Analysis and classification of long terminal repeat (LTR) sequences using machine learning approaches – Bc. Jakub Horváth
Bc. Jakub Horváth
Master's thesis
Analysis and classification of long terminal repeat (LTR) sequences using machine learning approaches
Analysis and classification of long terminal repeat (LTR) sequences using machine learning approaches
Abstract:
Táto práca sa zameriava na analýzu a klasifikáciu sekvencií Long Terminal Repeats (LTR), ktoré sú kritickými zložkami retrotranspozónov, zohrávajúce významnú úlohu v štruktúre a evolúcii genómu. Práca využíva techniky vyhľadávania častých vzorov (Pattern mining) na identifikáciu významných spoluvýskytov transkripčných motívov v sekvenciách LTR s cieľom charakterizovať ich rozmanitosť a distribúciu …moreAbstract:
This thesis focuses on the analysis and classification of long terminal repeat (LTR) sequences, which are critical components of retrotransposons that play a significant role in genome structure and evolution. The work employs frequent pattern-mining techniques to identify significantly co-occurring motifs in LTR sequences, with the goal of characterizing their diversity and distribution. For the classification …more
Language used: English
Date on which the thesis was submitted / produced: 16. 5. 2023
Identifier:
https://is.muni.cz/th/m8eg3/
Thesis defence
- Date of defence: 21. 6. 2023
- Supervisor: Ing. Matej Lexa, Ph.D.
- Reader: doc. Mgr. Bc. Vít Nováček, PhD
Citation record
ISO 690-compliant citation record:
HORVÁTH, Jakub. \textit{Analysis and classification of long terminal repeat (LTR) sequences using machine learning approaches}. Online. Master's thesis. Brno: Masaryk University, Faculty of Informatics. 2023. Available from: https://theses.cz/id/8rskwi/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Artificial intelligence and data processing / Bioinformatics and systems biology
Theses on a related topic
-
Large Language Models as a tool for generating high-level features for text documents
Vojtěch Balek -
Exploring Semantic Homogeneity in Unlabeled Data Clustering Using Large Language Models
Bashar FARES -
Large Language Models (LLMs): Examining the quality of generated text with task specific data
Michal Caninec -
Developing a Cybersecurity Domain Chatbot based on an Open Source Large Language Model
Shahrukh Azhar AHSAN -
Think Twice Before You Answer: Mitigating Biases of Question Answering Models
Lukáš Mikula -
Tool for data pre-processing and iterative learning of neural networks
Kristián Malák -
Fast object detection on mobile platforms using neural networks
Tomáš Repák -
Synthesis of microscopy images using neural networks
Martin Kozlovský