Bc. Matěj Moravík
Diplomová práce
Proximální dynamické systémy
Proximal dynamical systems
Anotace:
Podmnožinu $S$ fázového prostoru nazveme $\delta$-\textit{promíchanou} pokud pro každý pár bodů $x, y \in S, x \neq y$ máme, že $\liminf_{n \rightarrow \infty} d(f^{n}(x),f^{n}(y)) = 0$ a $\limsup_{n \rightarrow \infty} d(f^{n}(x),f^{n}(y)) > \delta$, kde $\delta > 0$ a $d$ je metrika na $X$, stejně tak $S$ se nazívá \textit{promíchaná} pokud pro každý pár bodů $x, y \in S$, $x \neq y$ máme, …víceAbstract:
A subset $S$ of phase space is called $\delta$-\textit{scrambled} if for every pair of points $x, y \in S$, $x \neq y$ we have $\liminf_{n \rightarrow \infty} d(f^{n}(x),f^{n}(y)) = 0$ and $\limsup_{n \rightarrow \infty} d(f^{n}(x),f^{n}(y)) > \delta$, where $\delta > 0$ and $d$ being metric on $X$, likewise $S$ is called \textit{scrambled} if for every pair of points $x, y \in S$, $x \neq y …více
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 20. 5. 2024
Identifikátor:
https://is.slu.cz/th/pe8kt/
Obhajoba závěrečné práce
- Obhajoba proběhla 19. 6. 2024
- Vedoucí: doc. RNDr. Michaela Mlíchová, Ph.D.
- Oponent: doc. RNDr. Zdeněk Kočan, Ph.D.
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Slezská univerzita v Opavě, Matematický ústav v OpavěSlezská univerzita v Opavě
Matematický ústav v OpavěMagisterský studijní program / obor:
Matematika / Matematická analýza
Práce na příbuzné téma
-
On triangular maps of the square and nonautomous dynamical systems
Vojtěch Pravec -
Abstraction-Based Analysis of Continuous-Time Models in System Biology
Jana Dražanová -
Tools for time series analysis of nonlinear dynamical systems
Tomáš Martinovič -
Bifurcation diagrams of discrete dynamical systems
Tomáš Stehlík -
Model Checking Based Parameter Synthesis of Dynamical Systems in Biology
Martin Demko -
Simulation-based analysis of large-scale dynamical systems
Milan Kováčik -
Senzitivita a další formy chaosu v dynamických systémech
Michaela Záškolná