AI-driven Software Development Source Code Quality – Bc. Petr Kantek, B.Sc.
Bc. Petr Kantek, B.Sc.
Diplomová práce
AI-driven Software Development Source Code Quality
AI-driven Software Development Source Code Quality
Anotace:
V posledních letech byla umělé inteligence úspěšně aplikována v různých odvětvích. Velké jazykové modely (VJM) se rozšířily také do oblasti softwarového vývoje. Od generování zdrojového kódu a analýze kódu až po překlad dokumentace mohou nástroje založené na VJM zvýšit efektivitu softwarového vývoje a pomoci softwarovým inženýrům v jejich každodenních úkolech. Existuje však otevřená otázka týkající …víceAbstract:
In recent years, applications of artificial intelligence have seen notable success across various fields. Large Language Models (LLMs) have particularly found extensive use in the field of software development. From source code generation and code understanding to documentation translation, tools based on LLMs can enhance the effectiveness of the software development life cycle and assist software …více
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 15. 12. 2023
Identifikátor:
https://is.muni.cz/th/mdt17/
Obhajoba závěrečné práce
- Obhajoba proběhla 5. 2. 2024
- Vedoucí: PhD Bruno Rossi
- Oponent: PhD Hind Bangui
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Masarykova univerzita, Fakulta informatikyMasarykova univerzita
Fakulta informatikyMagisterský studijní program / obor:
Softwarové inženýrství / Návrh a vývoj softwarových systémů
Práce na příbuzné téma
-
Exploring Semantic Homogeneity in Unlabeled Data Clustering Using Large Language Models
Bashar FARES -
Large Language Models as a tool for generating high-level features for text documents
Vojtěch Balek -
Large Language Models (LLMs): Examining the quality of generated text with task specific data
Michal Caninec -
Developing a Cybersecurity Domain Chatbot based on an Open Source Large Language Model
Shahrukh Azhar AHSAN -
Think Twice Before You Answer: Mitigating Biases of Question Answering Models
Lukáš Mikula -
Custom Roslyn Tool for Static Code Analysis
Zuzana Dankovčíková -
Effectively Combining Static Code Analysis and Manual Code Reviews
Jan Svoboda -
Analysis of Decision Model and Notation tooling in the Visual Studio Code ecosystem
Marcel Mráz