Data analysis for nuclear magnetic resonance spectroscopy – David Porteš
David Porteš
Bachelor's thesis
Data analysis for nuclear magnetic resonance spectroscopy
Data analysis for nuclear magnetic resonance spectroscopy
Abstract:
Pro určení struktury proteinů z dat získaných pomocí NMR spektroskopie je třeba přiřadit všechny signály ze spektra k atomům, ze kterých vznikly. Tento úkol je velmi časově náročný, jelikož ve většině případů musí být prováděn manuálně, a jako takový celý proces výrazně zpomaluje. Z tohoto důvodu se výzkumná skupina Protein-DNA Interactions v CEITECu pod vedením Konstantina Tripsianese, Ph.D. rozhodla …moreAbstract:
In order to determine protein structure based of NMR spectroscopy data, it is necessary to assign individual peaks in the spectra to their atoms of origin. This process is very time consuming since it in most cases needs to be done manually, and as such presents a major hindrance. To address this, the Protein-DNA Interactions research group at CEITEC under the leadership of Konstantinos Tripsianes …more
Language used: English
Date on which the thesis was submitted / produced: 17. 12. 2018
Identifier:
https://is.muni.cz/th/zebkt/
Thesis defence
- Date of defence: 6. 2. 2019
- Supervisor: doc. RNDr. Tomáš Brázdil, Ph.D.
- Reader: RNDr. David Šafránek, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
NMR Charakterization of Protein - Protein and Protein - Cofactor Interactions
Karel Kubíček -
Amino acid type prediction problem in biological nuclear magnetic resonance
David Porteš -
Application of nuclear magnetic resonance spectroscopy in clinical diagnosis
Lenka Michálková -
Impact of Data Quality on Deep Learning Algorithms in Computer Vision
Vlastimil Martinek -
Deep learning for anomaly detection in histopathological data
David Čechák -
Using deep learning techniques for efficient data extraction and blocking data extraction on the Internet
Bogdan Vyzhlov -
Interactive visualization of deep learning on financial big data
Xhulio Kondakçiu -
Lung Data Analysis With Deep Learning
Harikrishnan KESAVAN VIJAYAKUMAR