Automatic Recognition of User Interface States Using Convolutional Neural Networks – Bc. Klára Petrovičová
Bc. Klára Petrovičová
Bachelor's thesis
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Abstract:
Systém Robotic Quality Assurance firmy Y Soft využívá automatické testování uživatelského rozhraní za použití robotické paže a kamery. Tato bakalářská práce se zabývá částí tohoto řešení, efektivním rozpoznáváním regionů na obrazovce. Standardní metody pro rozpoznávání fotek nejsou dostatečně efektivní, proto práce využívá konvoluční neuronové sítě. Finální řešení navíc zahrnuje techniky pro augmentaci …moreAbstract:
The Y Soft's Robotic Quality Assurance system exploits automated testing of printer user interfaces using a robotic arm and a camera. This thesis explores part of this solution, effective recognition of regions on the monitor screens. Standard image processing methods are not sufficient; therefore, the solution employs Convolutional Neural Networks. The scope of this thesis also includes data augmentation …more
Language used: English
Date on which the thesis was submitted / produced: 25. 5. 2021
Identifier:
https://is.muni.cz/th/lqdwq/
Thesis defence
- Date of defence: 28. 6. 2021
- Supervisor: RNDr. Jaroslav Čechák
- Reader: doc. RNDr. Tomáš Brázdil, Ph.D.
Citation record
ISO 690-compliant citation record:
PETROVIČOVÁ, Klára. \textit{Automatic Recognition of User Interface States Using Convolutional Neural Networks}. Online. Bachelor's thesis. Brno: Masaryk University, Faculty of Informatics. 2021. Available from: https://theses.cz/id/nmc7o6/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Interpretation techniques for deep neural networks in digital histopathology
Martin Krebs -
Tomographic back-projection of either sparse or low-quality projection views, based on convolutional neural networks (CNN)
Payal JAIN -
Detekce anomálií na základě stavu RQA systému
Jan Lorenc