Fast object detection on mobile platforms using neural networks – Bc. Tomáš Repák
Bc. Tomáš Repák
Bachelor's thesis
Fast object detection on mobile platforms using neural networks
Fast object detection on mobile platforms using neural networks
Abstract:
Nejčasteji využívanými architekturami neuronových síti používaných pro detekci objektů na mobilních platformách jsou SSD (Single Shot Detector) a YOLO (You Only Look Once). Obě maji své výhody i nevýhody z pohledu přesnosti, výkonu nebo využití paměti. Cílem je porovnat současné neuronové sítě jakým je i EfficientDet s výše zmíněnými, poskytnout implementaci, analýzu a případně navrhnout modifikace …moreAbstract:
The most common neural network architectures used for object detection on mobile platforms are SSD (Single Shot Detector) and YOLO (You Only Look Once). Both have their advantages and their drawbacks in terms of precision, performance or memory usage. The goal is to compare current state-of-the-art neural networks such as EfficientDet against either of the two, provide an implementation, an analysis …more
Language used: English
Date on which the thesis was submitted / produced: 25. 5. 2021
Identifier:
https://is.muni.cz/th/o98tz/
Thesis defence
- Date of defence: 28. 6. 2021
- Supervisor: doc. RNDr. Tomáš Brázdil, Ph.D.
- Reader: RNDr. Jaroslav Čechák
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
Deep Learning for Object Detection
Radoslav Pitoňák -
Static object detection from visualisation of moving objects
Martin Kostka -
Evaluation of Self-Supervised Learning for Vehicle-Type Detection in Autonomous Driving
Manaf AHMED -
Visualization of Digital Pathology Images and Results of Their Analyses Using Deep Neural Networks
Nikoleta Češeková -
Interpretation techniques for deep neural networks in digital histopathology
Martin Krebs -
Urban Change Monitoring with Neural Networks and Deep-Temporal Remote Sensing Data
Georg Zitzlsberger -
Alzheimer's dementia recognition from spontaneous speech using deep neural networks
Mariia Buntovskikh -
Image super sampling using deep neural networks
Ivan Gorbatenko