Detect Anomalies in Linux Kernel Logs – Mgr. Ondrej Klinovský
Mgr. Ondrej Klinovský
Diplomová práce
Detect Anomalies in Linux Kernel Logs
Detect Anomalies in Linux Kernel Logs
Anotace:
Linux kernel je jeden z najväčších open source projektov na svete a podporuje nespočetne veľa zariadení a architektúr. Testovanie kernelu na všetkých takýchto zariadeniach vyžaduje veľa úsilia nielen na pripravenie riadnej infraštruktúry, ale aj efektívne monitorovanie chýb. Cieľom tejto práce je využit strojové učenie pre detekovanie anomálií v logoch generovaných Linux kernelom. Niektoré anomálie …víceAbstract:
The Linux kernel is one of the largest open source projects in the world and it supports countless devices and various architectures. To test that the kernel functions correctly on these devices requires huge effort not only to setup proper infrastructure for testing but also be able to effectively spot failures and act upon them. The goal of this thesis is to employ anomaly detection methods to find …více
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 13. 12. 2022
Identifikátor:
https://is.muni.cz/th/ug8ef/
Obhajoba závěrečné práce
- Obhajoba proběhla 23. 1. 2023
- Vedoucí: RNDr. Adam Rambousek, Ph.D.
- Oponent: Ing. Adam Okuliar
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Masarykova univerzita, Fakulta informatikyMasarykova univerzita
Fakulta informatikyMagisterský studijní program / obor:
Počítačové systémy, komunikace a bezpečnost / Hardwarové systémy
Práce na příbuzné téma
-
Implementation of Sample Selection Estimators into Double Machine Learning Framework
Michaela Kecskésová -
Fiscal multipliers through machine learning
Juraj Szitás -
Detection of Android Malware Using Machine Learning
Matúš Šikyňa -
Machine Learning for Phishing URL Detection
Juraj Smeriga -
Supervised and Unsupervised Machine Learning Methods for System Log Anomaly Detection
Júlia Ščensná -
Reinforcement Learning for Efficient Attack Agents Training
Glenn Fischer -
Detecting user actions from encrypted traffic using machine learning
Tomáš Babej -
Learning algorithms in processing of various difficult medical and environmental data
Tomáš Hudík