Brain Imaging in Schizophrenia: Advanced Machine Learning Strategies – RNDr. Roman Vyškovský, Ph.D.
RNDr. Roman Vyškovský, Ph.D.
Doctoral thesis
Brain Imaging in Schizophrenia: Advanced Machine Learning Strategies
Brain Imaging in Schizophrenia: Advanced Machine Learning Strategies
Abstract:
Disertační práce cílí na využití moderních metod strojového učení - sborového učení a hlubokého učení - pro rozpoznání pacientů se schizofrenií v obrazech z magnetické rezonance. Bylo navrženo několik schémat klasifikace, která zahrnovala různé morfometrie pro předzpracování obrazu a přístupy ke klasifikaci (náhodný výběr příznaků v kombinaci s vícevrstvým perceptronem a metodou podpůrných vektorů …moreAbstract:
The thesis aims to use modern machine learning methods – ensemble learning and deep learning – to distinguish schizophrenia patients in magnetic resonance images. Several classification schemes consisted of various morphometry methods for pre-processing and classification approaches (random subspace ensembles in combination with multi-layer perceptron and support vector machine, stacked-autoencoders …more
Language used: English
Date on which the thesis was submitted / produced: 19. 8. 2022
Identifier:
https://is.muni.cz/th/leq31/
Thesis defence
- Date of defence: 19. 10. 2022
- Supervisor: doc. Ing. Daniel Schwarz, Ph.D.
- Reader: prof. Ing. Jan Kremláček, Ph.D., doc. Ing. Zoltán Szabó, Ph.D., prof. Ing. Ivo Provazník, Ph.D.
Citation record
ISO 690-compliant citation record:
VYŠKOVSKÝ, Roman. \textit{Brain Imaging in Schizophrenia: Advanced Machine Learning Strategies}. Online. Doctoral theses, Dissertations. Brno: Masaryk University, Faculty of Medicine. 2022. Available from: https://theses.cz/id/iu40l6/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Lékařská fakultaMasaryk University
Faculty of MedicineDoctoral programme / field:
Neurosciences / Neurosciences
Theses on a related topic
-
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Interpretation techniques for deep neural networks in digital histopathology
Martin Krebs -
Tomographic back-projection of either sparse or low-quality projection views, based on convolutional neural networks (CNN)
Payal JAIN -
Classification of Passersby Using Single-point LiDAR Sensor and Machine Learning
Dominik Klement -
Analysis and classification of long terminal repeat (LTR) sequences using machine learning approaches
Jakub Horváth