Predictive regression analysis of housing price in Iowa – Zhida Guo
Zhida Guo
Master's thesis
Predictive regression analysis of housing price in Iowa
PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA
Anotácia:
This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, …viacAbstract:
This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, …viac
Jazyk práce: English
Datum vytvoření / odevzdání či podání práce: 4. 12. 2023
Identifikátor:
https://vskp.vse.cz/eid/90915
Obhajoba závěrečné práce
- Obhajoba proběhla 21. 8. 2024
- Vedúci: Karel Helman
- Oponent: Adam Čabla
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- autentizovaným zaměstnancům ze stejné školy/fakulty
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Vysoká škola ekonomická v Prazehttps://vskp.vse.cz/eid/90915
Vysoká škola ekonomická v Praze
Master programme / odbor:
Economic Data Analysis / Data Analysis and Modeling
Práce na příbuzné téma
-
Regression analysis of the relationship between COVID-19 pandemic and the change in unemployment in EU27 countries
Vahid Mammadzada -
Empirical Analysis of the Role of Extension Programmes on Adoption of Improved Cocoa Seedlings and Productivity in Ghana
Adwoa Benewaa Opoku -
Assessing the impact of shocks on food insecurity: An empirical analysis of the Asia-Pacific
Kaushal PRAKASH -
Bankruptcy prediction with explainable machine learning methods
Munkhnaran Tsogoo -
Software Metrics for Software Defects Prediction
Dominik Arne Rebro -
Prediction of normal maps using machine learning methods
Ekaterina Korotkaya -
Amino acid type prediction problem in biological nuclear magnetic resonance
David Porteš -
Analysis of product adoption and prediction of customer churn
Ľudmila Lenková