Radek Jančík
Bachelor's thesis
On neural networks base study of radio galaxies
On neural networks base study of radio galaxies
Abstract:
Morfologie rádiových galaxií je ve vzájemném vztahu s vlastnostmi jejich fyzického prostředí, a je tedy velmi důležitá při studování vesmíru. V této práci představujeme konvoluční neuronovou síť, která automaticky klasifikuje snímky rádiových galaxií do tří kategorií: Fanaroff-Riley I (FR I), Fanaroff-Riley II (FR II) a Bent-tailed. Dále diskutujeme o vlastnostech našeho klasifikátoru, jeho úspěšnosti …moreAbstract:
The morphology of radio galaxies is correlated to characteristics of their physical environment and is therefore very important in the study of the Universe. In this thesis, we present a convolutional neural network that automatically classifies images of radio galaxies into three morphological categories: Fanaroff-Riley I (FR I), Fanaroff-Riley II (FR II), and Bent-tailed. We discuss the properties …more
Language used: English
Date on which the thesis was submitted / produced: 20. 7. 2020
Identifier:
https://is.muni.cz/th/yki68/
Thesis defence
- Date of defence: 25. 9. 2020
- Supervisor: Mgr. Filip Hroch, Ph.D.
- Reader: RNDr. Petr Škoda, CSc.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Mathematical Informatics
Theses on a related topic
-
Explaining convolutional neural network using clustering methods
Adam Bajger -
Comparison of methods for clustering convolutional neural network intercomputation values with respect to explainability
Adrián Bindas -
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
implement classification for traffic signs using convolutional neural network
Mohamad Abdulrahman -
Attention Based High Resolution Image Classification
Dominik HEINDL -
Automatic Image Classification
Lukáš KÖLBL -
Automatic Image Annotation for Microstock Sites
Michal Červeňanský -
Data augmentation for image classification using GAN and autoencoder
Gofur Halmuratov