
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

INCREASING EFFECTIVNESS OF CDN NETWORK
Z V Ý Š E N Í EFEKTIVITY SÍTĚ CDN

BACHELOR'S THESIS
B A K A L Á Ř S K Á P R Á C E

AUTHOR MARK BARZALI
AUTOR P R Á C E

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
V E D O U C Í P R Á C E

BRNO 2023

Abstract
This work outlines the Content Del ivery Network (C D N) concept and defines the current
problems these networks address. Subsequently, the C D N architecture at Seznam.cz is
introduced. The study involves obtaining performance metrics of Seznam.cz's C D N , specif
ical ly network ut i l iza t ion and cache fi l l ing, to gain insights into the current state of the
C D N . The results include measurements from proxy servers i n Seznam.cz's C D N , which
w i l l be further compared wi th future enhancements. Overal l , outcomes reveal the current
status of the C D N wi th in the existing architecture and provide valuable insights for po
tential network optimizations. Then are discussed approaches that could help to increase
effectiveness of the cache i n company, implementat ion details and final results.

Abstrakt
Tato p r á c e p ř eds t avu j e koncept s í tě pro doručován í obsahu Content Del ivery Network
(C D N) a vymezuje současné problémy, k t e r ý m tyto s í tě čelí. N á s l e d n ě je p ř e d s t a v e n a
architektura C D N ve společnos t i Seznam.cz. Studie zahrnuje z ískání v ý k o n n o s t n í c h metrik
C D N Seznam.cz, k o n k r é t n ě využ i t í s í tě a zap lňován í m e z i p a m ě t i , pro p řeh l ed o s o u č a s n é m
stavu C D N . Výs ledky obsahuj í m ě ř e n í z proxy se rverů v C D N Seznam.cz, k t e r á budou dále
p o r o v n á v á n a s b u d o u c í m i vy lepšen ími . Celkově výs ledky odha lu j í a k t u á l n í stav C D N v
existující a r c h i t e k t u ř e a posky tu j í cenné poznatky pro po t enc i á ln í optimalizace s í tě . Dá le
jsou d i sku továny př í s tupy , k t e r é by mohly pomoct zvýši t efektivitu vyrovnávac í p a m ě t i ve
firmě, detaily implementace a konečné výsledky.

Keywords
C D N , vy rovnávac í paměť , varnish, C H R , proxy

Klíčová slova
C D N , cache, varnish, C H R , proxy.

Reference
B A R Z A L I , M a r k . Increasing effectivness of CDN network. Brno , 2023. Bachelor's thesis.
Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. M a t ě j
Grégr , P h . D .

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

Increasing effectivness of C D N network

Declaration
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
M a t ě j e G r é g r a P h . D . Dalš í informace m i poskyt l i pan Ing. Petr K u b ě n a . Uved l jsem
všechny l i t e rá rn í prameny, publikace a dalš í zdroje, ze k t e r ý c h jsem čerpal .

M a r k Barza l i
M a y 9, 2024

Contents

1 Intro 5

2 Closer view to C D N 7
2.0.1 C D N solutions 7

2.1 Ecosystem of C D N 8
2.1.1 Or ig in server 8
2.1.2 Cl ient 8
2.1.3 C D N provider 8

2.2 Communica t ion of C D N components 8
2.3 Resources C D N takes care of 9
2.4 Role of proxy 10

2.4.1 Caching on proxy 10
2.4.2 Proxies specialized i n caching 11

3 Closer view to caching 12
3.1 Caching techniques 12

3.1.1 Intra-cluster caching 13
3.1.2 Inter-cluster caching 14

4 C D N at Seznam.cz 15
4.1 Requirements for C D N i n Seznam 15
4.2 Architecture of Seznam and C D N 16

4.2.1 Rel iab i l i ty and Avai labi l i ty 16
4.2.2 C D N location and data storage 17
4.2.3 Moni to r ing 17
4.2.4 Edge Caching 18
4.2.5 Internal caching 19

4.3 Effectiveness of current solution 21
4.4 Measurement of present architecture 21

5 Ways to Improve C D N ' s cache effecienty 25
5.1 Improvements on hardware level 26
5.2 Improvements on software side 26
5.3 Implementation direction decision 27
5.4 Topology efhcency prediction 28

5.4.1 Topology recreation 28
5.4.2 Dataset 28
5.4.3 Results and analysis 29

1

http://Seznam.cz

5.4.4 Decision 31

6 Implementation and deployment 32
6.1 Met r i c Gather ing and comparement 33

6.1.1 R A M usage and warmup 33
6.1.2 Cache H i t Rate 33
6.1.3 Memory usage and L R U nukes 34
6.1.4 Network state 35

6.2 Conclusion 35

7 Possible improvements 37
7.1 Different cache t ime on layers 37
7.2 Different cache sizes for layers 37
7.3 Warmup section 37
7.4 Inter datacenter clustering 38
7.5 Phys ica l l ink update 38

7.6 Sl iding window handling 38

8 Conclusion 40

Bibl iography 43

2

List of Figures

2.1 C D N ecosystem 9
2.2 Example of a simplified C D N workflow 9

4.1 Graph displaying 30-day statistics of caching on edge proxies 19
4.2 Graph displaying one-day statistics of caching hits on proxies 21
4.3 Graph displaying one-day statistics of caching Memory on proxies 22
4.4 G r a p h displaying one-day statistics of network state 23
4.5 G r a p h displaying one day and showing the amount of requests going through

the proxies 24

5.1 G r a p h displaying one-day statistics of caching hits on proxies w i th 372Gb of
R A M given for cache storage 30

6.1 R A M Usage After Restart 33
6.2 Cache Hi t Rate through 1 day of product ion traffic w i t h new architecture . 33
6.3 Cache Usage 2 Layer arhitecture 1 day.png 34
6.4 Network State 2 layer topology 35

7.1 Sl iding W i n d o w Prob lem 39

3

List of abbreviations

C D N Content Del ivery Network. 5, 7, 40
C H R Cache H i t Rate . 6, 12, 13, 25, 28-30, 34, 36,

37

D A S H Dynamic Adapt ive Streaming over H T T P .
19

D D o S Dis t r ibuted Denia l of Service. 16

H L S H T T P L ive Streaming. 19

I P T V Internet Pro toco l Television. 9, 15

L R U Least Recently Used. 35

R A M Random-Access Memory. 10, 26

SSL Secure Sockets Layer. 16

T L S Transport Layer Security. 16
T T L T i m e To L ive . 28, 29, 38

U R L Uni form Resource Locator . 8, 10

V C L Varn ish Configuration Language. 11
V M V i r t u a l Machine. 17
V O D Video on demand. 9, 25

4

Chapter 1

Intro

Since the invention of the internet, traffic flowing through worldwide web networks has been
steadily rising up. This relentless surge creates load on servers, proxies, switches, routers,
and many other network infrastructure components over the network.

Despite the concurrent rise i n internet traffic, hardware capacity is also advancing wi th
engineers t ry ing hard to optimize the flow of incoming and outgoing data. One of the
most prevalent and globally adopted strategies to prevent overload of servers and provide
fast response to requesting clients is the implementat ion of Content Del ivery Networks or
C D N s .

The pr imary objective of this thesis is to provide a comprehensive overview of the current
state of the C D N ' s cache, emphasizing its dedicated role i n storing and delivering the media
content. B y addressing the nuanced caching network issues tailored to Seznam.cz, this work
seeks potential optimizations and improvements i n the C D N ' s caching architecture.

The study employs an approach to achieve these objectives, involving the measurement
and analysis of relevant metrics gathered from C D N proxy servers. This data forms the
basis for a comparative study, aiding i n identifying areas for enhancement and opt imizat ion
wi th in the existing C D N infrastructure in the company Seznam.cz.

In essence, this work strives to contribute to the evolving discourse on C D N architectures
by offering insights into the current state of the C D N cache at Seznam.cz and laying the
groundwork for future advancements i n content delivery opt imizat ion.

In chapter 2. an introduct ion to the world of C D N s is presented. The chapter com
mences wi th an overview of C D N , encompassing its various solutions. The C D N ecosystem
is also broken down, detail ing the roles of origin servers, clients, and providers. The section
further explores the communicat ion among C D N components and the types of resources
managed by C D N . The examination concludes wi th a detailed focus on the crucial role of
proxy servers, incorporat ing caching strategies.

The 3. chapter expands on the C D N foundation; this section centers specifically on
caching. The concept of Cache H i t Rate (C H R) is introduced, and various caching tech
niques are explored. This encompasses a comprehensive discussion of inter-cluster and
intra-cluster caching strategies, providing insights into the mechanisms that optimize con
tent delivery through effective caching.

The 4. chapter applies insights from earlier sections to Seznam.cz. A concise overview
of the platform is presented, elaborating on the role of C D N wi th in Seznam. This involves
discussing the content typica l for Seznam.cz and an outline of specific requirements for
C D N implementation. The technologies employed through Seznam and C D N are explored,
covering aspects such as running applications, data storage, video encoding, quali ty mea-

5

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

surement, monitoring, and caching. The evaluation of the current solution's effectiveness
and the measurements of the present C D N architecture are integral components of this
concluding section.

5. chapter describes possible ways that could have positive impact on cache effectivity
and increase C H R . In this chapter is discussed potential changes that could be applied to
physical level and changes that could be changed i n software approach, including rethinking
logical topology of routing user traffic. Next th ing that is wri ten down is way to predict that
new changes w i l l br ing raise of cache hit rate, there are compared two ways - s imulat ion
model and recreation of production-like environment, discussed better approach to use and
why. Then chapter continues wi th results of testing and makes a conclusion is it worth to
implement given approach or not.

6 chapter Real Life Implementation describes how d id new changes influenced produc
t ion metrics. Shows visualtions of new graphs and discusses why d id graphs change. It
shows graphs of R A M usage, Cache hit rates, L R U nukes and state of network. Chapters
ends wi th conclusion based on changes in graphs compared wi th previous ones.

7. chapter „Possible improvements" brings up topics that could be took in account to
increase effectiveness of cache usage, increase C H R or improve C D N at other moments and
discusses some potential problems wi th new topology like sl iding window that brings double
object cache t ime i n cache storage.

Last 8. chapter Conclusion sums up a thesis and brings an overview of whole work
done.

G

Chapter 2

Closer view to C D N

A C D N is designed to prevent server overload caused by enormous data throughput by
creating a collaborative network of elements that implement transparent for end-user solu
tions.

M r . Pa than and his colleagues have authored a book t i t led „Con ten t Del ivery Networks"
[6]. In this book, they wrote:

The typical functionalities of a CDN include:

• Request redirection and content delivery services, to direct a request to the closest
suitable CDN cache server using mechanisms to bypass congestion, thus overcoming
flash crowds [7], or SlashDot [5] effects.

• Content outsourcing and distribution services to replicate and cache content from the
origin server to distributed Web servers.

• Content negotiation services to meet a specific need of each user(or group of users).

• Management services, to manage the network components, to handle accounting, and
to monitor and report on content usage.

To wrap it up, C D N pr imar i ly aims to create a network service that manages tasks
required for faster, reliable content delivery from web servers to clients.

2.0.1 C D N solutions

Currently, we observe two main approaches - to use a ready C D N solution or invest in
developing own C D N . B o t h of them have their pros and cons.

• C D N as a service.

One of the biggest and most famous C D N providers is Cloudflare . A l so companies
like A m a z o n (CloudFront) and Microsoft (Azure C D N) are offering C D N as a service.

• Bui ld ing own Content Delivery Network
Indeed, while specialized C D N providers possess extensive knowledge and experience
in developing C D N networks and offering comprehensive solutions, they may not
always be able to cover a l l specific or unique use cases, requirements, or tailored
policies of every company. In such cases, organizations often find it necessary to
start developing their own C D N i n search of a solution able to cover a l l their specific
requirements.

7

A s I work for a company w i t h its own Content Del ivery Network, this work mainly
focuses on in-house C D N solution.

2.1 Ecosystem of C D N

A n architecture of C D N includes three essential components - origin server, CDN distrib
utor, and client.

2.1.1 O r i g i n server

A n origin server is a machine capable of generating responses based on client requests,
typical ly using the Uni fo rm Resource Locator (U R L) to determine the content to provide.
A n instance of the origin server can be another proxy or a backend applicat ion that can
process and respond to this request.

2.1.2 C l i e n t

A client, often called an „end-user ," can encompass a person or another machine that
submits a val id request for a service.

In this work, the term „client" broadly encompasses human users and automated sys
tems.

2.1.3 C D N p r o v i d e r

A C D N provider is an element i n infrastructure(often referred to as a web accelerator1) that
helps to reduce the load of the origin server, increase reliability, provide faster response to
the client. Th is can be achieved by caching and replicating content across mult iple C D N
providers. Large C D N networks t ry to locate their servers as closely as possible to end
users to ensure faster and more immediate responses to clients.

In the context of this work, the term „ C D N provider" may be replaced by a „ C D N
proxy," „edge server," or „edge proxy."

2.2 Communication of C D N components

Indeed, there is no one-size-fits-all formula for creating and making everything work. The
behavior of the C D N network should be configured to al ign wi th the specific use cases that
a team or organization aims to achieve. However, many patterns and recommendations are
available to guide solving assigned tasks.

M a n y methods are available for configuring an effective Content Del ivery Network, rang
ing from basic load balancing to more advanced solutions like Anycast so lu t ion 2 . However,
as was mentioned above, fundamental principles of bui ld ing a C D N have remained relatively
consistent since the 2000s. These principles involve a typica l flow where a client requests
content from an origin server, and the request passes through an edge proxy, which checks
if it is possible to serve content requested by the client without burdening the origin server.

1 Network component that reduces access time to web resources. That component may use caching,
prefetching, load-balancing, and many other methods to achieve the aim of web acceleration. See how
Nginx Organisation describes Web acceleration

2 In the context of CDN, Anycast is a method to connect the clients to the geographically nearest data
center.

8

Figure 2.1: C D N ecosystem

If possible, the origin server is spared the processing of this request effort. Otherwise, the
request is sent to the server, and the response is routed back through the C D N proxy, which
can perform operations w i t h this data, cache it , and finally return it to the client.

3. return object
if preset in c«.cke

1. request content;

client

6. return response

server

server
y

return je*er°^ted
response

Figure 2.2: Example of a simplified C D N workflow.

2.3 Resources C D N takes care of

C D N is a system capable of handling a wide array of content types. Th is includes various
forms of media content files such as images, pictures, Video on D e m a n d (V O D) , any audio
files, live streams, Internet P ro toco l Te lev i s ion (IPTV) , as well as text-based content, con-

9

figuration data, or H T M L pages and even specific segments of H T M L documents, among
many other types.

2.4 Role of proxy

Proxy is an intermediate element between the client and server, which has several respon
sibilities:

• Security. The proxy can be an addi t ional layer of security to prevent potential
harmful traffic from going to the server.

• Fi l tering traffic. F i l t e r ing is used to block specific U R L s .

• Load balancing is used i n a network wi th mult iple servers that can handle requests
to distribute work on servers, ensuring that the workload is evenly balanced and
preventing single server overload or handling cases when one of the servers is down
and redirecting request to a server that is running.

• Caching is storing copies of content delivered to the client i n case this content w i l l
be requested again by the same user or other users.

• Access Control . Proxies can enforce access control policies, al lowing or denying
access to specific resources based on client credentials, IP addresses, or other criteria.

• Logging. Proxies can monitor savings by going through them for further analysis,
error detection, or other purposes.

In this section, not all possible uses of a proxy are defined, such as using it to obscure
a client's real IP or location, as these aspects are irrelevant for this work.

2.4.1 C a c h i n g o n p r o x y

Caching is an essential part of any Content Del ivery Network, so it is appropriate to work
for the proxy as described above. The way proxies can work wi th caching is described
below.

A proxy should be configured to store and manage a cache for caching to be effective.
This configuration may include some rules that describe:

• W h e n to cache content. It may be based on request U R L , specific response header,
and, i n some cases, on request/response IP, date, and time.

• For how long this content should be stored on the proxy. Specifying a time
durat ion for which content should be held on the proxy ensures that content w i l l be
regularly fetched again to keep it up-to-date.

• How to store content. The proxy can store content i n Random-Access Memory
(R A M) using different techniques for faster retrieval or store it on a hard disk drive for
larger storage capacities. Addi t ional ly , options like par t ia l caching can be configured
to store only specific parts of content.

• W h e n content should be cleaned up. Over time, it may be necessary to purge
entire or parts of the proxy's cache to ensure the availabil i ty of fresh content.

10

2.4.2 Prox ie s specia l ized in caching

Nowadays, several companies offer proxy server solutions. Most popular are Nginx3, Apache
HTTP Server'1 and Varnish5.

For this work, Varnish proxy and partly Nginx proxy will be considered.

A s Thijs Feryn writes in his book dedicated to Varnish:
Originally, Varnish was a reverse caching proxy: a proxy server that speaks HTTP you put
in front of your web servers. Varnish heavily reduces the load and the latency of your web
servers.[4]

Varnish has its configuration language called V C L .
The second proxy that w i l l be covered is Nginx , which is defined i n the Ng inx Cookbook

wri t ten by Derek DeJonghe:
NGINX is one of the most widely used web servers available today, in part because of

its capabilities as a load balancer and reverse proxy server for HTTP and other network
protocols [3]

B o t h solutions are wr i t ten i n the C language, ensuring fast processing of requests and
tasks. However, their main difference lies in their pr imary development focus. Varnish
pr imar i ly focuses on being an H T T P accelerator, while Ng inx main ly aims to be a web
server w i th caching options.

This leads us to a logical conclusion: while these tools may be capable of handling some
functions implemented i n others, they are designed to excel in distinct areas. Consequently,
using these two technologies i n various ecosystems is a common practice. This collaborative
approach allows organizations to harness the strengths of each tool , creating a more robust
and versatile solution.

3https://www.nginx.com/
4https://httpd. apache, org/
5https://varnish-cache, org/

11

https://www.nginx.com/
https://httpd
https://varnish-cache

Chapter 3

Closer view to caching

The cache hit rate (C H R) is a metric that is calculated by d iv id ing the amount of cache
h i t s 1 by the total amount of request that came to proxy(sum of cache hits and cache misses 2)
as seen in formula 3.1. Th is metric shows how effective cache proxies are working.

C H R = i V c a c h e H i t s (3.1)
-^Cache Hits + -^Cache Misses

This formula calculates the cache hit rate, representing the efficiency of the cache usage.
Where iVcache Hits is the number of requests that was served wi th cache, iVcache Misses is the
number of requests that was redirected to origin server as cache d id not contain a requested
object. So iVcache Hits + -^Cache Misses is the number of to ta l requests that came to poxy.

Most websites w i th pr imar i ly static content can reach high C H R . Websites that serve
dynamic content 3 have this ratio usually lower. However, one of the pr imary targets for
C D N engineers is to make this ratio as high as possible.

3.1 Caching techniques

For complex solutions where availabil i ty and rel iabil i ty are crucial , i t 's common practice to
construct a cluster, array, or mesh of caching proxies.

This approach offers the opportuni ty to replicate cache on different instances of cache
proxies. Do ing so ensures that if one of the cache proxies becomes unavailable, then other
cache proxies could handle request, and provide a cache that was present on the inactive
proxy. This redundancy enhances fault tolerance and guarantees uninterrupted access to
cached data.

In the book Content Delivery Networks [6], authors define two caching techniques -
inter-cluster and intra-cluster.

• Intra-cluster caching

1 Cache hit - a situation when a request that came to reverse caching proxy was handled by proxy internal
cache system and the request was not directed to the original server.

2 Cache miss - a situation when proxy serving cache does not possess requested resource, and should
request is redirected to an origin server that can handle it.

3Dynamic web content is a type of content generated in response to the exact incoming requests and
varies depending on factors such as time or by the client that created this request.

12

— Query-based scheme

— Digest-based scheme

— Directory-based scheme

— Hashing-based scheme

— Semi-Hashing-based scheme

• Inter-cluster caching

— Query-based scheme

3.1.1 Intra-c luster caching

This section describes ways of communicating proxy servers that are part of the cluster,
described in the work of Buyya Rajkumar, Mukaddim Pathan, and Athena Vakali [6].

The main principle of a query-based schema is that if the cluster node does not have the
object stored i n the cache that the client requested - it sends a broadcast request to a l l nodes
registered i n the cluster and waits for its response to decide i f content should be served from
the origin server or not. So, suppose no node in the cluster contains the appropriate cache
entry. In that case, the client may experience significant delays, as we have to wait for the
response of the slowest node and, after this, may wait to process the request by the origin
server. Furthermore, the act of sending broadcast requests can lead to network flooding,
which can have a severe impact on infrastructures w i th l imi ted bandwidth.

To overcome problem w i t h network flooding and a potential ly long t ime to respond
developers tr ied solution based on storing digest of the content stored on other proxy
cache servers. Unfortunately, to keep the digest, there is a need to allocate some memory
(that could store cache objects needed to increase the C H R) for this purpose. The second
disadvantage is traffic of update messages when the proxy caches a new object - it should
notify others about its new digest.

Another architecture of the cache cluster is the directory-based scheme. This solution
builds upon the previously mentioned idea of storing digests on the server but transitions
from a decentralized system to a centralized one. In this approach, a l l traffic servers sent to
each other are routed to a central server, which maintains a l l mapping data. Th is approach
significantly reduces the volume of packets coming through a cluster network, up to N 4

times! However, there is a trade-off to this opt imizat ion. L ike any centralized system, this
suffers from the unavailabil i ty of a central element, the server director. Moreover, the fact
that the director must serve a l l other proxies can exacerbate this vulnerability.

Next method does not depend on a centralized element but needs some significant part
of the memory to store metadata or create a traffic flood. This schema is based on hash
functions. The prerequisite of this solution is that each server should keep the addresses(IP
or domains) of other nodes i n the cluster. The main idea is that each server has the same
hashing function, and based on the hash of the U R L request, it picks from the hash-circle
designated server and redirects to i t . Th is approach solves the problems of previous schemes.
Unfortunately, this method has a disadvantage too - as we configured cluster hash-circle for
nodes, there is no possibil i ty of adding new nodes - the hash-based scheme does not scale.

4Where N is several servers

13

In a semi-hashing-based approach, a local C D N server dedicates a specific por t ion of its
memory space to cache the most famous content for its local users. The remaining por t ion
is allocated to collaborate w i th other C D N servers through a hashing function.

3.1.2 Inter-c luster caching

Inter-cluster communicat ion is responsible for redirecting requests from one cluster to an
other.

Inter-cluster caching has only one scheme to offer, as digest or directory-based schemes
use big amounts of data to communicate between cluster nodes, and any hash-based scheme
is unsuitable for this solution as a representation of C D N servers of different clusters is
normally distr ibuted geographically. [6]

Therefore, only a query-based solution is appropriate for inter-cluster communication.

14

Chapter 4

C D N at Seznam.cz

This work w i l l be dedicated to the Content Del ivery Network implemented i n the company
from the Czech Republ ic - Seznam.cz1.

Seznam.cz is a Czech internet por ta l and search engine. The company was founded in
1996 by Ivo Luhačovic and later became one of the Czech Republic 's first internet directories
and search engines.

The company is headquartered in Prague. Since its inception i n 1998, the search engine
and business directory gradually expanded to offer more services. B y the beginning of 2013,
the company operated over 25 different services. A s of 2014, Seznam.cz services had over
6.75 mi l l ion unique monthly visitors on the Czech internet.

Seznam.cz operates three data centers - Osaka, Nagoya, and K o k u r a .
Seznam.cz is a substantial company that manages many services and delivers signifi

cant volumes of content to users daily. Its dedicated C D N department is responsible for
developing highly reliable systems capable of handling substantial loads efficiently

Seznam.cz encompasses its television and television studio, a streaming platform, a
news website, a web page wi th recorded live streams, a marketplace, and a web platform
for podcasts and radio. B y the end of 2023, Seznam started developing its own I P T V .

Consequently, Seznam possesses a large volume of data that includes media content like
audio and video files and images. Addi t ional ly , the company hosts services that use static
content like JavaScript files.

The Content Del ivery Network i n Seznam handles a l l types of content.

4.1 Requirements for C D N in Seznam

C D N makes an effort to achieve the following requirements:

• Content distribution and streaming, as a core requirement of any C D N , the
network should efficiently distribute web content, including storing content into the
network.

• Caching serves as the heart of the ecosystem, part icular ly given the vast volumes of
content traversing Seznam's network; Caching plays a pivota l role i n al leviat ing the
load on origin servers or proxies responsible for content generation.

• The C D N should be easily to scale to handle traffic spikes; the solution should also
load balance load between nodes.

1https://seznam.cz

15

http://Seznam.cz
http://Seznam.cz1
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
http://Seznam.cz
https://seznam.cz

• Security managing D D o S protection, S S L / T L S encryption, content validation, and
preventing unauthorized access to content inside C D N , detect potential ly harmful
content.

• Moni tor ing and analyzing The C D N should provide real-time and historical ana
lytics to monitor traffic, usage, and performance.

• H i g h availability

• H i g h reliability

• Support for video encoding

4.2 Architecture of Seznam and C D N

In this section, we w i l l delve into the architecture implemented by Seznam and its C D N
department.

4.2.1 R e l i a b i l i t y a n d Ava i lab i l i t y

In the present day, it is essential to put into operation systems that can achieve zero
downtime2. Various tools and techniques exist to achieve this objective, which w i l l be
explored i n greater detai l later in this work.

A s previously mentioned, Seznam owns and operates three data centers. A l l of them are
located i n the Czech Republ ic , as the target clients are people who live there. Th is approach
empowers the company to establish high-available and high-reliable product ion systems in
case of any problem i n one of the data centers; services would be active, running, and ready
to serve users i n the other two. Indeed, adopting this way necessitates meticulous planning,
configuration, and testing, which, in turn, translates to a more significant investment of
human-hours^, the payoff is the achievement of high availability.

H igh rel iabi l i ty signifies the abi l i ty of a system to store and provide data without cor
rupt ion consistently. Th is goal can be achieved i n many ways, including

• Implementing a redundancy, when content w i l l be replicated through several sources
(servers, cloud services, etc.), and in the case of lost one, another could offer an exact
copy of stored content.

• Creat ing a backup of the content provided. This solution ensures the opportuni ty
to recover lost data from a backup source.

• M a k i n g a data validation.

... and others.

2 Zero downtime, in the context of software, stands for the state of an application with continuous avail
ability and operation without interruption even.

3Human-hour or person-hour is one of the metrics for estimation of average work done by one person

16

4.2.2 C D N loca t ion a n d d a t a storage

A s a l l three data centers are located relatively geographically close, and are located close
to a target auditory, C D N does not priorit ize bui ld ing a solution connecting each user to
the nearest data center.

Instead, it p r imar i ly focuses on problems of high load and quali ty of service.
One of the cr i t ica l factors for successfully deploying applications is the selection of

the right technologies and tools that meet the specific requirements of the task. Equa l ly
important is the planning and construction of the architectural design.

Seznam widely employs solutions provided by the OpenStack OpenStack1 platform. One
of the solutions offered by this platform is Swift'', an object storage system. This storage
solution aids the C D N by offering bui l t - in redundancy. Being an object storage system, it
simplifies the management of stored objects. Swift was designed to work wi th significant
volumes of data and opt imized for durabi l i ty and availability, which makes it a good tool
for working in a Content Del ivery Network. Communica t ion wi th object storage like Swift
is carried out through its A P I .

Another storage solution used is CEPHe. C E P H is a distr ibuted storage system that
aims to be scalable and reliable. Unl ike Swift, C E P H can be mounted into a V M or
container, making it a valuable choice for transferring data between applications over a
network without requiring direct A P I connections.

4.2.3 M o n i t o r i n g

Moni to r ing is essential i n any infrastructure, serving as an indispensable component. Its
pr imary functions include the early detection of issues and the prevention of catastrophic
consequences. Mon i to r ing also allows for analyzing various states of an application, facil
i ta t ing tasks like performance comparisons between different versions. It aids i n planning
resource availabil i ty and tracking their status while providing alerting mechanisms to notify
administrators or developers when the applicat ion deviates from its expected and proper
functioning.

Nowadays, there are lots of solutions that help set up Moni to r ing . There is a lot of
work on E L K and E F K . Despite the wide usage of these two stacks, Seznam does not
use data controllers like Logstash or Fluentd; instead, it develops applications that can be
compatible (and generate good-formatted) w i th Kibana 9 input format.

K i b a n a is not the only tool used to monitor states of applicat ion. The monitor ing stack
in Seznam comprises several technologies, including Prometheus, Thanos, and Graf ana.

• Prometheus serves as a tool for collecting metrics from applications, storing this
data, and offering flexible searching capabilities for these metrics

• Thanos is an open source extension for Prometheus that provides high availability,
long-term storage, and global querying of Prometheus data. It was created to address

4Read closer about what solutions are implemented and provided by the platform you can read on their
website https://www.openstack.org/

https://wiki.openstack.org/wiki/Swift
6Read more about C E P H on its web page https://ceph.com/en/
7ElasticSearch Logstash Kibana technology stack, read more about you can in work of Chen, Lei and Liu,

Jian and Xian, Ming and Wang, Huimei [2]
8 ElasticSeatch Fluentd Kibana technology stack, it is mentioned in Zhang, Haiyang, and Zeng, Hao

work[8]
9Kibana is an open-source project for the visualization of logs.

17

https://www.openstack.org/
https://wiki.openstack.org/wiki/Swift
https://ceph.com/en/

the challenges of scaling Prometheus for long-term storage and making it more suitable
for product ion use cases.

• Grafana is a platform for data visual izat ion. It allows the creation of interactive, cus
tomizable dashboards for visual izing data from various sources, including Prometheus
and Thanos.

4.2.4 E d g e C a c h i n g

Caching in Seznam's Content Del ivery Network is implemented between the C D N and end
clients and wi th in the C D N infrastructure. The cache located closer to the client is referred
to as the „Edge Cache," i n this work.

The management and opt imizat ion of the Edge Cache are cr i t ical for Seznam's C D N
team. Cache storage is not a unl imi ted resource, and therefore, effective control and main
tenance of used memory for caching are essential. The caching system wi th in Seznam has
several key requirements:

1. Effortless Creat ion of New Cache Objects: Seznam's caching system should be
able to transparent the generation of new cache objects.

2. Content Selection for Caching: Deciding what content to store in the cache is a
delicate balance. Seznam's C D N components must make intelligent decisions about
what content is most suitable for caching. This involves assessing the popular i ty and
volat i l i ty of content and considering factors like user access patterns and geographical
distr ibution.

3. Cache Maintenance: Over time, cached objects may become outdated or irrelevant.
To keep the caching on the same level of effectiveness, the system should be capable of
identifying and removing old cached objects that have expired or no longer match the
content available on the origin servers. This process ensures that users consistently
receive accurate and updated content.

4. Cache Invalidation: In certain situations, there might be a need to invalidate
al l cache objects before they expire naturally. The caching system should provide
mechanisms for proactive cache invalidation, al lowing the C D N team to refresh the
cache when necessary.

Seznam's C D N caching system leverages these capabilities to enhance content deliv
ery, reduce latency, and improve the overall user experience. Effective cache management
and maintenance are crucial to achieving these objectives, making the Edge Cache a v i t a l
component i n Seznam's content delivery strategy.

In response to the C D N network's specific requirements mentioned earlier, Seznam's
development team is following an approach that involves implementing Varn ish proxies
as the core applicat ion of the edge caching layer. Th is technology, which underpins the
C D N ' s edge caching infrastructure, has been instrumental in enhancing content delivery
and opt imiz ing the traffic that comes through the network.

Seznam operates mult iple edge proxies that serve as intermediaries for client-server
communications. E a c h of these proxies has a substantial amount of R A M - an impressive
256 gigabytes. A straightforward calculat ion means approximately three terabytes of R A M
are collectively available across the C D N for caching purposes. O n the surface, this storage

18

capacity might seem enormous, but i n practice, it is consistently near to ta l capacity for an
organization as dynamic and content-rich as Seznam. Even wi th this substantial amount
of cache storage, edge proxies have an average C H R at 83,6% dai ly as seen in graph 4.1.

One notable aspect of Seznam's edge caching infrastructure is the dis t r ibut ion of these
proxies. They form an array of proxies, collectively creating a single caching layer. Signifi
cantly, these proxies operate independently, enhancing fault tolerance and load dis tr ibut ion.
This distr ibuted approach ensures that cached content is available and responsive i f several
machines are down.

W h i l e the fault tolerance inherent in the approach described above is a notable advan
tage, it also comes wi th a significant drawback - substantial data duplicat ion. Imagine a
scenario where several hundreds of requests are made for the same object. In this situa
t ion, the load-balancing process w i l l attempt to distribute these requests to different nodes.
However, the consequence of this strategy is that the same content is cached across a l l the
involved proxies. W h i l e offering redundancy and reliability, this practice is not the most
efficient way of managing data. It results in a significant waste of memory resources, mul
t ip ly ing the data storage requirements by a factor of N , where N represents the number of
proxies engaged i n the load-balancing process. U t i l i z i n g memory resources while avoiding
unnecessary data dupl icat ion is a persistent challenge in such a dynamic and content-rich
environment.

03/20 03/22 04/05 04/07 04/09 04/17 04/13 04/15

i cache hit %

52.5% 17.3%

0% 100% 99.9%

Figure 4.1: G r a p h displaying 30-day statistics of caching on edge proxies

4.2.5 Interna l cach ing

Seznam's Content Del ivery Network (C D N) is an adaptable and miscellaneous system that
handles a wide array of tasks, ranging from uploading and storing images to applying filters
on videos and generating media playlists for live streaming, including H L S and D A S H .
These processes are developed in alignment w i th the fundamental principles of Microservice
architecture. A s such, incoming tasks to the C D N are precisely classified and delegated to a
specific microservice. These microservices can take various forms, such as A P I s or running
daemons, each designed to perform a part icular function.

19

For the C D N to operate optimally, a l l microservices should be configured appropriately
and keep up-to-date information about the C D N ' s current state. To ensure this synchroniza
t ion process, various components wi th in the C D N need regular updates and data exchanges
between components. Examples of the types of such traffic that flow into the C D N encom
pass obtaining configuration data for an encoder, in i t ia t ing the encoding process, fetching
authentication data to determine a user's permissions for specific actions, or retrieving the
status of part icular tasks.

Given the high volume of tasks that can be executed concurrently wi th in the C D N ,
an efficient caching system is employed. Unl ike the Edge Cache, which pr imar i ly serves
content closer to clients, this internal C D N cache serves a different purpose. It is relatively
small and does not demand ample R A M resources on a machine. Consequently, it can be
efficiently implemented as a cache wi th in a Kubernetes Pod 's container, often working wi th
a running Ng inx server inside. This internal cache enhances the C D N ' s performance by
reducing the need for frequent, resource-intensive data retrieval from other components,
ensuring quicker response times and better resource management.

In certain scenarios, there are situations where a component needs to retain data that
w i l l be required more than once. Several approaches exist to store this data efficiently for
future use i n such cases. One of the most prevalent methods employed at Seznam is using
the Redis 1 0 database, which serves as a cache layer for these purposes.

This approach offers the advantage of making cached objects accessible across multiple
processes, whether running on the same machine or different machines wi th in the network.
Components delegate to the Redis, fulfilling various essential functions, including cache
invalidation and, in some instances, mi t igat ing data races associated wi th a part icular
object.

The internal caching level of the C D N architecture not only improves the system's
efficiency but contributes to its abi l i ty to handle large workloads.

Redis, which stands for Remote Dictionary Server, an open-source, in-memory data storage and caching
system, https://redis.io

20

https://redis.io

4.3 Effectiveness of current solution

The current state of architecture can be characterized through metrics. In this context,
metrics collected from edge proxies w i th Varn ish are stored i n Prometheus and are accessible
through the Thanos A P I . Thanos aggregates this data, providing an interface for further
analysis and visual izat ion. The aggregated metrics are then rendered i n graphical format
on Grafana.

4.4 Measurement of present architecture

This section w i l l showcase graphs w i t h metrics generated during a single workday. The
graphs provide insights into the performance of the network proxies connected to it.

Cache Hits

Figure 4.2: G r a p h displaying one-day statistics of caching hits on proxies

The depicted graph (Figure 4.2) provides an overview of caching hits on proxies over a
single day. The horizontal axis represents the timeline, capturing the progression of time
throughout the day. The vert ical axis displayed the cache hit rate and the percentage of
requests successfully served from the cache.

21

Cache M e m o r y

Figure 4.3: G r a p h displaying one-day statistics of caching Memory on proxies

The figure 4.3 illustrates the one-day statistics of caching Memory on proxies, describes
memory management dynamics. The horizontal axis represents the timeline, and the ver
t ica l axis quantifies the amount of Memory.

The G r a p h contains three aspects of caching memory management:

• L R U M o v e d (White area): Th is area depicts the volume of cache entries subject
to the Least Recently Used (L R U) pol icy and consequently moved wi th in the caching
Memory.

• L R U Nuked (Red area): The red area signifies instances where cache entries were
forcefully evicted from storage or „nuked" to make room for a new object due to the
L R U policy. Th is could indicate high memory pressure or the need to priorit ize more
relevant or frequently accessed data.

Metr i c M i n M a x Total

L R U M o v e d 2405.12 26.1k 12032.4k
L R U Nuked 710.38 6.9k 2742.5k

Table 4.1: Cache Memory Statistics

22

State of Network

Network «

9.31 GiB

Figure 4.4: G r a p h displaying one-day statistics of network state

The figure 4.4 represents a network state. The horizontal axis signifies a timeline, delin
eating the progression of t ime throughout the day, while the vertical axis quantifies the
network metrics.

• Frontend (Green Area) : The green area illustrates the metrics associated wi th the
frontend.

• Backend Default (Purple Area) : The purple area represents metrics related to
the default backend. Also , other backends are overlapped by the purple zone.

Component M a x A v g Total

Frontend 8.29 G i B 4.85 G i B 3.41 T i B
Backend 1.79 G i B 1.08 G i B 778 G i B
Backend Default 1.64 G i B 1.01 G i B 366 G i B
Backend Fallback backend 6.70 M i B 374 K i B 132 M i B
Backend F i l t r i l o n l 55.9 M i B 34.0 M i B 12.0 G i B
Backend Filtri lon2 58.3 M i B 33.9 M i B 12.0 G i B

Table 4.2: Network Statistics 1 day

23

Requests

Figure 4.5: G r a p h displaying one day and showing the amount of requests going through
the proxies

The graph (Figure 4.5) illustrates the one-day statistic representing the volume of requests
going through the proxies. The horizontal axis is a timeline, and the vertical axis is the
number of requests.

• Frontend (Green Area) : The green area signifies the number of requests from the
frontend.

• Backend (Yellow Area): The yellow area represents the requests from a backend.

The cyan line depicts the cumulative sum of request rates over a 5-minute interval.

• Fetched Objects (Orange Area) : The orange area represents the number of ob
jects fetched.

Component M a x A v g

Frontend (Green Area) 72.7k 41.9k
Backend (Yellow Area) 11.3k 7.3k
Fetched Objects (Orange Area) 8.7k 5.8k

Table 4.3: Request Statistics for the Specified Components

24

Chapter 5

Ways to Improve C D N ' s cache
effecienty

Seznam.cz in 2024 year made a strategic decision to increase caching capabilities of com
pany's proxies. Improving cache efficiency on proxies includes increasing efficiency and
effectiveness of storing and retrieving stored i n internal cache content. This can involve
implementing some new caching algorithms, upgrading hardware infrastructure including
network links, or just opt imiz ing software configurations. B y focusing on this cache im
provement, Seznam aims to deliver its content to end-users more quickly, enhancing the
to ta l user experience.

A higher C H R indicates that a larger por t ion of user requests can be served directly
from the edge-cache without any need to access backend servers. Th is reduces a workload
on a backend infrastructure and can lead to resource savings and improved performance of
process. W h e n content is often accessed and is stored i n the cache on proxy, this reduces
the need for extra and repeated requests to backend servers. Th is not only saves compute
resources but also reduces network traffic and latency. B y opt imiz ing the C H R , Seznam.cz
can minimize the amount of requests going straight to its backend servers, leading to im
proved rel iabil i ty of its services. Higher C H R also contributes to a more efficient usage of
resources, al lowing Seznam to allocate computing resources more effectively to handle peak
loads.

Content Del ivery Networks play a main role in delivering content efficiently to users
by caching and dis t r ibut ing content closer to the end-users by reverse edge proxies and
web accelerators. Improving cache store efficiency on proxies can significantly reduce the
workload comming to C D N backends from users, par t icular ly for tasks such as generating
content for Video on Demand (V O D) and L ive streaming.

Generating content for both V O D and L ive streaming involves resource intensive tasks
such as parsing data, processing and generating media playlists in formats like H L S or
D A S H . B y offloading some of this work to the cache, C D N backends can work more effi
ciently and serve more requests that are unique. User gets faster content downloading, as
content can be served direct ly from the cache without need to wait un t i l backend process
data sent to it.

25

http://Seznam.cz
http://Seznam.cz

5.1 Improvements on hardware level

Implementing some improvements at the hardware layer, may increase the performance,
capacity, and efficiency of the system that is serving a web accelerator or H T T P server.

• Increase amount of R A M Increasing amount of R A M on a devcie may allow it
to store and access more data. More R A M enables the system to operate wi th larger
dataset.

• Use hard disk as additional storage and virtual cache space - Us ing the hard
disk as addi t ional storage and v i r tua l cache space can increase the system's capacity
and improve its abi l i ty to store and retrieve more data than w i t h only R A M used.
H a r d disks offer high-capacity storage at relatively lower costs compared to R A M .
B u t hard disks has its ' own drawback - they are slow, R A M s are much faster reading
and storing data than hard disks. Therefore, there is a big trade off for company
and maintainers of cache server. One of the common use-case for companies to store
content wi th in combination of R A M and hard disks is storing data that is accessed
small amount of times per day into a H D D / S S D . B y storing less frequently accessed
data on the hard disk, it frees up R A M space for more more so-called hot-files.

5.2 Improvements on software side

More effective caching system may be as a result of software updates, features and main-
taince. Varn ish servers may be configured i n wide range of combinations. Topology may
change to serve cache more effectively. B y modifying the network topology wi th several
proxies, engineers may optimize cache delivery and improve efficiency of a served content.
Implementing a hashing (as was previously mentioned in 3.1.1) a lgori thm can help dis
tr ibute requests evenly across cache servers, reducing the load on ind iv idua l servers and
improving overall caching efficiency by sending user requests for same data to a responsible
Varn ish instance that is owner or should be an owner of this cache object. However, hashing
algorithms have their challenges - it is typical ly implemented at Layer 7 (application layer),
which may introduce overhead and complexity on load balancers that should distriburte
requests. Hashing at Layer 7 involves parsing applicat ion layer data from request, such as
U R L s or H T T P headers(to extract cookies, for example), to figure out which neighbour is
the possible owner of a cache object. Sharding is using a consistent hashing 1 a lgori thm,
which serves stabil i ty on resize of hash circle of cache servers. Hash circle resize may occur
on server jo ining group or leaving it . Group leaving may be caused by network par t i t ion,
machine overhead, machine reboot and other cases when server stops responding unexpect
edly. It is more dangerous than joining as it should be detected immediately and apply
rules that would stop rout ing to this node. Possible fallbacks are discussed later i n this
work.

There is a possibil i ty to bu i ld several layers of caching proxies where the deeper proxy
is located (from client's side) the less popular content it stores i n its storage.

This work targets and discusses one- and two-layered topology of a Var ish web accelera
tors. Archi tecture invol iv ing only one layer of proxies is self-routing and is quite popular in

1 Consistent hashing - is special case of hashing process which is good for handling resize of group included
in hash. On resize only — keys have to be mapped again where n is the number of keys already stored and
m is the number of participants in hash ring

26

community of engineers. Self-routing means that instance of Varn ish could possibly be in
tended to „send" it to this part icular instance, to itself. W h e n this part icular case happens,
node is start ing the standard flow of processing incoming request - lookup i n cache, on miss
or when object in cache is i n its grace period, request is forwarded up to backend and then
cached based on internal logic of web accelerator. Self-routing topology of nodes i n cluster
is quite easy to implement, the most fundamental th ing to account w i th is that the hashing
algori thm should be same on each instance, and hash cirlce has to have same amount of
keys or participant that are enrolled i n backend calculation, otherwise it 's possible to stack
in infinite loop of request juggling.

More complicated case of cluster architecture wi th sharding process is the one in which
engineers imlpementing two layers physically or virtually(instances of the first and the
second layer could easily run on one machine). W h e n we have more complicated topology
its aslo gives us space to expirement and play w i t h request forwarding. Its possible to
implement sharding on the first layer and leave second as just long-time cache, make both
layers as independent clusters, and the last is make the second layer routing while leaving the
front one as just shield from the most popular requests. However, a l l three implementat ion
assumes that the first layer would serve the most popular requests from users, while second
one would be a long-term cache that holds object that could be cached for a long period
of t ime. In this work we discuss a th i rd wri t ten concept w i th non-clustered first layer and
self-routing cluster of nodes on the second one. Th is topology has big advantage - covered
case of hot-spotting 2

5.3 Implementation direction decision

Desicion was to implement 2 layered topology wi th sharding on the second layer of nodes. A s
was mentioned before the first line of Varnishes should serve the most popular objects from
its cache storages. A l so one of interesting implementat ion details is that second instance
of web accelerator going to take place on the same machine where the first one is running.
This gives us two advantages:

• There is no need to create an addi t ional V M or set up a new baremetal server and
therefore minimizes deployment complexities. Moreover, this approach reduces the
need for addi t ional hardware infrastructure and simplifies hardware management.

• In case that front node is going to forward request to the second proxy, traffic stays
wi th in the confines of the local machine, e l iminat ing the need for data transmission
across the network. Th is not only accelerates response times but also reduces the
load on network bandwidth.

A s second layer should not be visible and accessable by clients of a company listening
port of it should not be exposed to an external network. So port was opened on a internal
V L A N wi th a dedicated interface for intra-cluster communicat ion. A s nodes that are par
t ic ipat ing in one hashing r ing for sharding are located in one datacenter, communicat ion in
cluster is fast and not leaving datacenter, instead it is just forwarded between server racks
i n server rooms.

2Hot-spotting or hot shards appear because organic laod patterns drive more traffic to one particular
shard [1]

27

5.4 Topology efficency prediction

This chapter describes how prediction could be made and results extracted to confirm that
the new topology would 'behave' and operate better, usage of a cache storage would be more
effective and tota l C H R would be increased w i t h followig decreasing of request amount to
Seznam's backends. There is two possible ways how to measure an effectiveness of a new
topology - bu i ld an exact copy of current product ion solution and change its configuration,
then start to simulate a product ion data-flow wi th metrics scraping from Varnishes; the
second way would be to bu i ld a simulation model that would allow us to simulate behaviour
of proxies. F i r s t approach seems to give us the results that are approximat ing to the real one
as it real software, exactly same that is running i n production, requests are recreated from
a day logs. However, this solution could benefit real good in case of accuracy of results,
despite on T T L of objects, a cost of implementat ion is enourmous i n human hours and
resources. There is need to configure new v i r tua l machines or setup bare metal servers. O n
the other hand, second way gives us less trust-worthy results. Simulat ion model should be
tested on dataset and model should be proved to serve and give a result that refers to real
ones. B u t i n case that model would be val id and gives objective results reflecting product ion
C H R it could save a lot of t ime and speed up process of development, s imulat ing and gives
an opportuni ty to run simulat ion i n parallel to test different topologies, their configurations
and get results much faster. Based on the fact that for a business it is good to get results
faster which brings faster profit, s imulat ion way was chosen as a way to prove efficency of
the future topology.

5.4.1 T o p o l o g y recreat ion

To recreate topology for s imulat ion preference fell on GoLang'^ programming language.
This language is good i n both important aspects for our s imulat ion goal. It is fast and it
is a high-level language, combination of two gives us a proper way to implement model in
much faster way than i n any low-level language like C or Rust; and property that language
is compiled gives opportuni ty to collect results from simulation much faster than i f the the
model was implemented i n language like Python. Moreover, one of the best feature that is
implemented in GoLang is that binary files does not have any external dependency! That
allows to copy binary to any machine wi th same processor architecture and running on
same O S (Linux-based systems and O S X compatible as both follows U N I X standards).

The implemented model is stored and can be found on Gi thub /Drakorgaur ; source code
is under Apache 2.0 license.

5.4.2 Datase t

Dataset for the simulation process was day-long log files from a l l edge proxies on one
datacenter, that mean that it contains logs from a l l 12 proxies through one day. Logs were
merged, sorted by t imestamp and formatted to save disk space. After filtering log would
contain space it took i n cache and u r l to calculate key under which object would be stored.

ubun tu@pomo-huge-d i sk : - /$ I s - l a h l o g s / d a t a s e t . l o g
- r w - r w - r — 1 ubuntu ubuntu 147G Feb 14 12:02 l o g s / d a t a s e t . l o g

3GoLang or just Go - is a compiled high-level programming language with static typing designed and
implemented by Google

28

5.4.3 Resu l t s a n d analysis

Despite the fact that model does not take into account T T L of cache objects, it gave pretty
good results for architecture that was implemented i n 2023 year on C D N .

{

"proxy-23": {
"cache": {

"hit": 71245273,
"hit_ratio": 0.8507157800455882,
"miss": 12502172,
"total": 83747445

}.
"cache_size": 176000000000,
"cache_used": 175996432943,
"routes_to": [

"default"
].
"routing": O

}

}

Above is presented one of metric set extracted from model of proxy w i t h Varnish . Tota l
cache hit rate is set to 85% w i t h full memory used. D u r i n g the start of 2024 year machines
that hosted Varnish instances got a new R A M plates which doubled available R A M to
512Gb. A l t h o u g there was boost in R A M amount, not a l l R A M could go to Varn ish itself
for al locating memory for cache objects, there is need to leave some memory for other
processes including Varn ish daemon, lurker, O S running and etc. W i t h new configuration
plan where the Varn ish layer got a 372Gb to store user requests, there was a opportuni ty
to predict how C H R would change.

29

{

" p r o x y - 2 3 " : {
" cache" : {

" h i t " : 55188813,
" h i t _ r a t i o " : 0.8819648515623947,
" m i s s " : 7386031,
" t o t a l " : 62574844

}.
" c a c h e _ s i z e " : 372000000000,
"cache_used" : 371999997182,
" r o u t e s _ t o " : [

" d e f a u l t "

].
" r o u t i n g " : O

}

}

Simulat ion model showed us a result of C H R set to 88.2%, after applying changes and
reconfiguring Varn ish daemons and scraping metrics from them we have got approximately
same raise.

Cache hits -

Figure 5.1: G r a p h displaying one-day statistics of caching hits on proxies w i th 372Gb of
R A M given for cache storage

C D N engineer team can trust the model , dispite the fact that model gives only final
C H R . Expec ta t ion based on model predict ion met the real product ion results. Tha t gave
a freedom to actions and modeling two layered topology. Even that expirements was made
more than four, below is described the four the most interesting ones.

Two best cases from table ?? for Seznam's Content Del ivery Network would be con
figurations - first, where 74 on the first layer and 298 on the second gigabytes of R A M :
and second where the first layer has 149 and the second one has 223 gigabytes of R A M .
Predic t ion is for both cases on C H R are more than 96% this means that on comparement
wi th current 88% half of requests that are passed to backend servers would be served by

30

Table 5.1: 2 Layer Cache Configurat ion

I L Size 2L Cache C H R I L C H R 2L C H R

74 G B 298 G B 81% 83% 96.77%
149 G B 223 G B 85% 77% 96.55%
223 G B 149 G B 87% 62% 95.06%
298 G B 74 G B 88% 48% 93.76%.

Cache proxies! Taking to the account that Seznam has huge network flow half of requests
would mean a lot of saved C P U processing time, less loaded backends, databases etc.

5.4.4 D e c i s i o n

So decision was made to move aside w i t h solution where we have 74 gigabytes of R A M
on the first layer and pass left 298 gigabytes to the second layer. This should give cache
hit rate boost by predictions of model from 88.2% to 96.77%. B o t h instances would be
running on same machine while s t i l l exposing to users only one port - port of the first
layer, meanwhile the second layer would serve as huge network storage or i n some k ind
of v i r tua l R A M for Varnish , storing only unique content from end users. B o t h layers are
communicat ing v i a V L A N w i t h possibil i ty given to C D N team from Seznam's admin to
create a dedicated physical connection. B u t by estimation current links could easily handle
a new load wi th increased traffic passing between nodes that are running Varn ish instances
on them. B y design a l l routing and business logic should do the first layer of proxies, while
the second layer is just a simple cache storage wi th some addi t ional functionalities like
headers incapsulation, retries and etc. O n first attempt decision was made to store objects
i n cache on second layer instances wi th same T T L as they are stored on the second one.

31

Chapter 6

Implementation and deployment

Implementation includes creating new configuration files for Varn ish daemon in VCL ,
creating new systemd service that takes care of new daemon of Varnish proxy that listening
on dedicated interface and storing metadata in directory different from the default one,
which is used by Varn ish deamon serving first layer connections; directory changed by ' -n '
flag i n Varn ishd and other useful tools from Varnish software like Varnishadm or Varnishlog.
Then is added script for automative restart or reload of Varnish daemons when V C L or
systemd files are changed to fulmll C D 2 i n the C D N team. A l so there is need to setup new
metric exporter implemented aside wi th Prometheus - this tool is called Prometheus Varnish
Expor te r and could be found on jonnenauha's Gi thub . Prometheus Varnish Expor te r is just
translating Varn ish metrics to format that Prometheus could understand and exposed this
metrics on a specific port . A s a matter or fact, there is need to connect them to C D N ' s
Thanos store and scrape to have observability on Seznam's new implementat ion of proxy
nodes. After new thanos configuration there is need to update Grafana's dashboards to
work wi th new metrics as to ta l cache hit rate is now calculated i n an another way than it
was a year ago.

After a l l preparations were done and new topology was tested it was a t ime to release
new topotogy to product ion and get new metrics. There was a decision to make a rollout
to one server room only so in a case of error or instabi l i ty we could serve content from
the other ones. A l so rollback plan was prepared to tu rn lost datacenter on as fast as
possible to remove load from other datacenter rooms. In the middle of apr i l Seznam was
successfully running wi th one datacenter set to new topology. After one week of stabil i ty
rest of datacenters were put on new topology as well.

1 V C L - Varnish Configuration Languages
2 CD - continious deployment

32

6.1 Metr ic Gathering and comparement

6.1.1 R A M usage a n d w a r m u p

559 GiB

466 CiE

573 GiE

279 GiE

186 CiE

93.1 GiB

OB
12:D0 13:D0 14:00 15:D0 16:00 17:00 1 B:00 19:00 20:00 21:00 22:00 23:00 00:00

Figure 6.1: R A M Usage After Restart

After rollout of new configuration there is warm-up time needed by proxy to fullfill its cache
store. A s shown on 6.1 proxy has interval of 2 hours to end its warm-up period. A r r o u n d
14:00 there was an angle change of R A M usage graph, R A M usage value at this t ime is
arround 190GB R A M , that is because smaller storage d id fi l l and since this point of time
only bigger cache storage continuing to fi l l and store new objects.

6.1.2 C a c h e H i t R a t e

Cache hits 1 st layer [5m] Cache hits 2nd layer [5m] Cache hits total [5m]

(a) (b) (c)

Figure 6.2: Cache H i t Rate through 1 day of product ion traffic w i t h new architecture

Figures 6.2 based on metrics extracted from proxies of new topology visualizes 3 cache hit
rates:

33

Figure 6.2a shows a C H R that is average between a l l proxies i n one cluster on the
first layer. [5m] means that P r o m Q L 3 uses function rate w i th uses per-second rate
of increase of a metric wi th in the specified t ime range of 5 minutes. G r a p h has cache
hit m i n i m u m set to 72.0%, m a x i m u m set to 88.2% and average to 81.4%.

The next figure 6.2b has same query but on metrics that come from Varn ish instances
on 2nd logical layer. It shows cache hit m i n i m u m as 51.0%, m a x i m u m set to 62.2%.
and average to 58.3%.

The last figure 6.2c, as is understood from its name it shows a to ta l cache hit rate for
a new solution and a new topology. This C H R is calculated by next formula:

C H R total C H R I L + (1 - C H R I L) * C H R 2 L (6.1)

This formula calculates C H R as a count of hits i n a cache on the first layer plus
number of hits on the second that are performing on requests comming from a cache
miss on the first layer of proxies. Cache hit is set as following: m i n i m u m is 86.5%
max imum is set to 94.3% and average is set 91.7%

6.1.3 M e m o r y usage a n d L R U nukes

1.27 TiB 4500

3.1BTIB

2.73 TIB

2.27 TiB

1.82 TiB

1.36 TiB

931 GiB

46a GiB

6;00 2O:D0 00:00 04:00 0B:D0 12: 16:00 20:01 0:00 04:00

Figure 6.3: Cache Usage 2 Layer arhitecture 1 day.png

Table 6.1: D a t a Summary for first graph

M i n M a x Current

L R U moved (light red) 943.47 13k 11.5k
L R U nuked (red) 228.40 5.5k 4.7k

3PromQL - Prometheus Query Language, functional query language for queries to Prometheus database

34

Table 6.2: D a t a Summary for second graph

M i n M a x Current

L R U moved (light red) 271.80 4.3k 3.8k
L R U nuked (red) 130.93 1348.20 1053.51

Visul izat ions of Cache usage on proxies is quite useful and gives a few things for next
analysis. F i r s t , L R U Nukes are less common for the second layer of proxies, which means
that cache space is used really effectively and Varn ish less often removes old objects from
cache storage to store a new ones. The second interesting conclusion that could be made
out from graphs is that objects has it expirat ion t ime reach much more often comparing
wi th objects that are handled by the first layer.

6.1.4 N e t w o r k state

N etwork v

UM Ii ihlMi i l ^ ^ I

7.45 GiB

5.59 GiB

3.73 GiB

1.86 GIB

Aft

UM Ii ihlMi i l ^ ^ I

16:00 18:00 20:00 22:D0 0D:00 02 00 04 00 06 DO 0B:D0 10:00 12:00 14:00

Figure 6.4: Network State 2 layer topology

Network flow is increased comparing w i t h previous solution by 20% on avarage. W h i c h
means that on serving same amount of user requests we're creating on 20% packets comming
between proxies, but this graph does not shows requests count comming to backends from
Varn ish instances.

6.2 Conclusion

Even though the s imulat ion model overestimated cache hit rates on the second logical
layer of proxies, a great result was achieved wi th an increasing cache hit rate using the
provided changes and improvements i n Varn ish proxy configuration. Furthermore, this is
only a change in the configuration and way proxies communicate w i th their backends; the
backend for a concrete proxy can be another proxy or the real backend that serves client
requests. A s expected, network traffic has increased, but not in the way we can not handle
it, and future improvements to physical links may improve our abi l i ty to handle network
traffic between proxies. W i t h provided „shared" and sharded cache for proxies we achived
uniqness of content on the second layer w i th more efficient usage of R A M available to C D N ' s
team, this brings less amount of L R U nukes of objects on second layer, but it brings higher

35

rate of object expirat ion i n cache comparing to the first layer of two layered topology and
comparing to previous implementation of topology.

Even that cache hit rate is increased by several percents, it 's a big deal for company.
The higher C H R the harder to improve it far. So average C H R raise from 83.6% to 91.7%
is quite big for Seznam.

36

Chapter 7

Possible improvements

Even that cache hit rate was increased to an average value of 91.7% there is s t i l l options
to improve work and effecincy of serving user requests by changes i n configuration and
hardware. This chapter takes a look on this possible future improvements that should help
proxies serve content more effiecient.

7.1 Different cache time on layers

A s mentioned in the section 5.4.4, decision was made to leave T T L on both logical levels
same, which than can be observed on graph 4.1. Th is brings idea to play and configure
T T L of objects that are storing on 2nd layer to increase t ime accessable to object from
cache instead passing it to the backend.

7.2 Different cache sizes for layers

A s was mentioned in previous section lot of objects are getting state of expired and removed
from cache by Varnish . This is not a bad factor, but that means Varnish is not removing it
efficiently to store new data, instead some part of memory became available and empty, just
wait ing to store a new object. This also gives us a understanding that i f we have available
space, we could move it on first layer to handle more requests there wi th increasing C H R
of the first layer and not loosing the last on the second layer.

7.3 Warmup section

Varnish shard director which picks backend wi th sharding process has a option of warmup,
which brings opportuni ty to select a different backend w i t h variable probabili ty. Th is
probably is not going to increase an amount of objects that are server from cache, but it
brings an useful factor - it is creating a backup for case of unavail ibi l i ty of proxy holding
unique object. So Varn ish caclulates new v i r tua l hash r ing without proxy that picked from
current ring, and picks new potentional responsible backend for this object and instead of
proxying request to real owner of this object Varnish sends request to its „depu ty" creating
fallback i n case of network par t i t ion of other problems that would disconect nodes.

37

7.4 Inter datacenter clustering

Current solution is based on independent clusters that are located in different datacenters.
Th is means that „un ique" objects through the cache are not really so unique, they are
duplicated across datacenter rooms. Rea l uniqness could be solved by creation of one
cluster across a l l datacenters. Th is way brings opportuni ty to decrease memory amount
provided to second layer and give it to the first one, while keeping or increasing total
memory of the second logical layer. Th is brings following trade-offs for increased cache hit
rate:

• Latency would be increased to pass request between datacenters as servers would be
geographically located far. B u t w i th assumtion that a l l datacenters are located in
Czech, and moreover i n the same city, delay should not be so tangible.

• Another issue is a network par t i t ion between datacenters. Th is means that data-
centers are just loosing about half of objects that are stored i n the second layer of
different datacenter when can not see the last one. Despite this huge hole i n cache
storage on this case, most of objects are s t i l l stored on the first layer giving a big buffer
and saving backends from an overload. Cont inuing wi th handling network par t i t ion
as was mentioned i n 7.3, Varn ish could create backups of objects, but it does not give
a waranty that objects would be duplicated wi th probabi l i ty across different rooms.

7.5 Physical link update

Eari l ie r i n this work was discussed that there is possibil i ty to set up new links for intra-
cluster communicat ion and increase it bandwidth and l ink speed. This change can help
to remove worries about increasing network traffic comming from proxy to proxy, and a
slightly decreasing the latency for end user, however cache storage and usage would not be
more efficient.

7.6 Sliding window handling

W i t h new two layered topology there appeared a new potential problem - double time
caching due to sl iding window of requests. A s i l lustrated i n 7.1 diagram, when no proxy
has an object, and request is coming to proxy number one (on the first layer) it passes
request to owner of object on the second layer, it has the object in cache and should ask
backend. Let 's assume backend returned picture and T T L of the object is one hour, then
proxies returning response to the ini t ia tor of communicat ion. Then after 55 minutes another
request comes to proxy number two, it has no object stored, then it is forwarded to owner,
which has this object, but this part icular object have T T L only 5 minutes left, and despite
this front Varnish is storing picture i n cache for another hour. Simple calculat ion gives us
a t ime of 1 hour and 55 minutes of to ta l cache t ime instead one hour for pictures.

38

ProxyU 1 ProxyU 2

flower, png

ProxyLZ 2 backend

flower, png

critical [slide window]

flower, png

ProxyU 1

n
ProxyL1 2 ProxyL2 2 backend

Figure 7.1: S l id ing W i n d o w Prob lem

This could be a problem for freqently refreshing object i n cache. Despite the fact, that
old architecture had the same problem, this is s t i l l problem. A n d w i t h two layer topology
we have one source of t ru th - Varn ish instance on the second layer, the real owner of cache
object. Th is Varn ish instance can propagates to front proxies T T L that left for object and
this would br ing to expirat ion of object on a l l proxies in approximately same point of time.

39

Chapter 8

Conclusion

M a i n target of work was to increase a cache hit rate and therefore increase performance of
C D N i n Seznam.cz. In this work I described main concepts of Content Del ivery Networks
together w i th how C D N is implemented i n company Seznam.cz and what main parts are
part icipat ing i n process of serving content from C D N . T h e n we discussed what role cache
plays in C D N s and its part icular role i n Seznam, which techologies are used to cache different
contents on different levels, what policies does Seznam has on its cache objects, and what
alternatives Seznam has. The solution implemented by Seznam.cz was reviewed, as for
its proxy nodes that were running Varn ish instances to cache objects for end-users and
remove load from backends and give them space to process uncachable or hardly-cacheble
content instead. B y provided graphs from Seznam's moni tor ing it was discussed state of
Varn ish web accelerators. After this work contains discussion how is it possible to improve
tota l amount of cache hits and serving more efficient requests from cache instead of passing
user requests to the backends. Chapter 5 gives few points of improvement direction to raise
cache hit rate and how is it possible to confirm and prove that proposal solution would really
work i n product ion environment and would increase to ta l objects serving from cache. In the
end of chapter 5, why d id I choose to bu i ld a simulation model, which on real product ion
dataset of request could predict effectiveness of new topology and therefore I could pick a
solution that would increase cache hit rate the most. Due to positive results of s imulat ion
I started to reconfigure proxies for staging and product ion environments. Fol lowing by
chapter 6 it is described process of implementat ion of a chosen solution, work also shows
results extracted from new solution and compares important metrics to previous. Results
showed that in average per day cache hit rate was raised about 10 percent, from 82-83% to
91-92%. Also this chapter contains discussion about discrepancy i n cache hit rate prediction
of the s imulat ion model and real results scraped from proxies.

The result of this bachelors thesis, is increased cache hit rate of C D N solution by
reconfiguration of proxies and they routing table by creating a cluster of nodes wi th several
layers, where first layer is responsible for serving the most popular content for end user and
the second layer is responsible for the storing object that should have long term of l iv ing
i n cache. This topology brought significant decreasing of request comming to backends
and therefore C P U processing t ime. However, trade-off for this improvement was increased
network load between proxies as proxy on request calculates the node-owner of object and
redirects request to i t , creating single point of t ru th for cache system. Also work covered
specification of hot spott ing problem and how it is handled in a new solution of proxy
topology.

40

http://Seznam.cz
http://Seznam.cz
http://Seznam.cz

The chapter 7 provides some notes which should be taken into account to improve
caching system or make it more sustainable start ing from software and configuration details
to hardware improvements.

41

42

Bibliography

[1] B U R N S , B . Designing Distributed Systems: Patterns and Paradigms for Scalable,
Reliable Services. O ' R e i l l y Media , Inc, Sebastopol, 1005 Gravenstein Highway Nor th ,
Sebastopol, C A 95472, 2018. I S B N 1491983647.

[2] C H E N , L . , L I U , J . , X I A N , M . and W A N G , H . Docker Container L o g Col lect ion and

Analysis System Based on E L K . In: 2020 International Conference on Computer
Information and Big Data Applications (CIBDA). 2020, p. 317-320. D O I :
10.1109/CIBDA50819.2020.00078.

[3] D E J O N G H E , D . NGINX Cookbook: Advanced Recipes for High-Performance Load
Balancing. 1st ed. O ' R e i l l y Media , Inc., 2022. I S B N 1492078484.

[4] F E R Y N , T . Varnish 6 by example: A practical guide to web acceleration and content
delivery with Varnish 6 technology. Vu lkan , 2021. I S B N 9189179978.

[5] H U S T O N , G . Ipv4: How long do we have? [online]. 2003. Available at:
https : //www.potaroo.net/papers/ipj /2003-v6-n4-ipv4/ipv4.html.

[6] R A J K U M A R , B . , P A T H A N , M . and V A K A L I , A . Content delivery networks. Springer

Science Business Med ia , 2008. I S B N 3540778861.

[7] C I S C O , D . L . , C I S C O , P . C . and T E X A S , M . D . U . of. WCIP: Web Cache Invalidation

Protocol [online]. 2001. Available at:
https://datatracker. ietf.org/doc/html/draft-danli-wrec-wcip-01.

[8] Z H A N G , H . and Z E N G , H . Design and implementat ion of blockchain platform
operation and maintenance support system based on K u b e r n e t e s + E F K framework.
In: ISCTT 2021; 6th International Conference on Information Science, Computer
Technology and Transportation. 2021, p. 1-8.

43

http://www.potaroo.net/papers/
https://datatracker
http://ietf.org/doc/html/draft-danli-wrec-wcip-01

