Rozpoznanie porúch chôdze pomocou hlbokého učenia – Bc. Jakub Raček
Bc. Jakub Raček
Diplomová práce
Rozpoznanie porúch chôdze pomocou hlbokého učenia
Recognition of Gait Disorders using Deep Learning
Abstract:
The goal of the thesis was to classify persons into multiple classes corresponding to various gait disorders based on motion capture data. Each person was represented by a certain number of gait cycles, whereby in the context of this thesis, a gait cycle is a time series of kinetic and kinematic attributes of gait. Gait cycles are available separately for the left and right lower limb of each person …víceAbstract:
Cieľom práce bolo klasifikovať osoby na základe zaznamenaných pohybových dát do tried zodpovedajúcich rôznym poruchám chôdze. Každá osoba bola reprezentovaná niekoľkými krokovými cyklami, pričom v kontexte tejto práce je krokový cyklus časová rada kinetických a kinematických atribútov chôdze. Krokové cykly sú k dispozícií separátne pre ľavú a pravú dolnú končatinu danej osoby. V úlohe klasifikátora …více
Jazyk práce: slovenština
Datum vytvoření / odevzdání či podání práce: 17. 5. 2022
Identifikátor:
https://is.muni.cz/th/fitcn/
Obhajoba závěrečné práce
- Obhajoba proběhla 22. 6. 2022
- Vedoucí: doc. RNDr. Jan Sedmidubský, Ph.D.
- Oponent: prof. Ing. Pavel Zezula, CSc.
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Masarykova univerzita, Fakulta informatikyMasarykova univerzita
Fakulta informatikyMagisterský studijní program / obor:
Umělá inteligence a zpracování dat / Zpracování a analýza rozsáhlých dat
Práce na příbuzné téma
-
Comparison of methods for clustering convolutional neural network intercomputation values with respect to explainability
Adrián Bindas -
Simulating drone automation in agriculture using neural networks
Jakub Valent -
Particle detection in electron microscopy images using neural networks
Roman Ďuriš -
Simulation of Multiple Motile Agents Using Neural Networks
Branislav Ševc -
Artificial Neural Network for Precipitation Nowcasting
Vladimíra Hežeľová -
Application of Graph Neural Networks in a Selected Domain
Emanuel Dopater -
Biomedical Image Analysis using Deep Neural Networks
Matúš Hromuľák -
Impact of Data Quality on Deep Learning Algorithms in Computer Vision
Vlastimil Martinek