Filip Široký

Bakalářská práce

Anomaly Detection Using Deep Sparse Autoencoders for CERN Particle Detector Data

Anomaly Detection Using Deep Sparse Autoencoders for CERN Particle Detector Data
Anotace:
The certification of the Compact Muon Solenoid (CMS) particle detector data, as used for physics analysis, is a crucial task to ensure the quality of all physics results published by CERN. Currently, the certification conducted by human experts is labour intensive and can only be segmented on a long period of time basis. This contribution focuses on the design and prototype of an automated certification …více
Abstract:
The certification of the Compact Muon Solenoid (CMS) particle detector data, as used for physics analysis, is a crucial task to ensure the quality of all physics results published by CERN. Currently, the certification conducted by human experts is labour intensive and can only be segmented on a long period of time basis. This contribution focuses on the design and prototype of an automated certification …více
 
 
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 27. 5. 2019

Obhajoba závěrečné práce

  • Obhajoba proběhla 25. 6. 2019
  • Vedoucí: doc. RNDr. Petr Sojka, Ph.D.
  • Oponent: RNDr. Petr Novotný, Ph.D., Giovanni Franzoni, Ph.D.

Citační záznam

Plný text práce

Obsah online archivu závěrečné práce
Zveřejněno v Theses:
  • světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Masarykova univerzita, Fakulta informatiky

Masarykova univerzita

Fakulta informatiky

Bakalářský studijní program / obor:
Informatika / Matematická informatika