, 28], which is the response function of the camera 
sensor to the incident light. The inverse function of C R F is then applied to obtain an image 
with approximately linear response to light. The C C D and C M O S technology generally do 
have a linear response function, but the image results are often affected by postprocessing 
algorithms, for example, by gamma-correction or by white balance. In general, R A W 
images are preferable for H D R composition because they contain data obtained directly 
from C C D / C M O S sensors without any postprocessing, and therefore it can be assumed that 
they have a linear response function. Unlike the merging in the image domain, this class 
of algorithms produces an image with higher bit-depth, which is not directly displayable 
on standard L D R devices. The H D R images have to be post-processed by algorithms 
commonly called tone mapping operators. The operators reduce the bit-depth of the H D R 
image while they preserve all important image details. 

Debevec and Malik [4] proposed an algorithm which can fuse multiple photographs 
into a high dynamic range radiance map whose pixel values are proportional to the true 
radiance values in the scene. The contribution of each pixel is determined from the weight 
function [4]. Resulting pixel value p in H D R image is calculated as a weighted average of 
each pixel exposures: 

L p = jy
 P U (2.2) 

J2i=ow(zip) 
where Lp is the resulting pixel value p in H D R image, iV is the number of input images, 
Zip is the value of a pixel p in image number i, ti is the the exposure time of image i. 

This algorithm could also be applied with different weighting functions [36, 28]. 

2.2 H D R deghosting 

The H D R merging algorithms [4, 28, 36, 25] summarized in Section 2.1 are suitable for static 
scenes only. Motion of objects during the image sequence capture causes adverse effects 
called ghosting. To reduce such effects, various methods to detect and remove ghosting 
from H D R images have been developed. 

The problem of removing motion artefacts for sequential H D R imaging has been the 
subject of extensive research and has led to two major type of approaches. The first type 
assumes that the images are mostly static and that only a small part of the scene contains 
motion. These de-ghosting algorithms use the input frames to determine whether a given 
pixel is static or has motion and then apply different merging algorithms in each case. For 
static pixels, the traditional H D R merge can be used. For motion pixels, many algorithms 
use only a subset of exposures (in many cases only one) to produce a deghosted H D R . The 
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fundamental problem with these techniques is that they cannot handle scenes with large 
motion if the moving parts of the scene contain H D R content. 

The second type of approaches attempts to align the input sources to a reference expo
sure before merging them into an H D R image. The most successful algorithms use optical 
flow to register the images, but even these methods are still brittle in cases of large motion 
or complex occlusion/dis-occlusion. 

According to the goal of this dissertation, I focused on algorithms feasible of capturing 
ghost-free H D R images in real-time. Anyway, a short introduction into the demanding 
optical flow and patch-based algorithms is presented. 

2.3 Mot ion object selection methods 

This dissertation work focuses on embedded systems and real-time processing; therefore, 
only simple, computationally unpretentious methods, categorised by Tursun [46], Srikan-
tha [41] and other authors as „motion object selection" methods are reviewed in this sub
section. The optical flow-based and patch-based algorithms are, due to their high com
putational demands, reviewed only for the coherence of the topic. Also, the global image 
registration is not addressed, as we assume only static cameras. 

Gallo et al. [8] assumes a linear dependency between couples of pixels when they „see" 
the same radiance levels, based on knowledge of exposure times. The following relation 
between the images is expected: 

Li = Lyj- (2.3) 

Any image spot violating this linear relation is considered as containing a motion. A l l 
images are registered to the reference image Lref, to suggest a good reference frame, they 
find the saturated pixels in each image of the stack, then they remove small saturated 
regions with morphological operators (erosion followed by dilation) because such area's 
neighbourhood usually contains enough information to avoid artefacts. Finally, they pick 
the exposure with the fewest remaining saturated pixels. [8] 

The reciprocity assumption states that if the radiance of the scene does not change, the 
exposure time and the irradiance are linearly related through the exposure time A t : 

X = E • At (2.4) 

To increase a robustness and prevent rising of such artifacts, the algorithm operates on rel
atively large rectangular patches (e.g. 40x40 pixels) rather than individual pixels. Patches 
with a large number of not corresponding pixels are omitted from merging, causing visible 
artefacts to occur at their boundaries; Gallo et al. [8] suggest their suppression by Poisson 
blending. 

Raman et al. [34] extended the work of Gallo et al. [8] so that it does not require any 
knowledge of the C R F or exposure settings. They introduced an intensity mapping function 
(IMF) obtained from the static part of the scene - they assume that upper 5-10 image lines 
are usually static. The authors assume the motion is mostly confined to the ground plane 
of the scene. This assumption may be very limiting, and it can work only for certain scene 
compositions. 

Grosch [9] proposed a simple method based on the estimation of pixel value from the 
known exposure time and C R F . In opposite to the most of the algorithms that require a 
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static scene and direct correspondence of pixels to obtain a C R F , Grosch uses the algorithm 
presented by Grossberg and Nayar [10] to recover a C R F from a non-aligned sequence 
with object motion. This algorithm calculates the response function based on cumulative 
histograms and is mostly unaffected by camera or object motion. [9] 

Wi th a known camera response function, they can predict the pixel colour from one 
image to another. For each pair of consecutive images, they test if the real colour in the 
second image is well approximated with the predicted colour from the first one. If the 
pixels at the certain position do not fit the estimation, the corresponding region is marked 
as ghosted into the error map. [9] To increase the robustness and eliminate the influence of 
the noise in the source images, the author uses a user-defined threshold for the pixel colour 
comparison. 

Wu et al. [51] algorithm estimate the C R F from regions where R G B vectors remain 
fixed with respect to the changes of exposure. The algorithm refines motion detection by a 
combination of pixel order relation from Sidibe et al. [39] and pixel value estimation from 
Grosch [9]. 

Wang et al. [50] proposed the motion region detection method, that is motivated by 
the inter-frame difference method for video sequence that does subtraction to compute the 
difference between adjacent frames on the intensity domain. To enable it, the algorithm 
normalises all images Lj according to the reference image Lref. For each pixel, if the 
corresponding difference value is bigger than a certain threshold, then the pixel is considered 
to be in a motion region. This method is commonly used on motion detection of video 
stream. [50] 

Figure 2.1: The Figure shows the results of variance based deghosting method by Jacobs et 
al. [12]. The variance map (bottom left) is obtained from the image sequence (upper row) 
and used to generate the H D R image (bottom right). Figure obtained from [12]. 

The algorithm of Jacobs et al. [12] is calculating pixel variance over the exposures to 
detect the presence of motion. The Variance Image is created, storing pixel's variance over 
the exposures in a matrix with the same resolution as input images. Further, they ignore 
under and over-saturated pixels in Variance Image. The Variance Image is transformed into 
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binary map (equivalent of ghostmap, see on Figure 2.1)), with movement clusters, which 
are formed by comparing the Variance Image with fixed threshold. The Variance Image is 
supplied by Uncertainty Image, which is calculated using the local variance, obtained from 
a histogram of a small 2D window; 5x5 pixels in size [12]. 

Min et al. [26] improved method of Pece et al. [32] and introduced multi-level threshold 
map, where thresholds are selected to divide the image into multiple regions according to 
the pixel intensity, each region having the same number of pixels (see Figure 2.2). Any 
difference between the threshold maps of input images and the reference image, presented 
typically by the mid-exposure one, is marked as a motion-region. Introduction of multiple 
histogram regions, in opposite to Pece et al. [32], allows for the incorporation of a tolerance 
in which shifts of pixels within neighbouring regions are not evaluated as motion. The 
algorithm suffers from dependence on scene composition and image histogram layout. The 
above methods by Pece et al. [32] and Min et al. [26, 27] are using coarse morphological 
operators, such as erosion and dilatation, to suppress false detection rising on edges or by 
noise. 

Figure 2.2: The figure presents the intermediate step of deghosting algorithm by M i n et 
al. [26]. The source sequence is on the top, the bottom images shows the multi-level 
threshold maps for corresponding images on the top. Figure obtained from [26]. 

Bouderbane et al. [2] implemented simple ghost removing algorithm on F P G A based 
platform. They were inspired by the work of Sidibe et al. [39] and presented the algorithm 
based on the modification of Debevec [4] weighting function. The idea of the methods is 
to adjust pixel weights based on the deviation from the reference image [39]. The function 
gives a higher weight for pixels whose value are closed to the reference value and low weight 
for pixels whose value diverges considerably from a reference value. Consequently, they 
achieved the same performance as the Debevec and Malik [4] standard algorithm with a 
ghost removing in a radiance domain, right before H D R data generation. [2] 
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2.4 Mot ion object registration methods 

The following algorithms are not suitable for real-time processing; however, I reviewed them 
for the coherence of the H D R deghosting topic and also because they are part of the state-
of-the-art in terms of deghosting quality. Achieving good visual results comparing to such 
algorithms is also one of my side-goals. 

Patch-based and Optical flow based algorithms 

These approaches attempt to align the different L D R exposures before merging them into 
the final H D R image. Although the alignment of images has long been studied in image 
processing and vision communities (e.g. Zitova and Flusser [58]), its application to H D R 
imaging has special considerations. The quality of the H D R images produced by these 
techniques is fundamentally limited by the accuracy of the alignment. Furthermore, optical 
flow cannot typically synthesise new content and thus cannot handle disoccluded content 
that could be made visible when aligning one image to another. [38] 

The algorithm proposed by Sen et al. [38] is a patch-based energy minimisation formula. 
The algorithm produces an H D R image from a set of L D R images captured with different 
exposures which is aligned to the reference image Lref and which is also an L D R image that 
contains the best-exposed pixels. The resulting H D R image contains as much information 
as possible from the well-exposed pixels from the Lref image (see Figure 2.3). In places 
where Lref is not well exposed, every patch in the image H at a given exposure should have 
a similar patch in one of the L D R images after exposure adjustment (coherence). Also, 
every exposure adjusted patch in all images should be contained in H at exposure k 
(completeness). The iterative approach performs joint optimisation of image alignment and 
H D R merge process until all the exposures are correctly aligned to the reference exposure, 
and a good quality H D R result is produced. 

Input l .DR sources Reconstructed L D R images Final loncmappcd H D R result 

Figure 2.3: The figure shows the source sequence, images reconstructed by patch-based 
algorithm by Sen et al. [38] and the resulting H D R image. Image obtained from [38]. 

Ferradans et al. [7] find dense correspondence of input images in the radiance domain 
with respect to the reference image. In order to detect the mismatches in the estimated flow 
fields, the input images are warped using the estimated fields, and the absolute difference 
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map of each pixel is calculated. Instead of applying a fixed threshold to the difference map, 
its histogram is modelled as a mixture of Gaussians. The pixel intensities corresponding to 
the flow vectors causing the mismatch are assigned zero weight in H D R reconstruction. The 
information from the remaining pixels in each input image is fused in the gradient domain. 
Jinno and Okuda [13] use a novel weighting function which has significantly smaller over
lap between the contribution of input L D R images to the radiance domain. The proposed 
method assumes that the global alignment is already performed. Displacement, occlusion, 
and saturation regions are modelled as Markov Random Fields. The optimal parameters 
are found by minimising the energy function (see [13]). [46] 

C N N based algorithms 

The latest published algorithms are based on popular Convolution Neural Networks (CNN). 
Kalantari et al. [14] based their approach on optical flow from L i u et al. [21] and merges 
images into H D R using C N N . At first step, the source images are normalised to the same 
level of luminance as the reference (middle) image - similarly to Wang et al. [50] and many 
others. Then, the optical flow algorithm of L iu et al. [21] is used to align the images. 
Such aligned set is merged using C N N network trained on their dataset containing ground 
truth sequences. The C N N is responsible for removing the ghosting artefacts appearing on 
the edges of motion regions. Yan et al. [54] proposed a similar approach; however, their 
proposed C N N uses not only surrounding information of a pixel as Kalantari et al. [14], but 
also considers the information from other frames. 

Input LDR Aligned LDR Tonemapped HDR Image Simple Merging Proposed 

Figure 2.4: The figure presents the results achieved by Kalantari et al. [14]. From the left -
the source sequence, images aligned by optical flow by L iu et al [21], resulting tonemapped 
images and the details of marked region merged by „simple" merging (probably by Debevec 
and Malik [4]) and by proposed C N N based method by Kalantari et al. [14]. 
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Chapter 3 

Embedded H D R acquisition and 
deghosting 

This chapter is devoted to a description of state-of-the-art implementations of H D R acqui
sition and deghosting on embedded devices and description of theirs, mostly custom based 
embedded platforms. 

After consideration the features of target platforms, the F P G A was selected as a target 
platform, namely the SoC Xil inx Zynq, which is a powerful combination of F P G A and 
dual-core A R M processor on the same chip. This SoC allows the application of hardware-
software codesign technique. It brings together the performance benefits of F P G A with 
the possibility of sequential execution of code - e.g. for driving the F P G A processing or to 
perform complex calculations, which acceleration in F P G A would be very demanding or not 
reasonable. Nowadays, the platforms with powerful embedded G P U , such as Nvidia Tegra, 
are starting to be concurrent at certain parameters. On the other hand, DSP platforms are 
slowly getting to the margins of interest. 

3.1 State-of-the-art hardware solutions overview 

Many research publications were published regarding the acquisition of H D R images; how
ever, only a few of them are oriented on embedded devices. H D R merging itself is not a 
complex algorithm, but for real-time acquisition, it requires a high memory throughput and 
external memory buffer, which is not available on many embedded platforms. 

F P G A based platforms are more than suitable for such type of applications. Several 
papers focused on F P G A acceleration and related to our work were published [18, 20, 48, 
49, 23, 33, 53, 43]. This section provides its overview and presents achieved properties. 

Realtime H D R video for eyetap wearable computer by Mann et al. 

Mann et al. [23] developed an F P G A based wearable H D R seeing aid designed for the electric 
arc welding (see Figure 3.1). The prototype consists of an EyeTap (electric glasses) welding 
helmet, with a wearable computer upon which are implemented a set of image processing 
algorithms that implement real-time H D R image processing together with applications such 
as mediated and augmented reality. The H D R video system runs in real-time and processes 
120 frames per second, in groups of three or four frames. The processing method, for imple
mentation on F P G A s (Field Programmable Gate Arrays), achieves real-time performance 
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for creating H D R video using the novel compositing methods, and runs on a miniature self-
contained battery-operated head-worn circuit board, without the need for a host computer. 
The result is an essentially self-contained miniaturize hardware H D R camera system that 
could be built into smaller eyeglass frames. [23] 

Figure 3.1: The "MannVis welding helmet" implements the Eye Tap principle which causes 
each eye to, in effect, function as if the eye itself were both a camera and display. Image 
obtained from [23]. 

The H D R output values are precomputed for a full range of input pixel combinations 
and stored in lookup tables in B R A M s . Even after certain optimizations of memory con
sumption, the B R A M demands are very high, especially when more than two L D R images 
are used. The system is implemented on Spartan-6 LX45 F P G A and produces 720p video 
at 60 F P S while fusing two images. 

Real-Time H D R Video Imaging on F P G A by Tao et al. 

Tao et al. [44] extended the work of Mann [23] by introducing a lookup table compressed 
using quadtree structure, which saves the amount of B l o c k R A M resources. Tao replaced 
the weighted sum approach with the new quadtree-based compositing for high-quality H D R 
video production. The proposed compositing circuits are generated by the software, with 
parameters given by the user. It compresses and implements a 2D Lookup Table (LUT) 
on an F P G A , by bounding the error and space of quadtree representation of the original 
L U T according to the expected usage, so that the L U T is compressed to fit within the 
total amount of the block R A M resource available in a mid-sized F P G A . They also add the 
support for 1080p video at 60 FPS . [44] 

HDR-ARt iSt : an adaptive real-time H D R smart camera by Lapray et al. 

Lapray et al. [18, 19, 20] developed a complete FPGA-based smart camera architecture 
named HDR-ARt iS t (High Dynamic Range Adaptive Real-time Smart camera). This smart 
camera is able to provide a real-time H D R live video from multiple exposures captur
ing to display through radiance maps and tone mapping. The main contribution of their 
work is the generation of a new F P G A embedded architecture producing an uncompressed 
Black&White 1280 x 1024-pixel H D R live video at 60 FPS . [20] 

According to the detailed description of these methodologies and the comparison of 
their real-time software implementations, they decided to use the Debevec's method [4] for 
H D R merging. The main advantage of this approach is that there is very little constraint 
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Figure 3.2: Xi l inx Virtex-5 ML507 F P G A board equipped with 1.3MPix C M O S , where 
Lapray et al. [18, 19, 20] implemented the H D R image acquisition and tone mapping. 
Image retrieved from [20]. 

about the response function (other than its invertibility). Moreover, the proposed algorithm 
proved to be quite robust and easy to use due to the simplicity of Debevec's equation (see 
Equation 2.2). [20] 

Regarding the tonemapping operators, Lapray et al. [18, 19, 20] implemented two the 
global tonemapping operators by Duan [5] and Reinhard [35]. Their implementations were 
published and described thorough their articles [18, 19, 20]. 

The HDR-ARt iS t platform [20] is a smart camera built around a Xil inx ML507 board, 
equipped with a Xil inx Virtex-5 X C 5 V F X 7 0 T F P G A (see Figure 3.2). The motherboard 
includes a 256 M B DDR2 S D R A M memory used to buffer the multiple frames captured by 
the sensor. 

3.1.1 Real-time H D R video compression using an F P G A by Zemcik et 
al. 

The architecture of the H D R camera proposed by Zemcik et al. [55] can capture 30 FPS 
FullHD with each frame formed from two exposures, or 20 fps FullHD video formed from 
three exposures. Wi th sharing the expositions, the output can eventually reach up to 
60FPS; however, the whole pipeline is limited by the capability of H.264 encoders, sup
porting 30FPS only. The main architecture highlight is the encoding of H D R video using 
two standard video codecs. The H D R camera designed by Zemcik et al. [55] is shown in 
Figure 3.3. 

This architecture uses standalone 2K Flare 1 camera connected over 3G-SDI interface2 

(commonly used in T V studios). This camera is producing high quality FullHD R A W image 
at up to 60FPS. 

1http://www.ioindustries.com/  
2https://www.smpte.org/standards 
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Figure 3.3: A photography of the H D R camera prototype. Note, please, the F P G A de
velopment board, the compression modules, and also the Flare camera connected by SDI 
interface. Image retrieved from Zemcik et al. [55]. 

Architecture by Zemcik et al. uses two or three images for H D R merging, depending on 
configuration, so there is implemented the equivalent number of framebuffers. The double 
buffering technique is used to avoid rising of image artefacts, which doubles the memory 
requirements but prevents rising of image artefacts. 

The primary demand for the H D R merging algorithm was the capturing of the as-high-
as-possible dynamic range, showing the benefits of H D R acquisition. Regarding that the 
architecture Zemcik et al. [55] use only a simple pixel selection algorithm, because the ex
position times are set so far from each other (by multiples of eight), that the particular 
pixel is exposed well only in one exposition. The others are often under on overexposed: 
thus their contribution to computed H D R value would be marginal. 

3.2 Ghost avoiding/removing solutions 

The following section summarises the state-of-the-art H D R acquisition solutions, which 
either suppress and remove ghosting effect or prevent its occurrence. 

H D R camera based on dual-gain C M O S by Tang et al. 

Tang et al. [43] developed an H D R camera based on Altera F P G A and equipped with dual-
channel C M O S GSENSE400BSI, which is able to apply different analogue gain to the same 
captured data (see the prototype on Figure [43]). The H D R camera can capture the wide 
dynamic range image of the nature scene without ghosting phenomenon, by combining the 
two images with different gain to an H D R frame up to 95 dB. Additionally, the frames 
are captured at the same moment by two channels with different gain, which reduces the 
interference between successive frames. However, the C M O S sensor has a rolling shutter, 
and the disruptive effects can still occur. [43] 

In such way of H D R acquisition avoids rising of ghosting effect caused by sequential 
image acquisition; however, the C M O S sensor has a rolling shutter, and then another kind 
of image artefacts still occurs. The maximum frame rate of the camera is 60 F P S at a 
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resolution of 1920 x 1080. The camera uses a global tone mapping operator by Duan et 
al. [5]. 

Real-time ghost free H D R video using weight adaptation method by Bouder-
bane et al. 

Bouderbane et al. [3] implemented a deghosting algorithm on the same platform as Lapray 
et al. [20]. Their method repose on the modulation of weights of the Debevec [4] algorithm, 
where they adjust pixel weights based on their deviation from pixels of the reference image 
using the weighting function given [2] (see Figure 3.4) which parameters are taken from 
Sidibe et al. [39]. 

To calculate final weighs (Figure 3.4 right) to be used in the high dynamic range recon
struction, they multiply the standard weights from Debevec [4] by the modulation factor 
(Figure 3.4 left). 
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Figure 3.4: The weight modulation factor (left) and the final weight function(right) used 
in ghost removal H D R merging. Red curve is the factor for the closest radiance value of 
L D R images to the reference radiance value, the blue curve is the farthest value from the 
reference value and the green curve is for middle values. Image retrieved from [3]. 

True H D R camera with bilateral filter based tone mapping by Nosko et al. [30] 

Nosko et al. [30] published the H D R architecture implemented on a custom camera platform 
based on SoC Xil inx Zynq XC7Z020 (see Figure 3.5). The platform is equipped by a low 
noise global shutter C M O S sensor Python2000 from O N Semiconductor with resolution of 
1920 x 1280 pixels. The camera provides up to 30 FPS of grayscale H D R video with fixed 
f-stop range. However, the architecture itself is capable of processing up to 96 FPS . The 
architecture implements a high quality local tonemapping operator by Durand [6] based 
on the bilateral filter of 9 x 9 pixels. Resulting tonemapped image is streamed over the 
network in the form of M P E G 2 - T S stream. 

The H D R camera architecture published by Nosko et al. [30] is based on the method by 
Debevec [4]. The exposition weights for individual images are calculated as follows: Given 
the image with shortest exposition t\ time weight equal to one, the other images will be 
given the weights of f1, where ti is exposition time of i th image in sequence. The H D R 
pixel value is computed as follows: 

E?=i Li • w(Li) H=—'n f i (3.i) 
Ei=i w(Li) 

where is the H D R pixel value, Lx is the x-th image in the sequence, ti exposition time 
of i-th image and w the „plateau" weighting function [1]). 

Unlike the algorithm by Debevec [4] they chose a plateau weighing function [1] as the 
one leading to the best visual experience; however, it can be easily customized. 
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Figure 3.5: Prototype of H D R camera by Nosko et al. [30, 31] 

The exposition time of the middle image in the sequence is configurable, however, the 
mutual intervals between exposures are fixed to multiples of two, which leads to shift 
operations instead of multiplication. Only a middle exposition value is configurable [30]. 

The resulting H D R pixel is obtained by dividing the sum of pixels by sum of weights. 
The division is a time and resource-demanding operation, so Nosko et al. [30] decided to 
convert it into multiplication by a tabulated fractional value. The sum of weights, according 
to bit-widths of intermediate results, needs to be represented by 11 bits (sum of three 9 bit 
values fits into 11 bits), so the fraction value is tabulated on 2048 entries. The resulting 
H D R pixel is in 10.8 fixed-point representation. 

Color H D R video processing architecture for smart camera by Nosko et al. [31] 

This architecture further improves the architecture by Nosko et al. [30]. The architecture 
provides up to 30 FPS of colour H D R video with fully adjustable f-stops. However, the 
architecture itself is capable of processing up to 96 FPS . The architecture implements 
particularly a ghost removal algorithm and a high quality local tonemapping operator by 
Durand [6] based on the bilateral filter of 11 x 11 pixels. 

The architecture is further enhanced by a colour support. They process individual 
pixels of colour Filter Array (CFA), in this Bayer mask, in the same manner as 
the grayscale pixels [42]. The colourization of the H D R image is done later, during the 
tonemapping process. 

H D R merging with ghost-free extension Nosko et al. [31] implemented the H D R 
merging algorithm from Debevec [4] with modification for Ghost removal. The proposed 
ghost-free H D R merging is based on a prediction of the pixel value. It is based on similar 
principles as the solutions of Grosch [9], Wu [51] and Wang [50]. 

Since the exposure time of each image is known, individual pixel values in image i can 
be predicted from reference image using values from j. 

Li « Lj • j- (3.2) 

where tx and ty are exposition times of images. If the pixel do not match predicted value, it 
is omitted from merging process. Certain tolerance is taken into account, since the sensor 
noise, quantization errors and C R F precision may influence the predicted value and thus 
cause the false ghost detections. 
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Chapter 4 

Proposal of ghost-free H D R 
technique 

This chapter contains the proposal of a novel ghost-free H D R merging algorithm, which 
is the core of my work during the pursuing of my Ph.D. The core of this chapter was 
published in Journal of Real-Time image processing as the article „De-Ghosted H D R Video 
Acquisition for Embedded Systems" [29]. 

The scientific contribution of this thesis is the proof that: 

A multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-
art algorithms in quality can be designed for an embedded hardware device and achieves a 
real-time performance at high resolution. 

The embedded hardware device should be based on F P G A technology with FullHD 
C M O S sensor onboard, at the same time be small in size and with low power demands to 
fit into the energy-efficient or battery-powered systems. 

In this chapter, a novel architecture implementing the above idea in F P G A is proposed 
and its functionality and quality of output are experimentally proved. The chapter consists 
of the quality comparison to the related implementations and even state-of-the-art methods, 
that are too computationally demanding and even not feasible to implement and/or accel
erate on F P G A . The aim is to show that proposed solution is simple, yet very powerful and 
providing good visual results at the same time. The performance and power consumption 
of algorithm implemented on various platforms is summarized at the end of this chapter. 

4.1 Ghost-free merging algorithm 

The proposed approach is based on pixel value matching, the idea being similar to the 
solutions proposed by Grosch [9], Wu [51], and Wang [50] but with quite different and 
improved processing. The exposure time of each image is known; therefore, it is possible 
to estimate and match pixel values in the adjacent images, except for the over or under
exposed patches where the pixel values will obviously not match. Such estimation is not very 
precise, the captured image data is affected by factors such as noise, sensor quantization 
errors, C R F , etc. The reviewed methods generally use fixed or user-guided thresholds which 
must be employed in order to introduce user-defined tolerance to these factors. These fixed 
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Figure 4.1: Figure obtained from real application of proposed ghost-free algorithm - traffic 
monitoring system with licence plate detection, which demonstrates the contribution of 
proposed method. Top left - stripes of original images with a significant car motion. Top 
middle and top right - Images representing coefficients used for the H D R merging (certainty 
maps, see Section 4.1). Bottom left - ghosted H D R image. Bottom right - H D R image 
merged using proposed method. 

or user-defined thresholds often cause adverse effects in the final H D R images, such as 
visible transitions between static and motion areas etc. I propose a method to overcome 
such problems. [29] 

4.1.1 Certainty map 

In this approach, every image Lj is assigned a Certainty map Ci related to the reference 
image Lref, which is generally considered to be the middle (exposure) image in the sequence. 
The Certainty map C contains values representing the estimated level of certainty that the 
individual pixels contain the same patch of the scene as the reference pixel, but obtained 
under a different exposure. Unlike ghostmaps, Certainty maps hold not only the patches 
containing motion, but rather all patches inappropriate for merging - such as under and 
over-exposed pixels. [29]. 

The probability distribution of low level value pixels is Poisson [22] due to the discrete 
nature of the incoming photons. Wi th higher intensities, the distribution transforms into 
Normal (Gaussian). Therefore, I use the Gaussian function to derive the certainty (esti
mated probability) that the two luminance levels, estimated and measured, match. The 
Certainty map Ci (see Figure 4.2) replaces the binary ghostmap with soft assigned values, 
obtained using the information from the reference image Lref, the estimated image L j , 
the exposure times U and tref, as well as the C R F . Note, please, that in this paper the 
inverse C R F was implicitly applied to all images L j . Image Lj is estimated by the following 
equation: 

(4.1) 
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Consequently, the estimated value for image i is processed along with the actual value 
of Li to get the probability based Certainty map Ci as: 

d = e (4.2) 

where a reflects the standard deviation of the pixel measurement (affecting the „softness" 
weight). The lower a is, the sharper or more strict the Certainty maps are, which results 
mainly in the dynamic range reduction. On the other hand, a high a causes „softer" 
Certainty maps, which may start to be ghosted. Ghost detection generally, and indeed 
inherently, cannot work well for the over and under-exposed spots of an image; thus the 
Certainty map algorithm contains a boundary condition: If the estimated value lies beyond 
the point of saturation, the Certainty is assigned at maximum value. [29]. 

Figure 4.2: Two Certainty maps (bottom) obtained from the sequence on the top. The 
Certainty map on the left was obtained from top left and top middle (reference) image, the 
Certainty map on the right was obtained from top middle (reference) and top right image. 

4.1.2 Multi-exposure merging algorithm 

Proposed modification of Debevec's [4] merging algorithm incorporates the weights from 
the Certainty map, obtained through Equation 4.2. The H D R image H is calculated as the 
weighted sum of pixels from n images using the following equation: 

Ci • w(Li) • Li • ~r~^ 
22i=1(Ci • w(Li)) 

The Ci for reference image certainty is considered to be 1. 
The w(Lref) is considered to be 1, as the reference image is a „pattern" with the desired 

object layout; it is not desirable to weight out the pixels, even if poorly exposed. A scheme 
illustrating the Equation 4.2 is shown in Figure 4.3. [29]. 
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Reference image 

Figure 4.3: A scheme illustrating the proposed ghost-free merging of according to Equa
tion 4.3 on a sequence of three images. 

4.2 Implementation in H D R pipeline 

We implemented the proposed algorithm into F P G A based H D R video acquisition pipeline 
proposed by Nosko et al.[31]. The proposed algorithm was designed to replace the original 
and very simple „Deghosting & merging" block (please refer to Nosko et al. [31]). The 
Table 4.2 compares the resources consumed by such pipeline with pipeline from Bouder-
bane et al. [2]; unfortunately, they do not provide more detailed statistics. For detailed 
description regarding pipeline, please refer to the article by Nosko et al. [31]. Please note 
that proposed design is built on Xil inx Zynq and Bouderbane camera on Virtex-6 and also 
that in Nosko's pipeline, more than 1/3 of L U T and Register resources and most of B R A M 
and DSPs are occupied by local tone-mapping operator [31]. 

Table 4.1: F P G A Resource utilisation for merging 3 L D R images of 1920 x 1080 pixels. 
Design is routed for Xil inx Zynq Z-7020. 

L U T L U T R A M F F B R A M DSP 
Certainty maps 3532 - 3339 4 4 
H D R merging 893 - 2570 10 16 
Total (HLS) 4425 - 5909 14 20 
Total (Routing) 1057 252 2052 2 16 
available 53200 17400 106400 280 220 
utilisation [%] 1.99 1.45 1.93 0.72 7.27 
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Figure 4.4: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method 
(bottom line) on sequences „Fast cars" [46] (left), „105" [47] (middle) and „117" [47] (right). 
Datasets contains 9 L D R (Low Dynamic Range) images. 

Figure 4.5: Output of proposed ghost-free merging method on the sequence of Gallo [8] 
(top). Previews of the various algorithm results are shown at the bottom: Gallo et 
al. [8] (A), Jacobs et al. [12] (B), Pece et al. [32] (C), Zhang et al. [56] (D) and proposed 
algorithm (E). The previews A to D are published online at http://www.vsislab.com/ 
pro jects/IPM/HDR/pro ject.html. 

The proposed algorithm was implemented into F P G A based H D R video acquisition 
pipeline proposed by Nosko et al.[31]. The proposed algorithm was designed to replace the 
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original and very simple „Deghosting & merging" block (please refer to Nosko et al. [31]). 
The Table 4.2 compares the resources consumed by such pipeline with pipeline from Boud-
erbane et al. [2]; unfortunately, they do not provide more detailed statistics. For detailed 
description regarding pipeline, please refer to the article by Nosko et al. [31]. Please note 
that proposed design is built on Xil inx Zynq and Bouderbane camera on Virtex-6 and also 
that in Nosko's pipeline, more than 1/3 of L U T and Register resources and most of B R A M 
and DSPs are occupied by local tone-mapping operator [31]. 

Table 4.2: Resource utilization of complete camera solution of Nosko et al. [31] enhanced 
by the proposed ghost-free merging block, comparing to Bouderbane [2]. 

L U T L U T R A M F F B R A M DSP 
Prop, pipeline 39145 3137 53592 51 58 
Bouderbane [2] 49193 - 50399 35 20 

4.3 State-of-the-art ghost removal evaluation 

This section is focused on evaluation of proposed ghost-free H D R merging and provides the 
comparison to the state-of-the-art algorithms. 

Figure 4.6: Sample outputs of related deghosting algorithms by Pece et al. [32] (left) and 
Min et al. [26] (right) on the scene from Figure 4.1. Our experiments revealed that listed 
algorithms should be successful only on images with convenient histogram distribution. 

The proposed algorithm is evaluated on H D R datasets focused on evaluation of H D R 
deghosting methods [47, 46, 16], on the image sets retrieved from related articles [8, 38, 
15] and also on the image sets captured by camera prototype by Nosko et al. [31] (see 
Section 3.2). 

The results of the proposed ghost-free merging are presented in Figures 4.1, 4.4, 4.5, 
4.9, 4.8, 4.10 and 4.12. Our method is suitable for almost any application with stationary 
cameras. Besides the evaluation of various generic datasets, the ghost removing capability 
was evaluated on a traffic monitoring task, where the main goal was to preserve the greatest 
possible level of detail so that the images can serve as evidence, with the readability of the 
licence plates of the vehicles in motion playing the most important part. Figure 4.1 contains 
a car approaching camera at approximately 50km/h. Still, six exposures (~ 66ms at 90FPS) 
were intentionally omitted between the images to show the capability of the ghost removing 
for e.g. faster moving objects. 

22 



Figure 4.7: Figure shows the ghost-free H D R outputs of Bouderbane [3] (left) and proposed 
method (right), both tonemapped by Duan [5] operator. Bouderbane result and source im
ages are retrieved from [3]. Please mind the color shift in very bright patches of Bouderbane 
result. 

According to presented results, the visual outputs are comparable to the state-of-the-art: 
however, the proposed algorithm is capable of running in real-time, while state-of-the-art 
algorithms require long offline processing in terms of seconds or even minutes per image. 

Probably only related work, which implements any ghost-free merging on embedded 
device, in this case on F P G A , was proposed by Bouderbane et al. [3]. They use method by 
Debevec and Malik [4], where they combined weighting function from Debevec with weight 
function proposed in their previous paper [2]; their method was inspired by the work of 
Sidibe et al. [39]. However, the ghost detection is based only on weak assumption, as 
Bouderbane use the weight function, which gives a higher factor for pixels whose recovered 
radiance value are closed to the recovered radiance of reference values and low factor for 
pixels whose radiance values diverge considerably from pixels radiance value of the refer
ence image. On the image data supplied within the article, the method suppress ghosting 
quite well(see Figure 4.7) but the slight ghosting effect is still present (see results in the 
article [2]), also the dynamic range is quite reduced, even in parts with static background. 

Algorithm by Gallo et al. [8] operates on relatively large rectangular patches (e.g. 40x40 
pixels [8]) instead of individual pixels. If the patch contains large number of pixels not 
corresponding to patch from the reference image, the patch is omitted from merging. As 
the patches used in the algorithm are quite large, visible artifacts occur at their boundaries: 
the authors suggest their suppression by Poisson blending. 

The methods based on histograms [32, 26] have a common issue, the scene has to be 
balanced from the point of histogram equalization. The method presented by Pece et 
al. [32] is marking pixels as ghosts based on decision, whether the pixel changes its relative 
position in histograms over all of the expositions. The position in histogram is acquired 
by comparison with median pixel value. If median is very low/high, for example if the 
scene has large large number of under/overexposed patches, the change of pixel position 
in histogram cannot be reliably detected. In the method proposed by Min et al. [26], one 
median threshold is replaced by eight percentiles and whole histogram is divided into nine 

23 



segments with equal number of pixels, but it only mitigates the same issue. The example 
outputs of the Pece et al. [32] and Min et al. [26] algorithms on data obtained by Nosko's 
camera [31] are shown on Figure 4.6. 

In general, the existing methods are more or less using fixed or user-adjusted thresholds 
and binary ghost maps, which either includes the pixel into the merging process or omits 
it completely. Such approach negatively affects the merging process and appearance of 
the resulting H D R image, causes higher noise on the affected patches around the moving 
objects, and also on wrongly detected patches. Proposed approach does not have such 
limitations, it is more robust, and does not require user-guided tuning of parameters. 

Figure 4.8: The source sequence (top left) is merged with (bottom) and without (top right) 
proposed ghost-free merging algorithm. Source images retrieved from Sing Bing Kang [15]. 

Figure 4.9: Output of the proposed H D R ghost-free merging method for Complex Scene 
1 of dataset [16] (left). Ghosted H D R image is shown on the right. Previews of various 
algorithm results are shown at the bottom. No de-ghosting (A), Silk et al. [40] (B), Sen et 
al. [38] (C), Photoshop (D), Photomatix (E) and proposed algorithm (F). The previews A 
to E are published as a part of a Karaduzovic dataset [16]. 
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4.3.1 Dataset evaluation and comparison 

I performed the evaluation on datasets [16, 46, 47], containing sequences of images of various 
scenes and different types of motion. The results provide a comparison of the proposed 
method with generally more precise and computationally demanding methods, commonly 
based on optical flow, which were not even included into the related work due to their 
complexity and high computational demands. 

One of the datasets [16] contains multiple scenes with artificial objects movements. Its 
advantage consists in the existence of the ground truth image, which allows a comparison to 
the results as well as to many results of various published methods [11, 38, 40]. Figures 4.5 
and 4.9 show the capabilities of the proposed method, showing that it provides results 
visually comparable to optical flow based methods. 

Table 4.3: Results of the „Dynamic Region Dynamic Range" metric proposed by Tursun [46] 
and evaluated on their dataset. The metric evaluates the resulting dynamic range within 
regions containing movement; the higher the value, the better. 

Metric „DR" [9] [38] [40] none This work 
Cafe 2.63 2.61 2.60 2.47 2.42 
FastCars 1.12 1.18 1.10 1.10 1.38 
Flag 1.40 1.50 1.49 1.45 1.59 
Galleryl 1.59 1.59 1.56 1.55 1.70 
Gallery2 2.41 2.56 2.14 2.29 2.05 
LibrarySide 1.78 1.93 1.60 1.76 3.20 
Shopl 2.20 2.39 2.00 2.10 2.42 
Shop2 2.68 2.72 2.89 2.55 2.42 
WalkingP. 1.94 2.07 1.83 2.05 1.58 

Tursun et al. [46, 47] published two datasets and proposed metrics for evaluation of H D R 
de-ghosting quality. The evaluated samples from the datasets are shown in Figure 4.4 and 
the H D R quality metric [46] is evaluated in Table 4.3. The metric evaluates the dynamic 
range achieved inside the motion regions, considering also the correctness of the de-ghosting. 
The image sets, in which we got worse results than other algorithms, were successfully de-
ghosted anyway; however, the worse results were probably caused by losses in the dynamic 
range. Evaluation of the proposed method on these datasets also proves that the proposed 
method is generally usable for sequences larger than two/three images, commonly used 
in cameras. In all the referenced datasets [16, 46, 47], the proposed algorithms achieved 
results visually comparable or even better than more complex algorithms (see Figure 4.10). 
However, the proposed method and also many H D R de-ghosting methods may yield artifacts 
in regions where the moving objects in the reference image are poorly-exposed, as Tursun 
et al. concluded [46]. 

Another metric that have been found useful is H D R - V D P 2 by Mantiuk et al. [24]. 
The metric evaluates the visibility and quality differences in image pairs and represents a 
probability that an average observer will notice a difference in the images in the pair (see 
Figure 4.11). The essential problem for the metric evaluation is the absence of ground truth 
images. Applying this metric on image sets without ground truth reference seems useless, 
as even the state-of-the-art algorithms may fail in ghost detection and/or changes in the 
image quality e.g. by bluring of motion regions (see top of Figure 4.10). As a result, the 
metric output obtained on such data does not have any meaningful value. 
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Table 4.4: Evaluation of the H D R - V D P 2 [24] metric on a „complex" scene from Karadu-
zovic's [16] dataset. 

scene 1 scene2 scene3 scene 4 
Q 73.24 76.20 82.83 71.58 

Karaduzovic's [16] dataset contains ground truth images, because it contains scenes 
with artificial object motion. The metric was evaluated on „complex" scenes and used the 
H D R merged from the ground truth sequence as a reference. The ground truth sequence 
is processed also by our algorithm (with de-ghosting disabled) to eliminate the effect of 
unrelated image enhancements and enables the direct comparison of the resulting H D R 
images. Table 4.4 contains an overall „quality" metric of the produced ghost-free H D R 
output according to H D R - V D P 2 [24] metric. Figure 4.11 shows „scene 1" with highlighted 
differences between ground truth H D R and ghost-free HDR. 

Figure 4.10: Figure shows scene „Cafe" from Tursun's [46] dataset processed with 
Sen [38] (top) and the proposed ghost-free algorithm(bottom). Sen [38] produce a heav
ily blured image, which precludes the H D R - V D P metric [24]; moreover, the de-ghosting 
method fails (see marked areas, where objects are shadowed and blured). 

4.4 Performance evaluation 

The performance of the algorithm on the relevant platforms is summarised in Table 4.5. 
Only the core parts, the certainty map creation and H D R merging were benchmarked, 
without including any data preprocessing time - please assume that at least in the F P G A 
and G P U implementations, the images are transferred into the memory using D M A in the 
background, without any performance losses. Wi th the proposed optimisations, the algo
rithm is single-pass only. Table 4.5 compares the performance of the proposed Ghost-free 
merging of three L D R images on F P G A , SoC G P U and C P U platforms. In the case of 
F P G A , the design achieves target frequency of 200MHz and is fully pipelined; therefore, it 
allows the production of result pixels every clock cycle. Unlike in the sequential C P U and 
G P U processing, increasing the amount of work that the F P G A pipeline performs leads to 
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Figure 4.11: Figure shows „scene 1" from Karaduzovic's [16] dataset processed by the 
H D R - V D P 2 [24] metric. The colour bar reflects the probability that an average observer 
will notice a difference between ghost-free H D R and ground truth H D R . De-ghosted H D R 
visual quality, according to H D R - V D P 2 metric [24] is 73.24 (see Table 4.4). 

consumption of more resources and prolonging the processing pipeline, which has a negative 
influence on latency; however, the data throughput remains the same (see Table 4.5). 

Table 4.5: The table compares the performance of the proposed ghost-free merging of 3 
L D R images (Figure 1.2) with a resolution of 1920 x 1080 on following platforms: F P G A 
Xil inx Zynq, embedded C P U and G P U Nvidia Tegra T X 2 and C P U Intel Core i7-3770 
(single core). 

F P G A T X 2 G P U T X 2 C P U C P U 
Certainty map [ms] 10.3 1.59 45.9 16.6 
Merging [ms] 10.3 4.58 112.3 23.0 
Total [ms] 10.3 6.17 158.2 39.6 
Overall F P S 96.45 162.07 6.32 25.25 

I chose the H D R camera prototype by Nosko et al. [31] for the integration of the proposed 
ghost-free method. I chose this camera prototype due to its compact size, presence of 
a FullHD resolution C M O S (and optionally with even higher resolution) and presence of 
Xil inx Zynq SoC. Moreover, I participated on the development of Nosko's prototype as well. 
The proposed method and its implementation into architecture Nosko et al. [31] have not 
been published yet; however, the performance parameters are already known. Moreover, 
I have designed the new ghost-free merging block as a 1 to 1 replacement of previously 
published H D R merging with ghost removal[31], then the overall design shares all other 
features, such as advanced local tonemapping. 
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Figure 4.12: A car passing by the camera - ghosted H D R (left) and result of the proposed 
ghost-free merging algorithm (right). 

The proposed algorithm should also be easily integrated into existing solutions of H D R 
acquisition devices by Popadic et al. [33], Lapray [20], Nosko [30] and probably others which 
are all based on pixel weighting, similar to Debevec and Malik [4]. 

The implementation on Nosko's platform allowed direct comparison with other archi
tectures, however, probably only related work, which implements multi-exposure ghost-free 
H D R acquisition on an embedded device, in this case on F P G A , was proposed by Bouder-
bane et al. [3]. The Table 4.6 provides an overall comparison to Bouderbane solution. 

Table 4.6: Comparison of main parameters of proposed solution to Bouderbane et al. [3]. 

Proposed pipeline on [31] Bouderbane 
Platform Zynq 7020 Vir t ex 6 
Resolution 1920 x 1080 1280 x 1024 
T M O Durand (Local) Duan (Global) 
Arithmetic Fixed point Floating point 
Maximum speed 200Mhz lU.2Mhz 
Throughput 200Mpix/s 114.2Mpix/s 
Framerate 96FPS 60FPS 

As can be seen on Table 4.6, the design outperforms the Bouderbane architecture in 
all parameters. The design is fully pipelined, producing H D R pixel in every clock cycle. 
Target clocking frequency is 200MHz, which enables the acquisition of FullHD H D R im
ages at up to 96FPS. The fixed point arithmetic has a positive contribution to clocking 
frequency, low resource requirement and low power consumption. At the same time, the 
calculations are still performed in high accuracy, which was summarized in Section 4.2. The 
platforms are both implemented in different F P G A family, where Zynq is part of 7th and 
Virtex part of 6th series from Xil inx. However, Virtex is a High end, while Zynq(Artix) 
only mid or low-end F P G A . The Table 4.2 shows the overall F P G A resource consumption 
for both complete camera solutions; Bouderbane does not provide separately the resources 
consumed by deghosting and H D R merging circuits. Please notice that local tonemapping 
operator with bilateral filter (on Nosko's platform) require more than 1/3 of overall L U T 
and Register resources and consumes most of B R A M and DSP resources. 
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The following part of the evaluation aims to compare proposed algorithm performance to 
related state-of-the-art implementations. The essential problem is those relevant algorithms 
are not generally available in the form of code or executable; therefore the performance 
comparison is rather limited to algorithms, where I managed to get source codes to run or 
where I get required information from relevant articles. 

The comparison from Table 4.7 confirms that deghosting algorithms do not generally 
achieve real-time performance. Depending on the algorithm and desired deghosting quality 
(if available), the process can take from tens of seconds to more than ten minutes. Certain 
algorithms, such as Grosh [9] which have similar computation complexity as the proposed 
algorithm, do achieve relatively low processing time, however, the output is not deghosted 
very well, as shown in evaluation by Tursun et al. [46]. The Table 4.7 shows, that proposed 
algorithm is running much faster than any compared algorithm and is even twice faster 
than the algorithm by Grosch [9]. Please note, that average times from Table 4.7 are valid 
for sets of nine images with 4MPix resolution. 

Table 4.7: Table results obtained from Tursun et al. [46]. The table shows the average 
processing time of deghosting algorithms on Tursun dataset [46]. Source image sets contain 
9 images with 4MPix resolution (Sen and Khan merges three images with 1024 x 683 only). 
Tursun achieved these results on C P U Intel i7-3770; however, it is not specified whether 
the algorithms utilized all C P U cores or not. Proposed method result is benchmarked as 
single-core. 

Proposed Grosch [9] Khan[17] Sen [38] Silk [40] Hu[l l] Tursun [46] 
Avg. time[s] 0.48 1.04 616.45 209.78 14.33 230.36 7.09 

The Table 4.8 compares the performance of proposed algorithm and algorithms by Pece 
et al. [32] and Min et al. [26]. I chose these algorithms to compare due to its possible easy 
implementation on F P G A ; the author claims that the algorithm does not use the multi
plication, division, and floating-point operations for object motion detection. Moreover, 
all operations, including the histogram calculation, are relatively easily implementable on 
F P G A . Also, the deghosting ability presented in the paper seemed to be very promising. 

Table 4.8: Table compares the performance of the proposed algorithm with algorithms by 
Pece et al. [32] and Min et al. [26]. Algorithms were benchmarked on C P U Intel i7-3770 
(single thread) on a scene from Figure 4.1. Source image set contains three images with 
FullHD resolution (1920 x 1080). 

Proposed Pece et al. [32] Min et al. [26] 
Avg. time [ms] 39.6 193 206 

I implemented the proposed algorithm and algorithms by Pece et al. [32] and M i n et 
al. [26] in C+-1-, so the performance presented in Table 4.8 should be comparable. As could 
be observed, the proposed algorithm is almost five-times faster. Moreover, the deghosting 
results are also better, as can be observed in Figure 4.6. The explanation of why these 
methods do not achieve good deghosting results is in the Subsection 4.3. 

The Table 4.9 presents the performance results obtained by Yan et al. [54] and presented 
in their article. They compared a number of algorithms and benchmarked them on C P U 
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Intel i7 and G P U N V I D I A GeForce G T X 1080Ti. As can be observed, the proposed 
algorithm achieved better performance on C P U architecture (single-core) than others on 
even high-end GPUs. Yan's [54] and Wu's [52] CNN-based merging are relatively fast: 
however, they run on high-end G P U , which consumes much more energy than C P U (up to 
280W). 

Table 4.9: Table results obtained from Yan et al. [54]. Table shows average processing time 
of deghosting algorithms on three images with resolution 1000 x 1500. C P U used is Intel 
i7 (not further specified by Yan), G P U used is N V I D I A GeForce G T X 1080Ti. 

Algorithm Proposed Yan [54] Wu [52] Kalantari [14] Sen [38] Wu [51] 
Platform C P U G P U G P U C P U + G P U C P U C P U 
Time [s] 0.022 0.31 0.24 29.14 61.81 79.77 

4.4.1 Power consumption summary 

This subsection provides a brief comparison of the power consumption of selected algo
rithms. The overall energy in Joules per one frame is estimated from processing time and 
T D P of a processor; alternatively, F P G A consumption is estimated by the design tools 
based on the amount of logic used. The Table 4.10 and Table 4.11 contains the energy 
requirements converted from performance summary in Table 4.7 and Table 4.8. 

Table 4.10 presents that the proposed algorithm has the lowest power consumption 
among all of the measured algorithms. The results were achieved on the dataset published 
by Tursun[46], which contains sequences of nine images with 4MPix resolution. It is not 
specified by Tursun [46] whether the algorithms utilize single or multiple cores; therefore, I 
assume only single-core implementation as a lower estimate of the possible power consump
tion. Proposed method result is benchmarked as single-core. 

Table 4.10: Table of energy consumption per H D R frame, derived from Table 4.7. The table 
shows average energy consumption for processing one H D R frame of deghosting algorithms 
on Tursun dataset [46]. 

Proposed Grosch[9] Khan[17] Sen [38] Silk [40] Hu[l l ] Tursun [46] 
Avg. 

energy [J] 
12 26 15411 5244 358 5759 177 

Table 4.11: Table compares the energy consumption for processing one H D R frame by 
proposed algorithm with algorithms by Pece et al. [32] and M i n et al. [26]. Algorithms were 
benchmarked on C P U Intel i7-3770 (single thread) on scene from Figure 4.1. Source image 
set contains three images with FullHD resolution (1920 x 1080). 

Proposed Pece et al. [32] M i n et al. [26] 
Avg. energy [J] 0.99 4.82 5.15 

The average consumption is 12J per one H D R frame, which is 46% of the second least 
demanding algorithm by Grosh [9]. Moreover, proposed algorithm demands are measured 
for single-core processing only, whether the data provided by Tursun [46] are not specified 
whether were achieved on single-core only; however, the results in Table 4.7 and Table 4.10 
assumes they are. 
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Table 4.12: The table compares the power consumption of the proposed algorithm on the 
C P U and F P G A platform and shows the estimated energy required for the ghost-free merge 
of the sequence of three FullHD images. Please note that consumption of Camera Nosko [31] 
includes camera as a whole. 

Consumption [W] Energy per frame [J] comp. to CPU[%] 
C P U Intel 17-3770 25W (single core) 0.99 — 

Camera Nosko [31] (30FPS) ~ 8 W 0.266 26.9 
Camera Nosko [31] (96 FPS) ~ 8 W 0.083 8.3 

Tegra T X 2 - G P U only 15W 0.093 9.3 
Proposed - F P G A only 1,1W 0.0115 1.16 

Table 4.13: The table compares performance of proposed Ghost-free merging of three L D R 
images (Figure 4.2) of resolution 1920 x 1080 on F P G A and C P U platforms. Data are 
selected from Table 4.5. 

F P G A Xil inx Zynq C P U Intel Core 17-3770 
Ghost det. [ms] 10.3 16.6 

Merging [ms] 10.3 23.0 
Total [ms] 10.3 39.6 

Overall F P S 96.45 25.25 

The H D R camera by Zemcik et al. [55] achieved overall power consumption of 12W and 
the H D R cameras by Nosko et al. [30, 31] even less, total 8W. Based on the performance 
summarized in Table 4.5 and assuming the maximum speed of 96.4FPS, the camera Nosko 
et al. [31] with proposed algorithm consumes 0, 083J per frame. The power consumption 
of C P U Intel Core i7-3770 was measured in single-core load (running proposed algorithm) 
and achieved 25W. C P U achieved framerate of 25.25 FPS , which results in consumption 
approximately 0.99J per frame; note, please, that the difference between standby and the 
full load was power consumption measured, which shows only the desired dynamic part of 
power consumption. 

In summary, the H D R camera by Nosko et al [31] with proposed algorithm consumes 
only 8.4% comparing to the C P U implementation. Moreover, most of the power consump
tion of H D R camera is spent on camera hardware, including C M O S chip and H.264 encoder, 
while the consumption of the F P G A itself consumes approx. 1,1W only (estimation by X i l 
inx Vivado tool). This result is much more favourable for F P G A , but the comparison is 
fairer because it compares only the „computing" elements. The energy spent on one frame 
drops to approx. 0.011J, which is little above 1% of the energy consumed by C P U . 

4.5 Validation and scientific contribution 

at the beginning of this Chapter 4 it was stated that the scientific contribution of this thesis 
should be the proof of the following hypothesis: A multi-exposure ghost-free HDR acquisi
tion algorithm comparable to the state-of-the-art algorithms in quality can be designed for 
an embedded hardware device and achieves a real-time performance at high resolution. 

In Section 4.1, I proposed a Ghost-free H D R acquisition algorithm implementable 
on F P G A . This method was implemented and its description is included in Section 4.2. 

31 



The proposed Ghost-free algorithm produces a visual output comparable to the State-
of-the-art as evaluated in Section 4.3. Finally, the proposed design achieves more than 
real-time performance of 96FPS on fullHD resolution as summarized in Section 4.4. 
Therefore, I consider the hypotheses validated. 

In more detail, the proposed novel ghost-free H D R merging algorithm is suitable for 
real-time implementation in embedded devices. The algorithm is well suitable for imple
mentation on many platforms, including the C P U and G P U based platforms. However, 
the aim of contribution was a successful implementation of such an algorithm into F P G A , 
which was experimentally proved in Section 4.2. Also, the target performance, which is 
real-time processing on FullHD resolution, was fulfilled, since the proposed solution is able 
to run on up to 96 F P S (Table 4.5). At the same time, the proposed solution outperforms 
the F P G A solution of only state-of-the-art F P G A implementation of Bouderbane et al. [3], 
which achieved only 60 F P S on H D resolution (1280 x 1024). 

The performance comparison with most of the state-of-the-art algorithms requires a 
C P U reference implementation. The performance evaluation in Section 4.4 shows that the 
algorithm performs well even on C P U ; single-core implementation achieves up to 25.25FPS, 
as shown in Table 4.5, which is the best result. The second least demanding state-of-the-
art algorithm, according to Table 4.7 is from Grosh [9]. Under the same conditions and on 
the same dataset[46], the proposed algorithm is faster by approx. 54%. Table 4.9 further 
compares the proposed algorithm with the latest and G P U accelerated state-of-the-art al
gorithms. Finally, Table 4.11 compares the C P U performance of related algorithms which 
I reviewed to be suitable for F P G A implementation. The proposed algorithm achieved the 
best result and is 4.8 times faster than the fastest F P G A implementable algorithm. 

Table 4.7 and Table 4.11 compares the C P U power consumption to state-of-the-art 
algorithms and, linearly with performance, requires only 46% of power comparing to the 
second least demanding algorithm by Grosh [9]. 

The C P U implementation itself is so fast that almost accomplished the real-time require
ment; however, the real benefits of the method stand out along with F P G A acceleration, 
which fundamentally affects the performance and power consumption. The Table 4.12 and 
Table 4.13 shows the effectiveness and benefits of F P G A acceleration of proposed algorithm. 
While the F P G A implementation offers almost 4-times higher performance comparing to 
C P U (25.25 FPS) and reaches the 96FPS, the energy consumption drops by 98,86% per 
frame. These parameters should be even much better in case of ASIC chip production 
(or integration into an existing chip, e.g. as an accelerator block), for which the F P G A 
reference implementation is necessary. However, I did not have such funding and contacts 
to ASIC manufacturing facility. 

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of H D R 
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free H D R merg
ing well and the ghost effect is removed, at the same time have better results and is much 
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding, 
offline processing algorithms. 
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Chapter 5 

Conclusion 

In this dissertation work, I focused on the H D R acquisition on embedded devices. The 
main goal of this thesis was the proof that a multi-exposure ghost-free H D R acquisition 
algorithm comparable to the state-of-the-art algorithms in quality can be designed for an 
embedded hardware device and achieves a real-time performance at high resolution. This 
hypothesis I considered as validated, which was stated in Section 4.5. 

I experimentally proved the hypothesis by the successful implementation of proposed 
ghost-free H D R merging algorithm (Section 4.1) on F P G A based embedded design (Sec
tion 4.2). The proposed implementation achieved the expected parameters and is capable of 
running faster than real-time, up to 96FPS at FullHD resolution (Section 4.4). At the same 
time, the algorithm produces visual results comparable to the state-of-the-art, as evaluated 
in the Section 4.3. 

The performance evaluation in Section 4.4 shows, that the algorithm performs well 
even on C P U ; single core implementation achieves up to 25.25FPS, which is very fast 
and multicore C P U could achieve real-time performance as well. Achieved results shows, 
that even C P U implementation outperformed all the related algorithms.However, essential 
benefit of this method stand out along with F P G A implementation, which fundamentally 
affects the power consumption, which is only approx. 1,1% of power comparing to the C P U , 
as summarized in Section 4.4.1. 

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of H D R 
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free H D R merg
ing well and the ghost effect is removed, at the same time have better results and is much 
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding, 
offline processing algorithms. 

In the future, I would like to continue in this topic and work on the applicability of the 
proposed solution in practice and in the commercial field, which already started within the 
Czech and E U research projects. 
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