Klasifikace pohlaví a věku osob v obrazových datech – Matúš Námešný
Matúš Námešný
Master's thesis
Klasifikace pohlaví a věku osob v obrazových datech
Gender and Age Classification in Camera Data
Abstract:
Odhad veku a pohlavia z obrazových dát je dôležitou aplikáciou počítačového videnia. Existuje veľa prístupov na riešenie tohto problému. V tejto práci vyhodnotíme tri rôzne metódy. Skombinujeme verejne dostupné datasety spolu s jedným datasetom, ktorý sme manuálne označili a natrénujeme najlepšiu metódu. Dáta ďalej rozšírime pridaním ďalšieho farebného kanálu. Ukážeme, že trénovanie s veľkým datasetom …moreAbstract:
Age and gender prediction from images is an important application of computer vision. There are many approaches to solve this problem. We evaluate three different methods. We combine publicly available datasets and one manually labelled dataset into a large set and train the best method. We further extend the data by adding a colour channel to the images and train the best method. We show that training …more
Language used: English
Date on which the thesis was submitted / produced: 20. 5. 2019
Identifier:
https://is.muni.cz/th/sql06/
Thesis defence
- Date of defence: 18. 6. 2019
- Supervisor: doc. RNDr. Aleš Horák, Ph.D.
- Reader: RNDr. Michal Batko, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
Image Analysis Using Machine Learning Models
Norbert Komiňák -
Image Analysis Using Machine Learning Models
Norbert Komiňák -
Pathological Image Analysis Using Attention Based Deep Learning Methods
Petr Kantek -
Folk Dance Step Analysis and Classification in Virtual Reality
David Zelníček -
Difficulty Classification of Moonboard Bouldering Problems
Eduard Minks -
Frequency of Adjective Usage and Its Semantic Classification
Veronika Štěpánová -
Customers Classification using Recency Frequency, Monetary value (RFM), and K-means clustering algorithm
Mark Azietaku -
Triplet-loss Learning for Classification of 3D Human Motion Data
Barbora Kompišová