Modelování hudební transkripce pomocí hlubokého učení: návrh, konstrukce a validace modelu na principu rekurentní neuronové sítě – Bc. Daniel Kvak
Bc. Daniel Kvak
Master's thesis
Modelování hudební transkripce pomocí hlubokého učení: návrh, konstrukce a validace modelu na principu rekurentní neuronové sítě
Modeling of music transcription using deep learning: proposal, construction and validation of model based on recurrent neural network
Abstract:
Vyjma tradičních úloh hlubokého učení, mezi které řadíme rozpoznávání vzorů, předpověď cen akcií či strojový překlad, nachází tato metoda praktické využití i v rámci algoritmické kompozice. Tato diplomová práce zkoumá využití generativního modelu k nesupervizovanému učení hudebních stylů z předem selektovaných korpusů a následnou predikci vzorků z odhadované distribuce. Model využívá Long Short-Term …moreAbstract:
Apart from the traditional tasks of deep learning, which include pattern recognition, stock price forecasting or machine translation, this method also finds practical use in algorithmic composition. This diploma thesis examines the use of a generative model for unsupervised learning of musical styles from pre-selected corpora and the subsequent prediction of samples from the estimated distribution …moreKeywords
algoritmická kompozice autoenkodér hluboké učení komputační kreativita LSTM síť rekurentní neuronová síť strojové učení umělá inteligence algorithmic composition autoencoder deep learning computational creativity LSTM network recurrent neural network machine learning artificial intelligence
Language used: Czech
Date on which the thesis was submitted / produced: 25. 5. 2021
Identifier:
https://is.muni.cz/th/wll0u/
Thesis defence
- Date of defence: 17. 6. 2021
- Supervisor: doc. PhDr. Martin Flašar, Ph.D.
- Reader: doc. Mgr. Jana Horáková, Ph.D.
Citation record
ISO 690-compliant citation record:
KVAK, Daniel. \textit{Modelování hudební transkripce pomocí hlubokého učení: návrh, konstrukce a validace modelu na principu rekurentní neuronové sítě}. Online. Master's thesis. Brno: Masaryk University, Faculty of Arts. 2021. Available from: https://theses.cz/id/3ffenx/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Filozofická fakultaMasaryk University
Faculty of ArtsMaster programme / field:
Theory of Interactive Media / Theory of Interactive Media
Theses on a related topic
-
Modul LSTM a Rekurentních neuronových sítí pro program Modeler neuronových sítí
Jiří Lagan -
Rekurentní neuronové sítě pro klasifikaci textů
Vojtěch Myška -
Rekurentní neuronové sítě pro rozpoznávání řeči
Tomáš Nováčik -
Rekurentní neuronové sítě v počítačovém vidění
Jan Křepský -
Rekurentní neuronové sítě pro analyzování sekvenčních dat
Valeriia Iegorova -
NSE Stock market prediction using Deep Recurrent Neural Network and comparison with ARIMA
Adithyan C Pankajakshan -
Artificial Neural Network for Precipitation Nowcasting
Vladimíra Hežeľová -
Využití umělé inteligence pro rozvoj kreativity tvůrčích umělců
Alisa Zubareva