On resemblance of domain names: Clustering versus malicious actors – Bc. Ondřej Ševčík
Bc. Ondřej Ševčík
Bachelor's thesis
On resemblance of domain names: Clustering versus malicious actors
On resemblance of domain names: Clustering versus malicious actors
Abstract:
Tato práce představuje nový systém, který využívá shlukování plně kvalifikovaných doménových jmen (FQDNs) na základě podobnosti řetězců. Jejím cílem je zlepšit odhalování škodlivých kampaní a tím pomoci bezpečnostním analytikům při investigaci. Navržený systém nabízí možnost výrazně redukovat množiny možných hrozeb na jednodušeji zpracovatelné menšiny. Zatímco velká část existující literatury se zaměřuje …moreAbstract:
This thesis introduces a novel system that employs string similarity-based clustering of Fully Qualified Domain Names (FQDNs). Its objective is to improve the discovery of malicious campaigns, thereby assisting security analysts in their investigations. The proposed approach offers the ability to reduce sets of suspected threats to manageable minorities significantly. While much of the existing literature …more
Language used: English
Date on which the thesis was submitted / produced: 18. 5. 2023
Identifier:
https://is.muni.cz/th/gzicd/
Thesis defence
- Date of defence: 28. 6. 2023
- Supervisor: Mgr. Pavel Novák
- Reader: Ing. Jan Zíka
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Informatics
Theses on a related topic
-
Evaluation of Multiple Clustering Algorithms on Insurance Datasets
Kryštof Suchánek -
Clustering of Mobile Devices Based on Their Security State
Dáša Pawlasová -
User Sessions Clustering and Anomaly Detection
Michal Mokroš -
Interpretable clustering of turtle graphics programs
Zuzana Ďurčeková -
Remuneration Schemes for Individual Prosumers in the EU – understanding the comparison of clustering results
Khatia Shaverdashvili -
Comparison of methods for clustering convolutional neural network intercomputation values with respect to explainability
Adrián Bindas -
Extension of clustering analysis tool for cybersecurity exercises
Tomáš Ondruško -
Explaining convolutional neural network using clustering methods
Adam Bajger