Exploring matrix completion methods for high-dimensional quantum entanglement certification – Bc. et Bc. Roman Solař
Bc. et Bc. Roman Solař
Master's thesis
Exploring matrix completion methods for high-dimensional quantum entanglement certification
Exploring matrix completion methods for high-dimensional quantum entanglement certification
Abstract:
Tato práce představuje různé techniky certifikace provázanosti pro neúplné matice hustoty izotropních kvantových stavů, a to pro dvě široce používané míry provázanosti: Schmidtovo číslo a entanglement of formation. Pomocí numerických simulací hledáme nejlepší diagonály a jejich kombinace k měření, abychom pro tyto míry získali vhodnou dolní mez, i když je matice hustoty známa jen částečně. Zjišťujeme …moreAbstract:
This thesis presents various entanglement certification techniques for incomplete density matrices of isotropic quantum states, for two widely used entanglement measures: the Schmidt number and the entanglement of formation. Through extensive numerical simulations, we identify the best diagonals and their combinations to measure in order to obtain reliable lower bounds on these measures, even when …more
Language used: English
Date on which the thesis was submitted / produced: 16. 5. 2023
Identifier:
https://is.muni.cz/th/e6my4/
Thesis defence
- Date of defence: 19. 6. 2023
- Supervisor: RNDr. Matej Pivoluska, Ph.D.
- Reader: doc. RNDr. Martin Plesch, Ph.D.
Citation record
ISO 690-compliant citation record:
SOLAŘ, Roman. \textit{Exploring matrix completion methods for high-dimensional quantum entanglement certification}. Online. Master's thesis. Brno: Masaryk University, Faculty of Informatics. 2023. Available from: https://theses.cz/id/kol0lf/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Theoretical computer science / Quantum and Other Nonclassical Computational Models