Windows malware detection using malware visualisation – Bc. Martina Cvinčeková
Bc. Martina Cvinčeková
Master's thesis
Windows malware detection using malware visualisation
Windows malware detection using malware visualisation
Abstract:
Táto práca skúma techniky malware detekcie založené na jeho vizuálnej reprezentácii vo forme čierno-bielych obrázkov. Okrem toho, táto práca porovnáva efektivitu tohto postupu so štandardnejšou metódou, ktorá na klasifikáciu využíva zvolenú množinu charakteristických znakov. Celkovo sa práca skladá zo štyroch hlavných blokov. Prvá časť opisuje techniky na detekciu malware a rolu algoritmov strojového …moreAbstract:
This thesis explores the technique of detecting malware based on its visual representation in the form of grey-scale images. Furthermore, it compares the efficiency of this approach with a more standard method of classification by using a selected set of features. Overall, the thesis consists of four main blocks. The first part describes the malware detection techniques together with the role of machine …more
Language used: English
Date on which the thesis was submitted / produced: 9. 12. 2019
Identifier:
https://is.muni.cz/th/ywwhp/
Thesis defence
- Date of defence: 5. 2. 2020
- Supervisor: RNDr. Radek Ošlejšek, Ph.D.
- Reader: RNDr. Karolína Dočkalová Burská
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Applied Informatics / Applied Informatics
Theses on a related topic
-
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Interpretation techniques for deep neural networks in digital histopathology
Martin Krebs -
Tomographic back-projection of either sparse or low-quality projection views, based on convolutional neural networks (CNN)
Payal JAIN -
Metody statické analýzy malware
Jan Hložek -
Srovnání vlastností a možností formátů na popis malware
Peter Nemček