Machine Learning for Text Anomaly Detection – Bc. Alina Tsykynovska
Bc. Alina Tsykynovska
Master's thesis
Machine Learning for Text Anomaly Detection
Machine Learning for Text Anomaly Detection
Abstract:
Tato práce se zaměřuje na výkon algoritmů strojového učení pro detekci anomálií ve dvou různých typech datových sad: numerické (síťové logy) a textové (e-maily). Pro e-mailovou datovou sadu jsou použité tři textové reprezentace: count vectorizer, TF-IDF a word embeddings. Srovnání zahrnuje výsledky napříč těmito reprezentacemi a výsledky napříč datovými sadami.Abstract:
This thesis focuses on the performance of machine learning algorithms for detecting anomalies across two different types of datasets: numerical (network logs) and textual (emails). Three text representations are assessed for the email dataset: count vectorizer, TF-IDF and word embeddings. The comparison includes the results across these representations and results across datasets.
Language used: English
Date on which the thesis was submitted / produced: 21. 5. 2024
Identifier:
https://is.muni.cz/th/kc4w9/
Thesis defence
- Date of defence: 20. 6. 2024
- Supervisor: doc. Ing. RNDr. Barbora Bühnová, Ph.D.
- Reader: doc. Ing. Radim Burget, Ph.D.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Software Engineering / Design and development of software systems
Theses on a related topic
-
Supervised and Unsupervised Machine Learning Methods for System Log Anomaly Detection
Júlia Ščensná -
Deep learning for anomaly detection in histopathological data
David Čechák -
Supervised and Unsupervised Machine Learning Methods for System Log Anomaly Detection
Júlia Ščensná -
Anomaly Detection in Galaxy Images using Deep Learning
Karina Batalova -
Unsupervised Time Series Anomaly Detection on Virtualisation host networks
Andrej Černek -
Unsupervised Machine Learning Methods for Behaviour Analysis and Anomaly Detection in University Environment
Pavel Strnad -
Graph-based Anomaly Detection in Network Traffic
Denisa Šrámková -
Performance evaluation of Machine Learning approaches for identifying parts of scientific affiliations.
Jan MACHÁŇ