Bilal RAZA

Master's thesis

Understanding the Performance of Hierarchical Navigable Small World (HNSW) in the Facebook FAISS Library for Indexing Large Databases

Abstract:
This thesis explores the performance of the Hierarchical Navigable Small Worlds (HNSW) algorithm within the FAISS library for indexing large databases. As data volumes grow exponentially, Approximate Nearest Neighbor (ANN) algorithms, like HNSW, offer efficient solutions. HNSW constructs a hierarchical graph structure, demonstrating superiority over other ANN algorithms. However, its performance within …more
Abstract:
This thesis explores the performance of the Hierarchical Navigable Small Worlds (HNSW) algorithm within the FAISS library for indexing large databases. As data volumes grow exponentially, Approximate Nearest Neighbor (ANN) algorithms, like HNSW, offer efficient solutions. HNSW constructs a hierarchical graph structure, demonstrating superiority over other ANN algorithms. However, its performance within …more
 
 
Language used: English
Date on which the thesis was submitted / produced: 9. 2. 2024

Thesis defence

  • Supervisor: prof. Dr. Andreas Fischer

Citation record

The right form of listing the thesis as a source quoted

RAZA, Bilal. Understanding the Performance of Hierarchical Navigable Small World (HNSW) in the Facebook FAISS Library for Indexing Large Databases. České Budějovice, 2024. diplomová práce (Mgr.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta

Full text of thesis

Contents of on-line thesis archive
Published in Theses:
  • Soubory jsou nedostupné do 9. 2. 2027
  • Po tomto datu bude práce dostupná: světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH, Přírodovědecká fakulta

UNIVERSITY OF SOUTH BOHEMIA IN ČESKÉ BUDĚJOVICE

Faculty of Science

Master programme / field:
Artificial Intelligence and Data Science / Artificial Intelligence and Data Science