Investigation of interpretability approaches for CNN-based classification models and their generalisability across various datasets in tire production. – Darwin Rolando SUCUZHANAY MORA
Darwin Rolando SUCUZHANAY MORA
Master's thesis
Investigation of interpretability approaches for CNN-based classification models and their generalisability across various datasets in tire production.
Abstract:
This thesis enhances the interpretability of various Convolutional Neural Network (CNN) models used at different stages of tire manufacturing at Continental. It investigates multiple approaches that can be generalized across various image classification tasks. The methods investigated in this work introduced different levels of interpretability into the CNN models, offering both a global explanation …viacAbstract:
This thesis enhances the interpretability of various Convolutional Neural Network (CNN) models used at different stages of tire manufacturing at Continental. It investigates multiple approaches that can be generalized across various image classification tasks. The methods investigated in this work introduced different levels of interpretability into the CNN models, offering both a global explanation …viac
Jazyk práce: English
Datum vytvoření / odevzdání či podání práce: 20. 8. 2025
Obhajoba závěrečné práce
- Vedúci: Jishnu Seshadri, M.Sc.
Citační záznam
Citace dle ISO 690:
SUCUZHANAY MORA, Darwin Rolando. \textit{Investigation of interpretability approaches for CNN-based classification models and their generalisability across various datasets in tire production.}. Online. Diplomová práca. České Budějovice: Jihočeská univerzita v Českých Budějovicích, Faculty of Science. 2025. Dostupné z: https://theses.cz/id/fh4v8w/.
Jak správně citovat práci
SUCUZHANAY MORA, Darwin Rolando. Investigation of interpretability approaches for CNN-based classification models and their generalisability across various datasets in tire production.. České Budějovice, 2025. diplomová práce (Mgr.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- Soubory jsou nedostupné.
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH, Přírodovědecká fakultaUNIVERSITY OF SOUTH BOHEMIA IN ČESKÉ BUDĚJOVICE
Faculty of ScienceMaster programme / odbor:
Artificial Intelligence and Data Science / Artificial Intelligence and Data Science
Práce na příbuzné téma
-
Explainable Similarity Search in Image Data Collections
Matúš Šikyňa -
A review of explainable AI methods applicable to biomedical use cases
Michal Šosták -
Explaining convolutional neural network using clustering methods
Adam Bajger -
Comparison of methods for clustering convolutional neural network intercomputation values with respect to explainability
Adrián Bindas -
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
implement classification for traffic signs using convolutional neural network
Mohamad Abdulrahman -
Analysis of Neural-Network-Based Anomaly Detection Methods for Time Series
Bishoy KAMEL -
Artificial Intelligence in Global Management
David POSPÍŠIL