Interpretation techniques for deep neural networks in digital histopathology – Bc. Martin Krebs
Bc. Martin Krebs
Bachelor's thesis
Interpretation techniques for deep neural networks in digital histopathology
Interpretation techniques for deep neural networks in digital histopathology
Abstract:
Skupina RationAI natrénovala konvolučnú neurónovú sieť, ktorá predpovedá výskyt rakoviny prostaty v digitálnych snímkach tkaniva. Naším cieľom je vedieť dostatočne rýchlo vysvetliť správanie tejto siete. Preskúmame niekoľko metód, ktoré produkujú vizuálne podobné výsledky ako súčasná, pomalá metóda Oklúzie. Aby sme zaistili kvalitu testovaných metód, nastavíme a vyhodnotíme 5 kvantitatívnych metrík …moreAbstract:
RationAI group trained a convolutional neural network model that can reliably predict the presence of prostate cancer in digitized tissue samples. Our goal is to find an explainability method to help us understand those predictions in a reasonable time. We review several popular explainability methods that produce visually similar results to the current, notably slow solution based on Occlusion. To …more
Language used: English
Date on which the thesis was submitted / produced: 23. 5. 2024
Identifier:
https://is.muni.cz/th/l09kc/
Thesis defence
- Date of defence: 24. 6. 2024
- Supervisor: RNDr. Vít Musil, Ph.D.
- Reader: Anselm Paulus
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Informatics
Theses on a related topic
-
Explainable Similarity Search in Image Data Collections
Matúš Šikyňa -
A review of explainable AI methods applicable to biomedical use cases
Michal Šosták -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Tomographic back-projection of either sparse or low-quality projection views, based on convolutional neural networks (CNN)
Payal JAIN