Text Recognition in Historic Birth, Death and Marriage Records – Bc. Radoslav Palkovič
Bc. Radoslav Palkovič
Bachelor's thesis
Text Recognition in Historic Birth, Death and Marriage Records
Text Recognition in Historic Birth, Death and Marriage Records
Abstract:
Historické matriky poskytujú cenný pohľad do života našich predkov. Avšak, strojové získavanie znalostí z týchto kníh stále zostáva obrovskou výzvou. Táto práca analyzuje prístupy k rozpoznávaniu textu na týchto historických záznamoch s cieľom zlepšiť výkon existujúcich nástrojov. V tejto práci sa kladie dôraz na riešenia daného problému metódami hlbokého učenia. Z príslušných registrov je tiež zhromaždený …moreAbstract:
Historical registries provide valuable insight into the lives of our ancestors. However, machine retrieval of knowledge from these books remains a formidable challenge. This thesis analyzes approaches to text recognition on these historical records, with the aim of improving the capabilities of existing tools. Throughout this work, emphasis is placed on deep learning-based solutions to the problem …more
Language used: English
Date on which the thesis was submitted / produced: 18. 5. 2023
Identifier:
https://is.muni.cz/th/njnyt/
Thesis defence
- Date of defence: 26. 6. 2023
- Supervisor: RNDr. Michal Batko, Ph.D.
- Reader: doc. RNDr. Jan Sedmidubský, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Informatics
Theses on a related topic
-
Enhancing Quality of Optical Character Recognition for Financial Document Processing
Dávid Meluš -
Optical character recognition using deep learning
Pavel ANDRLÍK -
Automatic Recognition of Mobile Phone Screenshots Content
Timotej Cirok -
Optical character recognition using deep learning
Pavel ANDRLÍK -
Emotion Recognition from Analysis of a Person’s Speech using Deep Learning
Šimon Galba