BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

INCREASING EFFECTIVNESS OF CDN NETWORK

ZVYSENI EFEKTIVITY SiTE CDN

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR MARK BARZALI
AUTOR PRACE

SUPERVISOR Ing. MATE] GREGR, Ph.D.

VEDOUCI PRACE

BRNO 2023

Abstract

This work outlines the Content Delivery Network (CDN) concept and defines the current
problems these networks address. Subsequently, the CDN architecture at Seznam.cz is
introduced. The study involves obtaining performance metrics of Seznam.cz’s CDN, specif-
ically network utilization and cache filling, to gain insights into the current state of the
CDN. The results include measurements from proxy servers in Seznam.cz’s CDN, which
will be further compared with future enhancements. Overall, outcomes reveal the current
status of the CDN within the existing architecture and provide valuable insights for po-
tential network optimizations. Then are discussed approaches that could help to increase
effectiveness of the cache in company, implementation details and final results.

Abstrakt

Tato prace predstavuje koncept sité pro dorucovani obsahu Content Delivery Network
(CDN) a vymezuje soucasné problémy, kterym tyto sité celi. Nésledné je predstavena
architektura CDN ve spole¢nosti Seznam.cz. Studie zahrnuje ziskani vykonnostnich metrik
CDN Seznam.cz, konkrétné vyuziti sité a zaplnovani mezipaméti, pro prehled o souc¢asném
stavu CDN. Vysledky obsahuji méreni z proxy serveri v CDN Seznam.cz, ktera budou déale
porovnavana s budoucimi vylepSenimi. Celkové vysledky odhaluji aktualni stav CDN v
existujici architekture a poskytuji cenné poznatky pro potencidlni optimalizace sité. Daéle
jsou diskutovany pristupy, které by mohly pomoct zvysit efektivitu vyrovnavaci paméti ve
firmeé, detaily implementace a konecné vysledky.

Keywords
CDN, vyrovnavaci pamét, varnish, CHR, proxy

Klicova slova
CDN, cache, varnish, CHR, proxy.

Reference

BARZALI, Mark. Increasing effectivness of CDN network. Brno, 2023. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Matéj
Grégr, Ph.D.

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

Increasing effectivness of CDN network

Declaration

Prohlasuji, ze jsem tuto bakalafskou praci vypracoval samostatné pod vedenim pana Ing.
Matéje Grégra Ph.D. Dalsi informace mi poskytli pan Ing. Petr Kubéna. Uvedl jsem
vSechny literarni prameny, publikace a dalsi zdroje, ze kterych jsem cCerpal.

Mark Barzali
May 9, 2024

Contents

Intro

Closer view to CDN

2.0.1 CDN solutions oo v v vt
2.1 Ecosystem of CDN e
2.1.1 Origin Server oot e
2.1.2 Client e e
2.1.3 CDNoprovider. i
2.2 Communication of CDN components
2.3 Resources CDN takes careof,
2.4 Role of Proxy o o i e
2.4.1 Caching on proxXy« v v v v v v i e
2.4.2 Proxies specialized in caching

Closer view to caching

3.1 Caching techniques oL e
3.1.1 Intra-cluster caching
3.1.2 Inter-cluster caching

CDN at Seznam.cz

4.1 Requirements for CDN in Seznam
4.2 Architecture of Seznam and CDN 0oL
4.2.1 Reliability and Availability
4.2.2 CDN location and data storage
4.2.3 Monitoring Lo
4.24 Edge Caching o
4.2.5 Internal caching
4.3 Effectiveness of current solution Lo L
4.4 Measurement of present architecture

Ways to Improve CDN’s cache effecienty

5.1 Improvements on hardware level,
5.2 Improvements on software side
5.3 Implementation direction decision.
5.4 Topology efficency prediction
5.4.1 Topology recreationo
5.4.2 Dataset e
54.3 Resultsand analysiso

ot

— =
— O O © 0 W 0o 0w 0w N

12
12
13
14

15
15
16
16
17
17
18
19
21
21

http://Seznam.cz

5.4.4 Decision

6 Implementation and deployment
6.1 Metric Gathering and comparement
6.1.1 RAM usage and warmup e
6.1.2 Cache Hit Rate« o o o i i e e e
6.1.3 Memory usage and LRU nukes
6.1.4 Network state o e
6.2 ConcluSion . . . v o o e e e
7 Possible improvements
7.1 Different cache time on layers 0oL
7.2 Different cache sizes for layerso
7.3 Warmup section
7.4 Inter datacenter clusteringo
7.5 Physical link updateo oo oo

7.6 Sliding window handling
8 Conclusion

Bibliography

32
33
33
33
34
35
35

37
37
37
37
38
38
38

40

43

List of Figures

2.1
2.2

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3
6.4

7.1

CDN ecosystemo i 9
Example of a simplified CDN workflow. 9
Graph displaying 30-day statistics of caching on edge proxies 19
Graph displaying one-day statistics of caching hits on proxies 21
Graph displaying one-day statistics of caching Memory on proxies 22
Graph displaying one-day statistics of network state 23
Graph displaying one day and showing the amount of requests going through

the proxies e 24
Graph displaying one-day statistics of caching hits on proxies with 372Gb of

RAM given for cache storage 30
RAM Usage After Restart, 33
Cache Hit Rate through 1 day of production traffic with new architecture . 33
Cache Usage 2 Layer arhitecture 1 day.png 34
Network State 2 layer topologyo 35
Sliding Window Problem o 0o 39

List of abbreviations

CDN Content Delivery Network. 5, 7, 40

CHR Cache Hit Rate. 6, 12, 13, 25, 28-30, 34, 36,
37

DASH Dynamic Adaptive Streaming over HT'TP.

DDoS ll)gistributed Denial of Service. 16

HLS HTTP Live Streaming. 19

IPTV Internet Protocol Television. 9, 15

LRU Least Recently Used. 35

RAM Random-Access Memory. 10, 26

SSL Secure Sockets Layer. 16

TLS Transport Layer Security. 16
TTL Time To Live. 28, 29, 38

URL Uniform Resource Locator. 8, 10
VCL Varnish Configuration Language. 11

VM Virtual Machine. 17
VOD Video on demand. 9, 25

Chapter 1

Intro

Since the invention of the internet, traffic flowing through worldwide web networks has been
steadily rising up. This relentless surge creates load on servers, proxies, switches, routers,
and many other network infrastructure components over the network.

Despite the concurrent rise in internet traffic, hardware capacity is also advancing with
engineers trying hard to optimize the flow of incoming and outgoing data. One of the
most prevalent and globally adopted strategies to prevent overload of servers and provide
fast response to requesting clients is the implementation of Content Delivery Networks or
CDNs.

The primary objective of this thesis is to provide a comprehensive overview of the current
state of the CDN’s cache, emphasizing its dedicated role in storing and delivering the media
content. By addressing the nuanced caching network issues tailored to Seznam.cz, this work
seeks potential optimizations and improvements in the CDN’s caching architecture.

The study employs an approach to achieve these objectives, involving the measurement
and analysis of relevant metrics gathered from CDN proxy servers. This data forms the
basis for a comparative study, aiding in identifying areas for enhancement and optimization
within the existing CDN infrastructure in the company Seznam.cz.

In essence, this work strives to contribute to the evolving discourse on CDN architectures
by offering insights into the current state of the CDN cache at Seznam.cz and laying the
groundwork for future advancements in content delivery optimization.

In chapter 2. an introduction to the world of CDNs is presented. The chapter com-
mences with an overview of CDN, encompassing its various solutions. The CDN ecosystem
is also broken down, detailing the roles of origin servers, clients, and providers. The section
further explores the communication among CDN components and the types of resources
managed by CDN. The examination concludes with a detailed focus on the crucial role of
proxy servers, incorporating caching strategies.

The 3. chapter expands on the CDN foundation; this section centers specifically on
caching. The concept of Cache Hit Rate (CHR) is introduced, and various caching tech-
niques are explored. This encompasses a comprehensive discussion of inter-cluster and
intra-cluster caching strategies, providing insights into the mechanisms that optimize con-
tent delivery through effective caching.

The 4. chapter applies insights from earlier sections to Seznam.cz. A concise overview
of the platform is presented, elaborating on the role of CDN within Seznam. This involves
discussing the content typical for Seznam.cz and an outline of specific requirements for
CDN implementation. The technologies employed through Seznam and CDN are explored,
covering aspects such as running applications, data storage, video encoding, quality mea-

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

surement, monitoring, and caching. The evaluation of the current solution’s effectiveness
and the measurements of the present CDN architecture are integral components of this
concluding section.

5. chapter describes possible ways that could have positive impact on cache effectivity
and increase CHR. In this chapter is discussed potential changes that could be applied to
physical level and changes that could be changed in software approach, including rethinking
logical topology of routing user traffic. Next thing that is writen down is way to predict that
new changes will bring raise of cache hit rate, there are compared two ways - simulation
model and recreation of production-like environment, discussed better approach to use and
why. Then chapter continues with results of testing and makes a conclusion is it worth to
implement given approach or not.

6 chapter Real Life Implementation describes how did new changes influenced produc-
tion metrics. Shows visualtions of new graphs and discusses why did graphs change. It
shows graphs of RAM usage, Cache hit rates, LRU nukes and state of network. Chapters
ends with conclusion based on changes in graphs compared with previous ones.

7. chapter ,Possible improvements® brings up topics that could be took in account to
increase effectiveness of cache usage, increase CHR or improve CDN at other moments and
discusses some potential problems with new topology like sliding window that brings double
object cache time in cache storage.

Last 8. chapter Conclusion sums up a thesis and brings an overview of whole work
done.

Chapter 2

Closer view to CDN

A CDN is designed to prevent server overload caused by enormous data throughput by
creating a collaborative network of elements that implement transparent for end-user solu-
tions.

Mr. Pathan and his colleagues have authored a book titled ,,Content Delivery Networks“
[6]. In this book, they wrote:

The typical functionalities of a CDN include:

e Request redirection and content delivery services, to direct a request to the closest
suitable CDN cache server using mechanisms to bypass congestion, thus overcoming
flash crowds [7], or SlashDot [5] effects.

o Content outsourcing and distribution services to replicate and cache content from the
origin server to distributed Web servers.

o Content negotiation services to meet a specific need of each user(or group of users).

e Management services, to manage the network components, to handle accounting, and
to monitor and report on content usage.

To wrap it up, CDN primarily aims to create a network service that manages tasks
required for faster, reliable content delivery from web servers to clients.

2.0.1 CDN solutions

Currently, we observe two main approaches - to use a ready CDN solution or invest in
developing own CDN. Both of them have their pros and cons.

« CDN as a service.
One of the biggest and most famous CDN providers is Cloudflare . Also companies
like Amazon (CloudFront) and Microsoft (Azure CDN) are offering CDN as a service.

¢ Building own Content Delivery Network
Indeed, while specialized CDN providers possess extensive knowledge and experience
in developing CDN networks and offering comprehensive solutions, they may not
always be able to cover all specific or unique use cases, requirements, or tailored
policies of every company. In such cases, organizations often find it necessary to
start developing their own CDN in search of a solution able to cover all their specific
requirements.

As I work for a company with its own Content Delivery Network, this work mainly
focuses on in-house CDN solution.

2.1 Ecosystem of CDN

An architecture of CDN includes three essential components - origin server, CDN distrib-
utor, and client.

2.1.1 Origin server

An origin server is a machine capable of generating responses based on client requests,
typically using the Uniform Resource Locator (URL) to determine the content to provide.
An instance of the origin server can be another proxy or a backend application that can
process and respond to this request.

2.1.2 Client

A client, often called an ,end-user,“ can encompass a person or another machine that
submits a valid request for a service.

In this work, the term ,client® broadly encompasses human users and automated sys-
tems.

2.1.3 CDN provider

A CDN provider is an element in infrastructure(often referred to as a web accelerator') that
helps to reduce the load of the origin server, increase reliability, provide faster response to
the client. This can be achieved by caching and replicating content across multiple CDN
providers. Large CDN networks try to locate their servers as closely as possible to end
users to ensure faster and more immediate responses to clients.

In the context of this work, the term ,,CDN provider* may be replaced by a ,,CDN
proxy,“ ,edge server,” or ,edge proxy.“

2.2 Communication of CDN components

Indeed, there is no one-size-fits-all formula for creating and making everything work. The
behavior of the CDN network should be configured to align with the specific use cases that
a team or organization aims to achieve. However, many patterns and recommendations are
available to guide solving assigned tasks.

Many methods are available for configuring an effective Content Delivery Network, rang-
ing from basic load balancing to more advanced solutions like Anycast solution”. However,
as was mentioned above, fundamental principles of building a CDN have remained relatively
consistent since the 2000s. These principles involve a typical flow where a client requests
content from an origin server, and the request passes through an edge proxy, which checks
if it is possible to serve content requested by the client without burdening the origin server.

!Network component that reduces access time to web resources. That component may use caching,
prefetching, load-balancing, and many other methods to achieve the aim of web acceleration. See how
Nginx Organisation describes Web acceleration

In the context of CDN, Anycast is a method to connect the clients to the geographically nearest data
center.

Figure 2.1: CDN ecosystem

If possible, the origin server is spared the processing of this request effort. Otherwise, the
request is sent to the server, and the response is routed back through the CDN proxy, which
can perform operations with this data, cache it, and finally return it to the client.

3. retum ol::lec‘t
CDN if present in cache

A. check 4. requést on Oﬁcjn
cache wiss
cache server

5. retum 3enerated
response

t client

]
|
|
|
I
I
I
I
I
I
|

Figure 2.2: Example of a simplified CDN workflow.

2.3 Resources CDN takes care of

CDN is a system capable of handling a wide array of content types. This includes various
forms of media content files such as images, pictures, Video on Demand(VOD), any audio
files, live streams, Internet Protocol Television(IPTV), as well as text-based content, con-

figuration data, or HI'ML pages and even specific segments of HI'ML documents, among
many other types.

2.4 Role of proxy

Proxy is an intermediate element between the client and server, which has several respon-
sibilities:

e Security. The proxy can be an additional layer of security to prevent potential
harmful traffic from going to the server.

« Filtering traffic. Filtering is used to block specific URLs.

e Load balancing is used in a network with multiple servers that can handle requests
to distribute work on servers, ensuring that the workload is evenly balanced and
preventing single server overload or handling cases when one of the servers is down
and redirecting request to a server that is running.

¢ Caching is storing copies of content delivered to the client in case this content will
be requested again by the same user or other users.

e Access Control. Proxies can enforce access control policies, allowing or denying
access to specific resources based on client credentials, IP addresses, or other criteria.

e Logging. Proxies can monitor savings by going through them for further analysis,
error detection, or other purposes.

In this section, not all possible uses of a proxy are defined, such as using it to obscure
a client’s real IP or location, as these aspects are irrelevant for this work.

2.4.1 Caching on proxy

Caching is an essential part of any Content Delivery Network, so it is appropriate to work
for the proxy as described above. The way proxies can work with caching is described
below.

A proxy should be configured to store and manage a cache for caching to be effective.
This configuration may include some rules that describe:

¢ When to cache content. It may be based on request URL, specific response header,
and, in some cases, on request/response 1P, date, and time.

e For how long this content should be stored on the proxy. Specifying a time
duration for which content should be held on the proxy ensures that content will be
regularly fetched again to keep it up-to-date.

« How to store content. The proxy can store content in Random-Access Memory
(RAM) using different techniques for faster retrieval or store it on a hard disk drive for
larger storage capacities. Additionally, options like partial caching can be configured
to store only specific parts of content.

¢ When content should be cleaned up. Over time, it may be necessary to purge
entire or parts of the proxy’s cache to ensure the availability of fresh content.

10

2.4.2 Proxies specialized in caching

Nowadays, several companies offer proxy server solutions. Most popular are Nginz®, Apache
HTTP Server" and Varnish®.

For this work, Varnish proxy and partly Nginx proxy will be considered.

As Thijs Feryn writes in his book dedicated to Varnish:

Originally, Varnish was a reverse caching proxy: a proxy server that speaks HTTP you put
in front of your web servers. Varnish heavily reduces the load and the latency of your web
servers.[4]

Varnish has its configuration language called VCL.

The second proxy that will be covered is Nginx, which is defined in the Nginx Cookbook
written by Derek DeJonghe:

NGINX is one of the most widely used web servers available today, in part because of
its capabilities as a load balancer and reverse proxy server for HT'TP and other network
protocols [3]

Both solutions are written in the C language, ensuring fast processing of requests and
tasks. However, their main difference lies in their primary development focus. Varnish
primarily focuses on being an HTTP accelerator, while Nginx mainly aims to be a web
server with caching options.

This leads us to a logical conclusion: while these tools may be capable of handling some
functions implemented in others, they are designed to excel in distinct areas. Consequently,
using these two technologies in various ecosystems is a common practice. This collaborative
approach allows organizations to harness the strengths of each tool, creating a more robust
and versatile solution.

3https://www.nginx.com/
“https://httpd.apache.org/
®https:/ /varnish-cache.org/

11

https://www.nginx.com/
https://httpd
https://varnish-cache

Chapter 3

Closer view to caching

The cache hit rate (CHR) is a metric that is calculated by dividing the amount of cache
hits' by the total amount of request that came to proxy(sum of cache hits and cache misses?)
as seen in formula 3.1. This metric shows how effective cache proxies are working.

N .
CHR = Cache Hits (31)
NCache Hits 1 NCache Misses

This formula calculates the cache hit rate, representing the efficiency of the cache usage.
Where Ncache Hits 1S the number of requests that was served with cache, Ncache Misses 1S the
number of requests that was redirected to origin server as cache did not contain a requested
object. So Ncache Hits + NCache Misses 1S the number of total requests that came to poxy.

Most websites with primarily static content can reach high CHR. Websites that serve
dynamic content® have this ratio usually lower. However, one of the primary targets for
CDN engineers is to make this ratio as high as possible.

3.1 Caching techniques

For complex solutions where availability and reliability are crucial, it’s common practice to
construct a cluster, array, or mesh of caching proxies.

This approach offers the opportunity to replicate cache on different instances of cache
proxies. Doing so ensures that if one of the cache proxies becomes unavailable, then other
cache proxies could handle request, and provide a cache that was present on the inactive
proxy. This redundancy enhances fault tolerance and guarantees uninterrupted access to
cached data.

In the book Content Delivery Networks[6], authors define two caching techniques -
inter-cluster and intra-cluster.

e Intra-cluster caching

!Cache hit - a situation when a request that came to reverse caching proxy was handled by proxy internal
cache system and the request was not directed to the original server.

2Cache miss - a situation when proxy serving cache does not possess requested resource, and should
request is redirected to an origin server that can handle it.

3Dynamic web content is a type of content generated in response to the exact incoming requests and
varies depending on factors such as time or by the client that created this request.

12

— Query-based scheme

Digest-based scheme

Directory-based scheme

— Hashing-based scheme

Semi-Hashing-based scheme
o Inter-cluster caching

— Query-based scheme

3.1.1 Intra-cluster caching

This section describes ways of communicating proxy servers that are part of the cluster,
described in the work of Buyya Rajkumar, Mukaddim Pathan, and Athena Vakali [6].

The main principle of a query-based schema is that if the cluster node does not have the
object stored in the cache that the client requested - it sends a broadcast request to all nodes
registered in the cluster and waits for its response to decide if content should be served from
the origin server or not. So, suppose no node in the cluster contains the appropriate cache
entry. In that case, the client may experience significant delays, as we have to wait for the
response of the slowest node and, after this, may wait to process the request by the origin
server. Furthermore, the act of sending broadcast requests can lead to network flooding,
which can have a severe impact on infrastructures with limited bandwidth.

To overcome problem with network flooding and a potentially long time to respond
developers tried solution based on storing digest of the content stored on other proxy
cache servers. Unfortunately, to keep the digest, there is a need to allocate some memory
(that could store cache objects needed to increase the CHR) for this purpose. The second
disadvantage is traffic of update messages when the proxy caches a new object - it should
notify others about its new digest.

Another architecture of the cache cluster is the directory-based scheme. This solution
builds upon the previously mentioned idea of storing digests on the server but transitions
from a decentralized system to a centralized one. In this approach, all traffic servers sent to
each other are routed to a central server, which maintains all mapping data. This approach
significantly reduces the volume of packets coming through a cluster network, up to N*
times! However, there is a trade-off to this optimization. Like any centralized system, this
suffers from the unavailability of a central element, the server director. Moreover, the fact
that the director must serve all other proxies can exacerbate this vulnerability.

Next method does not depend on a centralized element but needs some significant part
of the memory to store metadata or create a traffic lood. This schema is based on hash
functions. The prerequisite of this solution is that each server should keep the addresses(IP
or domains) of other nodes in the cluster. The main idea is that each server has the same
hashing function, and based on the hash of the URL request, it picks from the hash-circle
designated server and redirects to it. This approach solves the problems of previous schemes.
Unfortunately, this method has a disadvantage too - as we configured cluster hash-circle for
nodes, there is no possibility of adding new nodes - the hash-based scheme does not scale.

“Where N is several servers

13

In a semi-hashing-based approach, a local CDN server dedicates a specific portion of its
memory space to cache the most famous content for its local users. The remaining portion
is allocated to collaborate with other CDN servers through a hashing function.

3.1.2 Inter-cluster caching

Inter-cluster communication is responsible for redirecting requests from one cluster to an-
other.

Inter-cluster caching has only one scheme to offer, as digest or directory-based schemes
use big amounts of data to communicate between cluster nodes, and any hash-based scheme
is unsuitable for this solution as a representation of CDN servers of different clusters is
normally distributed geographically. [6]

Therefore, only a query-based solution is appropriate for inter-cluster communication.

14

Chapter 4

CDN at Seznam.cz

This work will be dedicated to the Content Delivery Network implemented in the company
from the Czech Republic - Seznam.cz'.

Seznam.cz is a Czech internet portal and search engine. The company was founded in
1996 by Ivo Lukacovi¢ and later became one of the Czech Republic’s first internet directories
and search engines.

The company is headquartered in Prague. Since its inception in 1998, the search engine
and business directory gradually expanded to offer more services. By the beginning of 2013,
the company operated over 25 different services. As of 2014, Seznam.cz services had over
6.75 million unique monthly visitors on the Czech internet.

Seznam.cz operates three data centers - Osaka, Nagoya, and Kokura.

Seznam.cz is a substantial company that manages many services and delivers signifi-
cant volumes of content to users daily. Its dedicated CDN department is responsible for
developing highly reliable systems capable of handling substantial loads efficiently.

Seznam.cz encompasses its television and television studio, a streaming platform, a
news website, a web page with recorded live streams, a marketplace, and a web platform
for podcasts and radio. By the end of 2023, Seznam started developing its own IPTV.

Consequently, Seznam possesses a large volume of data that includes media content like
audio and video files and images. Additionally, the company hosts services that use static
content like JavaScript files.

The Content Delivery Network in Seznam handles all types of content.

4.1 Requirements for CDN in Seznam

CDN makes an effort to achieve the following requirements:

e Content distribution and streaming, as a core requirement of any CDN, the
network should efficiently distribute web content, including storing content into the
network.

¢ Caching serves as the heart of the ecosystem, particularly given the vast volumes of
content traversing Seznam’s network; Caching plays a pivotal role in alleviating the
load on origin servers or proxies responsible for content generation.

e The CDN should be easily to scale to handle traffic spikes; the solution should also
load balance load between nodes.

"https:/ /seznam.cz

15

http://Seznam.cz
http://Seznam.cz1
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
https://seznam.cz

o Security managing DDoS protection, SSL/TLS encryption, content validation, and
preventing unauthorized access to content inside CDN, detect potentially harmful
content.

e Monitoring and analyzing The CDN should provide real-time and historical ana-
lytics to monitor traffic, usage, and performance.

o« High availability
e High reliability

e Support for video encoding

4.2 Architecture of Seznam and CDN

In this section, we will delve into the architecture implemented by Seznam and its CDN
department.

4.2.1 Reliability and Availability

In the present day, it is essential to put into operation systems that can achieve zero
downtime’. Various tools and techniques exist to achieve this objective, which will be
explored in greater detail later in this work.

As previously mentioned, Seznam owns and operates three data centers. All of them are
located in the Czech Republic, as the target clients are people who live there. This approach
empowers the company to establish high-available and high-reliable production systems in
case of any problem in one of the data centers; services would be active, running, and ready
to serve users in the other two. Indeed, adopting this way necessitates meticulous planning,
configuration, and testing, which, in turn, translates to a more significant investment of
human-hours®, the payoff is the achievement of high availability.

High reliability signifies the ability of a system to store and provide data without cor-
ruption consistently. This goal can be achieved in many ways, including

e Implementing a redundancy, when content will be replicated through several sources
(servers, cloud services, etc.), and in the case of lost one, another could offer an exact
copy of stored content.

e Creating a backup of the content provided. This solution ensures the opportunity
to recover lost data from a backup source.

o Making a data validation.

. and others.

2 Zero downtime, in the context of software, stands for the state of an application with continuous avail-
ability and operation without interruption even.
3Human-hour or person-hour is one of the metrics for estimation of average work done by one person

16

4.2.2 CDN location and data storage

As all three data centers are located relatively geographically close, and are located close
to a target auditory, CDN does not prioritize building a solution connecting each user to
the nearest data center.

Instead, it primarily focuses on problems of high load and quality of service.

One of the critical factors for successfully deploying applications is the selection of
the right technologies and tools that meet the specific requirements of the task. Equally
important is the planning and construction of the architectural design.

Seznam widely employs solutions provided by the OpenStack OpenStack® platform. One
of the solutions offered by this platform is Swift’, an object storage system. This storage
solution aids the CDN by offering built-in redundancy. Being an object storage system, it
simplifies the management of stored objects. Swift was designed to work with significant
volumes of data and optimized for durability and availability, which makes it a good tool
for working in a Content Delivery Network. Communication with object storage like Swift
is carried out through its APL.

Another storage solution used is CEPH®. CEPH is a distributed storage system that
aims to be scalable and reliable. Unlike Swift, CEPH can be mounted into a VM or
container, making it a valuable choice for transferring data between applications over a
network without requiring direct API connections.

4.2.3 Monitoring

Monitoring is essential in any infrastructure, serving as an indispensable component. Its
primary functions include the early detection of issues and the prevention of catastrophic
consequences. Monitoring also allows for analyzing various states of an application, facil-
itating tasks like performance comparisons between different versions. It aids in planning
resource availability and tracking their status while providing alerting mechanisms to notify
administrators or developers when the application deviates from its expected and proper
functioning.

Nowadays, there are lots of solutions that help set up Monitoring. There is a lot of
work on ELK 7 and EFK ®. Despite the wide usage of these two stacks, Seznam does not
use data controllers like Logstash or Fluentd; instead, it develops applications that can be
compatible (and generate good-formatted) with Kibana ° input format.

Kibana is not the only tool used to monitor states of application. The monitoring stack
in Seznam comprises several technologies, including Prometheus, Thanos, and Grafana.

¢ Prometheus serves as a tool for collecting metrics from applications, storing this
data, and offering flexible searching capabilities for these metrics

e Thanos is an open source extension for Prometheus that provides high availability,
long-term storage, and global querying of Prometheus data. It was created to address

“Read closer about what solutions are implemented and provided by the platform you can read on their
website https://www.openstack.org/

Phttps:/ /wiki.openstack.org/wiki/Swift

SRead more about CEPH on its web page https://ceph.com/en/

" ElasticSearch Logstash Kibana technology stack, read more about you can in work of Chen, Lei and Liu,
Jian and Xian, Ming and Wang, Huimei [2]

8 ElasticSeatch Fluentd Kibana technology stack, it is mentioned in Zhang, Haiyang, and Zeng, Hao
work(8]

9Kibana is an open-source project for the visualization of logs.

17

https://www.openstack.org/
https://wiki.openstack.org/wiki/Swift
https://ceph.com/en/

the challenges of scaling Prometheus for long-term storage and making it more suitable
for production use cases.

e Grafana is a platform for data visualization. It allows the creation of interactive, cus-
tomizable dashboards for visualizing data from various sources, including Prometheus
and Thanos.

4.2.4 Edge Caching

Caching in Seznam’s Content Delivery Network is implemented between the CDN and end
clients and within the CDN infrastructure. The cache located closer to the client is referred
to as the ,Edge Cache,” in this work.

The management and optimization of the Edge Cache are critical for Seznam’s CDN
team. Cache storage is not a unlimited resource, and therefore, effective control and main-
tenance of used memory for caching are essential. The caching system within Seznam has
several key requirements:

1. Effortless Creation of New Cache Objects: Seznam’s caching system should be
able to transparent the generation of new cache objects.

2. Content Selection for Caching: Deciding what content to store in the cache is a
delicate balance. Seznam’s CDN components must make intelligent decisions about
what content is most suitable for caching. This involves assessing the popularity and
volatility of content and considering factors like user access patterns and geographical
distribution.

3. Cache Maintenance: Over time, cached objects may become outdated or irrelevant.
To keep the caching on the same level of effectiveness, the system should be capable of
identifying and removing old cached objects that have expired or no longer match the
content available on the origin servers. This process ensures that users consistently
receive accurate and updated content.

4. Cache Invalidation: In certain situations, there might be a need to invalidate
all cache objects before they expire naturally. The caching system should provide
mechanisms for proactive cache invalidation, allowing the CDN team to refresh the
cache when necessary.

Seznam’s CDN caching system leverages these capabilities to enhance content deliv-
ery, reduce latency, and improve the overall user experience. Effective cache management
and maintenance are crucial to achieving these objectives, making the Edge Cache a vital
component in Seznam’s content delivery strategy.

In response to the CDN network’s specific requirements mentioned earlier, Seznam’s
development team is following an approach that involves implementing Varnish proxies
as the core application of the edge caching layer. This technology, which underpins the
CDN’s edge caching infrastructure, has been instrumental in enhancing content delivery
and optimizing the traffic that comes through the network.

Seznam operates multiple edge proxies that serve as intermediaries for client-server
communications. Fach of these proxies has a substantial amount of RAM — an impressive
256 gigabytes. A straightforward calculation means approximately three terabytes of RAM
are collectively available across the CDN for caching purposes. On the surface, this storage

18

capacity might seem enormous, but in practice, it is consistently near total capacity for an
organization as dynamic and content-rich as Seznam. Even with this substantial amount
of cache storage, edge proxies have an average CHR at 83,6% daily as seen in graph 4.1.

One notable aspect of Seznam’s edge caching infrastructure is the distribution of these
proxies. They form an array of proxies, collectively creating a single caching layer. Signifi-
cantly, these proxies operate independently, enhancing fault tolerance and load distribution.
This distributed approach ensures that cached content is available and responsive if several
machines are down.

While the fault tolerance inherent in the approach described above is a notable advan-
tage, it also comes with a significant drawback - substantial data duplication. Imagine a
scenario where several hundreds of requests are made for the same object. In this situa-
tion, the load-balancing process will attempt to distribute these requests to different nodes.
However, the consequence of this strategy is that the same content is cached across all the
involved proxies. While offering redundancy and reliability, this practice is not the most
efficient way of managing data. It results in a significant waste of memory resources, mul-
tiplying the data storage requirements by a factor of N, where N represents the number of
proxies engaged in the load-balancing process. Utilizing memory resources while avoiding
unnecessary data duplication is a persistent challenge in such a dynamic and content-rich
environment.

Cache hits

03118 03/20 03/22 03/24 03/26 03/28 03/30 04/01 04/03 04/05 04/07 04/09 04711 04/13 04/15

min max avg
— cachehit% 0% B9.5% B26%
= cache miss % 0% 525% 173%

= cache hitpass % 0% 100% 99.9%

Figure 4.1: Graph displaying 30-day statistics of caching on edge proxies

4.2.5 Internal caching

Seznam’s Content Delivery Network (CDN) is an adaptable and miscellaneous system that
handles a wide array of tasks, ranging from uploading and storing images to applying filters
on videos and generating media playlists for live streaming, including HLS and DASH.
These processes are developed in alignment with the fundamental principles of Microservice
architecture. As such, incoming tasks to the CDN are precisely classified and delegated to a
specific microservice. These microservices can take various forms, such as APIs or running
daemons, each designed to perform a particular function.

19

For the CDN to operate optimally, all microservices should be configured appropriately
and keep up-to-date information about the CDN’s current state. To ensure this synchroniza-
tion process, various components within the CDN need regular updates and data exchanges
between components. Examples of the types of such traffic that flow into the CDN encom-
pass obtaining configuration data for an encoder, initiating the encoding process, fetching
authentication data to determine a user’s permissions for specific actions, or retrieving the
status of particular tasks.

Given the high volume of tasks that can be executed concurrently within the CDN,
an efficient caching system is employed. Unlike the Edge Cache, which primarily serves
content closer to clients, this internal CDN cache serves a different purpose. It is relatively
small and does not demand ample RAM resources on a machine. Consequently, it can be
efficiently implemented as a cache within a Kubernetes Pod’s container, often working with
a running Nginx server inside. This internal cache enhances the CDN’s performance by
reducing the need for frequent, resource-intensive data retrieval from other components,
ensuring quicker response times and better resource management.

In certain scenarios, there are situations where a component needs to retain data that
will be required more than once. Several approaches exist to store this data efficiently for
future use in such cases. One of the most prevalent methods employed at Seznam is using
the Redis '’ database, which serves as a cache layer for these purposes.

This approach offers the advantage of making cached objects accessible across multiple
processes, whether running on the same machine or different machines within the network.
Components delegate to the Redis, fulfilling various essential functions, including cache
invalidation and, in some instances, mitigating data races associated with a particular
object.

The internal caching level of the CDN architecture not only improves the system’s
efficiency but contributes to its ability to handle large workloads.

1%Redis, which stands for Remote Dictionary Server, an open-source, in-memory data storage and caching
system. https://redis.io

20

https://redis.io

4.3 Effectiveness of current solution

The current state of architecture can be characterized through metrics. In this context,
metrics collected from edge proxies with Varnish are stored in Prometheus and are accessible
through the Thanos API. Thanos aggregates this data, providing an interface for further
analysis and visualization. The aggregated metrics are then rendered in graphical format
on Grafana.

4.4 Measurement of present architecture

This section will showcase graphs with metrics generated during a single workday. The
graphs provide insights into the performance of the network proxies connected to it.

Cache Hits

18:00 20:00 22:00 0g:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Figure 4.2: Graph displaying one-day statistics of caching hits on proxies

The depicted graph (Figure 4.2) provides an overview of caching hits on proxies over a
single day. The horizontal axis represents the timeline, capturing the progression of time
throughout the day. The vertical axis displayed the cache hit rate and the percentage of
requests successfully served from the cache.

21

Cache Memory

30000 9.09TiB

8.19TiB
25000

7.28TiB

6.37TiB
20000

5.46 TiB
15000 4.55TiB
3.64TiB

10000
2.73TiB

1.82TiB
5000
931GiB
18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Figure 4.3: Graph displaying one-day statistics of caching Memory on proxies

The figure 4.3 illustrates the one-day statistics of caching Memory on proxies, describes
memory management dynamics. The horizontal axis represents the timeline, and the ver-
tical axis quantifies the amount of Memory.

The Graph contains three aspects of caching memory management:

o« LRU Moved (White area): This area depicts the volume of cache entries subject
to the Least Recently Used (LRU) policy and consequently moved within the caching
Memory.

o« LRU Nuked (Red area): The red area signifies instances where cache entries were
forcefully evicted from storage or ,nuked“ to make room for a new object due to the
LRU policy. This could indicate high memory pressure or the need to prioritize more
relevant or frequently accessed data.

Metric Min Max Total

LRU Moved 2405.12 26.1k 12032.4k
LRU Nuked 710.38 6.9k 2742.5k

Table 4.1: Cache Memory Statistics

22

State of Network

Network v

9.31GiB

18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Figure 4.4: Graph displaying one-day statistics of network state

The figure 4.4 represents a network state. The horizontal axis signifies a timeline, delin-
eating the progression of time throughout the day, while the vertical axis quantifies the
network metrics.

o Frontend (Green Area): The green area illustrates the metrics associated with the
frontend.

o Backend Default (Purple Area): The purple area represents metrics related to
the default backend. Also, other backends are overlapped by the purple zone.

Component Max Avg Total

Frontend 8.29 GiB 4.85 GiB 3.41 TiB
Backend 1.79 GiB 1.08 GiB 778 GiB
Backend Default 1.64 GiB 1.01 GiB 366 GiB
Backend Fallback_backend 6.70 MiB 374 KiB 132 MiB
Backend Filtrilonl 55.9 MiB 34.0 MiB 12.0 GiB
Backend Filtrilon2 58.3 MiB 33.9 MiB 12.0 GiB

Table 4.2: Network Statistics 1 day

23

Requests

Requests

80000

b

70000 [L N "1‘4/"‘&
M W\J\W«v\m‘r a pepida it "
| 2

60000 I WS
I hy J\WN‘"\«
W

A b el /‘(\\‘W” ,f«r‘,\m,w“v

A f) /) i kr'f W'M‘W\ I I’]

50000 W-“ m‘w v '
W

I
iy J
40000 \ ‘ L {
30000 \ /
20000 \"\-
A
10000 “\\ v
18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 1400 16:00

Figure 4.5: Graph displaying one day and showing the amount of requests going through
the proxies

The graph (Figure 4.5) illustrates the one-day statistic representing the volume of requests
going through the proxies. The horizontal axis is a timeline, and the vertical axis is the
number of requests.

o Frontend (Green Area): The green area signifies the number of requests from the
frontend.

o Backend (Yellow Area): The yellow area represents the requests from a backend.

The cyan line depicts the cumulative sum of request rates over a 5-minute interval.

o Fetched Objects (Orange Area): The orange area represents the number of ob-
jects fetched.

Component Max Avg
Frontend (Green Area) 72.7k 41.9k
Backend (Yellow Area) 11.3k 7.3k

Fetched Objects (Orange Area) 8.7k 5.8k

Table 4.3: Request Statistics for the Specified Components

24

Chapter 5

Ways to Improve CDN’s cache
effecienty

Seznam.cz in 2024 year made a strategic decision to increase caching capabilities of com-
pany’s proxies. Improving cache efficiency on proxies includes increasing efficiency and
effectiveness of storing and retrieving stored in internal cache content. This can involve
implementing some new caching algorithms, upgrading hardware infrastructure including
network links, or just optimizing software configurations. By focusing on this cache im-
provement, Seznam aims to deliver its content to end-users more quickly, enhancing the
total user experience.

A higher CHR indicates that a larger portion of user requests can be served directly
from the edge-cache without any need to access backend servers. This reduces a workload
on a backend infrastructure and can lead to resource savings and improved performance of
process. When content is often accessed and is stored in the cache on proxy, this reduces
the need for extra and repeated requests to backend servers. This not only saves compute
resources but also reduces network traffic and latency. By optimizing the CHR, Seznam.cz
can minimize the amount of requests going straight to its backend servers, leading to im-
proved reliability of its services. Higher CHR also contributes to a more efficient usage of
resources, allowing Seznam to allocate computing resources more effectively to handle peak
loads.

Content Delivery Networks play a main role in delivering content efficiently to users
by caching and distributing content closer to the end-users by reverse edge proxies and
web accelerators. Improving cache store efficiency on proxies can significantly reduce the
workload comming to CDN backends from users, particularly for tasks such as generating
content for Video on Demand (VOD) and Live streaming.

Generating content for both VOD and Live streaming involves resource intensive tasks
such as parsing data, processing and generating media playlists in formats like HLS or
DASH. By offloading some of this work to the cache, CDN backends can work more effi-
ciently and serve more requests that are unique. User gets faster content downloading, as
content can be served directly from the cache without need to wait until backend process
data sent to it.

25

http://Seznam.cz
http://Seznam.cz

5.1 Improvements on hardware level

Implementing some improvements at the hardware layer, may increase the performance,
capacity, and efficiency of the system that is serving a web accelerator or HT'TP server.

e Increase amount of RAM Increasing amount of RAM on a devcie may allow it
to store and access more data. More RAM enables the system to operate with larger
dataset.

o Use hard disk as additional storage and virtual cache space - Using the hard
disk as additional storage and virtual cache space can increase the system’s capacity
and improve its ability to store and retrieve more data than with only RAM used.
Hard disks offer high-capacity storage at relatively lower costs compared to RAM.
But hard disks has its’ own drawback - they are slow, RAMs are much faster reading
and storing data than hard disks. Therefore, there is a big trade off for company
and maintainers of cache server. One of the common use-case for companies to store
content within combination of RAM and hard disks is storing data that is accessed
small amount of times per day into a HDD / SSD. By storing less frequently accessed
data on the hard disk, it frees up RAM space for more more so-called hot-files.

5.2 Improvements on software side

More effective caching system may be as a result of software updates, features and main-
taince. Varnish servers may be configured in wide range of combinations. Topology may
change to serve cache more effectively. By modifying the network topology with several
proxies, engineers may optimize cache delivery and improve efficiency of a served content.
Implementing a hashing (as was previously mentioned in 3.1.1) algorithm can help dis-
tribute requests evenly across cache servers, reducing the load on individual servers and
improving overall caching efficiency by sending user requests for same data to a responsible
Varnish instance that is owner or should be an owner of this cache object. However, hashing
algorithms have their challenges - it is typically implemented at Layer 7 (application layer),
which may introduce overhead and complexity on load balancers that should distriburte
requests. Hashing at Layer 7 involves parsing application layer data from request, such as
URLs or HTTP headers(to extract cookies, for example), to figure out which neighbour is
the possible owner of a cache object. Sharding is using a consistent hashing' algorithm,
which serves stability on resize of hash circle of cache servers. Hash circle resize may occur
on server joining group or leaving it. Group leaving may be caused by network partition,
machine overhead, machine reboot and other cases when server stops responding unexpect-
edly. It is more dangerous than joining as it should be detected immediately and apply
rules that would stop routing to this node. Possible fallbacks are discussed later in this
work.

There is a possibility to build several layers of caching proxies where the deeper proxy
is located (from client’s side) the less popular content it stores in its storage.

This work targets and discusses one- and two-layered topology of a Varish web accelera-
tors. Architecture involiving only one layer of proxies is self-routing and is quite popular in

! Consistent hashing - is special case of hashing process which is good for handling resize of group included
in hash. On resize only 2 keys have to be mapped again where n is the number of keys already stored and
m is the number of participants in hash ring

26

community of engineers. Self-routing means that instance of Varnish could possibly be in-
tended to ,send“ it to this particular instance, to itself. When this particular case happens,
node is starting the standard flow of processing incoming request - lookup in cache, on miss
or when object in cache is in its grace period, request is forwarded up to backend and then
cached based on internal logic of web accelerator. Self-routing topology of nodes in cluster
is quite easy to implement, the most fundamental thing to account with is that the hashing
algorithm should be same on each instance, and hash cirlce has to have same amount of
keys or participant that are enrolled in backend calculation, otherwise it’s possible to stack
in infinite loop of request juggling.

More complicated case of cluster architecture with sharding process is the one in which
engineers imlpementing two layers physically or virtually(instances of the first and the
second layer could easily run on one machine). When we have more complicated topology
its aslo gives us space to expirement and play with request forwarding. Its possible to
implement sharding on the first layer and leave second as just long-time cache, make both
layers as independent clusters, and the last is make the second layer routing while leaving the
front one as just shield from the most popular requests. However, all three implementation
assumes that the first layer would serve the most popular requests from users, while second
one would be a long-term cache that holds object that could be cached for a long period
of time. In this work we discuss a third written concept with non-clustered first layer and
self-routing cluster of nodes on the second one. This topology has big advantage - covered
case of hot-spotting

5.3 Implementation direction decision

Desicion was to implement 2 layered topology with sharding on the second layer of nodes. As
was mentioned before the first line of Varnishes should serve the most popular objects from
its cache storages. Also one of interesting implementation details is that second instance
of web accelerator going to take place on the same machine where the first one is running.
This gives us two advantages:

e There is no need to create an additional VM or set up a new baremetal server and
therefore minimizes deployment complexities. Moreover, this approach reduces the
need for additional hardware infrastructure and simplifies hardware management.

e In case that front node is going to forward request to the second proxy, traffic stays
within the confines of the local machine, eliminating the need for data transmission
across the network. This not only accelerates response times but also reduces the
load on network bandwidth.

As second layer should not be visible and accessable by clients of a company listening
port of it should not be exposed to an external network. So port was opened on a internal
VLAN with a dedicated interface for intra-cluster communication. As nodes that are par-
ticipating in one hashing ring for sharding are located in one datacenter, communication in
cluster is fast and not leaving datacenter, instead it is just forwarded between server racks
in server rooms.

2Hot-spotting or hot shards appear because organic laod patterns drive more traffic to one particular
shard [1]

27

5.4 Topology efficency prediction

This chapter describes how prediction could be made and results extracted to confirm that
the new topology would "behave’ and operate better, usage of a cache storage would be more
effective and total CHR would be increased with followig decreasing of request amount to
Seznam’s backends. There is two possible ways how to measure an effectiveness of a new
topology - build an exact copy of current production solution and change its configuration,
then start to simulate a production data-flow with metrics scraping from Varnishes; the
second way would be to build a simulation model that would allow us to simulate behaviour
of proxies. First approach seems to give us the results that are approximating to the real one
as it real software, exactly same that is running in production, requests are recreated from
a day logs. However, this solution could benefit real good in case of accuracy of results,
despite on TTL of objects, a cost of implementation is enourmous in human hours and
resources. There is need to configure new virtual machines or setup bare metal servers. On
the other hand, second way gives us less trust-worthy results. Simulation model should be
tested on dataset and model should be proved to serve and give a result that refers to real
ones. But in case that model would be valid and gives objective results reflecting production
CHR it could save a lot of time and speed up process of development, simulating and gives
an opportunity to run simulation in parallel to test different topologies, their configurations
and get results much faster. Based on the fact that for a business it is good to get results
faster which brings faster profit, simulation way was chosen as a way to prove efficency of
the future topology.

5.4.1 Topology recreation

To recreate topology for simulation preference fell on GoLang® programming language.
This language is good in both important aspects for our simulation goal. It is fast and it
is a high-level language, combination of two gives us a proper way to implement model in
much faster way than in any low-level language like C' or Rust; and property that language
is compiled gives opportunity to collect results from simulation much faster than if the the
model was implemented in language like Python. Moreover, one of the best feature that is
implemented in GoLang is that binary files does not have any external dependency! That
allows to copy binary to any machine with same processor architecture and running on
same OS(Linux-based systems and OS X compatible as both follows UNIX standards).

The implemented model is stored and can be found on Github/Drakorgaur; source code
is under Apache 2.0 license.

5.4.2 Dataset

Dataset for the simulation process was day-long log files from all edge proxies on one
datacenter, that mean that it contains logs from all 12 proxies through one day. Logs were
merged, sorted by timestamp and formatted to save disk space. After filtering log would
contain space it took in cache and url to calculate key under which object would be stored.

ubuntu@pomo-huge-disk:~/$ 1s -lah logs/dataset.log
-rw-rw-r-— 1 ubuntu ubuntu 147G Feb 14 12:02 logs/dataset.log

3GoLang or just Go - is a compiled high-level programming language with static typing designed and
implemented by Google

28

5.4.3 Results and analysis

Despite the fact that model does not take into account T'TL of cache objects, it gave pretty
good results for architecture that was implemented in 2023 year on CDN.

{
"proxy-23": {
"cache": {
"hit": 71245273,
"hit_ratio": 0.8507157800455882,
"miss": 12502172,
"total": 83747445
},
"cache_size": 176000000000,
"cache_used": 175996432943,
"routes_to": [
"default"
1,
"routing": {}
}
}

Above is presented one of metric set extracted from model of proxy with Varnish. Total
cache hit rate is set to 85% with full memory used. During the start of 2024 year machines
that hosted Varnish instances got a new RAM plates which doubled available RAM to
512Gb. Althoug there was boost in RAM amount, not all RAM could go to Varnish itself
for allocating memory for cache objects, there is need to leave some memory for other
processes including Varnish daemon, lurker, OS running and etc. With new configuration
plan where the Varnish layer got a 372Gb to store user requests, there was a opportunity
to predict how CHR would change.

29

{
"proxy-23": {
"cache": {
"hit": 55188813,
"hit_ratio": 0.8819648515623947,
"miss": 7386031,
"total": 62574844
},
"cache_size": 372000000000,
"cache_used": 371999997182,
"routes_to": [
"default"
1,
"routing": {}
}
}

Simulation model showed us a result of CHR set to 88.2%, after applying changes and
reconfiguring Varnish daemons and scraping metrics from them we have got approximately
same raise.

Cache hits ~

2024-04-08 14:20:00
88.5%

11.5%
= cache hit pass %: 100%

16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Figure 5.1: Graph displaying one-day statistics of caching hits on proxies with 372Gb of
RAM given for cache storage

CDN engineer team can trust the model, dispite the fact that model gives only final
CHR. Expectation based on model prediction met the real production results. That gave
a freedom to actions and modeling two layered topology. Even that expirements was made
more than four, below is described the four the most interesting ones.

Two best cases from table 77 for Seznam’s Content Delivery Network would be con-
figurations - first, where 74 on the first layer and 298 on the second gigabytes of RAM;
and second where the first layer has 149 and the second one has 223 gigabytes of RAM.
Prediction is for both cases on CHR are more than 96% this means that on comparement
with current 88% half of requests that are passed to backend servers would be served by

30

Table 5.1: 2 Layer Cache Configuration

1L Size 2L Cache CHR 1L CHR 2L CHR

74 GB 298 GB 81% 83% 96.77%
149 GB 223 GB 85% 7% 96.55%
223 GB 149 GB 87% 62% 95.06%
298 GB 74 GB 88% 48% 93.76%

Cache proxies! Taking to the account that Seznam has huge network flow half of requests
would mean a lot of saved CPU processing time, less loaded backends, databases etc.

5.4.4 Decision

So decision was made to move aside with solution where we have 74 gigabytes of RAM
on the first layer and pass left 298 gigabytes to the second layer. This should give cache
hit rate boost by predictions of model from 88.2% to 96.77%. Both instances would be
running on same machine while still exposing to users only one port - port of the first
layer, meanwhile the second layer would serve as huge network storage or in some kind
of virtual RAM for Varnish, storing only unique content from end users. Both layers are
communicating via VLAN with possibility given to CDN team from Seznam’s admin to
create a dedicated physical connection. But by estimation current links could easily handle
a new load with increased traffic passing between nodes that are running Varnish instances
on them. By design all routing and business logic should do the first layer of proxies, while
the second layer is just a simple cache storage with some additional functionalities like
headers incapsulation, retries and etc. On first attempt decision was made to store objects
in cache on second layer instances with same TTL as they are stored on the second one.

31

Chapter 6

Implementation and deployment

Implementation includes creating new configuration files for Varnish daemon in VCL',
creating new systemd service that takes care of new daemon of Varnish proxy that listening
on dedicated interface and storing metadata in directory different from the default one,
which is used by Varnish deamon serving first layer connections; directory changed by ‘-n‘
flag in Varnishd and other useful tools from Varnish software like Varnishadm or Varnishlog.
Then is added script for automative restart or reload of Varnish daemons when VCL or
systemd files are changed to fullfill CD? in the CDN team. Also there is need to setup new
metric exporter implemented aside with Prometheus - this tool is called Prometheus Varnish
Exporter and could be found on jonnenauha’s Github. Prometheus Varnish Exporter is just
translating Varnish metrics to format that Prometheus could understand and exposed this
metrics on a specific port. As a matter or fact, there is need to connect them to CDN’s
Thanos store and scrape to have observability on Seznam’s new implementation of proxy
nodes. After new thanos configuration there is need to update Grafana’s dashboards to
work with new metrics as total cache hit rate is now calculated in an another way than it
was a year ago.

After all preparations were done and new topology was tested it was a time to release
new topotogy to production and get new metrics. There was a decision to make a rollout
to one server room only so in a case of error or instability we could serve content from
the other ones. Also rollback plan was prepared to turn lost datacenter on as fast as
possible to remove load from other datacenter rooms. In the middle of april Seznam was
successfully running with one datacenter set to new topology. After one week of stability
rest of datacenters were put on new topology as well.

'"VCL - Varnish Configuration Languages
2CD - continious deployment

32

6.1 Metric Gathering and comparement

6.1.1 RAM usage and warmup

559 GiB

o _

373 GiB

279 GiB

186 GiB

93.1GiB

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00

Figure 6.1: RAM Usage After Restart

After rollout of new configuration there is warm-up time needed by proxy to fullfill its cache
store. As shown on 6.1 proxy has interval of 2 hours to end its warm-up period. Arround
14:00 there was an angle change of RAM usage graph, RAM usage value at this time is
arround 190GB RAM, that is because smaller storage did fill and since this point of time
only bigger cache storage continuing to fill and store new objects.

6.1.2 Cache Hit Rate

Cache hits 1st layer [5m] Cache hits 2nd layer [5m] Cache hits total [5m]

100% 100%

60.0%

40%

50%
00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 2000

(a) (b) (¢)

Figure 6.2: Cache Hit Rate through 1 day of production traffic with new architecture

Figures 6.2 based on metrics extracted from proxies of new topology visualizes 3 cache hit
rates:

33

o Figure 6.2a shows a CHR that is average between all proxies in one cluster on the

first layer. [5m] means that PromQL® uses function rate with uses per-second rate
of increase of a metric within the specified time range of 5 minutes. Graph has cache
hit minimum set to 72.0%, maximum set to 88.2% and average to 81.4%.

The next figure 6.2b has same query but on metrics that come from Varnish instances
on 2nd logical layer. It shows cache hit minimum as 51.0%, maximum set to 62.2%
and average to 58.3%.

The last figure 6.2¢, as is understood from its name it shows a total cache hit rate for
a new solution and a new topology. This CHR is calculated by next formula:

CHRtotal = CHRlL + (1 — CHRlL) * CHRQL (6.1)

This formula calculates CHR as a count of hits in a cache on the first layer plus
number of hits on the second that are performing on requests comming from a cache
miss on the first layer of proxies. Cache hit is set as following: minimum is 86.5%
maximum is set to 94.3% and average is set 91.7%

6.1.3 Memory usage and LRU nukes

14000

12000

10000

8000

6000

4000

2000

Cache Cache 2nd layer

127TiB 4500 3.64TiB

4000
1.09TIB

3.18TB

3500
273TB

931 GiB

3000
2.27TiB

745 GiB
2500

1.82TiB

2000
559 GiB

136 TiB
1500

373 GiB
| 931 GiB
1000

186 GIB
266 GiB

16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

Figure 6.3: Cache Usage 2 Layer arhitecture 1 day.png

Table 6.1: Data Summary for first graph

Min Max Current

LRU moved (light red) 943.47 13k 11.5k
LRU nuked (red) 228.40 5.5k 4.7k

3PromQL - Prometheus Query Language, functional query language for queries to Prometheus database

34

Table 6.2: Data Summary for second graph

Min Max Current

LRU moved (light red) 271.80 4.3k 3.8k
LRU nuked (red) 130.93 1348.20 1053.51

Visulizations of Cache usage on proxies is quite useful and gives a few things for next
analysis. First, LRU Nukes are less common for the second layer of proxies, which means
that cache space is used really effectively and Varnish less often removes old objects from
cache storage to store a new ones. The second interesting conclusion that could be made
out from graphs is that objects has it expiration time reach much more often comparing
with objects that are handled by the first layer.

6.1.4 Network state

Network

13.0 GiB

11.2GiB

1 J
WJL/“VM I M\ e f}h\'w W,

e

My
#Jm M‘MM i *“WMNKW

9316 " J«M"%‘L“\l\/ ”J*Wv‘/l b WJWWN A Vﬂmmﬂﬂw
A
hy
hy
L'\’

7.45GiB

5.59 GiB

37368

1.86 GiB

Figure 6.4: Network State 2 layer topology

Network flow is increased comparing with previous solution by 20% on avarage. Which
means that on serving same amount of user requests we’re creating on 20% packets comming
between proxies, but this graph does not shows requests count comming to backends from
Varnish instances.

6.2 Conclusion

Even though the simulation model overestimated cache hit rates on the second logical
layer of proxies, a great result was achieved with an increasing cache hit rate using the
provided changes and improvements in Varnish proxy configuration. Furthermore, this is
only a change in the configuration and way proxies communicate with their backends; the
backend for a concrete proxy can be another proxy or the real backend that serves client
requests. As expected, network traffic has increased, but not in the way we can not handle
it, and future improvements to physical links may improve our ability to handle network
traffic between proxies. With provided ,shared“ and sharded cache for proxies we achived
uniqgness of content on the second layer with more efficient usage of RAM available to CDN’s
team, this brings less amount of LRU nukes of objects on second layer, but it brings higher

35

rate of object expiration in cache comparing to the first layer of two layered topology and
comparing to previous implementation of topology.

Even that cache hit rate is increased by several percents, it’s a big deal for company.
The higher CHR the harder to improve it far. So average CHR raise from 83.6% to 91.7%
is quite big for Seznam.

36

Chapter 7

Possible improvements

Even that cache hit rate was increased to an average value of 91.7% there is still options
to improve work and effecincy of serving user requests by changes in configuration and
hardware. This chapter takes a look on this possible future improvements that should help
proxies serve content more effiecient.

7.1 Different cache time on layers

As mentioned in the section 5.4.4, decision was made to leave TTL on both logical levels
same, which than can be observed on graph 4.1. This brings idea to play and configure
TTL of objects that are storing on 2nd layer to increase time accessable to object from
cache instead passing it to the backend.

7.2 Different cache sizes for layers

As was mentioned in previous section lot of objects are getting state of expired and removed
from cache by Varnish. This is not a bad factor, but that means Varnish is not removing it
efficiently to store new data, instead some part of memory became available and empty, just
waiting to store a new object. This also gives us a understanding that if we have available
space, we could move it on first layer to handle more requests there with increasing CHR
of the first layer and not loosing the last on the second layer.

7.3 Warmup section

Varnish shard director which picks backend with sharding process has a option of warmup,
which brings opportunity to select a different backend with variable probability. This
probably is not going to increase an amount of objects that are server from cache, but it
brings an useful factor - it is creating a backup for case of unavailibility of proxy holding
unique object. So Varnish caclulates new virtual hash ring without proxy that picked from
current ring, and picks new potentional responsible backend for this object and instead of
proxying request to real owner of this object Varnish sends request to its ,deputy* creating
fallback in case of network partition of other problems that would disconect nodes.

37

7.4 Inter datacenter clustering

Current solution is based on independent clusters that are located in different datacenters.
This means that ,unique“ objects through the cache are not really so unique, they are
duplicated across datacenter rooms. Real unigness could be solved by creation of one
cluster across all datacenters. This way brings opportunity to decrease memory amount
provided to second layer and give it to the first one, while keeping or increasing total
memory of the second logical layer. This brings following trade-offs for increased cache hit
rate:

e Latency would be increased to pass request between datacenters as servers would be
geographically located far. But with assumtion that all datacenters are located in
Czech, and moreover in the same city, delay should not be so tangible.

e Another issue is a network partition between datacenters. This means that data-
centers are just loosing about half of objects that are stored in the second layer of
different datacenter when can not see the last one. Despite this huge hole in cache
storage on this case, most of objects are still stored on the first layer giving a big buffer
and saving backends from an overload. Continuing with handling network partition
as was mentioned in 7.3, Varnish could create backups of objects, but it does not give
a waranty that objects would be duplicated with probability across different rooms.

7.5 Physical link update

Earilier in this work was discussed that there is possibility to set up new links for intra-
cluster communication and increase it bandwidth and link speed. This change can help
to remove worries about increasing network traffic comming from proxy to proxy, and a
slightly decreasing the latency for end user, however cache storage and usage would not be
more efficient.

7.6 Sliding window handling

With new two layered topology there appeared a new potential problem - double time
caching due to sliding window of requests. As illustrated in 7.1 diagram, when no proxy
has an object, and request is coming to proxy number one (on the first layer) it passes
request to owner of object on the second layer, it has the object in cache and should ask
backend. Let’s assume backend returned picture and TTL of the object is one hour, then
proxies returning response to the initiator of communication. Then after 55 minutes another
request comes to proxy number two, it has no object stored, then it is forwarded to owner,
which has this object, but this particular object have TTL only 5 minutes left, and despite
this front Varnish is storing picture in cache for another hour. Simple calculation gives us
a time of 1 hour and 55 minutes of total cache time instead one hour for pictures.

38

ProxyL1 1 ProxyL1 2 ProxylL2 2 backend

flower.png
flower.png
critical [slide window] .
flower.png
ProxyL1 1 ProxyL1 2 ProxylL2 2 backend

Figure 7.1: Sliding Window Problem

This could be a problem for freqently refreshing object in cache. Despite the fact, that
old architecture had the same problem, this is still problem. And with two layer topology
we have one source of truth - Varnish instance on the second layer, the real owner of cache
object. This Varnish instance can propagates to front proxies TTL that left for object and
this would bring to expiration of object on all proxies in approximately same point of time.

39

Chapter 8

Conclusion

Main target of work was to increase a cache hit rate and therefore increase performance of
CDN in Seznam.cz. In this work I described main concepts of Content Delivery Networks
together with how CDN is implemented in company Seznam.cz and what main parts are
participating in process of serving content from CDN. Then we discussed what role cache
plays in CDNs and its particular role in Seznam, which techologies are used to cache different
contents on different levels, what policies does Seznam has on its cache objects, and what
alternatives Seznam has. The solution implemented by Seznam.cz was reviewed, as for
its proxy nodes that were running Varnish instances to cache objects for end-users and
remove load from backends and give them space to process uncachable or hardly-cacheble
content instead. By provided graphs from Seznam’s monitoring it was discussed state of
Varnish web accelerators. After this work contains discussion how is it possible to improve
total amount of cache hits and serving more efficient requests from cache instead of passing
user requests to the backends. Chapter 5 gives few points of improvement direction to raise
cache hit rate and how is it possible to confirm and prove that proposal solution would really
work in production environment and would increase total objects serving from cache. In the
end of chapter 5, why did I choose to build a simulation model, which on real production
dataset of request could predict effectiveness of new topology and therefore I could pick a
solution that would increase cache hit rate the most. Due to positive results of simulation
I started to reconfigure proxies for staging and production environments. Following by
chapter 6 it is described process of implementation of a chosen solution, work also shows
results extracted from new solution and compares important metrics to previous. Results
showed that in average per day cache hit rate was raised about 10 percent, from 82-83% to
91-92%. Also this chapter contains discussion about discrepancy in cache hit rate prediction
of the simulation model and real results scraped from proxies.

The result of this bachelors thesis, is increased cache hit rate of CDN solution by
reconfiguration of proxies and they routing table by creating a cluster of nodes with several
layers, where first layer is responsible for serving the most popular content for end user and
the second layer is responsible for the storing object that should have long term of living
in cache. This topology brought significant decreasing of request comming to backends
and therefore CPU processing time. However, trade-off for this improvement was increased
network load between proxies as proxy on request calculates the node-owner of object and
redirects request to it, creating single point of truth for cache system. Also work covered
specification of hot spotting problem and how it is handled in a new solution of proxy
topology.

40

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

The chapter 7 provides some notes which should be taken into account to improve
caching system or make it more sustainable starting from software and configuration details
to hardware improvements.

41

42

Bibliography

[1]

BURNS, B. Designing Distributed Systems: Patterns and Paradigms for Scalable,
Reliable Services. O’Reilly Media, Inc, Sebastopol, 1005 Gravenstein Highway North,
Sebastopol, CA 95472, 2018. ISBN 1491983647.

CHEN, L., Liu, J., X1AN, M. and WANG, H. Docker Container Log Collection and
Analysis System Based on ELK. In: 2020 International Conference on Computer
Information and Big Data Applications (CIBDA). 2020, p. 317-320. DOL:
10.1109/CIBDA50819.2020.00078.

DEJONGHE, D. NGINX Cookbook: Advanced Recipes for High-Performance Load
Balancing. 1st ed. O’Reilly Media, Inc., 2022. ISBN 1492078484.

FERYN, T. Varnish 6 by example: A practical guide to web acceleration and content
delivery with Varnish 6 technology. Vulkan, 2021. ISBN 9189179978.

HusToON, G. Ipv4: How long do we have? [online]. 2003. Available at:
https://www.potaroo.net/papers/ipj/2003-v6-n4-ipv4/ipv4.html.

RAJKUMAR, B., PATHAN, M. and VAKALI, A. Content delivery networks. Springer
Science Business Media, 2008. ISBN 3540778861.

Cisco, D. L., Cisco, P. C. and TExaAs, M. D. U. of. WCIP: Web Cache Invalidation
Protocol [online]. 2001. Available at:
https://datatracker.ietf.org/doc/html/draft-danli-wrec-wcip-01.

ZHANG, H. and ZENG, H. Design and implementation of blockchain platform
operation and maintenance support system based on Kubernetes+EFK framework.
In: ISCTT 2021; 6th International Conference on Information Science, Computer
Technology and Transportation. 2021, p. 1-8.

43

http://www.potaroo.net/papers/
https://datatracker
http://ietf.org/doc/html/draft-danli-wrec-wcip-01

