Detecting Potential Violent Behavior Using Deep Learning – Dalton Chukwuezugo Owoh
Dalton Chukwuezugo Owoh
Diplomová práce
Detecting Potential Violent Behavior Using Deep Learning
Detecting Potential Violent Behavior Using Deep Learning
Abstract:
In this master's thesis, four deep learning models - DenseNet-121, Inception-v3, ResNet50, and VGG-16 were implemented to detect potential violent behavior by applying transfer learning principles. In the theoretical part, a comprehensive review of literature in the field of human violence detection was conducted to identify prevalent strengths and gaps in existing research work. The results of the …víceAbstract:
In this master's thesis, four deep learning models - DenseNet-121, Inception-v3, ResNet50, and VGG-16 were implemented to detect potential violent behavior by applying transfer learning principles. In the theoretical part, a comprehensive review of literature in the field of human violence detection was conducted to identify prevalent strengths and gaps in existing research work. The results of the …více
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 13. 5. 2024
Obhajoba závěrečné práce
Citační záznam
Jak správně citovat práci
Owoh, Dalton Chukwuezugo. Detecting Potential Violent Behavior Using Deep Learning. Zlín, 2024. diplomová práce (Ing.). Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- autentizovaným zaměstnancům ze stejné školy/fakulty
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatikyPlny text prace je k dispozici v elektronicke podobe
Univerzita Tomáše Bati ve Zlíně
Fakulta aplikované informatikyMagisterský studijní program / obor:
Information Technologies / Software Engineering
Práce na příbuzné téma
-
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Interpretation techniques for deep neural networks in digital histopathology
Martin Krebs -
Tomographic back-projection of either sparse or low-quality projection views, based on convolutional neural networks (CNN)
Payal JAIN