Pathological Image Analysis Using Attention Based Deep Learning Methods – Bc. Petr Kantek
Bc. Petr Kantek
Bachelor's thesis
Pathological Image Analysis Using Attention Based Deep Learning Methods
Pathological Image Analysis Using Attention Based Deep Learning Methods
Abstract:
Metody hlubokého učení založené na attention byly v posledních letech v centru pozornosti. Ale teprve nedávno byla v computer vision použita čistá attention. Výsledné úsilí vykrystalizovalo do typu neuronové sítě zvané Vision Transformer (ViT). V této práci představíme ViT, abychom využili jeho jedinečných charakteristik v klasifikaci rakoviny na patologických obrázcích (WSI). Porovnáme více konfigurací …moreAbstract:
Attention based deep learning methods have been in the limelight in the last years. But only recently, pure attention has been used in computer vision tasks. The resulting effort crystallized into a neural network architecture called Vision Transformer (ViT). In this thesis, we dive into the internals of ViT in order to get the advantage of its unique characteristics in cancer classification of pathological …more
Language used: English
Date on which the thesis was submitted / produced: 25. 5. 2021
Identifier:
https://is.muni.cz/th/gun4k/
Thesis defence
- Date of defence: 28. 6. 2021
- Supervisor: doc. RNDr. Tomáš Brázdil, Ph.D.
- Reader: RNDr. David Wiesner
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
AI Image Analysis Pipeline Implementation for Digital Pathology
Andrej Kubanda -
Text classification with artificial neural networks
Anouk Wilstra -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Improving Generalization of Deep Convolutional Neural Networks for Acoustic Scene Classification
Fabian PAISCHER -
On neural networks base study of radio galaxies
Radek Jančík -
Prostate Cancer Prediction with Graph Neural Networks
Štěpán Řihák -
Evaluation of circulating microRNAs as prognostic tools in pancreatic cancer patients
Natalia Anna Gablo -
Learning to Predict Prostate Cancer Using Slide-level Annotations
Michal Jakubík